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SUMMARY

Non-core spliceosome components are essential, conserved regulators of alternative splicing. They 

provide concentration-dependent control of diverse pre-mRNAs. Many splicing factors direct 

unproductive splicing of their own pre-mRNAs through negative autoregulation. However, the 

impact of such feedback loops on splicing dynamics at the single-cell level remains unclear. 

Here, we developed a system to quantitatively analyze negative autoregulatory splicing dynamics 

by splicing factor SRSF1 in response to perturbations in single HEK293 cells. We show that 

negative autoregulatory splicing provides critical functions for gene regulation, establishing 

a ceiling of SRSF1 protein concentration, reducing cell-cell heterogeneity in SRSF1 levels, 

and buffering variation in transcription. Most important, it adapts SRSF1 splicing activity to 

variations in demand from other pre-mRNA substrates. A minimal mathematical model of 

autoregulatory splicing explains these experimentally observed features and provides values for 

effective biochemical parameters. These results reveal the unique functional roles that splicing 

negative autoregulation plays in homeostatically regulating transcriptional programs.
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Negative autoregulatory feedback is a prevalent feature of splice regulation. Ding et al. show 

that the splice regulator SRSF1 uses negative autoregulatory splicing to maintain constant levels 

independent of variations in its own transcription and the “load” of pre-mRNA transcripts. A 

minimal mathematical model can explain these capabilities.

Graphical Abstract

INTRODUCTION

More than 90% of a typical eukaryotic genome undergoes alternative splicing, producing 

multiple mRNA isoforms and expanding proteome diversity (Merkin et al., 2012; Barbosa-

Morais et al., 2012; Pan et al., 2008; Wang et al., 2008; Nilsen and Graveley, 2010; Ule and 

Blencowe, 2019; Chaudhary et al., 2019; Liu et al., 2017). Missplicing can cause diverse 

physiological effects and lead to disease (Scotti and Swanson, 2016; Faustino and Cooper, 

2003; Kalsotra and Cooper, 2011; Urbanski et al., 2018; Bonnal et al., 2020; Thomas et al., 

2020). Alternative splicing is controlled by many distinct components (Black, 2003; Lee and 

Rio, 2015; Wilkinson et al., 2020), including non-core spliceosome components (Jangi and 

Sharp, 2014), the splicing code (Barash et al., 2010; Culler et al., 2010), RNA secondary 

structures (McManus and Graveley, 2011), RNA polymerase speed (Fong et al., 2014), and 

epigenetic regulation (Luco et al., 2011).
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Of these regulators, non-core spliceosome components play a unique role by modulating 

splicing activity in a concentration-dependent manner, and maintaining a stable milieu of 

their concentration (i.e., splicing activity) is critical (Black, 2003; Wang and Burge, 2008; 

Shin and Manley, 2004; Gehring and Roignant, 2021). Most splicing regulators fall into 

two main, conserved families, serine-arginine rich (SR) proteins and heterogeneous nuclear 

ribonucleoproteins (hnRNPs), and are found across diverse tissue types and species (Manley 

et al., 1996; Dreyfuss et al., 1993; Zahler et al., 1992; Baralle and Giudice, 2017), ranging 

from Schizosaccharomyces pombe (Shepard and Hertel, 2009) to Arabidopsis (Kalyna et al., 

2006). SR or hnRNP proteins modulate alternative splicing of large and diverse sets of target 

genes (Long and Caceres, 2009; Zhou and Fu, 2013; Wang and Manley, 1995; Leclair et al., 

2020), and are implicated in diverse disease processes (Geuens et al., 2016; Anczuków and 

Krainer, 2016; Bonnal et al., 2020). Maintaining splicing factor homeostasis is thus critical 

for cellular function.

The control of splicing factor level is commonly achieved through negative autoregulatory 

splicing (Kalsotra and Cooper, 2011; Lareau et al., 2007; Ni et al., 2007). Specifically, 

splicing factors alternatively splice their own pre-mRNA to unproductive isoforms, either 

containing premature termination codons (Wollerton et al., 2004) or introducing new 

junctions in the 3′ untranslated region (UTR) (Sureau et al., 2001), to trigger degradation 

by RNA surveillance pathways (Maquat, 2004). The overexpression of splicing factors 

promotes unproductive splicing (Sureau et al., 2001), leading to negative autoregulation. 

Previous work investigated many aspects of negative autoregulation, including associated 

highly or ultra-conserved sequence motifs (Lareau et al., 2007; Ni et al., 2007) and related 

nonsense-mediated mRNA decay (NMD) triggered by this regulatory mode (Hug et al., 

2016; Ni et al., 2007). Nevertheless, the basic question of how autoregulation plays out 

dynamically at the single-cell level remains unclear.

In other contexts, negative autoregulatory transcriptional feedback is known to speed 

response times and promote robustness to perturbation (Becskei and Serrano, 2000; Elowitz 

et al., 2002; Rosenfeld et al., 2002; El-Samad, 2021). However, negative splicing regulation 

potentially has unique features compared to transcriptional feedback. For instance, rather 

than operating at a fixed number of DNA binding sites, splicing factors can operate at 

diverse “loads” of pre-mRNA substrates from their own and other target genes in the cell 

(Figure 1B). Due to the effects of stochastic gene expression (Raj and van Oudenaarden, 

2008; Bohrer and Larson, 2021), total substrate amounts can vary between cell states or over 

time. This provokes the question of what role splicing autoregulation may play in enabling 

homeostatic control of splicing factor levels and accelerating responsiveness to changes in 

substrate.

To address these questions, we developed a system to dynamically and quantitatively 

investigate negative autoregulatory splicing at the single-cell level. We focused specifically 

on SRSF1, the protein product of the serine/arginine-rich splicing factor 1 (SRSF1) gene, 

which is widely expressed in distinct cell types and regulates the splicing pattern of many 

important genes (Karni et al., 2007; Li and Manley, 2005; Anczuków et al., 2012; Sanford 

et al., 2009; Paz et al., 2021). Isoform 1 of the SRSF1 transcript, retaining an intron in its 

3′ UTR (Figure 1A), is functional (produces SRSF1 protein). We call this the “unspliced” 
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isoform in Figure 1B because it retains a specific intron in its 3′ UTR region, although other 

introns between exons 1 and 4 of isoform 1 remain spliceable (Figure 1A). To differentiate 

them from isoform 1, we collectively refer to the other isoforms (Figure 1A iso 2–5) 

as “spliced” (Figure 1B). These other isoforms are unproductive (do not produce SRSF1 

protein).

By tracking SRSF1 accumulation using time-lapse videos with a machine learning-based 

image analysis system and analyzing SRSF1 levels together with flow cytometry and qRT-

PCR/PCR, we found that negative autoregulatory splicing can buffer SRSF1 concentration, 

achieve ~50% less cell-cell heterogeneity in both expression and response rate upon 

perturbation of its own pre-mRNA levels, and enable adaptation to total substrate load 

at both a single-cell level and across 53 human tissue types. We then demonstrated how 

negative splicing autoregulation can maintain its own dynamics and how it adapts to 

perturbation in a minimal model. Together, these results quantitatively explain the single-cell 

dynamics of negative splicing autoregulation and reveal its functional role and impact as a 

regulatory circuit.

RESULTS

SRSF1 maintains homeostasis through negative splicing feedback

We set out to investigate negative autoregulatory splicing by engineering two HEK293 cell 

lines expressing the SRSF1 gene with or without autoregulation. We site specifically and 

stably integrated a single ectopic copy of SRSF1, using either genomic sequence (guide 

DNA [gDNA], autoregulated) or cDNA sequence (unregulated), under the control of a 

doxycycline (dox)-inducible cytomegalovirus (CMV) promoter (Figure 2A, top). Because 

SRSF1 protein is essential for cellular physiology (Li and Manley, 2005; Wang and 

Manley, 1995), the endogenous genomic copy of SRSF1 was left intact in both cell lines. 

To distinguish ectopic and endogenous SRSF1, we fused a fluorescent protein, Citrine, 

at the 5′ end of the ectopic copies (Figure 2A, top). The addition of Citrine did not 

affect SRSF1 RNA or protein functions (Figures S1A and S1B). Importantly, the splicing 

pattern of Citrine-fused SRSF1 remained similar to that of the endogenous copy, with 5 

isoforms (Figure S1A), including the productively translated functional isoform 1 as well 

as the unproductive isoforms 2–4 (Sun et al., 2010). Like endogenous SRSF1 protein, 

ectopic Citrine-fused SRSF1 can downregulate total SRSF1 RNA expression by promoting 

unproductive splicing to isoforms 2–4 (Figure S1B).

Having established the SRSF1(gDNA) and SRSF1(cDNA) cell lines, we next investigated 

quantitatively how SRSF1 modulates its own expression. In both cell lines, autoregulatory 

feedback on the endogenous SRSF1 gene is expected to maintain constant SRSF1 protein 

levels across a modest range of ectopic expression (Figure 2A, lower panels). However, 

this buffering effect should saturate in the cDNA cell line once endogenous SRSF1 is fully 

depleted (black curve), leading to increased total SRSF1 levels (orange curve). By contrast, 

for SRSF1(gDNA) cells, both SRSF1 copies (ectopic and endogenous) are autoregulatory. 

Therefore, the total SRSF1 expression should remain the same (red curve), with a stable 

“ceiling” of total ectopic SRSF1 (blue curve).
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Consistent with these expectations, the buffering effect from negative autoregulatory splicing 

could be observed in both cell lines. Inducing ectopic SRSF1 with different concentrations 

of dox or the weaker affinity inducer 4-epiTC (4 epimers tetracycline, an analog of 

dox) produced a broad range of ectopic SRSF1 protein expression (Figures 2B and 

2C). Concomitant with the increase in ectopic SRSF1 levels, we observed a decrease in 

endogenous SRSF1 levels in both SRSF1(cDNA) and SRSF1(gDNA) cell lines (western blot 

in Figures 2B and S2). We also observed a saturation of the buffering effect of endogenous 

copy in SRSF1(cDNA) cells: At ~100 ng/mL dox induction, all of the endogenous pre-

mRNAs were spliced to unproductive isoforms 2–4 by 50 h (Figure S1B). These results, 

which are consistent with previous work done in HeLa cells (Sun et al., 2010), show that the 

autoregulatory feedback loop is active and can buffer variations in SRSF1 expression levels.

To obtain a more quantitative view of this behavior, we used single-cell flow cytometry to 

analyze SRSF1 protein levels in individual cells (Figure 2C). We induced ectopic SRSF1 
across a range of levels, fit the resulting data to a simple log-normal distribution with 

background (Figure S3), and extracted the mean log expression level for each condition. As 

expected, the Citrine-SRSF1 protein level in SRSF1(cDNA) cells increased monotonically 

with induction level (orange curve). By contrast, SRSF1(gDNA) cells reached a ceiling at an 

induction level of 300 ng/mL 4-epiTC (blue curve). The levels of ectopic and endogenous 

SRSF1 were quantified via gel band intensity in western blot (Figure S2). By correcting for 

relative protein size (487 amino acids [aa] versus 248 aa), we found the level of endogenous 

SRSF1 protein is ~3 times that of fully induced ectopic SRSF1 expression.

Together, these results provide a system in which autoregulated and unregulated SRSF1 can 

be compared quantitatively, showing that negative autoregulatory splicing buffers SRSF1 

concentrations at the steady state.

A deep learning system allows label-free single-cell tracking in time-lapse videos

We next sought to use this system to study the dynamics of negative autoregulatory splicing 

in individual cells in response to the induction of the ectopic constructs, in time-lapse 

videos. To achieve this requires identifying (segmenting) nuclei in each video frame, 

tracking their movements over time, and quantifying the changes in total abundance of 

Citrine-SRSF1 in each individual cell. Segmentation can be challenging to achieve using the 

Citrine fluorescence signal alone because fluorescence levels are initially too low to reliably 

label nuclei. To circumvent this issue, we adapted and trained the GoogLeNet deep learning 

system (Christiansen et al., 2018; Szegedy et al., 2015) to segment nuclei from differential 

interference contrast (DIC) images (Figure 3A). To train the network, we acquired ~150 

paired DIC (Figure 3A, left) and fluorescence (Figure 3A, right) images of the same 

cells (STAR Methods), under conditions of strong nuclear Citrine expression, in which 

Citrine clearly labeled nuclei. After training, the network was able to segment cell nuclei 

from DIC images regardless of Citrine fluorescence level (Figure 3B). It also functioned 

across DIC images varying in brightness and contrast (Figure 3B). After segmentation, we 

applied a previously described cell tracking algorithm to follow individual cells over the 

~40-h duration of each time-lapse video (Bintu et al., 2016; Singer et al., 2014). Finally, 

we extracted dynamic traces of Citrine fluorescence from each cell. Together, this deep 
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learning-enabled protocol provides a simple and general method for label-free single-cell 

fluorescence tracking, avoiding the need to integrate an additional constitutively expressed 

fluorescent protein into the cell, minimizing cell engineering, and reducing phototoxicity 

during imaging.

Negative autoregulatory splicing reduces cell-cell heterogeneity in SRSF1 levels and 
responsiveness

Equipped with the label-free segmentation and tracking system, we investigated the 

dynamics of negative autoregulatory splicing by comparing Citrine-SRSF1 dynamics in 

SRSF1(gDNA) cells to those of unregulated SRSF1(cDNA) cells. Specifically, we induced 

both cell lines at time 0 under low (200 ng/mL 4-epiTC) and high (100 ng/mL dox) 

induction levels, recorded DIC and fluorescence images over time, and reconstructed ~200 

traces of single-cell Citrine signals for each cell line at each induction level.

Negative autoregulation at the transcriptional level was previously shown to accelerate 

response times and to reduce cell-cell heterogeneity (illustrated in Figure 4A) (Alon, 2006; 

Rosenfeld et al., 2002). Time-lapse videos revealed that negative autoregulatory splicing has 

a similar impact: SRSF1(gDNA) cells reached steady-state levels faster than SRSF1(cDNA) 

cells (Figure 4B).

Furthermore, these traces (Figures 4B and S4A) also showed that negative autoregulatory 

splicing reduces cell-cell heterogeneity. SRSF1(gDNA) cells exhibited a tighter distribution 

of temporal traces compared to SRSF1(cDNA) cells. To quantitatively examine cell-cell 

heterogeneity at different induction levels, we compared SRSF1(gDNA) and SRSF1(cDNA) 

curves with the distribution of four parameters extracted from each video trace (Figure 4C): 

I0 and If, characterizing the initial and final fluorescence levels respectively; t0, the time 

at which the rising signal occurred; and r, the slope of the rise. At low induction levels 

(Figure 4D), the standard deviation of r and If relative to their median values increased from 

0.04 to 0.036 in SRSF1(gDNA) cells to 0.10 and 0.046 in SRSF1(cDNA) cells, respectively. 

Similarly, at high induction levels (Figure 4E), variability in r and If increased from 0.12 to 

0.026 in SRSF1(gDNA) cells to 0.27 and 0.066 in SRSF1(cDNA) cells. We also analyzed a 

broader range of 4-epiTC concentrations by flow cytometry (Figure S3), and confirmed that 

negative autoregulatory splicing reduces cell-cell heterogeneity of If across a wide range of 

induction levels (Figure 4F).

The delay before activation, t0, varied systematically with the induction level, decreasing 

from ~13 h at low induction levels to ~3 h at the highest induction levels (Figures S4B and 

S4C). Three hours is comparable to the total expected time required to synthesize mature 

SRSF1 protein (Milo et al., 2010). The longer 13-h delay may reflect the bursty nature of 

transcription, which can produce extended intervals between transcriptional bursts (Larsson 

et al., 2019; Raj et al., 2006), and variable 4-epiTC/dox induction strength and absorption 

efficiency between cells. This could also explain why we did not observe an accelerated 

response time for the SRSF1(gDNA) circuit at low induction levels (compare Figures S4A 

and 4B). Notably, t0 did not differ between the SRSF1(gDNA) and SRSF1(cDNA) cell 

lines (Figures S4B and S4C), suggesting that it is controlled by factors independent of the 

splicing regulatory circuit. Similarly, the heterogeneity and level of background signal I0 
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remained the same for SRSF1(gDNA) and SRSF1(cDNA) cells regardless of induction level 

(Figures S4B and S4C), suggesting that the sum of autofluorescence and promoter leakage 

was similar between the two circuits.

Taken together, these results demonstrate that negative autoregulatory splicing can speed 

response rates and reduce cell-cell heterogeneity in response rate and expression level. 

These effects are similar to those of other well-known negative autoregulatory feedback 

loops (Becskei and Serrano, 2000; Rosenfeld et al., 2002, 2007). Despite the similarity, 

negative autoregulatory splicing has a feature potentially distinct from other types of 

negative feedback—its ability to simultaneously affect a large and variable load of target 

pre-mRNAs (Figure 1B).

Negative autoregulatory splicing modulates response of SRSF1 level to splicing load

In principle, SRSF1 negative autoregulatory splicing could operate in two opposite regimes 

that differ in their response to increased substrate (pre-mRNA) load (Figure 5A). In “robust” 

mode, the feedback strength would be independent of the load level. Despite the competition 

between distinct pre-mRNA substrates, SRSF1 protein is abundant in the cell, and SRSF1 

production maintains a constant concentration in the cell. Alternatively, in an “adaptive” 

mode, the feedback loop would modulate its negative autoregulatory strength, tuning the 

SRSF1 level in response to total substrate load. In this case, increased substrate load, like 

a sponge, would dilute the available SRSF1 protein per substrate molecule, reducing the 

feedback strength, generating more functional SRSF1 isoform 1, and thereby producing 

more SRSF1 protein.

To discriminate between these two regimes and investigate whether and how negative 

autoregulatory splicing responds to perturbations of load, we introduced a synthetic target 

(SynT) of SRSF1 in HEK293 cells (Figure 5B) under a dox-inducible CMV promoter. SynT 
contains the spliceable 3′ UTR of SRSF1, fused with a fluorescent protein, H2B-cerulean, 

at the 5′ end. It generates three isoforms (Figure S5), with the same splicing junction as 

SRSF1 isoforms (Figures 1A and S1A). The overexpression of SRSF1 protein (through 

transiently transfecting the cDNA version of SRSF1, as in Figure S1B) altered the splicing 

pattern of SynT toward more spliced isoforms (Figure 5C), consistent with SynT acting as a 

SRSF1 target.

To determine the response of SRSF1 splicing to various SynT loads, we need to quantify the 

splicing pattern of SRSF1, as well as the expression level of the only functional isoform of 

SRSF1, isoform 1, across different SynT induction levels (Figure 5A, bottom). The splicing 

pattern can be quantified using RT-PCR (Figures 5C and S5) by amplifying all of the 

isoforms at once with a single primer set targeting the 5′ and-3′ end of the gene (STAR 

Methods). The amount of SRSF1 isoform 1 can be quantified using qRT-PCR by a primer 

set (Figure S1A) specifically targeting isoform 1 without amplifying isoforms 2–5 (Figure 

S6A). The quantitative calibration of the designed qPCR primers is verified in the dilution 

curve shown in Figure S6B.

We then tested the response of SRSF1 splicing to two different ectopic expression levels 

of SynT: A site-specifically integrated single copy of SynT (Figure 5D, single-copy SynT), 
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and transiently transfected multiple copies of the SynT that together produce ~20–100 times 

more SynT Figure 5D, transient multi-copy SynT). The latter ensures that the ectopic SynT 
load effectively competes with the large number of endogenous SRSF1 target substrates 

(Das and Krainer, 2014). As shown in Figure 5D (middle and lower panels), we observed 

no significant change in SRSF1 isoform 1 levels in response to the single-copy perturbation. 

By contrast, SRSF1 isoform 1 levels increased ~2-fold in response to transient, multi-copy 

SynT transfection.

Negative autoregulatory splicing contributed to this increased SRSF1 isoform 1 level. 

As shown in Figure 5E, when the SynT level increased, a higher fraction of SRSF1 
pre-mRNA remained unspliced, producing more functional isoform 1. Based on gel band 

intensity quantification, the ratio of isoform 1 increased approximately 1.53 times, consistent 

with the readout from Agilent Bioanalyzer 2100 (Figure S7). This result suggests that 

the overexpression of SRSF1 substrates can reduce SRSF1 availability, impeding the 

unproductive self-splicing of SRSF1, and thereby increasing the level of functional SRSF1 

isoform 1. Notice that the isoform 1 ratio increment (Figure 5E) is smaller than the increased 

SRSF1 isoform 1 level (Figure 5D), indicating the existence of other regulation layers 

on SRSF1 production, apart from the negative autoregulatory splicing (see more in the 

Discussion section).

SynT is a synthetic target. We further checked whether SRSF1 splicing similarly responds 

to variations in the load presented by its endogenous targets. Specifically, we obtained a list 

of SRSF1 target genes from the cross-linking and immunoprecipitation with high-throughput 

sequencing (CLIP-seq) database POSTAR2 (Zhu et al., 2019), and the corresponding 

transcript levels (transcripts per million, TPM) of both SRSF1 and its CLIP-based target 

genes from GTEx (www.gtexportal.org) across 53 human tissue types. In addition to 

SRSF1, we included two other splicing factors, hnRNPA1 and PTBP1, with conserved 

autoregulatory negative splicing feedback loops (Ni et al., 2007; Wollerton et al., 2004). 

In contrast, we picked six RNA binding proteins not known to regulate splicing of their 

own mRNAs: UPF1, RNA helicase, and ATPase (involved in mRNA nuclear export and 

surveillance); TAF15, TATA-binding protein-associated factor (involved in RNA polymerase 

II transcription); RBM10, RNA-binding motif (involved in splicing regulation); RTCB, 

RNA ligase; MBNL2, RNA splicing regulator; and CELF2, RNA splicing regulator. The 

abundance of the three negatively autoregulated splicing factors positively correlated with 

that of their targets (Figures 6A, S8A, and S9A), while the six other RNA regulators did 

not present any clear correlation (Figures 6B, S8B, and S9B). This lack of correlation 

occurred across multiple CLIP-seq data background-extraction methods (STAR Methods). 

The quantitative correlation coefficients are listed in Figure S11. Note that these data do not 

rule out roles for other potential regulatory interactions that could also contribute to these 

correlations (see Discussion).

Taken together, these results indicate that substrate load can modulate negative 

autoregulatory splicing feedback. This load-adaptive feedback scheme helps ultra-conserved 

splicing factors to adapt their own protein expression levels to variable substrate levels 

across diverse tissues (Hanamura et al., 1998; Lareau et al., 2007; Zahler et al., 1992).
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A mathematical model explains the dynamics and function of negative autoregulatory 
splicing

Having shown experimentally that negative autoregulatory splicing accelerates SRSF1 

response times and enables their adaptation to substrate load, we sought to understand 

how these features arise from the autoregulatory architecture. We developed a mathematical 

model describing the dynamics of SRSF1 with and without feedback, and fit the model to 

SRSF1 dynamics observed in time-lapse videos of the SRSF1(gDNA) and SRSF1(cDNA) 

cell lines.

We formulated differential equations describing the dynamics of unspliced pre-mRNA u, 

functional mRNA isoform m, and protein p from the endogenous (subscript en) and ectopic 

(subscript ec) copies (Figure 7A). For both sets of equations, we assumed the same constant 

production rate (α) for either of the two ectopic constructs, controlling production of either 

mec for SRSF1(cDNA) or uec for SRSF1(gDNA). We also assumed that the translation of p 
is linearly related to the corresponding mRNA concentration m, at rate g, and that all of the 

species undergo first-order degradation with rate constant β.

We define two sets of equations, with and without feedback. In the case of SRSF1(cDNA), 

the functional isoform mec is not subject to negative autoregulatory splicing. Since the 

endogenous components do not have any regulatory effect, modeling the dynamics of mec 

and pec is sufficient (Figure 7A, ectopic cDNA version; STAR Methods). In contrast, the 

SRSF1(gDNA) cell line features negative feedback affecting the splicing of uec to mec via 

both the endogenous and ectopic SRSF1 proteins (Figure 7A, ectopic gDNA version and 

endogenous copy; STAR Methods). Since SRSF1 also acts on many other target genes, 

collectively denoted R, we reasoned that the level of SRSF1 available for autoregulatory 

splicing would be reduced by competition with R. Therefore, we modeled negative feedback 

by a Hill function H(p), where the effective protein level acting on SRSF1 transcripts 

depends on the abundance of those transcripts relative to those of the reservoir. The resulting 

differential equations are summarized in Figure 7A; more details on the derivation are given 

in STAR Methods.

We then fit the model parameters to the averaged traces in Figure 4B using a Bayesian 

inference framework (Figure 7B; STAR Methods). The data comprise ectopic SRSF1 protein 

levels for the SRSF1(cDNA) and SRSF1(gDNA) lines at both low and high induction levels 

(Figures 4B and S4). Shared biochemical parameters (e.g., translation and degradation rates) 

are fit jointly across all of the conditions. Parameters specific to the negative feedback case 

are κ, the efficiency of splicing to the unproductive isoform; k, the substrate concentration 

that produces half-maximum splicing activity; h, the Hill coefficient; and R, the reservoir 

level (STAR Methods). Only the ectopic production rate was allowed to change between low 

and high induction levels.

We computed probability distributions for each parameter (Figure S12) and identified 

median values and confidence intervals (Figure 7B, table). These values were approximately 

consistent with independent parameter estimates. In particular, the ratio between production 

rates of the ectopic and endogenous SRSF1 copy in SRSF1(gDNA) cells (i.e., αec versus 

αen) matched that obtained from the western blot in Figure S2. Similarly, the fit degradation 
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rate values generate half-lives of approximately 35 min for u, 2.4 h for m, and 10 h for 

p, broadly consistent with values in other studies (Milo and Phillips, 2015; Moulton et al., 

2014). Finally, the fitted value of k suggests that 62% of transcripts are spliced to isoform 1, 

generally consistent with the percentage seen in multi-copy SynT transfection (Figure 5E).

The fitted parameters can provide deeper insight into the biology of SRSF1 regulation. The 

Hill coefficient value h ~ 2–3 suggests ultra-sensitivity of SRSF1 activity. The estimated 

reservoir level R of nearly 300 suggests approximately several hundred additional SRSF1 

target transcripts (with relatively high abundances) per SRSF1 transcript in this cell type, 

also consistent with typical values in a variety of cell types (Figures 6A, S8A, and S9A). 

Finally, using the model to compute the steady-state ectopic protein level as a function of 

R reveals that SRSF1 level adapts to target load (Figure 7C), consistent with experimental 

results (Figures 6A, S8A, and S9A).

DISCUSSION

Negative autoregulation is a prominent feature of many splicing regulatory systems. To 

understand its functional impact, we constructed three HEK293 cell lines, with inducible 

gDNA (autoregulated), cDNA (unregulated), and SynT (synthetic SRSF1 targets) and 

quantitatively investigated the dynamic function of negative autoregulatory SRSF1 splicing 

in individual cells. By combining deep learning-based single-cell video analysis (Figure 3) 

with flow cytometry, qRT-PCR, and RT-PCR, we found that negative autoregulatory splicing 

can stabilize SRSF1 levels independent from its own transcription strength, reduce cell-cell 

heterogeneity in both SRSF1 levels and response times (Figure 4), and adapt to changes in 

target load (Figures 5, S8, and S9). Although we focused on SRSF1, the approach presented 

here can be extended to study other splicing factors.

A particularly interesting aspect of negative splicing autoregulation, compared to better-

known negative autoregulatory transcriptional feedback, is its ability to homeostatically 

control splicing activity in response to changes in total substrate load. In contrast to a 

transcriptional circuit facing a relatively fixed number of binding sites, splicing factors 

operate on variable amounts of substrate, including their own pre-mRNAs as well as 

other target genes (Figure 1B). Thus, to maintain a constant splicing activity, negative 

autoregulatory splicing buffers SRSF1 effective concentration against variations in both 

SRSF1 pre-mRNAs level (Figures 2 and 4) as well as their target levels (Figures 5 and 

6). Noticeably, even though both SRSF1 and their target SynT overexpression increases 

absolute SRSF1 levels, they produce distinct and opposite effects on SRSF1 splicing 

patterns (Figures S1B and S5D), with more spliced SRSF1 isoforms produced when 

SRSF1(cDNA) was overexpressed (Figure S1B) and more unspliced SRSF1 isoforms when 

SynT was overexpressed (Figure 5E). These counterintuitive results confirm that the cell 

maintains subsaturating SRSF1 levels.

In addition to the experimental data, mathematical modeling provided further insights 

into SRSF1 autoregulation. First, it shows that experimentally observed effects can 

arise from basic aspects of splicing and transcriptional regulation more generally, by 

phenomenologically incorporating Hill functions into the differential equations listed in 
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Figure 7A to describe the concentration dynamics of involved RNA (spliced, unspliced) and 

protein molecules. Second, the model provides a unified understanding of the sometimes 

counterintuitive responses of SRSF1 to different perturbations driven by autogenous splicing 

and feedback (i.e., SRSF1 overexpression in Figure 7B, versus perturbations in other target 

substrates, the amount of reservoir in Figure 7C). Finally, the model identified biochemical 

parameters, such as the half-lives of SRSF1 protein and its spliced/unspliced RNAs, the co-

transcriptional splicing efficiency, as well as the amount of target substrates, that recapitulate 

experimental observations and can help to inform a more quantitative understanding of 

splicing dynamics.

Negative autoregulatory splicing is not the only factor affecting SRSF1 expression. Our 

experimental data and mathematical modeling do not rule out more complex mechanisms. 

For instance, the ratio of isoforms 2–5 in SRSF1 splicing pattern varies when we perturb 

the SRSF1 level (Figure S1B) or SRSF1 substrate load (Figure 5E), indicating that SRSF1 

concentration (either overexpression or depletion) is not the only factor affecting SRSF1 
splicing. In addition, a previous study (Sun et al., 2010) revealed translational level 

regulation on SRSF1 expression. Further molecular analysis will be necessary to fully 

characterize mechanistic aspects of autoregulation.

This analysis does not explicitly incorporate the non-uniform spatial distribution of SRSF1 

in the nucleus. SRSF1 concentrates in interchromatin granule clusters called speckles 

(Lamond and Spector, 2003; Misteli et al., 1997) that exhibit dynamic structures (Misteli et 

al., 1997). Recent work suggests that the spatial distribution of splicing factors correlates 

with active transcription hubs in the nucleus (Ding and Elowitz, 2019; Quinodoz et 

al., 2018). Because most splicing occurs co-transcriptionally (Bentley, 2014; Das et al., 

2007; Rosonina and Blencowe, 2002), negative autoregulatory splicing should, in principle, 

feedback on the local SRSF1 concentration within a subnuclear neighborhood, rather than 

the global concentration averaged over the nucleus as a whole. It thus remains unclear how 

splicing factors balance their local and global concentrations in the nucleus. In the future, it 

will be interesting to develop a more complete analysis of negative autoregulatory splicing 

that includes SRSF1 subcellular spatial distribution and may provide an integrated view of 

how cells maintain constant effective SRSF1 concentrations despite heterogeneity in their 

subnuclear spatial distributions.

More generally, negative autoregulatory splicing has the potential to affect diverse cellular 

functions. For instance, splice regulators could impact cell physiology by regulating 

“poison” exons, among other mechanisms (Thomas et al., 2020; Leclair et al., 2020). Splice 

regulation could also be useful in synthetic circuits in which microRNAs are expressed 

from introns (Strovas et al., 2014). These natural and synthetic systems both suggest the 

importance of further investigation into the actual and potential roles of splicing feedback 

systems.

Limitations of the study

Splicing is a complicated process. Both our experiments and mathematical models focus 

only on the negative autoregulatory aspect of splicing (with transcriptional control). They 

do not analyze the roles for other regulatory mechanisms, such as NMD regulation, 
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translational regulation, and epigenetic regulation. A complete understanding of splice 

regulation will eventually need to account for multiple regulatory systems. In addition, 

we focused here on quantifying the dynamics of SRSF1 autoregulation in the HEK293 

cell line. Cell lines and cell types differ in the expression of splicing components, and 

autoregulatory splicing dynamics could correspondingly vary between different cell types or 

in more complex contexts, such as specific tissues.

STAR★METHODS

RESOURCE AVAILABILITY

Lead contact—Further information and requests regarding resources and reagents can be 

directed to Michael Elowitz (melowitz@caltech.edu).

Materials availability—Cell lines generated in this study are available from the lead 

contact upon request.

Data and code availability

• Data generated in this study are available from the lead contact upon request.

• All data reported in this paper will be shared by the lead contact upon request.

• Original codes are deposited and publicly accessible. DOI is listed in the Key 

resources table.

• Any additional information required to reanalyze the data reported in this paper 

is available from the lead contact upon request

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Plasmids—SRSF1(gDNA), or SRSF1(cDNA), or SynT was cloned into a Flp-In™ 

pFRT expression vector (Life Technologies) under an inducible CMV-TO promoter. 

SRSF1(gDNA) incorporated the same sequence as the endogenous SRSF1 gene (based on 

gDNA sequencing), including the 3’UTR part. SRSF1(cDNA) incorporated the sequence 

of mRNA of endogenous SRSF1 (without the 3’UTR site) with the BGH polyadenylation 

sequence in the pFRT vector. SynT contained H2B-Citrine fused with the 3’UTR site of the 

endogenous SRSF1 gene.

Cell lines—Flp-In™ T-Rex™ HEK293 cells (Life Technologies, we did not test for 

mycoplasm) were cultured following the manufacturer’s protocol. For transfection, the 

cells were pre-plated in 24-well plates with 80% confluency. We added 800–1000 ng of 

plasmid (SRSF1(gDNA) or SRSF1(cDNA) or SynT) using the Lipofectamine LTX plasmid 

transfection reagent (ThermoFisher Scientific) and changed the culture media to Opti-

MEM™ Reduced Serum Medium (ThermoFisher Scientific). Cells were left in the incubator 

overnight, then trypsinized (using 0.25% Trypsin-EDTA (Thermo Fisher Scientific)) into 

new 6-well plates with complete culture media the next day. These cells were then cultured 

for 1–2 weeks with 100 ug/ml Hygromycin. The surviving transfected cells were subcloned 

by limiting dilution.
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METHODS DETAILS

Time-lapse microscopy imaging and data analysis—24-well 10 mm diameter glass 

No. 1.5 coverslip plates (MatTek Corp.) were coated with 5 ug/ml Human Fibronectin 

(Oxford Biomedical Research, Rochester Hills, MI) in PBS buffer for 1hr at room 

temperature. Fibronectin was then aspirated, and 4,000 – 10,000 cells were plated in the 

coated 24-well plate with complete cell media. The plate was manually swayed (Hui and 

Bhatia, 2007) to uniformly spread the cells, and left in the incubator for 2–3 h before 

imaging. Details of microscopy have been described previously (Nandagopal et al., 2019). 

For each movie, 40–60 stage positions were picked manually, and YFP and differential 

interference contrast (DIC) images were acquired every 10 min with an Olympus 20x 

objective using automated acquisition software (Metamorph, Molecular Devices, San Jose, 

CA). The details of cell tracking algorithm was in (Bintu et al., 2016; Singer et al., 2014).

Flow cytometry—Experimental procedures and data analysis for flow cytometry have 

been described previously (Nandagopal et al., 2019).

Transient transfection—Cells were plated at 50% confluency in 24-well plates and 

grown to 80% confluency overnight. We added 800–1000 ng of plasmid (SRSF1(gDNA) 

or SRSF1(cDNA) or SynT) using the Lipofectamine LTX plasmid transfection reagent 

(ThermoFisher Scientific) and changed the culture media to Opti-MEM™ Reduced Serum 

Medium (ThermoFisher Scientific). Cells were left in the incubator for 5.5 h, then 

trypsinized (by 0.25% Trypsin-EDTA (Thermo Fisher Scientific)) off the plates and 

resuspended in PBS (Phosphate-Buffered Saline buffer, Thermo Fisher Scientific). These 

cells were centrifuged, and the pellet washed 3x with PBS buffer to remove Trypsin. The 

final cell pellets were either dissolved for RNA extraction, or frozen and stored at −80C.

RT-PCR—We extracted total RNA using the RNeasy Mini Kit (Qiagen), and used 500 ng 

- 1 ug RNA to make cDNA using the iScript cDNA Synthesis Kit (Bio-Rad Laboratories, 

Hercules, CA). 0.1 of cDNA (i.e. 1ul after diluting cDNA 10x) was used in the PCR 

reaction, using AccuPrime™ Pfx SuperMix (Thermo Fisher Scientific) with an annealing 

temperature at 62.5 degree for 35 cycles. PCR primers are listed in Table S1. 3–8 ul of the 

PCR product was then run on a 1–2% Agarose gel. Gel band intensity was analyzed by 

Bio-Rad ChemiDoc Image Lab 6.0 band analyzer.

PT-qPCR—RNA was extracted as in RT-PCR. We then used 1 ug RNA to make cDNA 

using the SuperScript™ III First-Strand Synthesis kit (Thermo Fisher Scientific) with all 

gene-specific primers (SRSF1, SynT, GAPDH, and SDHA isoform1 gene-specific primers). 

We used gene-specific cDNA for qPCR, rather than random cDNA, to minimize the 

influence between isoforms with similar sequences. Experimental procedures and data 

analysis of qPCR were performed as described previously (Nandagopal et al., 2019). All 

primers are listed in Table S1.

Western blot—Frozen or fresh cell pellets (with 106 cells) were denatured using 200ul 

SDS loading buffer (1x sodium dodecyl sulfate (Sigma-Aldrich), 1x protease inhibitor, 

4 mM EDTA) and heated for 5mins at 68°C in a water bath. The heated cells were 
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then centrifuged at 55,000 rpm for 1hr at 4°C. 30 ul of the supernatant was loaded 

onto a NuPAGE™ 4–12% Bis-Tris Protein Gel (Thermo Fisher Scientific) and transferred 

using iBlot™ Transfer Stack to nitrocellulose (Thermo Fisher Scientific) following the 

manufacturer’s protocol. The blot was then blocked in 1xTBST, 5% dry milk, 2% BSA for 

1 h at room temperature, followed by overnight incubation at 4°C with the primary antibody, 

anti-SRSF1 antibody (ab133689) at 1:1000 and anti-GFP (ab1218) at 1:2000, together. The 

next day, the blot was washed with 1x TBST three times, then incubated with anti-rabbit and 

anti-mouse HRP conjugated secondary antibody (GE Healthcare Life Sciences) at 1:2000 

for 2hrs at 4°C. The blot was then washed with 1x TBST at room temperature for 1hr 

and five more times for 3 min. Gel bands were detected using SuperSignal West Femto 

Chemiluminescent Substrate (Thermo Fisher Scientific) and analyzed using a Bio-Rad 

ChemiDoc Image Lab 6.0 band analyzer.

QUANTIFICATION AND STATISTICAL ANALYSIS

CLIP-seq data analysis—CLIP-seq database is downloaded from POSTAR2 (Zhu et al., 

2019). The TPM data of target gene expression across 53 human tissue types is downloaded 

from GTEx (www.gtexportal.org).

As shown in Figures S10A and S10B, CLIP-seq has found more than 10,000 targets for 

most RNPs. With such a big number, when we add up the TPM of all the targets, the sum is 

directly comparable to total transcriptome (Figures S10C and S10D). To minimize the effect 

of targets with weak and non-specific binding, we only pick the strongest ones based on 

“Binding site records” in the CLIP-seq database.

We define two different ways to set up the threshold for binding-strength selection, based 

on either ‘percentile’ or ‘absolute’ modes. In the ‘percentile’ mode, for each RNP, we pick 

the target genes with its top 2% (Figure 6) or 5% (Figure S8) “Binding site records”. By 

changing from 2% to 5%, the number of selected CLIP-seq target genes is doubled. In the 

‘absolute’ mode (Figure S9), for each RNP, we pick the threshold of “Binding site records” 

that can achieve to set the median TPM of selected target genes in between 2% and 5% 

of total transcriptome expression. In short, ‘percentile’ mode depends on the “Binding site 

records” distribution of each RNP, while ‘absolute’ mode aims for a comparable TPM sum 

of selected targets between RNPs.

As shown in Figures S8 and S9, despite the number of selected targets are different across 

various threshold setting (for instance, hnRNPA1 changed from 241, to 603, then 2049), the 

data pattern (indicating the adaption function of negative autoregulatory splicing) persists.

This pattern starts to diminish with a higher threshold, where the TPM sum of selected 

targets is beyond 10% of total transcriptome.

Mathematical model with and without negative splicing feedback—For the 

cDNA construct, ectopic mRNA transcripts mec are generated with some production rate 

αec, while protein pec is translated from mRNA with rate γ. Both species are degraded by 

first-order kinetics with rate constants βm and βp respectively. Therefore, their dynamics are 

described by the following set of differential equations:
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dmec
dt = αec − βmmec

dpec
dt = γm − βppec

For the gDNA construct with negative autoregulation of splicing, we must consider not 

only mRNA and protein levels m and p but also unspliced pre-mRNA levels u. Here, 

ectopic uec is generated with production αec and endogenous transcripts uen with rate αen. 

These transcripts are spliced productively to mec and men with rate k. This splicing is 

regulated by negative feedback from the effective SRSF1 protein level P, which we describe 

phenomenologically by a Hill function

kℎ

kℎ + Pℎ

The total protein level comprises both endogenous and ectopic SRSF1, or ptot = pen + pec. 

However, SRSF1 acts not only on ectopic and endogenous SRSF1 transcripts but also on 

other target RNAs, or a “reservoir” R. Therefore, the effective protein level for any given 

target is not the total amount. SRSF1 not only regulates the ectopic and endogenous SRSF1 
transcripts but also acts on other target RNAs, or a “reservoir” R. We assume that the 

effective protein level for a given target is determined by the relative proportion of the target 

RNA. Defining the total level of unspliced targets by utot = uen + uec, the effective protein 

level acting on endogenous SRSF1 is

Pen =
uen
utot

ptot

and similar for ectopic transcripts. Pre-mRNAs undergo first-order decay with rate constant 

βu; other biochemical parameters - translation rate as well as mRNA and protein degradation 

rates - are shared with the no-feedback model. The dynamics are given by the following set 

of differential equations:

duec
dt = αec − βuuec

dmec
dt = kuec ⋅ kℎ

kℎ +
uec

uec + uen + R pec + pen
ℎ
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dpec
dt = γmec − βupec

The equations for the endogenous species are analogously defined:

duen
dt = αen − βuuen

dmen
dt = kuen ⋅ kℎ

kℎ +
uen

uec + uen + R pec + pen
ℎ − βmmen

dpen
dt = γmen − βppen

Model parameters—We fit this model to the averaged movie curves of Figure 4, 

representing SRSF1 protein levels with and without feedback for both low and high 

induction levels. For the no-feedback case, the relevant model parameters include the 

transcription rates of the ectopic construct with low αeclo  or high αecℎi  induction, the 

translation rate (γ), and the degradation rates of mRNA (βm) and protein (βp). Since we 

measure only the ectopic SRSF1 protein, we do not need to model the endogenous SRSF1 

here.

Once we introduce regulation at the level of splicing, we must consider the ectopic as well as 

the endogenous SRSF1. We also include the parameters describing the feedback: k, the ratio 

of full transcript spliced to the productive isoform; k, the activation coefficient (substrate 

concentration of half-maximum activity); h, the Hill coefficient; and R, the reservoir level.

In addition to these key model parameters, we fit the starting levels of endogenous SRSF1 

species u0, p0, and m0. Based on the analysis of Figure 4, we account for time delays 

between induction and cellular response, considering two values tlow and thigh for the low- 

and high-induction conditions. We also account for background noise by setting a floor bg 
on the predicted output.

Parameter fitting—To determine the model parameters, we performed Bayesian inference 

using Stan (Carpenter et al., 2017) to sample the probability distributions for each parameter 

given the experimental data. Bayesian statistics requires specifying priors, or the probability 

distributions for each parameter based on prior knowledge, and the likelihood, or the 

probability of observing the data given a set of parameters. Together, they allow inference 

of the posterior, or the probability distributions for each parameter after observing the 

experimental data.

Ding et al. Page 16

Cell Rep. Author manuscript; available in PMC 2022 July 07.

H
H

M
I A

uthor M
anuscript

H
H

M
I A

uthor M
anuscript

H
H

M
I A

uthor M
anuscript



For the likelihood, we assumed that experimental values lie in a Gaussian distribution 

centered at the theoretical value with a standard deviation σ. For the priors, we assumed 

relatively broad distributions based on biological knowledge and included applicable 

constraints. These prior distributions for each parameter are summarized in Table S2. All 

parameters are constrained to be nonnegative; any additional constraints are listed.

For these differential equations, the starting levels of each species can be fit, but the starting 

time is not permitted to vary in this framework. Therefore, we screened a broad range of 

choices of time delays, performed an initial fit for all possible combinations, and selected 

the values that minimized the resulting error. These initial fits were done on 4 chains with 

250 iterations per chain (125 warm up, 125 sampling). For time delays, we evaluated a 

range of 6–9 h in the low-induction case and a range of 0–1 h in the high-induction case, 

sampling the ranges at intervals of 0.25 h (15 min). To quantify error for each set of time 

delays, we took the median value across samples for each parameter, simulated the resulting 

curve, and calculated the sum of squared errors (SSE) between the theoretical and observed 

values. This procedure yielded an optimal set of time delays of 8.25 h for the low-induction 

condition and 0.25 h for the high-induction condition. We then reran a more extensive fitting 

for this set of values, using 4 chains with 2000 iterations per chain (1000 warm up, 1000 

sampling). The resulting samples are the basis for all results presented in the main text.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• SRSF1 uses negative autoregulatory splicing to maintain its own 

concentration

• This feedback reduces heterogeneity in both SRSF1 levels and response times

• Splice autoregulation adapts SRSF1 levels to variation in target transcript load

• A minimal mathematical model explains these capabilities
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Figure 1. Splicing factors negatively autoregulate their own synthesis by promoting unproductive 
splicing of their own transcripts and also operate under variable loads of substrate pre-mRNA 
produced by other genes
(A) Five isoforms of SRSF1 were observed in HEK293 cells. Each pre-mRNA molecule 

can be spliced to remove introns in the 3′ UTR (without light purple isoforms, isoforms 

2–−5) or left unspliced (with light purple isoforms, isoform 1). Intron removal can lead to 

degradation through RNA surveillance pathways, while transcripts with retained introns in 

the 3′ UTR (isoform 1) are translated to produce more splicing factor SRSF1.

(B) Feedback occurs when splicing factors enhance intron removal from their own pre-

mRNA, thus negatively regulating their own expression. Apart from their own transcripts, 

splicing factors additionally act on transcripts produced by other genes. The relative 

abundance of substrate pre-mRNAs can affect the allocation of splicing factors among 

transcripts, thereby influencing the dynamics of splicing negative autoregulation.
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Figure 2. Negative splicing autoregulation establishes a ceiling for SRSF1 protein concentration 
in response to its own pre-mRNA substrate perturbations
(A) We designed two cell lines: one transfected with a Citrine fused SRSF1 cDNA (i.e., 

unregulated, with no intron, shown in orange), the other transfected with a Citrine-fused 

genomic SRSF1 DNA (i.e., autoregulated, shown in blue), both under an inducible Tet-On 

CMV promoter and stably integrated into the fixed locus of Flp-In T-REx HEK293 cell lines 

(top). (Bottom) Expected outcomes (schematic): For the cDNA version, increasing ectopic 

SRSF1 protein level should downregulate endogenous SRSF1 production via splicing 

feedback (black curve). When the endogenous copy saturates its ability to buffer SRSF1 
overexpression, the total SRSF1 level overshoots (red curve). By contrast, for the gDNA 

cells, due to the negative splicing autoregulation of both the ectopic copy (blue curve) and 

endogenous copy (black curve), the total SRSF1 level should remain constant (red curve), 

across a broader range of induction levels.

(B) Western blot shows that the endogenous SRSF1 level decreases with the increasing 

expression of the ectopic copy. We induced cDNA cells at different 4-epiTC (an analog 

of doxycycline [dox], with weaker affinity) concentration for 24 h. Anti-SRSF1 antibody 

(ab133689) staining shows 2 bands: the top band indicates the ectopic copy with fused 

Citrine (verified by staining Citrine using anti-GFP monoclonal antibody [right]), the bottom 

band indicates the endogenous copy. Western blot of gDNA cells (induced at different 

4-epiTC/dox concentration for 24 h) is also shown as a comparison.

(C) Flow cytometry data shows that ectopic SRSF1 reaches a ceiling (blue curve) with 

negative splicing autoregulation (i.e., gDNA version), but not with the cDNA version. The 

2 cell lines (A) were induced at different 4-epiTC concentration for >24 h and analyzed by 

flow cytometry. Mean expression levels were extracted from Gaussian fits (Figure S3) to 

represent the ectopic SRSF1 level. Error bars represent the standard error of the mean from 9 

experimental replicates.
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Figure 3. Deep-learning network enables tracking of SRSF1 accumulation in individual cells 
over time
(A) We trained a single deep learning network using ~150 bright-field (DIC) images with 

their correspondent Citrine signal as the ground truth for learning nuclear location.

(B) The trained network predicts nucleus images (center row) from bright-field images (top 

row) for 2 different example time-lapse single-cell traces (left and right panels). Note the 

similarity of predicted fluorescence and actual fluorescence on later images, where visible. 

Time points are indicated by red/blue numbers (compare with real-time tracking video 

curves at the bottom). Two videos show diverse bright-field background and contrast, but 

our trained network works on both. Red circles represent cell segmentation based on deep 

learning predicted nuclear probability. Left and right traces are the SRSF1(cDNA) cell line 

induced at t = 0 with 200 ng/mL 4-epiTC or 100 ng/mL dox, respectively.
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Figure 4. Splicing negative autoregulation reduces cell-cell heterogeneity in both the level and 
response rate of SRSF1 protein
(A) Negative feedback accelerates response time, in comparison to unregulated or positive 

feedback (schematic).

(B) Negative autoregulatory splicing speeds response rate and reduces cell-cell heterogeneity 

at high induction level (100 ng/mL dox). (Left) Solid curves are the median of 257 

SRSF1(cDNA) and 223 SRSF1(gDNA) single-cell traces. The shade represents the standard 

deviation of the mean. (Right) The curves are normalized to final expression.

(C) We fit 4 parameters to characterize time-lapse video traces. I0 represents background 

Citrine intensity and auto-fluorescence. If represents the final (steady-state) Citrine level. t0 

denotes the time point when Citrine signal (i.e., ectopic SRSF1 level) surpasses background. 

r represents the response speed (slope) from I0 to If. The example video trace is the same as 

in Figure 3 (left).

(D) Distributions of rate and final intensity for 191 gDNA and 188 cDNA traces with 200 

ng/mL 4-epiTC added at t0 (see I0 and t0 distribution in Figure S4).

(E) Similar distributions for gDNA and cDNA traces with 100 ng/mL dox added at t0 (see I0 

and t0 distribution in Figure S4). The labeled text denotes the median and the standard error 
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of the mean. At both induction levels, the autoregulatory (gDNA) system exhibits a tighter 

distribution of final equilibrium SRSF1 levels and response rates. The negative splicing 

feedback loop thus reduces cell-cell heterogeneity both in final level and dynamics.

(F) Flow cytometry data confirms that the autoregulatory (gDNA) system exhibits lower 

cell-cell heterogeneity across a wide range of induction levels. As in Figure 2C, we induced 

gDNA and cDNA cells for >24 h, fit the Citrine intensity with a Gaussian curve (Figure S3), 

and used the standard deviation parameter from the Gaussian fit to represent the variance of 

ectopic SRSF1 level between cells. Error bars represent the standard error of the mean from 

9 experimental replicates.
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Figure 5. Splicing negative autoregulation modulates its feedback strength in response to 
variable total substrate load
(A) Two possible outcomes in response to total substrate load. (Left) Robust feedback 

scheme: The total SRSF1 level (purple line) and its splicing pattern (green line) remain 

constant across a broad range of substrate levels. The amount of SRSF1 involved in negative 

feedback is independent of load level. (Right) Adaptive feedback scheme: more SRSF1 is 

produced (purple and green curves) via weakening negative autoregulatory splicing (i.e., 

dashed negative arrow in the top gray box), as increased substrate load titrates away 

available SRSF1 in the cell.

(B) The inducible synthetic SRSF1 target (SynTarget [SynT]) cell line contains H2B-

Cerulean fused with the spliceable 3′ UTR of SRSF1. This synthetic gene is expressed 

under a Tet-On CMV promoter and stably integrated at the Flp-In locus in a T-REx HEK293 

cell line.

(C) SynT is a splicing target of SRSF1. We used RT-PCR and gel-imaged 3 isoforms of 

SynT cells with 100 ng/mL dox (left lane) and of SynT cells with transiently transfected 

SRSF1(cDNA) plasmid in 100 ng/mL dox (right lane). We found that SRSF1 overexpression 

promotes the splicing of SynT, increasing the expression of short isoforms.

(D) We induced SynT at different levels and quantified the concentration of SynT isoform 

1 (top row) and the functional SRSF1 isoform 1 (bottom 2 rows) by qRT-PCR (see qPCR 

qualification in Figure S6). We found that SRSF1 levels remained unchanged by expression 

from a single copy of SynT (center column, by inducing the stably integrated SynT with 100 

ng/mL dox), but increased ~50% when multiple SynT copies were induced in the same cell 

(right column, by transiently transfecting SynT plasmid with 100 ng/mL dox). qPCR results 
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were verified by normalizing to 2 housekeeping genes, GAPDH and SDHA, respectively. 

The data represent the exponential logarithmic mean of normalized qPCR reads. Error bars 

represent the minimum and maximum values over 3–10 experimental replicates.

(E) SRSF1 splice isoform pattern changes in response to increased total substrates. We 

quantified SRSF1 isoforms using RT-PCR and analyzed the gel band intensity by Bio-Rad 

ChemiDoc Image Lab 6.0 band analyzer. Two gel band examples are presented—one from 

HEK293 control (left), the other from transient multiple copies of SynT (right). Multiple 

copies of SynT trigger ~50% more SRSF1 isoform 1 (i.e., functional unspliced isoform) 

through splicing. The data represent the median of gel band intensity percentage reads and 

error bars represent the standard deviation over 6–7 experimental replicates.
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Figure 6. The adaptation function of splicing negative autoregulation responds to variations in 
endogenous targets load
(A) The expression level of splicing factors positively correlates with their target expression 

across 53 human tissue types (gray dots), in which 5 example tissues (uterus, lung, cortex 

of kidney, stomach, liver) are labeled in distinct colors. The splicing factor RNA expression 

levels (TPM) were extracted from the GTEx database. The respective target genes are 

selected based on POSTAR2, specifically, the top 2% “binding site records” in each CLIP 

database (STAR Methods). The 3 splicing factors SRSF1, hnRNPA1, and PTBP1 are 

autoregulated via negative splicing feedback.

(B) The RNA regulation proteins not known to regulate splicing of their own mRNAs do not 

show correlative patterns as in (A).
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Figure 7. A minimal mathematical model describes splicing regulation with and without negative 
feedback
(A) Differential equation sets for the regulation of ectopic SRSF1(cDNA) (without 

feedback) and SRSF1(gDNA) (with feedback) cell lines. Unspliced pre-mRNA, functional 

mRNA, and SRSF1 protein are labeled u, m, and p, respectively. Subscripts are defined 

at left. As each ectopic copy is stably integrated into the same genomic locus of HEK293 

cells, they share the same transcription rate (α), translation rate (γ), and degradation rate (β) 

between cell lines. Note that gDNA system incorporates a Hill function H(P) to represent the 

dependence of splicing activity on SRSF1 protein. For details, see STAR Methods.

(B) Fits of median time-lapse traces from Figures 4B and S4A to the equations in (A). Fitted 

curves are shown with smooth solid lines. Bestfit parameter estimates are shown in the table 

and Figure S12.
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(C) Negative splicing autoregulation adapts to load. Using the fitted parameters, the 

model predicts a positive correlation between target load and SRSF1 level, p, similar to 

experimental observations (Figure 5).
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https://github.com/AntebiLab/easyflow
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