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Genomic Prediction

MegaLMM improves genomic predictions in new 
environments using environmental covariates
Haixiao Hu  ,1 Renaud Rincent  ,2 Daniel E. Runcie  1,*
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Multienvironment trials (METs) are crucial for identifying varieties that perform well across a target population of environments. However, 
METs are typically too small to sufficiently represent all relevant environment-types, and face challenges from changing environment- 
types due to climate change. Statistical methods that enable prediction of variety performance for new environments beyond the 
METs are needed. We recently developed MegaLMM, a statistical model that can leverage hundreds of trials to significantly improve 
genetic value prediction accuracy within METs. Here, we extend MegaLMM to enable genomic prediction in new environments by learn
ing regressions of latent factor loadings on Environmental Covariates (ECs) across trials. We evaluated the extended MegaLMM using 
the maize Genome-To-Fields dataset, consisting of 4,402 varieties cultivated in 195 trials with 87.1% of phenotypic values missing, and 
demonstrated its high accuracy in genomic prediction under various breeding scenarios. Furthermore, we showcased MegaLMM’s su
periority over univariate GBLUP in predicting trait performance of experimental genotypes in new environments. Finally, we explored the 
use of higher-dimensional quantitative ECs and discussed when and how detailed environmental data can be leveraged for genomic 
prediction from METs. We propose that MegaLMM can be applied to plant breeding of diverse crops and different fields of genetics 
where large-scale linear mixed models are utilized.
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Introduction
Genotype-by-environment interactions are one of the most diffi
cult challenges faced by plant breeders. Good varieties must 
maintain performance across a wide range of environments. 
However, testing every candidate variety in every possible condi
tion within the target population of environments (TPE) is not 
feasible. Instead, breeders evaluate candidate genotypes in multi
environment trials (METs) covering a moderate number of loca
tions over multiple years. METs can consume a large fraction of 
a breeding program’s budget. Therefore, making optimal use of 
data from METs for breeding decisions is critical to the success 
of plant breeding programs.

Many statistical approaches for modeling data from METs have 
been developed (as reviewed by Crossa et al. 2022). Historically, 
most models have taken one of two major approaches: reaction 
norm models represent the change in the performance across 
trials as a function of measurable characteristics of those trials, 
called Environmental Covariates (ECs), while correlated trait 
models represent the correlation in performances across geno
types between pairs of trials. Examples of reaction norm models 
include factorial regression (Denis 1988; Piepho et al. 1998), the 
GBLUP-based reaction norm model (Jarquín et al. 2014; Ly et al. 
2018), the Critical Environmental Regressor through Informed 
Search-Joint Genomic Regression Analysis (CERIS-JGRA) model 
(Li et al. 2021), and models based on Crop Growth Models (e.g. 

Technow et al. 2015). Examples of correlated trait models include 
the Additive Main Effect and Multiplicative Interaction (AMMI) ap
proach (Gollob 1968; Zobel et al. 1988) and latent factor models 
(Smith et al. 2001; Cullis et al. 2014). In their most general forms, 
reaction norm models and correlated traits models can be math
ematically equivalent, and several of these models combine as
pects of both approaches. However, each approach has its own 
computational and statistical advantages. One advantage of the 
correlated traits approach is that it has the potential to completely 
characterize the correlation between any pair of trials, while reac
tion norm models can only learn the components of the correl
ation that are captured by the ECs utilized to parameterize the 
reaction norm. Therefore, correlated traits models are expected 
to be more accurate for the specific trials in the METs. On the other 
hand, reaction norm models can be used to make predictions in 
un-measured environments while correlated traits models can
not. Historically, correlated traits models have been less compu
tationally tractable because the number of correlations that 
must be learned grows quadratically with the number of trials. 
We recently developed MegaLMM, a computationally and statis
tically efficient implementation of a multivariate linear mixed 
model, and demonstrated that it could accurately perform gen
omic prediction in METs with more than 100 trials, improving 
predictive ability in nearly every trial relative to univariate ap
proaches (Runcie et al. 2021). MegaLMM is a correlated traits 
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model built on a factor analytic (FA) structure, however it lacks a 
prediction mechanism to extrapolate genomic values to new 
environments with unobserved environmental conditions. 
Extending MegaLMM to make use of ECs would allow it to encom
pass the benefits of both the correlated traits and reaction norm 
approaches to modeling data from METs.

The quality of environmental covariates limits the potential of 
any model to predict genetic values in new environments. Several 
challenges in developing environmental covariates include: (1) 
there are many environmental variables that impact plant growth 
and development, including temperature, water availability, soil 
properties, disease pressure, etc, (2) many of these variables are 
dynamic, meaning that they change during a growing season on 
both short and long time scales, and interact with plants different
ly depending on the growth stages of each plant, (3) environmen
tal factors are collinear and may interact with one another, 
making statistically identifying causal drivers challenging, (4) 
some important variables are challenging to measure or are un
known, and (5) environmental variables from the growing season 
are unknown at the time of planting or for future unobserved 
locations. Because of the high dimensionality of potential 
ECs, statistical models that use ECs must operate robustly in 
high-dimensional spaces. There are three common strategies for 
dealing with high-dimensional ECs: (1) Variable selection. As an 
example, CERIS-JGRA (Li et al. 2021) searches a large set of candi
date ECs for the single most useful one and then uses only that one 
for prediction. Also, Millet et al. (2019) first identified environmen
tal factors affecting genotype–environment (G × E) interactions 
for yield components and then used these factors to predict yield 
components. (2) Linear and nonlinear machine learning such as 
Bayesian Ridge Regression and LASSO, kernel regression or Deep 
Learning. As examples, Rogers and Holland (2021) used Bayesian 
Ridge Regression and LASSO to predict trait performance in new 
environments. Jarquín et al. (2014) and Costa-Neto et al. (2021)
used kernel methods to represent the covariance of environments 
based on EC distances and performing regressions using these dis
tances. Washburn et al. (2021) and Kick et al. (2023) used deep 
learning to prioritize ECs with potential agricultural importance. 
(3) Crop growth models. Heslot et al. (2014) and Technow et al. 
(2015) use biophysical-based models to predict the impact of EC 
time-series’s across multiple ECs on crop physiology and develop
ment. Heslot et al. (2014) and Rincent et al. (2019) used crop growth 
models as a form of nonlinear dimension reduction to extract a 
more physiologically relevant set of ECs to use in MET models.

Measuring the success of genotype–environment interaction 
models from METs is complicated because such models can be 
used for multiple different tasks in a breeding program. 
Breeders evaluate samples of genotypes from a reference popula
tion of genotypes (RPG) in samples of environments from a TPE 
(Cooper et al. 2021). Genotypes observed in at least one trial of 
an MET are commonly called “old genotypes” while the remaining 
genotypes in the RPG are called “new genotypes”. The trials that 
compose an MET are called “old environments”, while other pos
sible growing environments in the TPE are called “new environ
ments”. Four distinct applications are commonly distinguished: 
(1) Imputing performances of genotypes in the MET in trials where 
some genotypes were not grown, for example if an MET is sparse 
(Burgueño et al. 2012); (2) Predicting the relative performances of 
new genotypes in each of the environmental conditions repre
sented by trials in the MET; (3) Predicting the relative perfor
mances of a set of genotypes in new environments, based on 
their performances in an MET; and (4) Predicting the relative per
formance of the new genotypes in new environments. The first 

two applications are statistically easier than the last two, while 
the fourth is the most difficult because it relies on predicting char
acteristics of previously unobserved genotypes and environ
ments. MET models should be evaluated in each of these 
contexts because performance in one context does not guarantee 
adequate performance in another. The most common computa
tional strategy for evaluating model accuracy is cross validation. 
Cross validation strategies that simulate each of these applica
tions are termed CV2, CV1, CV0, and CV00, respectively 
(Burgueño et al. 2012; Jarquín et al. 2017).

Here, we describe an extension to MegaLMM that facilitates the 
use of ECs to extend genomic predictions to new environments. 
Our primary objective is to describe the statistical framework of 
the extended MegaLMM model and evaluate its efficacy in various 
breeding scenarios. We use a maize hybrid dataset from the 
Genomes-To-Field (G2F) Initiative (AlKhalifah et al. 2018) to dem
onstrate that MegaLMM can achieve high accuracy in genomic 
prediction under various breeding conditions. We show that 
MegaLMM surpassed univariate GBLUP in predicting hybrid per
formance in new environments partly through its effective use 
of ECs. Finally, we explore the use of higher-dimensional quanti
tative ECs and discuss when and how detailed environmental 
data can be leveraged for genomic prediction from METs.

Results
Method overview
We developed the original MegaLMM model to provide a robust 
framework for modeling the correlations of genetic values of ex
perimental genotypes across multiple environments. MegaLMM 
links genetic predictors to phenotypic data using a hierarchical la
tent factor model that is computationally efficient, yet highly flex
ible to accommodate different genetic architectures across traits 
(Runcie et al. 2021). MegaLMM decomposes a high-dimensional, 
but potentially sparsely populated phenotypic matrix (Y) into a 
low-rank factor score matrix (F), a low-rank loading matrix (Λ), 
and a residual matrix (E) (Fig. 1a). Importantly, unlike other factor 
modeling approaches, MegaLMM does not require the user to pre
select the “right” number of factors. Instead, users specify a large 
number of potential factors, and MegaLMM shrinks their import
ance towards zero if they are not needed. Together, the factor ma
trix and the loading matrix explain the genetic covariation among 
environments, while the residual matrix accounts for unex
plained residual genetic variation, microenvironmental variation, 
and measurement error unique to each environment. Learning la
tent factor scores for each individual in the training set allows 
MegaLMM to predict genetic values of each observed genotype 
in environments where that genotype was not grown (but other 
genotypes were, i.e. the CV2 context ) (Fig. 1b). Latent regressions 
of each vector of factors scores (columns of F), and each residual 
vector (columns of E) on genetic data from each observed geno
type allows MegaLMM to predict genetic values of new genotypes 
(without any phenotype data in Y, i.e. the CV1 context) in each en
vironment by predicting factor scores Fn and residual values En for 
each new genotype based on inputs of genetic data (Fig. 1b). 
However, the original MegaLMM had no mechanism to link values 
in Λ to external data representing the properties of each environ
ment. Therefore, MegaLMM had no mechanism to predict genetic 
or phenotype values of either observed or unobserved genotypes 
in new environments.

Here, we extend MegaLMM to accept environmental data as 
predictors of the covariances of genetic values across environ
ments. The extended model keeps all features of the original 
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model, but adds functionality to express the rows of Λ as regres
sions on sets of ECs (Fig. 1c). We can then predict genetic values 
of either old or new genotypes in any new environment that can 
be characterized by these ECs (Fig. 1d). As an intuitive justification 
for this approach, we consider the variation in trait values in a sin
gle environment yj to be caused by a set of latent characteristics 
f1 . . . fk (such as flowering time, growth rate, and drought toler
ance). In a different environment, many of these same latent 
characteristics will still be important, but their relative effects 
on overall performance may vary. Each row of Λ represents the 
relative importance of a single latent characteristic across envir
onments. For example, if growth rate is similarly important in 
all environments, values in the corresponding row of Λ will be 
similar. If earlier flowering is beneficial in some environments 
but detrimental in others, the corresponding row of Λ will have 
some positive and some negative values. Our overall hypothesis 
is that the variation in these importance weights across environ
ments will be predictable by known characteristics of those envir
onments, including geography, climate, and management. Details 
of this latent regressions approach are provided in the Methods.

MegaLMM greatly improves genomic predictions 
of agronomic traits within experimental trials
We used the G2F maize hybrid dataset (Lima et al. 2023), covering 
the years 2014–2021, to evaluate the genomic predictive ability of 
MegaLMM in its original form and with the enhancements 

described above. The majority of G2F maize hybrids are crosses 
between a large set of inbred lines (referred to as P1) and a small 
set of tester lines (referred to as Tester). We formatted a trait ma
trix Y with P1s as rows and combinations of Tester, location, and 
year as columns, and filled each value with a least-squares mean 
estimate of the corresponding hybrid trait values. We subsetted 
the data to include columns with at least 50 observed trait values, 
which resulted in data from a total of 12 Testers. The replacement 
of P1s every two years resulted in a very sparse trait matrix with 
87.1% missing values for Grain Yield (Fig. 2a). Below, we refer to in
dividual columns of this trait matrix as an “experiment”, signify
ing trait values from a set of P1s crossed to a single tester and 
evaluated in a specific location-year combination. In total, our da
taset was composed of 1,702 P1s, 12 testers, 4,402 hybrids, 302 ex
periments, and 195 trials for Grain Yield (Fig. 2a).

We used 5-fold cross-validation to measure the genomic pre
dictive ability of the original MegaLMM model for each of the three 
agronomic traits separately (Silk Days, Plant Height, and Grain 
Yield) when trained on data from all 302 experiments and evalu
ated using the 20% of trait values withheld as validation data in 
each individual experiment. For sparse testing applications, 
where trait values for hybrids observed in some experiments but 
not others (CV2), estimated predictive abilities averaged r = 0.40 − 
0.57 across the three traits based on a meta-analysis accounting 
for measurement error (Fig. 2b). This represents an average im
provement of r = 0.12 − 0.19 across traits compared to predictions 

a
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Fig. 1. MegaLMM statistical models and their applications for predicting trait performance in experimental genotypes across observed and new 
environments. a) Original MegaLMM model architecture. b) Approach for predicting genetic values of old or new genotypes in old environments using the 
original MegaLMM. c) Model architecture of the extended MegaLMM model. d) Approach for predicting genetic values of old or new genotypes in new 
environments using the extended MegaLMM. Y: phenotypic matrix consisting of phenotypic values measured on n genotypes (rows) in t environments 
(columns). F: factor matrix of old genotypes. Fn: predicted factor matrix of new genotypes. Λ: factor loading matrix for the old environments. Λn: predicted 
factor loading matrix for new environments. K: additive genomic relationship among old genotypes. E: residual trait matrix for observed genotypes in 
observed environments after accounting for the latent factors. Goo: predicted genetic values of old genotypes in old environments. GTs, Genotypes; Envs, 
Environments; EC, Environment Covariates. Ano: predicted additive genetic values of new genotypes in old environments. Gon: predicted total genetic 
values of old genotypes in new environments. Ann: predicted additive genetic values of new genotypes in new environments.
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based on univariate GBLUP models trained on each experiment in
dividually, which could not leverage among-experiment correla
tions (Supplementary Fig. 1). For trait value predictions of new 
hybrids with no observations in the training data (CV1), estimated 
average predictive abilities ranged from r = 0.28 − 0.41 for the 
three traits (Fig. 2b), an average improvement of r = 0.01 − 0.03 
over the univariate GBLUP models (Supplementary Fig. 1). In al
most every experiment, estimated accuracies were higher than 
GBLUP for sparse testing applications (CV2) (Fig. 2c). These results 
parallel our earlier results applied to the first four years of the G2F 
dataset (Runcie et al. 2021). We observed similar results using si
mulations of multienvironment trials with varying genetic corre
lations and varying levels of sparse testing, as long as there was 
some connectivity among trials (Supplementary Fig. 2a and b, si
mulations with <75% missing data). When there were sets of trials 
that did not share any lines, the benefit of MegaLMM over GBLUP 
in CV2 was eliminated.

To investigate why MegaLMM improved over univariate ap
proaches despite using the same genetic predictors, we extracted 
posterior means of the latent factor score and factor loadings ma
trices. While these parameters are not always robustly identified 
in factor models like MegaLMM, the priors we use for elements 
of Λ tend to make specific factor orientations more reproducible. 
We allowed MegaLMM to learn 50 factors per dataset, but speci
fied through our prior that the relative importance of factors 
should decrease rapidly across factor ranks. This effectively 

“turns off” many factors that are not needed when all loadings 
are shrunk close to zero. Applied to these three datasets, 
MegaLMM learned ∼ 13--20 factors per trait, each with at least 
one posterior mean importance weight (value of Λ) that explained 
>1% of the trait variance. Distributions of weights across factors 
from 10 randomly chosen MegaLMM chains are shown in Fig. 2d.

To explore whether candidate ECs, such as the identity of the 
Tester or the geographic location, could serve as predictors of 
the importance weights for these factors, we regressed the poster
ior mean values of each row of Λ on latitude, longitude, state, or 
Tester. Among the 50 factors derived from the Grain Yield data 
in a single MegaLMM chain, four weight vectors were significantly 
associated with state and six were significantly associated with 
testers, based on Bonferroni-adjusted P-values < 0.05 (Fig. 2e). 
Some factors displayed moderate correlations with either latitude 
or longitude; however, these correlations were not deemed statis
tically significant based on Bonferroni-adjusted P-values < 0.05 
(Fig. 2e–f). Therefore, factor loading weights are somewhat pre
dictable based on known features of each trial and a hierarchical 
model including these ECs as features may be successful.

Environmental covariates enable MegaLMM to 
make accurate genomic prediction in new 
environments
We extended MegaLMM to additionally take as inputs ECs for any 
number of environmental features and use these as priors for 

a b c

d e f

Fig. 2. Data structure and predictive ability of the original MegaLMM model applied to the Genomes to Fields (G2F) maize hybrid dataset. a) The data 
structure of the reshaped G2F phenotypic matrix, with inbred parent 1 (P1) in rows and experiments (combinations of location, year, and tester) in 
columns. Each cell in the matrix is filled with the least-squares mean estimate of yield for a single hybrid genotype in a single experiment, with different 
colors indicating yield estimates from different years. b) Boxplots of genomic prediction for CV1 and CV2 using the original MegaLMM model. Each point 
within a boxplot represents predictive ability for a specific experiment. The mean predictive ability for each trait within each scenario is shown below the 
corresponding boxplot. c) Scatterplot of MegaLMM versus GBLUP predictive abilities for CV2 using the original MegaLMM model for Grain Yield. Each 
point represents a specific experiment. d) Line plots showing magnitudes of squared factor loadings (Λ2). Each line represents the Λ2 per factor 
distribution in one MegaLMM chain for a specific agronomic trait. Different colors indicate distinct traits. We specified that MegaLMM should estimate 50 
factors per dataset and ran 10 replicate MCMC chains per dataset. e) Distribution of (-log10(P-values)) (y-axis) of regressions of factor loadings (x-axis) on 
latitude, longitude, state, and tester. f) Boxplots of factor loadings for the first factor (Λ1) grouped by tester.
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factor loadings. We designed four Cross-Validation experiments 
to evaluate whether ECs could enable accurate genetic values pre
dictions in new experiments in increasingly challenging predic
tion scenarios: (1) NewTrial: Can we predict genetic values in 
new trials, e.g. future trials that re-use previously observed testing 
locations and hybrids? (Supplementary Fig. 3) (2) NewState: Can we 
predict genetic values in trials (of previously observed hybrids) 
grown in new geographic locations not near any existing trials 
e.g. in a new state? (Supplementary Fig. 4) (3) NewTester: Can we 
predict genetic values of new hybrids (created with previously 
used P1s), e.g. new experiments in the same trials? 
(Supplementary Fig. 5) (4) NewGenoNewYear: Can we predict the 
genetic values of previously unobserved hybrids (derived from 
neither same P1 nor same Tester) in new years (Supplementary 
Fig. 6). This scenario is motivated by the introduction of new in
bred lines every two years, as depicted in Fig. 2a.

Since in each case, the target experiments shared either geo
graphic proximity (same state), or genetic similarity (same 
Tester) with trials in the training data, we first tested whether 
the extended MegaLMM model could improve genetic value pre
dictions in these contexts using simple categorical ECs—the iden
tity of the state and the identity of the Tester used in each 
experiment. We call this model S+T::S+T, signifying that the pre
dictors S (State) and T (Tester) were used both in training (before 
the “::”) and as feature values for prediction (after the “::”).

As expected, genomic predictive abilities of MegaLMM declined 
across the four prediction scenarios for Grain Yield (Fig. 3). 
Surprisingly, for Plant Height and Silk Days, the genomic predict
ive abilities of NewTrial were slightly lower than those of NewState, 
although the differences were not significant. Across the three 
agronomic traits, average genomic predictive abilities using the 
ECs ranged from 0.363 to 0.565 for NewTrial, 0.356 to 0.572 for 
NewState, and 0.221 to 0.438 for NewTester (Fig. 3). The 
NewGenoNewYear scenario exhibited the lowest predictive ability, 

ranging from 0.080 to 0.264. We note that direct comparisons 
among the four scenarios are not entirely equitable due to subtle 
differences in the composition of training and testing sets asso
ciated with each scenario. Nevertheless, these comparisons offer 
an initial insight into the levels of predictive ability in each predic
tion scenario.

To test if these predictive abilities were higher than could have 
been achieved using univariate GBLUP, we considered two uni
variate prediction strategies for the new environments: (1) form
ing predictions of all candidate hybrids individually in each 
training experiment and then averaging predictions across all 
experiments into a single constant prediction to be applied to 
each new experiment, or (2) repeating this procedure but only 
for “similar” experiments, where we defined similarity as either 
experiments from the same state, or experiments using the 
same Tester. We ran both strategies and identified which pro
duced more accurate predictions on average across all test 
experiments in a particular scenario. We used a similar proced
ure to select the most accurate extended MegaLMM model (i.e. 
experiment-specific or experiment-average predictions). We 
then compared the predictive abilities of the best MegaLMM 
model with the best GBLUP model for each experiment for each 
trait within each prediction scenario. Consistently, across all 
traits and nearly all scenarios, estimated mean prediction accur
acies of MegaLMM were significantly higher than those of GBLUP 
(P-value < 0.01) (Fig. 4). The exceptions were for the scenario 
of NewGenoNewYear for Grain Yield and Plant Height, where 
there was no significant difference between MegaLMM and 
GBLUP. This result was expected, as the predictive ability of 
MegaLMM for predicting new genotypes (i.e. the CV1 setting) is 
anticipated to be similar to that of the univariate GBLUP method. 
This is because MegaLMM cannot leverage information from cor
related trials when predicting new genotypes across different 
environments.

Fig. 3. The extended MegaLMM model using ECs has moderate predictive abilities in new environments across four prediction scenarios for three 
agronomic traits (Silk Days, Plant Height, and Grain Yield). Each bar represents the estimated mean predictive ability of the extended MegaLMM model 
using State (“S”) and Tester (“T”) IDs as priors and predictors (i.e. “S+T::S+T” model) across individual experiments in a specific prediction scenario. The 
mean prediction accuracies for each trait within each scenario are shown below the corresponding barplot. Colors indicate prediction scenario. Error bars 
represent 95% C.I. of the mean, estimated by meta-analysis accounting for the size of each individual experiment. Note that EC “S” has no impact on 
factor loading predictions in the NewState scenario, and “T” has no impact on loading predictions in either NewTester or NewGenoNewYear scenarios.
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These results confirm that MegaLMM’s predictions remain 
better than univariate predictions, even in new environments. 
However, it could be that this improvement is due to 
MegaLMM’s ability to empirically learn covariances among ex
periments, not the additional information provided by the ECs. 
In fact, even if we run MegaLMM without ECs and use the univari
ate strategy of simply averaging predictions across all training ex
periments, MegaLMM’s predictions in new experiments are 
considerably more accurate than the univariate ones (O::O vs 
GBLUP_O::O, Fig. 5). To measure the additional benefit of the 
ECs, we ran prediction models using the ECs only as a prior but 
predicting based on the experiment-average as above (S+T::O), 
and using the ECs both as prior and for prediction (S+T::S+T). 
Note that in some scenarios, either the S or the T predictors 
were uninformative because the test values were not present in 
the training experiments, and so these predictors were dropped.

Across all three prediction scenarios, the S+T::O model signifi
cantly improved genomic predictive ability for all three agronomic 
traits, except for Plant Height in NewTrial and NewTester, where 
the S+T::O model’s accuracy was either identical or slightly lower 
than that of the O::O model (Fig. 5a,c). These results suggest that 
the inclusion of S+T as a factor loading prior contributes to en
hanced genomic prediction in new environments.

In the prediction scenarios of NewTrial and NewState, the S+T::T 
model significantly improved genomic predictive ability compared 
to the S+T::O model for all three traits (Fig. 5a,b), indicating that in
corporating the tester as a predictor enhances genomic predictive 
ability in new environments in cases where the same tester was 
used in training experiments. However, in the NewTester scenario, 
the S+T::S model outperformed the S+T::O model for Grain Yield 
but not for Plant Height and Silk Days (Fig. 5c). These findings sug
gest that averaging similar experiments from the same Tester can 
enhance genomic predictive ability. However, when averaging 
similar experiments from the same State, the impact on genomic 
predictive ability varied, with sometimes showing slight improve
ments, but other times showing slightly decreased accuracy 
when predicting hybrid performance in new environments.

We used simulations to further explore the ability of the ex
tended MegaLMM to leverage categorical ECs. We created scen
arios where a set of new environments either shared (NewTrial) 

or did not share (NewState) levels of an environmental grouping 
variable with trials in the training data, and varied the genetic cov
ariances among the environments (Supplementary Fig. 7a and b). 
When there was strong G × E (% main effect was small), and when 
the G × E was largely determined by the grouping variable (High % 
Known EC), MegaLMM provided significant predictive ability ad
vantages over GBLUP in the NewTrial setting, but little benefit in 
the NewState setting. Results were similar when predicting new 
genotypes in these testing environments (Supplementary Fig. 8a 
and b), although predictive abilities were lower for both methods.

Quantitative ECs can substitute for qualitative ECs 
in genomic prediction for new environments
The above results demonstrate that MegaLMM can successfully 
use ECs to improve genomic predictive ability for new environ
ments (Fig. 5). However, these models used only categorical 
predictors (State or Tester labels), which can only be used to 
make predictions in environments that share the same levels of 
these labels. In contrast, quantitative ECs, like temperature or 
precipitation, could be used to make predictions in any geographic 
location.

To test whether MegaLMM can effectively use quantitative ECs, 
we repeated the above cross-validation experiments but substi
tuted the categorical ECs with quantitative ones. We replaced 
the “S” ECs with scaled eigenvectors from a set of 278 weather 
variables (“W”), and the “T” ECs with the scaled eigenvectors of a 
genomic relationship matrix (“K”) of the Testers computed from 
the same genotypic data used for the P1s. Specifically, we com
pared a W+T::W+T model with the S+T::T model in the NewState 
scenario and a S+K::S+K model with S+T::S model in the 
NewTester scenario. Since “S” ECs cannot contribute to predictions 
in the NewState scenario but “W” can, and since “T” cannot con
tribute to predictions in the NewTester scenario but “K” can, we hy
pothesized that the use of quantitative ECs (“W” and “K”) would 
improve genomic prediction. However, only the S+K::S+K model 
significantly improved genomic predictive abilities compared to 
the S+T::S model in the NewTester scenario for Grain Yield 
(Fig. 6b). Other MegaLMM models with quantitative ECs showed 
either similar or slightly lower genomic predictive ability com
pared to their counterparts with qualitative ECs (Fig. 6). The 

Fig. 4. Predictive abilities of the extended MegaLMM model improve relative to univariate GBLUP prediction across most scenarios for three agronomic 
traits (Silk Days, Plant Height, and Grain Yield). Each bar represents the mean difference in predictive ability between MegaLMM and GBLUP in specific 
scenarios. Colors indicate prediction scenario. Error bars represent 95% C.I. of the difference in mean predictive ability between MegaLMM and GBLUP, 
estimated by meta-analysis accounting for the size of each individual experiment. Significance levels from a meta-analysis, are indicated above each 
barplot and mean differences in predictive ability for each trait within each scenarios are presented below the respective barplot.
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diminished advantage of the MegaLMM models when utilizing 
quantitative environmental covariates compared to categorical 
ones in the NewState scenario is likely due to each environment 
being characterized by only limited features of weather data 
and the absence of soil characteristics and other environmental 
covariates. This could result in “missing environmentability” 
(De Los Campos et al. 2020).

Subsequently, we replaced categorical ECs with quantitative 
ECs in MegaLMM models for the three traits in both scenarios. 
Specifically, we substituted “K” for “T” in the W+T::W+T model 
to obtain the W+K::W+K model in the NewState scenario and sub
stituted “W” for “S” in the S+K::S+K model to get the W+K::W+K 
model in the NewTester scenario. We found that W+K::W+K model 
(with only quantitative ECs) performed just as well as W+T::W+T 
(with the “T“ categorical EC) in the NewState scenario, and the W 
+K::W+K model (with only quantitative ECs) was only slightly in
ferior to the S+K::S+K model (with the “S” categorical EC) for 
Plant Height in the NewTester scenario (Fig. 6). These results sug
gest that kinship and weather data can effectively substitute for 
categorical labels when the states or testers have been observed 

in the training data. This shows that MegaLMM can effectively 
use quantitative ECs, but suggests that the quality of the quanti
tative ECs we used in our analysis may have been too low to be 
useful in this analysis.

We again used simulations to explore the capabilities of 
MegaLMM to leverage ECs. We created simulated scenarios as de
scribed above, except varying the relative importance of a con
tinuously varying environmental factor correlated with either 1 
or 10 ECs (a “known” environmental factor), to mimic the use of 
“W” or “K” in the real data. In these simulations, in the CV1 predic
tion setting, MegaLMM provided little benefit over GBLUP, but im
proved predictive abilities in most trials in the CV2 prediction 
setting, particularly for trials that differed from the mean in the 
“known” environmental factor (Supplementary Fig. 9a and b). In 
new environments, the predictive ability of MegaLMM increased 
as environments varied from the overall mean over this “known” 
environmental factor, while the predictive ability of GBLUP gener
ally declined. The difference in ability between models declined as 
the importance of this “known” environmental factor decreased 
(with increasing % main effect contribution and decreasing 

a

b

c

Fig. 5. Environmental Covariates improve MegaLMM’s predictions in new environments relative to model that only use historical data, across three 
agronomic traits (Silk Days, Plant Height, and Grain Yield) and in three distinct prediction scenarios: a) NewTrial, b) NewState, and c) NewTester. Each bar 
represents the estimated mean predictive ability of a specific model across individual experiments. The mean predictive abilities for each trait within 
each scenario are shown below the corresponding barplot. Colors indicate the prediction model. Error bars represent 95% C.I. of the mean, estimated by 
meta-analysis accounting for the size of each individual experiment. We show results from models with increasing complexity, starting with a univariate 
model, denoted GBLUP_O::O, based on GBLUP predictions obtained from averaging prediction made in individual experiments across all training 
experiments without using ECs, the original MegaLMM model that does not use ECs (O::O), a version of the extended MegaLMM model that uses ECs as 
priors but bases its predictions on the average of predictions from each training trial without further using the ECs (S+T::O), and the full extended 
MegaLMM model that used ECs both as priors and as predictors (S+T::S+T). EC variables are denoted “S” for State, “T” for Tester, and “O” for empty ECs.
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contribution of the known ECs, Supplementary Fig. 10a and b). 
The declining advantage of MegaLMM in these settings appears 
more due to increased predictive ability of GBLUP with higher 
average genetic correlation among all environments, rather 
than a decrease in ability of MegaLMM. In this setting, increasing 
the sparsity of the training trials from 0% to 75% had little effect 
on the difference in predictive ability between MegaLMM and 
GBLUP (results are shown for 75% missing line:trial combinations 
and are comparable for lower missing data rates).

Discussion
Insights into the use of environmental covariates 
for genomic prediction for new environments
We developed an extended MegaLMM model with EC-based priors 
to predict genetic values in new environments. MegaLMM is based 
on a factor-analytic model, and allows users to model a large 
number of latent factors underlying variation in genetic values 
in each environment. The ECs help the model learn the import
ance weights for each factor in each environment, and provide 
coefficients necessary to predict importance weights—and there
fore genetic values—in new environments. Overall, we found the 
ECs significantly improved MegaLMM predictive ability in most 
scenarios relative to the performance of the MegaLMM base model 
(O::O, Fig. 5). However, compared to the improvement of the 
MegaLMM base model over a univariate GBLUP approach (Fig. 4), 
the improvement due to the incorporation of ECs was less dramat
ic. These results highlight several important points.

First, even though neither the MegaLMM base model nor uni
variate GBLUP models can directly produce predictions of genetic 
values in new environments, we found that a simple post- 

processing of their predictions across the MET experiments (i.e. 
old environments) could result in reasonably accurate genetic va
lue predictions on average in new environments. Specifically, the 
average predicted genetic values across the MET experiments 
were correlated with observed values in most new environments. 
In some cases, but not always, we could improve predictions by 
clustering the MET experiments either by geography (State) or 
Tester and only averaging the genetic value estimates within a 
cluster when predicting genetic values in new experiments in the 
same cluster. This latter approach can be thought of as a non
parametric approach for using the ECs, and is equivalent to factor
ial regression (Denis 1988; Piepho et al. 1998) approaches using 
categorical ECs as dummy variables. One reason that such con
stant (i.e. not environment-specific) predictions can be successful 
in this dataset is that trait values are positively correlated between 
most environments (Supplementary Fig. 11), diminishing the po
tential benefit of forming unique predictions in each new environ
ment. Thus, while models do detect significant G × E in this dataset 
(Rogers et al. 2021; Lopez-Cruz et al. 2023), the magnitude of the G × 
E variance is not large relative to genetic main effect variance. G × E 
models necessarily have larger prediction variances because they 
try to make more specific predictions, and unless the actual G × E 
variance is large enough to counteract the reduced precision, 
“main effect” models will be more accurate (Weine et al. 2023). 
One possible reason for the relatively low importance of G × E in 
this dataset is the wide diversity among hybrids, including some 
relatively low-performing hybrids with poor trait values in most en
vironments. If only elite hybrids had been used, the relative import
ance of G × E prediction might have been higher.

Second, ECs are useful for learning the model’s parameters 
even if not used for prediction. We found that when we used 

a

b

Fig. 6. MegaLMM Model Comparison across three agronomic traits (Silk Days, Plant Height, and Grain Yield) using high-dimensional Environmental 
Covariates: a) NewState and b) NewTester. Each bar represents the estimated mean predictive ability of a specific MegaLMM model across individual 
trials. The mean predictive abilities for each trait within each scenario are shown below the corresponding barplot. Colors indicate the prediction model. 
Error bars represent 95% C.I. of the mean, estimated by meta-analysis accounting for the size of each individual experiment. MegaLMM models are 
denoted by a combination of a factor loading prior and a factor loading predictor, separated by “::”, where “O” denotes empty ECs,“S” denotes State, “T” 
denotes Tester, “W” denotes Weather data, “K” denotes genomic relationship among Testers.
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ECs as priors during model training, the correlation between the 
averages of predicted genetic values across the MET experiments 
and the observed phenotypes in new environments was typically 
higher than with the MegaLMM base model which did not use the 
ECs (Fig. 5). In this case, we did not use the ECs to make predictions 
tailored to each new environment, yet still found the ECs useful. 
Here, the ECs may help the model learn correlations between 
pairs of trials that do not share many hybrids in common, so there 
is little data to learn correlations empirically, but which do share 
values of ECs. This suggests that ECs may be especially useful 
when METs are very sparse and perhaps even unconnected – con
taining trials without any overlapping hybrids. This improvement 
was not apparent within the MET experiments themselves (in 
terms of accuracy measured by CV2), probably because the re
sidual genetic terms (UR) were able to make sufficiently accurate 
predictions.

Third, successfully predicting genetic values in new environ
ments may require both higher-quality ECs and many more 
MET experiments. While this data set is large, composing 302 ex
periments, it contains only 195 trials in different site-years to 
learn regressions on ECs like weather, only 37 locations to learn 
regressions on ECs like geography, climate, and soil, and only 12 
testers to learn regressions on genetic markers of each tester. 
Genomic prediction models (in a single environment) generally re
quire hundreds of genotypes to effectively learn allele-phenotype 
correlations (Jannink et al. 2010) because genotypes are the unit of 
replication of alleles in these models. Since experiments are repli
cates of environmental variables in G × E models, and because the 
environmental drivers of performance are likely similarly com
plex to genetic drivers, hundreds of experiments are probably 
needed to adequately model G × E in new environments. 
Nevertheless, we showed that MegaLMM could successfully use 
high-dimensional ECs (from weather or tester genotypes) to 
make accurate predictions, at least when the new environments 
were closely related to existing environments (same states or 
same testers). However, more informative ECs, such as ECs de
rived from crop growth models (Heslot et al. 2014; Rincent et al. 
2019) may help reduce the dimensionality burden, making G × E 
modeling more efficient. Lopez-Cruz et al. (2023) used crop model- 
derived ECs in GBLUP-based reaction norm models with 97 trials 
(i.e. year::locations) from the G2F dataset. They found that models 
integrating SNPs and ECs can moderately accurately predict culti
vars’ performance for Grain Yield. We did not use these ECs in our 
study because they were not available for all trials in the G2F 
dataset.

Comparison with other approaches for predicting 
genotype–environment interactions
Compared with previous statistical models that use ECs for pre
dictions in new environments, the extended MegaLMM model of
fers several statistical and practical advantages, including the 
ability to use high-dimensional ECs, regularization through a 
moderate number of latent factors, and the ability to fit phenotyp
ic data from very large and very sparse METs.

The ability to simultaneously use high-dimensional ECs for 
prediction should be useful when multiple environmental vari
ables simultaneously impact the variation in genetic values 
across a TPE. In the extended MegaLMM model, we use regularized 
regression to provide robust inference across high-dimensional 
ECs. This contrasts with the CERIS-JGRA method of Li et al. 
(2021) which searches among candidate ECs for a single EC that 
is the best, and then bases predictions on this single EC. Also, 
while the CERIS-JGRA method selects an EC based on the ability 

to predict phenotype means across trials, the extended 
MegaLMM prioritizes ECs based on their usefulness for distin
guishing patterns of covariance among trials, which is more dir
ectly applicable to breeding. Furthermore, CERIS-JGRA was 
designed for experiments with largely complete line:trial datasets, 
and the authors excluded trials with >25% missing data, which 
precludes its use here.

The ability to robustly use high-dimensional ECs is not unique 
to the extended MegaLMM model. The GBLUP-based reaction 
norm model, as demonstrated by Jarquín et al. (2014), can also 
use high-dimensional ECs, using kernel functions to turn the EC 
matrices into distance matrices. Costa-Neto et al. (2021) also 
uses kernel methods for model G × E from METs. A limitation of 
this approach is that training the kernel functions themselves is 
computationally expensive. Lopez-Cruz et al. (2023) only applied 
the approach of Jarquín et al. (2014) to a small percentage of this 
dataset. We attempted to implement the approach of Jarquín 
et al. (2014) for our version of the G2F dataset, but the memory re
quirements were too large (>100 GB). Consequently, these meth
ods use fixed kernel functions which prevents learning weights 
among the ECs. Tuning parameters of the kernel functions is pos
sible in these methods, but the same tuned kernels would apply to 
all trials. In contrast, the extended MegaLMM model can learn dif
ferent EC weights for each latent factor, providing an additional 
level of flexibility and opportunity for statistical learning of G × E 
patterns.

Much of MegaLMM’s statistical and computational efficiency 
comes from its latent factor model architecture. Many other mod
els also use factor-analytic models for G × E prediction. For ex
ample, the AMMI model is a factor model (but with fixed factors, 
Rincent et al. 2019), and Cullis et al. (2014) and Heslot et al. (2014)
also proposed factor-analytic models for METs. The advantage 
of factor-analytic models is that they model correlated traits 
with a small number of parameters relative to the number of cov
ariances among pairs of trials, providing statistical robustness, 
and remove the need to invert large covariance matrices, alleviat
ing computational limitations. However, MegaLMM is unique in 
its ability to fit relatively large numbers of latent factors. Most 
prior applications of factor-analytic models have handled only 
1–3 factors and can fail to converge if run with more factors. For 
example, Schulz-Streeck et al. (2013) found that the FA structure 
failed to converge when fitting a marker-by-environment inter
action model, and Rogers et al. (2021) found that models with 
more than one FA factor for environments, in combination with 
either additive or dominance relationships, failed to converge 
when fitting a subset of G2F data. Our analysis of the maize G2F 
dataset used 50 factors and found that 13–20 factors significantly 
contributed to trait performance prediction across experiments 
for three agronomic traits (Fig. 2d). This suggests that more factors 
can be beneficial for accounting for varying sources of G × E vari
ation in large METs.

Finally, our case study was an MET with 302 experiments and 
∼87% missing values, yet MegaLMM was able to return predictions 
in ∼3 hours (with 20 CPU cores). The ability to fit such sparse data 
is an advantage over the AMMI models and other matrix-based 
(i.e. Y is treated as a matrix) models that require complete data. 
Also, the efficiency in fitting data with large numbers of traits 
makes MegaLMM flexible for modeling complex experimental fea
tures like management characteristics which can be important 
contributors to G × E (Cooper et al. 2021). Modeling management 
in addition to environmental drivers complicates reaction norm 
models because of the need to specify many interaction terms, 
making models unwieldy. In contrast, as a correlated traits model, 

MegaLMM improves prediction of new environments | 9



MegaLMM does not explicitly require an interaction term to model 
G × E × M effects. Integrating management characteristics into 
the MegaLMM model involves simply expanding the columns in 
the multivariate response matrix, with columns representing 
combinations of environmental types and management. 
Mathematically, the process of solving the linear mixed model 
equations and estimating parameters remains unchanged.

Insights into modeling G × E in the maize 
hybrid breeding system
Contrasting with most other analyses of the G2F maize hybrid da
taset (Rogers et al. 2021; Lopez-Cruz et al. 2023), we divided each 
trial into multiple separate experiments based on the identity of 
different testers used to create each hybrid, and then modeled 
the covariances among these experiments. There are both prac
tical and statistical benefits to doing this. On the practical side, fo
cusing on within-tester-family predictive ability aligns our 
approach with maize hybrid breeding strategies. In maize hybrid 
breeding, germplasm is organized into two major heterotic pools, 
and inbred lines are developed within these pools. The newly cre
ated inbred lines are initially evaluated and selected by crossing 
them with suitable testers from complementary heterotic pools. 
Subsequently, they are further crossed with a larger number of 
newly created lines from the opposite heterotic pool for evalu
ation for potential commercial use (Cooper et al. 2014). In our ana
lysis, we placed inbred lines, rather than hybrids, as rows of our 
data matrix Y, with columns representing combinations of 
Tester and environment. Thus, our genomic predictions are best 
considered genetic values of inbreds conditional on specific 
Testers and environments.

On the statistical side, modeling the covariance among hybrids 
from different testers allows modeling of Tester-inbred genotype 
interactions, and therefore produces more accurate within-tester- 
family predictions when these interactions are important. Since 
MegaLMM scales very efficiently with numbers of experiments, 
there is little downside to breaking trials into multiple experi
ments, particularly when we can include prior information 
through ECs to partially pool information across experiments 
when they are closely related. We found that Tester identity 
was the most useful EC among experiments (comparing results 
from the NewState scenario where Tester ID could be used for pre
diction in new environments, to results from the NewTest scenario 
where Tester ID was not available for prediction, Fig. 3), suggest
ing that the ranking of inbreds did change considerably when 
crossed to different Tester. However, this result should be inter
preted with caution because the importance of Tester ID in this 
dataset is partially confounded with both geographic structure 
among trials and population structure within the populations of 
inbreds (P1s), as discussed by Lopez-Cruz et al. (2023).

In summary, we present an extended version of MegaLMM that 
can predict the genetic architecture of new traits based on trait- 
specific prior data. This is a significant advancement of the 
MegaLMM method, opening the possibility of many types of novel 
applications. We focus here on the application of modeling geno
type–environment interactions in multienvironmental trials in 
plant breeding, where we consider each trial a new trait, and 
use environmental data as prior predictors of the patterns of 
genotype–environment interactions. We expect that many other 
applications of this extended MegaLMM model are possible both 
in plant breeding and in other fields where large linear mixed 
models can be applied.

Materials and methods
Original MegaLMM model
The original MegaLMM “correlated-traits” model of an MET is spe
cified as:

Y = XB + ZU + E (1) 

where Y is an n × t phenotypic matrix for a trait of interest mea
sured on n experimental genotypes grown in t trials, potentially 
with a large percentage of missing values, X is an n × p incidence 
matrix for fixed effects such as an intercept, B is a corresponding 
p × t matrix of fixed effects for each trial, Z is an n × q incidence 
matrix for random effects, in this case the identities of each inbred 
parent, U is a corresponding q × t matrix of random effects, in this 
case additive genetic values, for each trial, E is an n × t matrix of 
residuals for each genotype in each trial.

Fitting equation (1) is challenging because the columns of U 
and E are correlated. To address this issue, Runcie et al. (2021) de
veloped a new statistical framework, MegaLMM, based on an FA 
model, which decomposes the correlated traits model into a two- 
level hierarchical model.

In level 1, the phenotypic matrix Y is decomposed into two 
components:

Y = FΛ + E (2) 

where F is an n × k latent factor matrix, Λ is a k × t loading matrix, E 
is an n × t residual matrix of residuals for each trial.

Intuitively, k latent factors can be interpreted as k unobserved 
traits across each individual that are constant across experi
ments, and the factor loadings represent the relative importances 
of each of these k unobserved traits on the focal trait value in each 
experiments.

In level 2, each of the k latent factors in the F matrix and each of 
the t residual traits in the E matrix are independently fitted with 
standard univariate linear mixed models:

fk = XbFk + ZuFk + eFk

ej = XbRj + ZuRj + eRj

(3) 

where fk and ej are n × 1 vectors for the kth latent factor trait and 

the jth residual trait, respectively. X is an n × p incidence matrix 
for fixed effects, Z is an n × q incidence matrix for random effects, 
bFk and bRj 

are p × 1 vectors of fixed effects for the kth factor and 

jth residual trait, respectively, uFk 
and uRj 

are q × 1 vectors of ran

dom effects for the kth factor and jth residual trait, respectively, 
eFk and eRj 

are n × 1 vectors for residuals.
The distributions of random effects are specified as:

uFk ∼ N (0, σ2
gFk

K), uRj
∼ N (0, σ2

gRj
K)

eFk ∼ N (0, σ2
eFk

I), eRj
∼ N (0, σ2

eRj
I), 

where K is the pairwise genomic relationship matrix between old 
genotypes that is estimated with genetic molecular markers, I is 

the identity matrix, σ2
gFk 

is the genetic variance components asso

ciated with the kth latent factor, σ2
gRj 

is the genetic variance com

ponents associated with the jth residual trait, σ2
eFk 

is the residual 

variance components associated with the kth latent factor, and 

σ2
eRj 

is the residual variance components associated with the jth 
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residual trait. All parameters of MegaLMM are estimated using a 
Gibbs sampler as described in Runcie et al. (2021).

Extensions to predict trait performance in new 
environments
The original MegaLMM model lacked the capability for making 
predictions in new environments because elements of the 
environment-specific weights matrix Λ were independent in the 
prior and thus could only be learned based on correlations be
tween records in different observed environments. Our extended 
MegaLMM model replaces the original prior on Λ with a prior of 
the following form:

λk· =
􏽘L

l=1

Wlalk + ϵk

alk ∼ N(0, σ2
lkτ

−1
k I)

σ2
l ∼ invGamma(a, b)

ϵkj ∼ N(0, ψ−1
jk τ

−1
k )

ψ jk ∼ Ga(ν/2, ν/2), τk =
􏽙k

h=1

δh

δ1 ∼ Ga(α1, β1), δj ∼ Ga(α2, β2) j ∈ 2, . . . K,

(4) 

where λk· is a row of Λ representing the relative importance 
weights of latent factor k across environments. We model this vec
tor as a regression on ECs, represented as L design matrices 
Wl, l ∈ 1 . . . L, for example W1 is usually a single column of 1’s 
representing an intercept, and in the MegaLMM S+T::S+T model, 
W2 would be an incidence matrix of state identities, and W3 would 
be an incidence matrix of Tester identities. The regression coeffi
cients are assigned independent normal priors with a variance 
that shrinks for higher order factors based on the precision par

ameter τ−1
k . The residuals of this regression are assigned heavy- 

tailed t-distributed priors as in our earlier BSFG model (Runcie 
and Mukherjee 2013), which maintains the shrinkage of higher or
der factors towards zero. Parameters of this model for Λ are learn
ed using the same Gibbs sampler steps as in the BSFG model 
(Runcie and Mukherjee 2013).

Using posterior samples of the regression coefficients alk , pos
terior predictions of genetic values in new environments can be 
formed as:

Gon = F
􏽘L

l=1

Wn
l alk

􏼠 􏼡

(5) 

where Gon are posterior samples of the genetic value for old geno
types in new environments, F are posterior samples of the latent 
factor matrix estimated from old grown in old environments, 
Wn

l are values for ECs in the Wl matrix measured in new 
environments.

To form posterior predictions of genetic values for new geno
types (Ann), F in equation (5) is replaced with Fn = KnoK−1F, where 
Kno is the is the pairwise genomic relationship matrix between 
new and old genotypes.

Cross-validation scenarios for predicting 
experimental genotypes in old and new 
environments
CV1
We randomly divided experimental genotypes into five equal-sized 
folds within each environment. The partition of genotypes was 

consistent across all environments. During cross-validation, 
4-folds were used for model training, and the fifth fold served as 
the validation set. This process was repeated five times until each 
of the 5-folds in each environment was used as the validation set.

CV2
Within each environment, we used the same genotype partition as 
CV1. However, we randomized the order of the 5-folds independ
ently across environments. During cross-validation, 4-folds were 
used for training, and the fifth fold was used for validation. This 
procedure was repeated five times until each of the 5-folds within 
each environment served as the validation set.

NewTrial
Building on the CV2 training sets, we randomly divided all trials 
(i.e. location-year combinations) into 5-folds. Four-folds were 
used for training, and the fifth fold was used for cross-validation. 
For each of the five distinct CV2 training sets, this process was re
peated five times until each of the 5-folds of trials had been used 
as a validation set.

NewState
Following the CV2 training sets, we split all experiments by their 
respective States. We selected States with at least 9 experiments 
as testing sets, resulting in 14, 13, and 12 testing sets for Grain 
Yield, Plant Height, and Silk Days, respectively, for the G2F data
set. For each State in the testing set, all other States were used 
for training. For each of the five distinct CV2 training sets, this pro
cess was repeated 14, 13, and 12 times for Grain Yield, Plant 
Height, and Silk Days, respectively, until each set of testing experi
ments had been used as a validation set.

NewTester
Based on the CV2 training sets, we split all experiments by their 
testers, resulting in a total of 12 sets of testing experiments for 
the G2F data. Each set of testing experiments served as a testing 
set, and the remaining experiments were used for model training. 
For each of the five distinct CV2 training sets, this process was re
peated 12 times until each set of testing experiments had been 
used for validation.

NewGenoNewYear
Using each of the CV2 training sets, we divided all experiments 
into 4-folds based on two-year intervals (2014–2015, 2016–2017, 
2018–2019, and 2020–2021). Since hybrid compositions changed 
dramatically every two years, each fold contained almost entirely 
different sets of hybrids. To ensure no overlap between training 
and testing sets, we further excluded common hybrids from the 
testing set. Thus, each fold represented new genotypes tested in 
new environments. For each of the five distinct CV2 training 
sets, this process was repeated four times until each of the 4-folds 
of experiments had been used as a validation set.

We have demonstrated cross-validation scenarios of NewTrial, 
NewState, NewTester and NewGenoNewYear in Supplementary 
Fig. 3–6.

Estimating genomic prediction accuracies, their 
means and standard deviations
Within each experiment, predictive ability was estimated using 
the following equation:

r = cor(y, ĝ), (6) 
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where y is a vector of adjusted phenotypic values, and ĝ is a vector 
of predicted genotypic values. For CV1 and CV2, within each ex
periment, we defined predictive ability as the mean correlation 
obtained from five validation sets. Similarly, for prediction scen
arios of NewTrial, NewState, NewTester, and NewGenoNewYear, 
within each experiment, we defined predictive ability as the 
mean of predictive abilities obtained from five distinct validation 
sets, which originated from five distinct CV2 training sets.

Within each prediction scenario, we estimated means and 
standard deviations of prediction accuracies over all experiments 
using a meta-analysis to different sample size with the Hunter 
and Schmidt-type approach (Schmidt and Hunter 2014) using the 
escalc and rma functions of the metafor R package (Viechtbauer 
2010). This implements a random-effect meta-analysis with esti
mated standard errors of each individual correlation based on its 
own sample size. To test if one method produces higher correla
tions on average than another, we compared the two vectors of 
correlations using the r.test function of the psych R package 
(Revelle 2023), and extracted the estimated difference between 
the two methods for each trial as well as the standard error of 
this difference. We then used the rma function of the metafor pack
age to compute a random effects meta-analysis of these differences 
weighted by the sample size of each trial. Finally, we estimated 95% 
C.I. of mean predictive ability within each prediction scenario with 
the following equation:

CI = x̅ ± z
s
��
n
√ (7) 

where x̅ is the mean predictive ability, z is the z-score correspond
ing to the desired confidence level (for a 95% C.I., z = 1.96), s is the 
standard deviation of the prediction accuracies across experi
ments, n is the total number of experiments within a prediction 
scenario.

Simulation study
We designed a set of simulations to explore when the extended 
MegaLMM model most improves genomic prediction accuracy in 
new (and old) environments. We simulated genetic and phenotyp
ic values for a set of n = 500 lines evaluated in 500 environments, 
with the first t = 400 environments used as training data and the 
remaining 100 environments used to evaluate the genomic pre
diction accuracy. Genetic and phenotypic values were simulated 
under the extended MegaLMM generative model by constructing 
10 latent factors, with their loadings represented by the matrix 
Λ, which represents common environmental drivers of perform
ance across environments. Subsequently, additive genetic and re
sidual factor scores (UF, EF) and residuals (UR, ER) were sampled 
for each environment. UF and UR were generated by sampling k = 
10 and t = 500 independent Gaussian vectors with covariance pro
portional to a genomic relationship matrix K. K was generated as 
K = ZZ/100 + Diag(0.5) where Z was a random 500 × 50 matrix. 
This created a random relationship matrix with 50 large and 450 
small eigenvalues, which is sufficiently informative for moderate 
genomic prediction accuracy. The heritabilities of each column of 
F = UF + EF and E = UR + ER were set to h2 = 0.8. The magnitudes of 
F and E were scaled so that (FΛ) explained ≈ 80% of the total 
phenotypic variation on average across environment. After gener
ating phenotypic values, a proportion (0, 0.25, 0.5, or 0.75) were set 
to missing.

We varied the construction of the environmental drivers (Λ) 
across two dimensions to create scenarios that would vary in dif
ficulty for prediction:

First, we considered two types of “predictable” patterns of co
variance in genetic values: (1) positive covariance across all envir
onments, and (2) negative covariance across environments that 
vary along a linear environmental gradient, where that gradient 
is either directly known or is predictable from environmental cov
ariates (ECs). When the second type of covariance dominates, gen
omic prediction models that use ECs should have an advantage. 
We used the first two rows of Λ to vary the relative importance 
of these two sources of “predictable” covariance from 0% to 
0.75% contributed by the positive term (a constant value across 
the first row of Λ). The second row of Λ held the “predictable” en
vironmental gradient which we constructed as described below. 
Second, we simulated other environmental factors that contrib
ute to variation in genetic values across environments but are 
not predictable by any known ECs. We generated 8 additional en
vironmental factors and inserted these as rows 3–10 of Λ, and then 
weighted these so that they contributed between 0% and 80% of 
the total covariation. We created 10 simulated datasets for each 
combination of parameters.

We constructed the “predictable” environmental gradient (se
cond row of Λ) in one of three ways to evaluate different methods 
of specifying ECs in MegaLMM: (1) Categorical ECs: We divided the 
training environments into 10 groups. 50 of the test environments 
were defined to come from group 1, and the remaining 50 came 
from an 11th group, not represented in the training environments. 
Environmental values for each group were sampled from a nor
mal distribution. Only the identities of each group was provided 
to MegaLMM as a matrix W with the groups coded as dummy vari
ables. (2) Univariate EC: Values for this environmental factor were 
sampled from a normal distribution independently for each envir
onment. The environmental factor values were directly provided 
to MegaLMM as an EC. (3) Multivariate EC: A set of 10 independent 
normal values were drawn for each environment and formed 
into a matrix W. The environmental values were then sampled 
from a multivariate normal distribution with covariance 
V = WW/20 + Diag(0.5), so that ≈ 50% of the variation in this en
vironmental factor was explainable by the columns of W. W 
was provided to MegaLMM as ECs.

We used the extended MegaLMM model to create genomic pre
dictions in each of the 500 environments, using the simulated ECs 
(W, with a column of 1s appended as an intercept) as described 
above and K = 15 factors. We considered eight prediction goals: 

1) CV1: We predicted genetic values of new genotypes in the 

training trials as: Û = ÛFΛ̂ + ÛR. We measured predictive 
ability as the Pearson correlation of predicted genetic values 
and phenotypic values (not used in model training because 
these are “new” genotypes).

2) CV2: We predicted total genetic values of old genotypes in 

the training trials as: Û = F̂Λ̂ + ÛR. We measured predictive 
ability as the Pearson correlation with phenotypic values 
only for those individuals with phenotypes set to missing 
in the training data.

3) NewTrial, NewState, and NewEnv: We predicted total genetic 

values of old genotypes in the training trials as: Û = F̂ÂΛW. 
Where W are the known ECs and A the regression coeffi
cients estimated for these ECs in equation (4). We measured 
predictive ability as the Pearson correlation with phenotypic 
values in the new environments. NewTrial

categorical ECs where the new environments were from 
group 1. NewState represented the simulations using cat
egorical ECs where the new environments were from group 
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11, not represented in the training trials. NewEnv repre
sented the simulations using quantitative ECs.

4) NewGenoNewState, NewGenoNewState, and NewGenoNewEnv: 
These simulation scenarios were the same as above except 
we predicted genetic values for new genotypes as: 

Û = ÛFÂΛW.

As a comparison, we also used GBLUP implemented in the rrBLUP 
R package (Endelman 2011) to estimate genetic values in each of 
the training trials. We predicted genetic values of new genotypes 
in these trials as KnoK−1

oo Û where Û were the estimated genetic va
lues of the training individuals. To predict genetic values in new 
trials we simply took the row-averages of Û. This ignores the cov
ariances among trials and the known ECs.

Phenotypic and genotypic analyses of G2F maize 
hybrid dataset
Plant materials
The G2F Initiative is a multiinstitutional, collaborative initiative to 
catalyze and coordinate research linking genomics and phe
nomics in maize to achieve advances that generate societal and 
environmental benefits (AlKhalifah et al. 2018). Since 2014, this 
project has evaluated approximately 180,000 field plots involving 
more than 5,000 corn hybrid varieties across more than 200 un
ique environments in North America. Our analyses used the G2F 
maize hybrid data collected between 2014 and 2021 and focused 
on three representative agronomic traits: Grain Yield: Measured 
in Mg per ha at 15.5% grain moisture (unit: Mg/ha), utilizing plot 
area without an alley; Plant Height: Quantified as the distance 
from the base of the plant to the ligule of the flag leaf, expressed 
in centimeters; Silk Days: Defined as the number of days elapsed 
after planting when 50% of the plants within a plot displayed vis
ible silks.

Phenotypic data analysis
The initial 2014–2021 G2F phenotypic dataset comprises 217 un
ique trials with diverse field experiment designs. As more than 
71.4% of the G2F data points were linked to 12 major hybrid testers 
(Lopez-Cruz et al. 2023), our analysis concentrated on these key 
tester families. Consequently, within each trial (i.e. a location:: 
year combination), we split the trait data by Tester and refer to 
each partition as an experiment. We selected experiments com
posing a minimum of 50 hybrid genotypes for further analysis. 
Therefore, in our analysis we consider the Tester as a component 
of an environment.

Our preprocessing of the raw phenotypic data from each trial 
included the following steps. First, we excluded tester families 
with fewer than 50 hybrid genotypes. Subsequently, we employed 
a two-step procedure to filter outliers. Initially, within each indi
vidual trial, outlier data points were eliminated based on the joint 
distribution of observed trait values across trials. Data points with 
an expected occurrence of less than 1, assuming a normal distri
bution, were flagged as outliers. Subsequently, outlier trials 
were identified based on the distribution of mean trait values 
across all trials. Trials with a population mean expected to occur 
less than 1 time, given a normal distribution, were classified as 
outliers. Following outlier removal, we retained 302, 278, and 
231 experiments (i.e. tester families) for Grain Yield, Plant 
Height, and Silk Days, respectively, for downstream analysis.

To account for field design factors and obtain the best linear un
biased estimation (BLUE) of each hybrid genotype, we employed lin
ear or linear mixed models, depending on available experimental 

design factors within each experiment. Experiments were categor
ized into four groups, each fitted with a different model: 

• For experiments with ≥ 2 replicates and ≥ 2 blocks each, we 
used a linear mixed model: y ∼ Hybrid + Replicate + 
(1 |Replicate : Block), where y represents observed phenotyp
ic values, Hybrid and Replicate are fixed effects of hybrid gen
otypes and replicates, respectively, and (1 — Replicate:Block) 
is the random effect of block nested within replicate.

• For experiments with ≥ 2 replicates and only one block in 
each replicate, we employed a linear model: y ∼ Replicate + 
Hybrid.

• In cases with only one replicate but multiple blocks in the 
replicate, we used a linear mixed model: y ∼ Hybrid + 
(1 |Block), where (1 |Block) represents the random effect of 
block.

• For a few experiments with only one replicate and one block 
in the replicate, a linear model y ∼ Hybrid was applied.

Linear mixed models were fitted using the lmer function in the R 
library lme4 (Bates et al. 2015). Linear models were fitted with the 
lm function in the base R library (R Core Team 2023). The predict 
function from the base R library was employed to extract marginal 
BLUEs for each hybrid genotype in each environment.

Finally, we re-shaped all BLUEs for each hybrid genotype in 
each environment into a matrix with rows corresponding to 
each inbred Parent 1’s of the hybrid, and columns corresponding 
to the experiment IDs (i.e. location-year-tester combinations).

Genotypic data analysis
We received G2F genotypic data from the committee of The 
Genomes to Fields 2022 Maize Genotype by Environment 
Prediction Competition (Lima et al. 2023), who only provided geno
typic data of hybrid genotypes. The 2014–2021 G2F inbred lines 
(Hybrid Parent 1s and testers) were sequenced with different tech
nologies. The Maize Practical Haplotype Graph (PHG) database 2.1 
was used for variant calling, which generated a genotypic dataset 
with 4,928 unique hybrid genotypes and 437,214 SNP sites. We 
first filtered the SNPs using the following criteria: (1) minor allele 
frequency (MAF) >5%; (2) maximum site missing rate <20%, re
sulting in a dataset with 4,928 unique hybrid genotypes and 
324,323 SNP sites. We used a custom script to infer the P1 and 
Tester genotypes of each hybrid. Briefly, for each SNP in each hy
brid, if the genotype was 0 or 2, we assigned this value to both par
ents. If the genotype was 1, either the P1 or the Tester must have 
the 1 allele. To decide, we compared the same locus to all other 
hybrids from the same tester. If any other hybrid had a 0 genotype 
at this locus, the Tester’s genotype must be 0, otherwise its geno
type must be 1. For this analysis, we filtered out any hybrids where 
the tester was not replicated in at least one other hybrid.

Using the separate SNP genotype matrices of the P1s and the 
Testers, we computed additive genomic relationship matrices 
for each following VanRaden’s equation (VanRaden 2008) using 
the dogrm software package (Bellot et al. 2018).

Weather data analysis
The original weather environmental variable record was captured 
on a daily basis. Given the high correlation among these daily en
vironmental variables, we conducted the following analyses to ad
dress redundancy in environmental covariates: (1) We computed 
the Daily Corn Growing Degree Days (GDD) between the planting 
and harvest dates for each trial using the formula: Daily Corn 
GDD (◦F) = (Daily Maximum Temperature ◦F + Daily Minimum 
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temperature ◦F) – 50 ◦F. If the daily maximum and/or minimum 
temperature was less than 50◦F (10 ◦C), it was adjusted to 50 
◦F. Similarly, if the daily maximum temperature exceeded 86 ◦F, 
it was capped at 86 ◦F. (2) We computed the Accumulated 
Growing Degree Days (AGDD) and determined maize growth 
stages for each trial based on methodologies described by 
Widhalm (2014) and Nielsen (2019). This analysis identified 23 
stages of maize growth, including 20 vegetative growth phases 
from emergence (VE), V1-V18, up to tassel formation (VT). For 
the reproductive phase, we consolidated R1, R2, and merged R3 
to R6 into a single growth stage. (3) We averaged 11 weather envir
onmental variables (Supplementary Table 1) and GDD within the 
duration of each of the 23 growth stages. Moreover, AGDD and 
Accumulated Precipitation (APRE) of each trial were included as 
environmental covariates, recognizing temperature stress and 
water deficit as the two most important factors limiting crop 
growth and yield (Langridge et al. 2021). Ultimately, this process 
yielded 278 ECs.

Data availability
We obtained the G2F dataset from the committee of The Genomes 
to Fields 2022 Maize Genotype by Environment Prediction 
Competition, accessible on CyVerse under https://doi.org/10. 
25739/tq5e-ak26. The scripts used in this study are documented 
in the following GitHub repository: https://github.com/hh622/ 
MegaLMM_New_Environments_Prediction_GenomesToFields. 
Additionally, the R package for extended MegaLMM can be found 
here: https://github.com/deruncie/MegaLMM and the version 
used for the analyses in this paper is archived at Zenodo with 
DOI: https://zenodo.org/records/13787618. Supplemental material
available at GENETICS online.
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