
UC Irvine
ICS Technical Reports

Title
Efficient usage of concurrency models in an object-oriented co-design framework

Permalink
https://escholarship.org/uc/item/123825gm

Authors
Garg, Piyush
Shukla, Sandeep K.
Gupta, Rajesh K.

Publication Date
2001-09-17

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/123825gm
https://escholarship.org
http://www.cdlib.org/

Efficient Usage of Concurrency Models in an
Object-Oriented

Co-design Framework

Piyush Garg
Sandeep K. Shukla

Rajesh K. Gupta

ICS
TECHNICAL REPORT

Technical Report# 01-52
(September 17, 2001)

Not.ice: This Material
may be protected
by Copyright Law
(Title 1 U~S.C.)

Department of Information and Computer Science
University of California, Irvine

Irvine, CA 92697-3425

Information and Computer Science

University of California, Irvine

Efficient Usage of Concurrency Models in an Object-Oriented
Co-design Framework

Piyush Garg Sandeep K. Shukla Rajesh K. Gupta

Center for Embedded Computer Systems,
Department of Information and Computer Science,

University of California at Irvine,
Irvine, CA 92697

E-mail: {pgarg, skshukla, rgupta}@ics. uci. edu

Contents

1. Introduction

2. System Modeling and Co-simulation

3. Co-simulation Efficiency

4. Implementation and Experimental Results
4.1. The Al\1RM Machine Architecture
4.2. The AMRM Co-simulation Model .
4.3. Simulation Results

5. Summary

List of Figures

2

3

5
5
5
7

9

1 Block diagram of AMRM machine . 6
2 Block diagram of Phase I prototype . 7
3 Effect on simulation speed as asynchronous blocks converted to asynchronous processes 9

List of Tables

Abstract

Increased complexity of micro-electronic systems demands a need for efficient system lnel models.

System level models can provide detailed architectural simulation results to make architectural tradec~fj~'

in the early stages of the design process. For effective system-level design, there is a needf(Jr an efficient

co-simulation model for precise and speedy system level simulation and design e.lploration. Recently.

several object-oriented language based co-design frame1rvorks have been proposed for lzardirare mod,.

eling at the system-level. Jn this paper, we focus on modeling concurrency in these frameworks and

how it can be used to improve the efficiency of system-level simulation. Specifically, we examine the

use of threads to implement process concurrency and compare against non-threaded implementations

using function calls. This distinction is important because it detennines the choice of the class (e.g.,

s:.nchronous/asynchronous processes, blocks etc) to use for specification of a given system block or be­

havior. Although, it is a commonly held belief that usage of threads might slow down the simulation

peifomzance due to context switch overheads, our analysis and experiments shmv, that by judicious

choice of the threading model, and by striking a balance between the usage of threads and function

calls in a system model, one can improve the simulation speed. Hardivare designs being inherently

concurrent. it is very important to be able to express concurrency in co-simulation models without coni­

promising simulation efficiency. Hence our methodology is based on analysing the concurrenc_v in the

model. before expressing them in a high level language. To demonstrate the simulation effectiveness, ·we

present an architecfllral model of a system ivith adaptive memory hierarchy and demonstrate the effect

of modeling choices on the overall simulation efficiency.

1. Introduction

System level models can provide detailed architectural simulation results to make architectural trade­

offs in the early stages of design with sufficient precision and speed. A complete system model in

VHDL/Verilog would be detailed but too slow for architectural exploration. On the other hand, pro­

gramming languages such as CIC++ are meant for software design and a complete system model in

these languages would not be accurate enough to characterize the timing performance. So there is a

need for a efficient co-simulation model for precise and speedy system level simulation.

Various co-simulation tools [2] [3] [4][12)[15] are available commercially. MC?st of these tools pro­

vide a heterogeneous environment for co-simulation of CIC++ and VHDIJVerilog. The communication

between software and hardware models are done using remote procedure calls or some form of interpro­

cess communication (sockets). There is an overhead in passing data back and forth between the largely

I-IDL-based hardware world and the largely CIC++ based software world during such a co-simulation.

Recently. several object-oriented language frameworks based on C++[5][13][14][18][19][20] or Java[8][10]

and specialized language frameworks[7] [9] have been proposed for system design. The advantage of

having a system model in object-oriented frameworks is that it preserves synthesizability and allows

late binding of the components to HWISW partition because the models of software components can be

readily interchanged with models of hardware components in them. Since these language frameworks

are extended C++ or Java. one can compile and generate an executable simulator for the whole system.

Such an executable simulation is much faster than interpreted simulation. Simulation paradigms used

by these frameworks either express concurrent behavior by sequentializing them using function calls

(often facilitated with relaxation mechanisms for propagating signals), or map concurrency directly to

user level threads. Since threads incur context switching overhead, one is led to believe that usage of

threads might compromise simulation efficiency. However, our experiments show that the simulation

efficiency can be enhanced by a methodological tradeoff between threads and function calls. Our further

experimentation also shows that this tradeoff methodology is largely dependent on the threading model

(cooperative vs. preemptive). We attempt to obtain a characterization of the design space by partitioning

it in such a way that the system components, independent of other components and computationally

intensive, are mapped to threads, while the components that are non-computationally intensive and form

a dependency chain among themselves are modeled using functions. This way, we experimentally show,

2

that by proper partitioning of the design space. one can achieve better simulation speed. as compared to

fully sequential function call based model. In our experiments. we also find that the choice of threading

model can affect this methodology significantly. The experiments described in this paper are based on

a cooperative threading model, where threads are scheduled by the application. and not by O/S ker­

neL and are not preemptive. Our recent experiments show that a preemptive threading model does not

show the performance characteristics we describe here. In fact, we suspect that unless multiple pro­

cessors are used) a preemptive threading model will make the performance deteriorate as the degree of

concurrency is increased by introducing more threads. However, we don't go into any detai Is of the pre­

emptive threading based experiments in this paper. For experimentation purposes we used SystemC[18]

as our modeling framework. The version of SystemC, we use, used a cooperative threading model,

by building the system on top of quick threads library. However, for any other system level modeling

framework[5][13] which offers thread versus function call mechanism, the similar methodology can be

applied.

In section 2, we recapitulate some basic co-simulation concepts. In section 3, we discuss the thread

based versus the function call based modeling in SystemC (namely asynchronous and synchronous pro­

cesses versus asynchronous blocks). Section 4 describes the architecture of AMRM [l] in brief to show

the overall design complexity, and to describe various main modules which are natural candidates for our

manual partitioning. Also, we describe the experimental results, and compare the variation of partitions

and resulting simulation efficiency in this section. Finally. section 5 summarizes the paper.

2. System Modeling and Co-simulation

In a hardware-software co-design framework, the application generating stimuli can be the part of a

software while the target system can be a part of the hardware. To carry out execution-driven simulation

on the such a system, we need aco-simulation model of it. A co-simulation model can be created by using

Programming Language Inte1face (PL!) by modeling the hardware system in a HDL and the software

application in a high level programming language. But such a co-simulation model would be slow due to

the interfacing overheads between two different languages. Another way to do co-simulation is through

system calls like sockets. Sockets are used to create an interface between the software and the hardware

simulator for communication. Many commercial tools[2][12][15] use sockets for co-simulation. Here as

3

well. sending data to and fro across the interface slmvs down the simulation speed. Moreover in the above

two approaches. the hardware and software components. being designed in two different languages. are

not readily interchangeable across HW/SW partition to do design tradeoffs. The third approach is to use

function calls for co-simulation. Unlike sockets, function calls do not have communication overheads. so

they are fast. In the model of a system in object-oriented modeling paradigm, co-simulation is achieved

through function calls.

3. Co-simulation Efficiency

For the fast simulation of a system model, the modeling language should meet two requirements: first,

efficient modeling of the hardware and second, efficient way to model the concurrency. SystemC meets

the first requirement by providing efficient support for reactivity in form of two constructs: watching and

H'aiting[Il]. To meet the second requirement, SystemC provides two types of processes: synchronous

and asynchronous. A synchronous process is a process that communicates with other processes only

at specific instances of time determined by the clock edge to which the process is sensitive. On the

other hand, Asynchronous objects are more general form of the synchronous processes that can be used

to model any kind of circuit. SystemC provides two types of asynchronous objects: an asvnchronozis

process and an asynchronous block.

In the SystemC synchronous and asynchronous processes are implemented as threads. As the threads

have context switching and synchronization overheads, in a uniprocessor environment they might cause

slow execution. But at the same time, threads bring concurrency in the model which can lead to certain

amount of speedup in simulation due to concurrent execution. This is visible when certain aspects of the

model, test data, etc., are read through disk I/O.

On the other hand, asynchronous blocks are not thread based. They are evaluated by the main SystemC

kernel thread. As the result, an asynchronous block simulates significantly faster than a synchronous or

an asynchronous process. But, the execution of asynchronous blocks is sequentialized during simulation,

and hence results in loss of speed that can be achieved due to concurrent execution.

Thus an analysis of the computational and communication nature of the components of a system can

guide one to decide whether a specific component should be modeled as a thread or as a function. We

have done this analysis manually to partition the components of system model among processes and

4

blocks.

4. Implementation and Experimental Results

We now describe the design of a realistic system by taking the example of the AMRM machine which

has been modeled as well as implemented in a board level design.

4.1. The AMRM Machine Architecture

The Adaptive Memory Reconfiguration Management, or the AMRM[l], project aims to find ways to

improve the memory system performance of a computing system. The AMRM machine uses reconfig­

urable logic blocks integrated with the system core to control policies, interactions, and interconnections

of memory.

Figure I shows the main components of the AMRM machine. It consists of a general 3-level memory

hierarchy plus support for the AMRM ASIC chip implementing architectural assists within the CPU-LI

datapath. The FPGAs contain controllers for the SRAM, DRAM and LI cache. A I MB SRAM is used

for tag and data store for the LI cache. A total of 5 I 2 MB of DRAM is provided to implement part of

the cache hierarchy.

The host processor writes commands to specific addresses in the PC/ address space and the Com­

mand Processor reads a command and launches its execution in the AMRM system. In order to per­

form detailed and accurate simulation of diverse memory hierarchy configurations at any clock speed, a

hardware "vinual ·· clock has been implemented as part of the performance monitoring hardware. The

AMRM chip uses an ASIC implementation of the AMRM cache assist mechanisms. It may contain a

write buffer or an application-specific prefetching unit to access the L2 cache.

4.2. The AMRM Co-simulation Model

The AMRM machine implementation is divided into two phases. First phase consists of implemen­

tation of a board-level prototype which only has LI-cache management i.e. FPGAO, PCI Interface,

SRAMs and DRAMs; followed by a second phase single-chip implementation of the complete cache

memory system. The phase I of the project has already been implemented. The block diagram of the

design inside FPGAO is shown in figure 2. The design is partitioned into following modules:

5

32b1t. ;13\!Hz PC! Bus , PCI lnterf..ice

FPGAU

Configuration I
\'irtual Clock i

~---f-------

Configuration: Bus

1
:'12bll U..:.il Bus

• ~-----'-
/ In FIFO : i Out FIFO:

Command Processor
1

i
LI Cache....----+--____,•

Control j ---
FPGA2: .. ,

I ORA\! I

Figure 1. Block diagram of AMRM machine

SRAM Controller: Interfaces the synchronous SRAMs on the board.

DRAM Controller: Interfaces the DRAM modules on the board.

PLX lnte1face: Interfaces with the PLX chip local bus. It contains input and output register files.

Command Processor: Reads commands from the PCI interface, decodes and invokes the correct module

to perform the operation as describe in previous section.

Li Control: Implements the Ll cache controller. The cache controller design is configurable over a

range of cache sizes and cache-line sizes.

AMRM Register File: Contains control, status and performance monitoring registers.

Vimwl Clock: Implements the virtual clock functionality as described earlier.

The complete phase I implementation has been re-modeled in SystemC to study the effect on sim­

ulation speed. Also the SRAMs and DRAMs on the board are modeled in SystemC. In the VHDL

implementation, these memory models were generated using memory modeling tools from Denali[6].

The generated models were then interfaced with VHDL implementation through CLI interface, provided

in Synopsys VHDL simulator (VSS)[l 7].

In the VHDL implementation of AMRM prototype, there are 20 varying sizes of Entities, each of

6

T.· I'L~ '.J1,:-..

I'L \ t "h;l" lnh:n...i~i:

.Al.lill kc~_l}JtJ_lr.

KJ/\\r --~--~-
Rcg_l>-..ilJ_Uut

j Sum_nJ_htb Jni:r

! >;um_\\T h1h

LI

I
l>.ttJ Ctrl .-\JJr

~r..im AJJr SrJ l}..iu Ctr!

'

1.'trl .-\JJr l>.i.t..1

Ll CJi:hc

-\JJr Ctr!!
' t

I \1f1u..il Ch t..
i 1iencrJt1"n l'mt __ ..,
11-,-lrT\Jj-I T-tm:-

[:]
J>R..\.\l l\,ntrol

l>rjm AJJI llrj~ [}ju j C!rl

T,•lJl~l~b

Figure 2. Block diagram of Phase I prototype

which have one or two processes. All the 20 entities are at RT-level and are synthesizable using Synopsys

Design Compiler [16]. For simulation purpose, a test-bench consisting of seven processes have been

created.

The SystemC implementation of AMRM prototype also contains 20 entities. All of the processes

inside these entities are modeled as asynchronous blocks and integrated using scJnodule construct of

SystemC. All these processes are modeled at RT-level and hence synthesizable. The processes of the

test-bench are modeled as asynchronous processes. The test-benches are modeled as proc_esses because a

process execution can be suspended and resumed from the same point without explicitly saving the state

by creating state machines. But at the same time processes are not synthesizable using Synopsys Design

Compiler. Overall, there are 83 processes in SystemC implementation, of which six are asynchronous

processes and rest of them are asynchronous blocks.

-U. Simulation Results

The VHDL and the SystemC model of AMRM prototype board has been simulated to see the differ­

ence in simulation speed. Note that the VHDL and the SystemC implementations are exactly the same in

structure. All the simulations are run on Sun Ultra 5 Spare station in a single processor environment. The

7

VHDL simulator used for simulation is Synopsys VSS. SystemC simulation is only 2.5x faster than \'SS.

The test-bench contributes six asynchronous processes in SystemC implementation. The total number

of context switching among them is 8,948.235. As discussed in the previous section. asynchronous pro­

cesses are implemented as threads in SystemC and threads have context switching overheads. To see

the effect of context switching on the simulation speed, we have converted all asynchronous processes

to asynchronous blocks. When all the processes are switched to asynchronous blocks, the simulation

time has decreased by almost 50 seconds (i.e. almost by 7%). This is because these six processes form

a dependency chain where first process waits for the second to finish, the second wait for the third and

so on. As the result of the dependence chain, they execute more or less in a sequential fashion. Thus the

scope of concurrency among them is very less and, when modeled as asynchronous processes. there was

an overhead due to context switching.

Next, we moved one-by-one all the 83 processes modeled as asynchronous blocks to asynchronous

processes. The graph in figure 3 shows the effect on simulation time as the asynchronous blocks are

made into asynchronous processes. The graph plots the simulation time in seconds versus the number of

context switching in millions. The points on the curve mark the main components of AMRM prototype

as they moved from asynchronous blocks to asynchronous processes. ·!he different curves correspond.s

to the different order in which the blocks are moved to processes. When all the asynchronous blocks

are moved to asynchronous processes, the total number of context switching are 57 ,309,966. This has

degraded the simulation speed by almost 13%.

We can infer from the graph that the simulation time changes differently depending on the order

in which the asynchronous blocks are moved to asynchronous processes. On all the ·plotted curves,

simulation time decreases when SRAM Controlle1: DRAM Controller and Virtual clock are modeled as

asynchronous processes. This is because these components are computationally intensive and do not

form any dependency chain among themselves. hence the scope of concurrency among them is very

high. As the result, speed gains from concurrency are higher than speed losses due to context switching.

This explains why on curve 3, when these three components are moved to asynchronous pr9cesses

we achieved better simulation time than when all the processes are modeled as asynchronous blocks.

In the case of other components, simulation time increases as the asynchronous blocks are moved to

asynchronous processes. The degradation in simulation speed is due to the lack of independence among

8

\> nd.t•lfl•••
Hh'<-b

\tutlukct•·
L1 hcd1l.-

\,• nd1t1""•""~
l'fo'<-C'"<"'

Figure 3. Effect on simulation speed as asynchronous blocks converted to asynchronous processes

them and the increment in number of context switching. Thus modeling SRAM controller, DRAM

controller and Virtual Clock as separate threads and rest of the system as asynchronous blocks gives

us the best partition. while modeling them as asynchronous blocks and the rest as threads leads to the

worst partition. There is almost a 20% simulation speed improvement in first partition over the second

partition.

When we replaced the cooperative threading package in SystemC, with a. preemptive package (POSIX

threads). the results were markedly different, because in the uniprocessor simulation. with computation­

ally intensive tasks, preemptive model imposed too many interruptions. However, we need to do further

experiments to explore, if the preemptive threading model will perform better in a multiprocessor based

simulation environment.

5. Summary

The advantage of our co-simulation model is that the design is synthesizable and the components can

readily be switched between hardware and software partition without breaking the overall integrity of

system. We have illustrated the effect of modeling thread based concurrency on the AMRM system

9

model in SystemC framework. Our experiments shov .. · that cooperative threads result in the degradation

of overall simulation speed if the components in a system model form a dependency chain. in which

one component waits for the result from the other component before starting its computation. But in a

computationally intensive system, where components are independent, modeling using threads results

in speedup. The future work will include a more elaborate characterization of the design space to help

the system designer to decide whether a specific component in the system should be modeled using a

thread or a function, and more experiments on the effect of threading model, and the uniprocessor vs.

multi-processor machines.

References

[l] AMRM Website, http://www.cecs.uci.edur amrm.

[2] Arexsys, http://www.arexsys.com. Cosimate.

[3] Co-design Automation Inc., http://www.co-design.com. Superlog : Evolving Verilog and C for
System-on-Chip Design.

[4] Co Ware N2C Website, http://www.coware.com.

[5] CynApps Inc .. http://www.cynlib.com. C_vnlib Reference Manual'.

[6] Denali Software Inc .. http://www.denalisoft.com. Memory Modeler's User Guide.

[7] D. D. Gajski. SpecC: Spec(fzcation Language and Methodology. First Edition, Kluwer Academic
Publisher. 2000.

[8] R. Helaihel and K. Olukotun. JAVA as a Specification Language for Hardware/Software Systems.
In Proceedings of the ICCAD-97, pages 690-697, San Jose, CA, November 1997.

[9] A. Jerraya and K. O'Brien. SOLOR: An Intermediate Format for System-Level Modeling and
Synthesis. In Computer Aided Sofnvare/HardH·are Engineering, J. Rozenblit, K. Buchenrieder,
eds. IEEE Press. 1994.

[10] T. Kuhn, W. Rosenstiel, and U. Kebschull. Description and simulation of Hardware/Software
Systems with JAVA. In Proceedings of the 36th Design Automation Conference, pages 790-793,
New Orleans. CA, June 1999.

[11] S. Liao, S. Tjiang. and R. Gupta. An Efficient Implementation of Reactivity for Modeling Hardware
in Scenic Design Environment. In Proceedings of the 34tlz Design Automation Conference, pages
70-75, Anaheim. CA. June 1997.

[12] MentorGraphics, http://www.mentorgraphics.com. Seamless.

10

[13] OCAPI Website. http://wwv.-'.imec.be/ocapi.

[14] P. Schaumont. S. Vemalde, L. Rijinders, M. Engels. and I. Bolsens. A Programming Environment
for the Design of Complex High Speed ASICs. In Proceedings of the 35th Design Automation
Conference, pages 315-320, San Francisco, CA, June 1998.

[15] Synopsys, http://www.synopsys.com. Eagle.

[16] Synopsys Inc., http://www.synopsys.com. Synopsys DC User Manual.

[17] Synopsys Inc., http://www.synopsys.com. Synopsys VSS User Manual.

[18] Synopsys Inc., http://www.systemc.org. System C Reference Manual, Release 0.9.

[19] D. Verkest, J. Cockx, F. Potargent, G. de Jong, and H. D. Man. On the use of C++ for System-on­
Chip Design. In Proceedings of the IEEE CS H'orkshop on VLS/-99, pages 42-47, Orlando, FL,
April 1999.

[20] S. Vemalde, P. Schaumont, and I. Bolsens. An Object Oriented Programming Approach for Hard­
ware Design. In Proceedings of the IEEE Computer Society Workshop on VLSI, pages 68-73,
Orlando, FL, April 1999.

11

