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Statistical arbitrage under the efficient market hypothesis
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ABSTRACT
When a financial derivative can be traded consecutively and its terminal payoffs can be adjusted
into a stationary time series, there might be a statistical arbitrage opportunity even under the
efficient market hypothesis. In particular, we show the examples of selling put options of the
three major ETFs (Exchange Traded Funds) in the U.S. market.
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1. Introduction

In economics, an arbitrage is the practice of taking
advantage of a price difference between two or more
markets: striking a combination of matching deals that
capitalise upon the imbalance, the profit being the dif-
ference between the market prices. When used by aca-
demics, an arbitrage is the possibility of a risk-free
profit after transaction costs. For instance, an arbitrage
is present when there is the opportunity to instanta-
neously buy low and sell high.

The celebrated Black–Scholes–Merton’s option pric-
ing model (Black & Scholes, 1973; Merton, 1973) is
under the efficient market hypothesis, under which
there is no arbitrage. This assumption does not con-
flict with the fact that there are still insurance com-
panies, casino games, etc., which have profits based
on the ‘law of large numbers’, which can be con-
sidered as the examples of ‘statistical arbitrage’. The
term of ‘Statistical Arbitrage’ has been used by vari-
ous authors with various meanings (see Hogan, Jar-
row, & Warachka, 2002; Pole, 2007, for example). In
Wang and Zheng (2014), we gave the following gen-
eral definition. Suppose that {X1,X2,X3, . . .} are the
gains (may be negative) of a sequence of trades. If
{X1,X2,X3, . . .} form a stationary sequence with time
average asymptotically larger than a positive constant,
we call this sequence of trades a ‘statistical arbitrage’.
Since we need the realisation of the law of large num-
bers for the stationary sequence, it is relatively easier
to find the examples in high-frequency trading cases,
where thousand trades can be made within a not too
long period (Wang & Zheng, 2014). Unfortunately, for
an individual investor, it is too luxurious to involve in
high-frequency trading. In this paper, we show a ‘sta-
tistical arbitrage’ opportunity in option trading with

rigorous statistical argument, which is a low-frequency
(once a week) trading.

In Black–Scholes–Merton’s theory, the basic argu-
ment is that the seller can match the gap between
their option price and the final payoff through hedging.
Therefore, their option price is risk-free (also profit-
free) to the seller when one ignores all transaction costs
and the buyer takes the risk. However, in the real mar-
ket, a trader has four possible choices of action: sell-
ing call option, buying call option, selling put option
or buying put option. Therefore, we are wondering if
there is some statistical arbitrage opportunity for those
practices?

In the basic Black–Scholes’s model, the stock price is
assumed to be a geometric Brownian motion (Karatzas
& Shreve, 1987; Loeve, 1977). That is,

S(t) = S(0) exp
{(

μ − σ 2

2

)
t + σW(t)

}
,

where σ > 0 is the volatility andμ is a positive constant
which should be larger than the interest rate. According
to Black–Scholes’ formula, one can represent the payoff
of a put option withmature time T and strike priceK as

(K − S(t))+ = Q0 +
∫ T

0
Ht dS(t)

of which the form will not change when μ changes
(Cameron–Martin–Girsanov’s theorem). Thus if the
seller sold this option at Q0 and hedge according to
{Ht}, he has exactly the money to pay at T. There-
fore, one can choose the probability measure which

CONTACT Wei An Zheng financialmaths@gmail.com
© East China Normal University 2019

http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/24754269.2019.1670525&domain=pdf&date_stamp=2020-07-03
mailto:financialmaths@gmail.com


STATISTICAL THEORY AND RELATED FIELDS 85

makes the geometric Brownian motion a martingale
(μ = 0) to get the option price Q0 through taking the
mathematical expectation of

(K − S(T))+ = Q0 +
∫ T

0
H(t) dS(t).

Thus the put option price is just the mathemati-
cal expectation of (K − S(T))+ with respect to the
risk neutral (μ = 0) probability measure. In that for-
mula, the trading volume is 1 share, K and σ are
fixed. Our idea is to get a stationary sequence of
gains by changing the trading volume and K accord-
ingly to make profit from the positivity of μ by
the law of large numbers. More precisely, we may
take T = 7 and trade at time 0,T, 2T, 3T, 4T, . . . At
the closing time of each Friday (time iT), sell put
option in C/S(iT) shares with K = κS(iT) where κ is
fixed.

We actually do not need to assume that the loga-
rithmic price should be a drifted Brownian motion.
The only assumption we assumed is that the designed
gains form a weakly stationary process with positive
mean and asymptotically vanishing covariance, which
are statistically tested in the last section.

We separate the remaining part of this paper into
three sections: (see Section 2) Examples of statistical
arbitrage in option trades; (see Section 3) Mathemat-
ical reason and (see Section 4) Statistical tests for our
data.

2. Examples of statistical arbitrage in option
trades

2.1. Data source and transaction simulation

We consider the option trades of the ETFs (Exchange
Traded Funds) of the three major indices in the U.S.
market: QQQ (Nasdaq-100 Index ETF), DIA (SPDR
Dow Jones Industrial Average ETF) and SPY (SPDR
S&P 500 ETF). The daily closing price data of these
three major ETFs comes from the Yahoo Finance
website. Thus the length of the data varies accord-
ing to the data obtained. The time range of QQQ
data is from 10 March 1999 to 21 February 2017,
while DIA ranges from 20 January 1998 to 21 Febru-
ary 2017, and SPY ranges from 29 January 1993 to
21 February 2017. The option data of those three
ETFs was bought from the historical option data
website.

Since the data of the transaction is at the daily
frequency, the slippage of the price has little effect
on us. According to our strategy, we can always use
the closing price of the week as the trading price
to discuss our results, which has little effect to our
results. The price spread of the market is ignorable
in our cases. In fact, as long as the trading tar-
gets are active enough, the price spread is very nar-
row. In each transaction, we deduct the correspond-
ing transaction fee according to the exchange regu-
lations, which is about a tenth of the total gain in
average.

Figure 1. Accumulated gains of selling put options at true-market prices QQQ.
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2.2. Methods and results

Suppose that we repeatedly traded the weekly expired
options for those three ETFs from the beginning of
2012 in the following way: we sell a volume which
is inversely proportional to the current asset price of
weekly expired PUT options with strike prices equal
to k times the current asset prices. The following three

figures show respectively the historical price (Line 1)
of QQQ, DIA and SPY, with our accumulated gains
for k = 0.99 (Line 2) and k = 1 (Line 3) with volume
which is two times of the starting price divided by the
current price for those three ETFs. One can do those
trades safely as themaintenance requirement for selling
those puts are 1

6 of their current prices (Figures 1–9).

Figure 2. Accumulated gains of selling put options at true-market prices DIA.

Figure 3. Accumulated gains of selling put options at true-market prices SPY.
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Figure 4. Accumulated gains of selling put options at B-S prices QQQ.

Figure 5. Accumulated gains of selling put options at B-S prices DIA.

We can easily find that the accumulated profit of
our strategy is more stable than operating a roulette
machine. Someone may argue that our trading history
is not long enough, as the weekly expired options only
have 5 years of trading history in the U.S. market which
is basically a bull one. Therefore, we show in the follow-
ing space the accumulated profit of the same strategy

for the last 19 years. However, there was no real weekly
expired options before 2012. So we use Black–Scholes
option prices instead.

In the above six cases, our investment capital was
always the starting price S(0) of the corresponding
ETF. We just put aside the accumulated gains. If we
reinvest the accumulated gain every 300 trading days
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Figure 6. Accumulated gains of selling put options at B-S prices SPY.

Figure 7. New accumulated gains of selling put options at B-S prices QQQ.

as new capital, then we get even better results as the
following.

3. Mathematical background of statistical
arbitrage

Let us fix a positive integer T. The payoff of ai shares of
European put option with purchasing time iT, mature

time (i + 1)T and strike price Ki (i = 0, 1, 2, 3, . . .) is

ai(Ki − S((i + 1)T))+.

The seller’s profit at time (i + 1)T (without hedging)
will be

aiQ0 − ai(Ki − S((i + 1)T))+.
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Figure 8. New accumulated gains of selling put options at B-S prices DIA.

Figure 9. New accumulated gains of selling put options at B-S prices SPY.

If we can find a sequence of {(Ki, ai)}i such that {aiQ0 −
ai(Ki − S((i + 1)T))+}i form a stationary sequence
with a positive mean, then we can get a statistical
arbitrage.

In order to get such a stationary sequence, we may
choose (at time iT) Ki = kS(iT) and ai = C/S(iT)

where C is a fixed amount, k is a prefixed positive per-
centage constant. Denote qi = aiQ0, then the terminal

payoff in the time interval [iT, (i + 1)T] will be

C
(
k − S((i + 1)T)

S(iT)

)+
(1)

and the seller’s profit (without hedging) will be

qi − C
(
k − S((i + 1)T)

S(iT)

)+
(2)
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which can also be considered as the correspond-
ing values percentage to the original asset prices. In
practice, in order to get profit percentage continu-
ously, we may fix a large constant C and just trade
C/S(jT) shares of options with strike price kS(jT)

(both rounded out to the nearest adequate digits). In
Black–Scholes’s model, {S((i + 1)T)/S(iT)}i are just

the exponential functions of the increments of Brow-
nian motion, which are independent and identically
distributed Gaussian random variables. So the price
qi is the mean of (S((i + 1)T)/S(iT) − k)+ under the
risk-neutral measure, which is a constant. Therefore (1)
and (2) are both independent identically distributed (so
they are strongly stationary) in Black–Scholes’ theory.

Figure 10. Each profit of selling put options at true-market prices QQQ.

Figure 11. Each profit of selling put options at true-market prices DIA.
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If the seller hedges according to Black–Scholes’ for-
mula, (2) is just equal to the hedge result and the seller
has neither risk nor profit. Nevertheless, if the seller
does not hedge, he will have some small risk like oper-
ating a roulette and his profit will be shown in the
last three figures of the previous section with large
probability.

Since the seller’s payoffs (1) are independent iden-
tically distributed with mean Qμ = E[(k − exp{(μ −
σ 2/2)T + σW(T)})+] depending on μ, we have
easily

Theorem 3.1: Qμ is strictly decreasing in μ.

Figure 12. Each profit of selling put options at true-market prices SPY.

Figure 13. Each profit of selling put options at B-S prices QQQ.
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Proof: When μ > μ′, exp{(μ − μ′)T} > 1. Thus

(
k − exp

{(
μ − σ 2

2

)
T + σW(T)

})+

= (
k − exp{(μ − μ′)T}

× exp
{(

μ′ − σ 2

2

)
T + σW(T)

})+

≤
(
k − exp

{(
μ′ − σ 2

2

)
T + σW(T)

})+
.

Figure 14. Each profit of selling put options at B-S prices DIA.

Figure 15. Each profit of selling put options at B-S prices SPY.
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DenoteG(T,μ)= (k− exp{(μ− σ 2/2)T + σW(T)})+,
then

E[G(T,μ)] =
∫
G(T,μ)>0

G(T,μ)

<

∫
G(T,μ′)>0

G(T,μ′) = E[G(T,μ)].

Therefore

E

[(
k − exp

{(
μ − σ 2

2

)
T + σW(T)

})+]

< E

[(
k − exp

{(
μ′ − σ 2

2

)
T + σW(T)

})+]
.

�

In the real market, we always assume that μ is larger
than the bond interests. Thus Qμ < Q0. When we sell

the put option at price Q0, we get the average gain

1
N

N−1∑
i=0

{
Q0 −

(
k − S((i + 1)T)

S(iT)

)+}

→ Q0 − Qμ > 0, (3)

where the limit holds according to the law of large
numbers.

In the real market, we may not have the geometric
Brownian motion. However, as long as the sequence
of gains is weakly stationary with vanishing covari-
ance, we still may get similar result. We say {Xt} is a
‘weakly stationary’ process, if (i) E[Xt] is a constant;
(ii) Cov(Xt ,Xt+a) = Cov(X0,Xa) for each t. Certainly,
if a strongly stationary process {Xt} has its second
moments, then {Xt} is weakly stationary.

Lemma 3.2: Suppose that {Xj} is a weakly stationary
sequence such that limn→∞ Cov(Xj,Xj+n) = 0, then for

Figure 16. ACF and PACF of selling QQQ true-market week option: (a) ACF and (b) PACF.

Figure 17. ACF and PACF of selling DIA true-market week option: (a) ACF and (b) PACF.
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any ε > 0

lim
N→∞ P

[∣∣∣∣∣ 1N
N∑
i=1

Xji − E[X1]

∣∣∣∣∣ ≥ ε

]
= 0.

Proof:

E

∣∣∣∣∣ 1N
N∑
i=1

Xji − E[X1]

∣∣∣∣∣
2

≤ 1
N2

N∑
i=1

Var(Xji)

+ 2
N2

N∑
i<k

Cov(Xji ,Xjk).

Thus we get the result by simplification and the classical
Chebyshev’s inequality. �

Therefore, in the next section, we test the weak sta-
tionarity and vanishing covariance of gains by statistics.

4. Statistical tests

From the previous section and Lemma 3.2, we only
need to test two things: (1) stationarity of sequence
of gains; (2) covariance tends to 0. Take k = 0.99 for
example, Figures 10–12 are the gains of weakly expired
options for QQQ, DIA and SPY in the real market,
which all pass the test for stationarity. Here, we test
the stationarity of the data by the ADF (Augmented
Dickey–Fuller) test with Matlab software package and
the hypothesis that ‘the sequence has a unit root’ is
rejected with 95% of confidence.

Moreover, Figures 13–15 show the gains of selling
put options at Black–Scholes prices, which also pass the
test for stationarity.

Furthermore, Figures 16–21 plot both the corre-
sponding autocorrelation function (ACF) and sample
partial autocorrelation function (PACF) of gains of the
above cases. In each graph, the two horizontal lines
show the upper and lower bounds of the 95% confi-
dence interval of the corresponding correlation. For any

Figure 18. ACF and PACF of selling SPY true-market week option: (a) ACF and (b) PACF.

Figure 19. ACF and PACF of selling QQQ B-S week option: (a) ACF and (b) PACF.
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Figure 20. ACF and PACF of selling DIA B-S week option: (a) ACF and (b) PACF.

Figure 21. ACF and PACF of selling SPY B-S week option: (a) ACF and (b) PACF.

given lag, if the calculated sample autocorrelation or
sample partial autocorrelation takes value in this con-
fidence interval, then it is supposed to be 0 under this
given lag. Suppose the sample length isN, then, usually,
the number of lags takes value of

√
N or log(N), in this

case, we take about twice the value. Since most of the
sample autocorrelation and sample partial autocorrela-
tion of each case takes value in its 95% confidence inter-
val when lag is larger enough, we accept the hypothesis
that the sample autocorrelation tends to 0 when the
lag is large enough. That is a common practice in time
series analysis (see, e.g., Chapter 4 of Hamilton, 1994).
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