
UC Irvine
UC Irvine Previously Published Works

Title
Unveiling Elite Developers’ Activities in Open Source Projects

Permalink
https://escholarship.org/uc/item/124071jg

Journal
ACM Transactions on Software Engineering and Methodology, 29(3)

ISSN
1049-331X

Authors
Wang, Zhendong
Feng, Yang
Wang, Yi
et al.

Publication Date
2020-07-31

DOI
10.1145/3387111

Copyright Information
This work is made available under the terms of a Creative Commons 
Attribution License, available at 
https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/124071jg
https://escholarship.org/uc/item/124071jg#author
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


1

Unveiling Elite Developers’ Activities in Open Source
Projects

ZHENDONGWANG
∗
, University of California, Irvine

YANG FENG
∗
, University of California, Irvine

YI WANG, Rochester Institute of Technology
JAMES A. JONES, University of California, Irvine
DAVID REDMILES, University of California, Irvine

Open source developers, particularly the elite developers, who own the administrative privileges for a project,
maintain a diverse portfolio of contributing activities. They do not only commit source code but also spend
a significant amount of efforts on other communicative, organizational, and supportive activities. However,
almost all prior research focuses on a limited number of specific activities and fails to analyze elite developers’
activities in a comprehensive way. To bridge this gap, we conduct an empirical study with fine-grained event
data from 20 large open source projects hosted on GitHub. We investigate elite developers’ contributing
activities and their impacts on project outcomes. Our analyses reveal three key findings: (1) elite developers
participate in a variety of activities while technical contributions (e.g., coding) account for a small proportion
only; (2) elite developers tend to put more efforts into supportive and communicative activities and less efforts
into coding as the project grows; and (3) elite developers’ efforts in non-technical activities are negatively
correlated with the project’s outcomes in terms of productivity and quality in general, except for positive
correlation with the bug fix rate (a quality indicator). These results provide an integrated view of elite
developers’ activities and can inform an individual’s decision making about effort allocation, thus might lead
to finer project outcomes. The results also provide implications for supporting these elite developers.

CCS Concepts: • Software and its engineering → Collaboration in software development; Open
source model.

Additional Key Words and Phrases: elite developers, developers’ activity, project outcomes, software quality,
open source development (OSD), GitHub

ACM Reference Format:
Zhendong Wang, Yang Feng, Yi Wang, James A. Jones, and David Redmiles. 2019. Unveiling Elite Developers’
Activities in Open Source Projects. ACM Trans. Softw. Eng. Methodol. 28, 1, Article 1 (January 2019), 31 pages.
https://doi.org/10.1145/1122445.1122456

∗Both authors contributed equally to this research.

Authors’ addresses: Zhendong Wang, University of California, Irvine, Donald Bren Hall, Irvine, California, 92697-3425,
zhendow@uci.edu; Yang Feng, University of California, Irvine, Donald Bren Hall, Irvine, California, 92697-3425, yang.feng@
uci.edu; Yi Wang, Rochester Institute of Technology, 70, 134 Lomb Memorial Dr. Rochester, New York, 14623-5608, yi.wang@
rit.edu; James A. Jones, University of California, Irvine, Donald Bren Hall, Irvine, California, 92697-3425, jajones@uci.edu;
David Redmiles, University of California, Irvine, Donald Bren Hall, Irvine, California, 92697-3425, redmiles@ics.uci.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2019 Association for Computing Machinery.
1049-331X/2019/1-ART1 $15.00
https://doi.org/10.1145/1122445.1122456

ACM Trans. Softw. Eng. Methodol., Vol. 28, No. 1, Article 1. Publication date: January 2019.

ar
X

iv
:1

90
8.

08
19

6v
2 

 [
cs

.S
E

] 
 1

3 
N

ov
 2

01
9

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456


1:2 Wang, Feng, et al.

1 INTRODUCTION
Open source software (OSS) has become an engine for innovation and critical infrastructure
for software development [24]. OSS development is supported by communities formed from a
loose collection of individuals. The contribution from these individual developers consists of
various software-engineering activities, such as coding, bug fixing, bug reporting, testing, and
documentation. All of these activities lead to the development and improvement of OSS projects,
and fundamentally influence their outcomes.
Meanwhile, previous research, e.g. [22, 24, 32, 41, 55], has reported that among hundreds of

such individuals, only a small portion of elite developers1 contribute most of the code and oversee
the progress of the project [22, 41, 49]. For example, in Mockus et al.’s study on the Apache
community [55], they observed that the top 15 contributors (out of 388 total) had contributed
over 83% of modification requests and 66% of problem reports. Furthermore, elite developers are
also involved in many software-engineering activities beyond committing source code, such as
moderating the discussions of an unfixed issue, documenting changes, organizing the project, and
communicating with other contributors [32]. Therefore, analyzing the elite developers’ activity is
critical to understand the development of OSS projects.
Software developers maintain diverse activity profiles, including implementing new features,

documenting changes and design, analyzing requirements, and fixing bugs [49]. Contributing
source code is only one of such activities that an elite developer pursues. Prior studies each typically
cast insights on one such specific non-coding activity, e.g., peer review [64] or committing code
[26]. Most fall short of providing an integrated view on all of the developers’ activities and the
distribution of efforts on these activities. Even though these studies provide guidance to software
developers on improving some software engineering tasks, such as assigning bug reports [37, 71]
and estimating cost [2], we cannot fully realize the activity data to inform better decision-making
and ultimately bring better project output without a comprehensive study of a diverse range
of developer activities including their communicative, organizational and supportive activities
which are beyond typical technical ones. Because of these activities, together with typical technical
activities, influence the software systems being developed in different ways, understanding the
elite developers’ activities, beyond coding, draws the most critical development knowledge and
experience from the community. This leads to our first research question:
RQ1: What do elite developers do in addition to contributing typical technical code in OSS projects?

Since software engineering is a human-centered activity [34], effectively managing human
resources may significantly enhance project productivity and collaboration quality. However, it
is not clear how elite developers change their activities and which kind of tasks they focus on
the development of OSS projects. Understanding the dynamic evolution of elite developers’ effort
distributions over different activity categories over the life cycle of OSS projects can guide the
behavior of junior developers and also assist resource management.

This gives rise to our second research question:
RQ2 How do an OSS project’s elite developers’ effort distributions evolve along with the growth of the

project?

Given that OSS projects are developed by elite developers as well as many external contributors,
elite developers’ activities, especially the ones beyond technical contributions, such as communicat-
ing with bug reporters, the documenting project changes, assigning tasks and labeling issues, may
fundamentally influence the outcome of the whole team. Because successful software engineering

1 We use the term “elite developers” instead of the more commonly used “core developers” to refer to those who hold clearly
defined project management privileges in a project, as opposed to only being core code contributors.

ACM Trans. Softw. Eng. Methodol., Vol. 28, No. 1, Article 1. Publication date: January 2019.



Unveiling Elite Developers’ Activities in Open Source Projects 1:3

activities require qualified developers with the proper expertise to complete the task efficiently
and effectively, understanding these impacts are critical for developers to oversee the project for
assuring the development productivity and product quality. Thus, we have our third research
question:

RQ3 What are the relationship between an OSS project’s elite developers’ effort distributions and the

project’s outcomes in terms of productivity and quality?

To answer the above research questions, we conduct an empirical study using fine-grained
event data from 20 large open-source projects hosted on GitHub consisting of both company-
sponsored and non-company-sponsored projects. To better utilize the activity data to draw insights
about the elite, we first map them from raw atomic events to sense-making high-level categories.
These categories are: communicative, organizational, supportive, and typical. Their detailed
definitions and mapping protocols are introduced in Section 3.3. We then use multiple techniques to
model and analyze the data. Our study reveals three main findings. First, elite developers participate
in a variety of activities, while coding only accounts for a small proportion. Second, with the
progress of the project, elite developers tend to be increasingly involved in more non-technical
activities, while decreasing their coding and other technical activities. Third, elite developers’ effort
distributions exhibit complex relationships with project productivity and quality. For both project
productivity indicators (no. of new commits and average bug cycle time in each project-month),
our results suggest that project productivity has negative correlations with efforts in non-technical
(communicative, organizational, and supportive) activities. For one project quality indicator (no. of
new bugs in each project-month), our results show that project quality has negative correlations
with efforts in non-technical activities; however, for the other project quality indicator (bug fix rate
in each project-month), our results show that project quality has positive correlations with efforts
in supportive activities.

The main contributions of this article are three-fold.

• We conduct an empirical study that not only characterizes elite developers’ activities and
their dynamics, but also identifies the relationships between elite developers’ activities and
project outcomes. Based on the findings, we identify a set of actionable recommendations for
practitioners.

• We take a fresh perspective to investigating the activities of OSS developers through collecting,
modeling and analyzing all kinds of publicly available online software-engineering activities
of developers rather than focusing on one or several specific activities, and thus obtain a
holistic view of the OSS development.

• We set up a well-cleaned dataset comprising all the event data of large OSS projects, which is
made publicly available2.

Our work is built on SE communities’ continuous efforts in investigating and assisting OSS
projects in the last two decades. Researchers have investigated community structures and com-
positions, individual motivation, behavior and experiences, as well as these factors’ impacts, e.g.,
[8, 42, 59, 61, 77, 79, 81]. While these extant studies build solid knowledge on OSS projects, most of
them focus on the code-contribution-related activity, such as coding, reviewing, testing, debugging,
and so on. Our work expands the literature by enhanced understandings about the breadth and
dynamics of elite developers’ activities, and their correlation with project outcomes.

2https://drive.google.com/drive/folders/10ibmz2svPRf3jfRtm7mbiouo9ATaYAoB

ACM Trans. Softw. Eng. Methodol., Vol. 28, No. 1, Article 1. Publication date: January 2019.



1:4 Wang, Feng, et al.

2 BACKGROUND & RELATEDWORK
In this section, we briefly overview the backgrounds of this study and discuss the related work
about open source communities and developer’s activities. We start from a brief introduction of the
hierarchical structure of open source communities, followed by discussions of relationships between
developers and the activities of developers. We also highlight how current work distinguishes itself
from the prior.

2.1 The Hierarchical Open Source Community
Open source development has been a mainstream practice in building modern software systems
[24]. Different from traditional development paradigms, an open source project is centralized on its
community that produces collective goods through collaboration among its members [39]. Though
the detailed governance and social practices may vary in different projects [57], members of an
open-source community usually have different roles regarding their responsibilities, rights, and
levels of contributions [9, 68]. Similar to other hierarchical organizations, an OSS community
follows an onion-shaped social structure [22].

There are several different definitions for each layer in this hierarchical community [22, 32, 41],
but in general there are five major types from core developers, internal and external contributors,
issue reporters, and finally to peripheral users (note that terms may differ from study to study).
However, members in a project may have several statuses with more detailed differences.

Peripheral users of an OSS project usually are users of the software artifacts, but never contribute
to the project directly (other than sending user feedback or usage data). For most users of an OSS
project, a peripheral user is the starting point unless they have achieved recognition in the same
ecosystem [42]. If these peripheral users wished to contribute to more critical tasks of the project,
they usually have to get through a socialization process. In Ducheneaut’s case study [32], he reveals
the socialization path of becoming a core developer when starting at the periphery. This path
includes socialization with the current core team, and completing a series of development tasks
from simple to complicated. After being socially recognized by experts for a project, they join the
core team and become core developers, themselves. Thus, they are granted privileges of this project
(i.e., get project “tenure” in a repository). Further, they start to have the administrative power in
the project; for example, they can oversee other external contributors’ technical submissions.

Current OSS development, especially large-scale projects, can be described under the “umbrella”
of an ecosystem. In a follow-up study, Jergensen et al. discussed the evolution of this socialization
process in the context of modern open-source-software development [42]. As the technologies
developed for software engineers, such as advances in version-control systems (git), fewer open-
source projects are being developed solely in isolation. Further, more projects are developed in
parallel under the broader context of software ecosystems. In their study, they found that there are
several types of contributors among open-source users across different projects [40]. In addition,
many developers move from project to project like “nomads.” Another critical finding is that, in an
OSS project, as developers gain more technical experience, their contribution is not towards the
core of the project in terms of code centrality.

Among many studies on OSS communities, researchers have come to the consensus that only a
small portion of developers make the most contribution [22, 41, 49]. Understanding elite developers
is critical in investigating the health and sustainability of the community, and various methods have
been employed to analyze their activities. Meanwhile, please note that members have developed a
shared basis of authorities and privileges in most of mature open source projects (“bazaar” in Eric
Raymond’s ideology [63]), and enabled transferring authorities and privileges among them. Thus,
a member’s identity of “being an elite” is indeed dynamic [57].

ACM Trans. Softw. Eng. Methodol., Vol. 28, No. 1, Article 1. Publication date: January 2019.



Unveiling Elite Developers’ Activities in Open Source Projects 1:5

Table 1. Comparisons between elite developers and other similar roles defined in literature.

Role Complement Role Context Role Definition

Core Peripheral Open-source Members of a small core group who are mainly
responsible for overseeing and contributing to
the project [22, 24, 55].

Maintainer Contributor Open-source Members who are responsible for a soft-
ware module, mainly in accepting contributed
patches [32, 41].

Internal External Company-
sponsored
Open-source

Individuals who are members of the develop-
ment group; usually are marked as contributors
on the project homepage [30, 84, 85].

Mentor Newcomer General software
development

Persons who train and help novice and inexperi-
enced (newcomer) developers for project details
[5, 16, 28].

Elite Non-elite Open-source Developers who own administrative privileges
in the project [this study].

2.2 The Role-Based Relationships among Developers
Members of a software project form complex relationships in a wide range of development activities.
Tab. 1 shows a brief overview of studies investigating the relationships between developers. While
“core vs. peripheral” is a dominant terminology used in SE literature to characterize role-based
developers’ relationships, there are also other terminologies being proposed. For instance, when
outside or novice developers are in the process of joining and learning from an existing project,
the mentor and newcomer relationship between developers would eventually be established for
social and technical reasons [16, 28]. Prior research also suggests that the mentorship activities
face several barriers for both ends of stakeholders [5], which is threatening the sustainability of
the project. In another scenario, when software companies open source their internal software
to the public domain, understanding the contribution behaviors and the impacts of external and
internal contributors for these company-sponsored projects become critical for many purposes.
For example, companies might want to find a balance of management efforts and fast iteration
of enhancement when receiving external help. As we mentioned before, developers’ roles have
a temporal characteristic. Role migrations are very common [42]. A peripheral member could be
promoted to a core member; a newcomer could be a mentor after his/her skills have developed.
However, such a growing process may take substantial effort. For instance, external members
gain the roles of internal members could be very painstaking [30, 32]. Besides, role migrations are
not single directional. For example, core members may lose their roles if they no longer actively
contribute to the project [53]. Therefore, role-based relationships are dynamic in nature.

Open-source software and its developer community have been substantially evolving since the
2000s. The transparency afforded by online open-source code hosting sites such as GitHub enables
researchers and practitioners to closely observe and review the dynamics of the projects, such as
the evolution of software artifacts, the trajectories of peripheral participants’ self-development
[27]. Meanwhile, supported by versioning control systems and logs from various communication
channels, a tremendous volume of social and technical latent data can be acquired [7]. Various
empirical research has been postulated to obtain valuable knowledge from these datasets for
software design, development, and quality assurance.

ACM Trans. Softw. Eng. Methodol., Vol. 28, No. 1, Article 1. Publication date: January 2019.



1:6 Wang, Feng, et al.

2.3 The Activities of Developers
In an early study, organizational psychologist Sonnentag conducted an empirical study with
software-company professionals to study their weekly activities in software development [72].
Based on her observations and the grounded theory process, she classified four broad types of
activities in the professional lives of developers. The broad types are communicative, organizational,
supportive, and typical. Further, based on her field study with excellent and average software
professionals, she found excellent and average developers usually spend a similar amount of effort
on typical software-engineering tasks such as coding, testing, and debugging. However, excellent
developers spend more time on meeting and consulting. This study is critical in identifying the
comprehensive set of software engineers’ activities. However, this study is limited with a specific
company context, and may be not suitable to describe open source development. In addition, they
have not investigated the impact of additional activities and the burdens of elite developers.
Later in another open-source study, Wagstrom et al. classified the roles of open-source con-

tributors. Besides five typical types of users, they also classified special roles in the ecosystem
development based on their code-related contribution [85], such as, “code warrior” who continu-
ously contributes to the project by submitting commits, and “project rockstar” who also submits
a tremendous amount of code and also has very high community exposure in terms of follower
numbers. This study categorizes OSS developers based on their code contribution activities. They
employ the milestone-event for categorizing users into five major hierarchical layers, and define
special roles for ecosystem-scale development. In their role classification, they consider code-related
activities such as submitting source code or reporting bugs.

In a recent study of software-development expertise, Baltes and Diehl [6] conducted surveys on
335 software developers who are active over GitHub and StackOverflow. Based on the survey
result, they created a theory to describe important factors influencing the experts’ performance.
Their work is critical in providing a theoretical lens for software engineer’s expertise, but it is
limited to experience of programming (typical software-engineering activities). Further, their results
rely on a self-reported survey without empirical verification.

3 EMPIRICAL STUDY DESIGN
To answer the three research questions presented in Section 1, we conduct an empirical study based
on 20 open-source projects. This section introduces the design of the study.

3.1 Targeted Projects
We select 20 open-source projects hosting their repositories on GitHub as the targets of the study.
Tab. 2 lists them with short descriptions. The selection of the targeted projects is not random. They
are selected based on four considerations. First, the selected projects are all large projects that
have established administration structures (having some forms of the formal project management
committee and soliciting contributions through the pull-request model). They must be large enough
and have traceable records of continuous contributions from a set of contributors (at least 100 pull-
requests and 50 contributors historically). Second, the selected projects represent a diverse sample of
projects in terms of application domains, such as a testing framework (jest), a popular deep-learning
library (Tensorflow), a multi-media player (ExoPlayer), a web-development framework (React), and
a database (Tidb). Third, our sample includes a subset of company-sponsored (n = 11) projects,
which reflects the trend of the increasing involvements of companies in open-source development
[84]. Last, the sampled projects should maintain a relatively long traceable records on GitHub,
which allows us to study the longitudinal dynamics while keeping the data consistency.

ACM Trans. Softw. Eng. Methodol., Vol. 28, No. 1, Article 1. Publication date: January 2019.



Unveiling Elite Developers’ Activities in Open Source Projects 1:7

Table 2. Sample projects and their Description.

Project Description

Aframe Web framework for virtual reality applications
Alamofire Swift library for HTTP networking
ExoPlayer* Media player for Android
Finagle* Extensible RPC system for JVM
Fresco* Android library for images
Guava* Set of various Java libraries
Immutable-js* JavaScript library for immutable data structure
Jest* JavaScript testing framework
Marko* JavaScript library for building UI
Moya Swift network framework
Nightmare* Browser automation library
Rclone Program to sync files
React* JavaScript library for building UI
Recharts JavaScript chart library
Sqlitebrowser Visual UI for databases in SQLite
Stf Smart device testing framework
Tensorflow* Library for numerical computation
Tesseract Text recognition (OCR) engine
Tidb* Distributed database system
ZeroNet Decentralizes websites to be resistant to censorship

*: Projects sponsored by companies.

3.2 Data Preparations
The current version of the GitHub API only allows us to retrieve 300 events or events from the
past 90 days, whichever met first3. Therefore, in order to extract event data from a extended range
of projects’ lifecycle, we employ the GitHubArchive public data dump on Google Cloud. We
also employ Google BigQuery to extract the monthly event log for each sampled repository from
January 2015 to October 2018. Additionally, for repositories that started or were made public during
the year 2015, we store data files starting from the project creation month. Fig. 1 provides an
overview of the data collection and cleaning process.

For each month, GHArchive provides most event logs on a repository such as push, open issues,
open pull request, Gollum (editing wiki), and comments. We use SQL-like queries (designed by
BigQuery) to search for projects, and save the results into tables of the personal Google Cloud
database. Further, we export tables as JSON files to the cloud storage and download them to a
local computer for later analysis. In total, we collected 5.60 GB of 900,862 events (communicative:
238,986; organizational: 42,317; supportive: 514,957; and typical: 104,602) for these 20 repositories.
However, there are several types of events associated with issues that could not be recorded

using the above method, e.g., assigning a “won’t fix” label to an issue by a project administrator,
or delegating a developer to investigate a newly posted bug. To fix this problem, we resort to a
customized Python script via the reqest4 library to request events from the GitHub API, and
then to download issue event logs for every issue that has been reported in each repository. Thus,
we collect precise project management information, such as who has the administrative privilege
on a repository and oversees the progress of the project. In order to search for commits by date
3GitHub Event API: https://developer.github.com/v3/activity/events/
4Simplified HTTP request client for Python: https://github.com/request/request

ACM Trans. Softw. Eng. Methodol., Vol. 28, No. 1, Article 1. Publication date: January 2019.

https://developer.github.com/v3/activity/events/


1:8 Wang, Feng, et al.

Event JSON

Issue/Commit
JSON

201501: [#Elt, #Com, #Org, #Sup, #Typ]
201502: [#Elt, #Com, #Org, #Sup, #Typ]
201503: [#Elt, #Com, #Org, #Sup, #Typ]
. . .
. . .
. . .
201810: [#Elt, #Com, #Org, #Sup, #Typ]

reponame_elite/all.json:

GHArchive

Query

GitHub API

Request

Clean 
Redundency

Map 
Categories

Fig. 1. Data collection and cleanup process.

and author more easily, and derive necessary metrics for the later data analysis on the project
productivity, we also download the commit logs of all sampled projects. In total, we have collected
1.81 GB data of issue events and commit logs.

Finally, we use Python scripts to merge event data based on event ID and commit SHA, and
clean the redundant data that were recorded on both data sources. By using two data sources, there
are some categories of events that were kept recording on each data source, such as close issue
and reopen issue. Because the GHArchive project employs GitHub event API to archive activities
on a daily basis, we decided to keep events from GitHub Issue API. We convert event logs into a
monthly list based on the number of events that have happened in each major category.

3.3 Event Categories and Mapping
Although the event log data faithfully records developers’ activities, we need to recode the data
unit categories that are easier for humans to understand and analyze. Particularly, the percentage
of types for a developer group should be able to reflect the effort allocation and focused roles.

Collecting low-level activities from self-reported and observed data in the field, and then induc-
tively mapping these activities onto broad categories for systematically extract behavior patterns
and analyze work effort allocation, is common practice to establish the activity profile of a certain
group [15, 72, 73, 92]. In one of prior field interview studies [15], the work focuses and daily
activities category of professional software developers were summarized based on subjects reported
activities. Because we are particularly interested in investigating the overall activity profile of elite
developers, we choose to follow an established category system that reflects the daily activity,
instead of other low-level tasks based category system which focusing on coding activities.
We reuse the categorizing system created in Sonnentag [72], and to further investigate the

contribution of elite developers, as well as the relationships between their work focuses and project
outcomes for open-source projects. This study summarizes and categorizes professional software
developers’ daily activities into four major categories: communication, organization, support and
typical. In their study, research subjects were developers in private companies; in order to make
these definitions fit the context of open source development, we slightly modify the definition and
operationalization of each category.

3.3.1 Communicative. In the conventional co-located software development team, communicative
activities usually refer to formal and informal meetings and consultations [72]. However, under

ACM Trans. Softw. Eng. Methodol., Vol. 28, No. 1, Article 1. Publication date: January 2019.



Unveiling Elite Developers’ Activities in Open Source Projects 1:9

Communicative

Edit comment Edit Event

Comment on
commit or issue

IssueComment
Event

ContentReference
Event

CommitComment
Event

Organizational

Member
Management

Team Event

Member Event

Organization
Event

OrgBlock Event

Manage code
reviewer

ReviewRequested
Event

ReviewDismissed
Event

Assign someone
to issue or PR

IssueAssign
Event

Typical

Pull Request

PullReuqestReview
Comment Event

PullRequestReview
Event

PullRequest
Event

Commit
source code

Commit Event

Supportive

Maintenance

Checks
CheckSuite

Event

CheckRun Event

Milestone

ProjectCard
Event

ProjectColumn
Event

Project Event

(De)milestone
Event

Issue and PR

IssueDuplicate
Event

IssueRename
Event

Merge Event

Issue(Un)Lock
Event

Issue Event

Branch

Push Event

Delete Event

Create Event

Document

Release Event

(Un)label
Event

Gollum Event

Fig. 2. The taxonomy of GitHub event types. The definition of each raw event can be found in the official

GitHub Events API documentation page: https://developer.github.com/v3/activity/events/.

the setting of distributed software development where open-source project usually employs, each
project applies various communication channels including mailing list, instant message, and online
discussion board [7]. Moreover, some projects such as Tensorflow, even apply other broadcast
channels such as a blog, website, and YouTube channel. Therefore, similar to other empirical studies
with open-source developers, we are not able to collect communicative activities on all channels.
For example, private instant messages are often unavailable. However, as GitHub is the major
platform for developers to exchange ideas, by extracting communicative event logs from GitHub,
we are able to capture all public communicative traces that happened on this platform by each
contributor.

The definition of communicative activities is public and visible communication through comment-

ing features supported by the platform on issues, commit, and project milestones.

ACM Trans. Softw. Eng. Methodol., Vol. 28, No. 1, Article 1. Publication date: January 2019.

https://developer.github.com/v3/activity/events/


1:10 Wang, Feng, et al.

3.3.2 Organizational. In previous field studies, organizational activities are categorized as delegat-
ing tasks among the development team and other project organizations in professional software
development. Thus, similarly under the open-source development settings, representative activities
of this type are assigning and unassigning tasks to a developer, such as assigning someone with a
GitHub issue or reviewing a pull request.
We define organizational activities as managing the project community and delegating tasks,

including code reviewing, debugging, and user support to internal and external contributors through

the features supported by the platform.

3.3.3 Supportive. Supportive activities are critical to open-source development and mainly refer
to other non-coding activities in collaboration. It includes documentation work such as writing
documentation/wikipage and categorize issues by adding labels to them. Further, supportive also
includes maintenance work, for example, managing development branches and release or archive
code versions.

We define supportive activities as non-coding activities in the collaborative open-source development

through techniques that are supported by the platform, including documentation, versioning control,

and development branch management.

3.3.4 Typical. Typical activity in software development are coding, testing, debugging and review-
ing on an individual basis. Thus, under the setting open-source platform, we only include commit
activity under this category. In addition, we count event actor as the commit author rather the
committer, since the author is the original developer who wrote the code.

We define typical activities as conventional code-writing task finished at the individual level, and
counted as submitted commits and pull requests.

3.3.5 Mapping raw events to the above categories. We apply the closed card sorting method to place
35 raw GitHub events in these four major categories. Three researchers participate in the card
sorting activity. Among three researchers, the card sorting yields 0.92 average joint probability of
agreement. Especially, it achieves 82.8 % relative observed agreement, and reaches 0.77 kappa [14].
All differences among card sorters are discussed and resolved. The final mapping is shown in Fig. 2.

By mapping the low-level raw GitHub events into these four categories, we can reason de-
velopers’ activities at the level that makes sense to understand them as real work practices and
human efforts in organizational settings [58] instead of losing in millions of tiny events which
are not considered as an integrated work practices. Besides, we argue that such a categorization
system precisely and comprehensively reflects the general work practices of professional software
developers. The categorization system is borrowed from the literature [15, 72] of empirical field
observations and interviews with a large number of software development projects and hundreds
of professional developers. Although our study focuses on open-source developers, the types of
their routine work practices at the individual-level in software development would be unlikely
to go beyond the in-house software development, while the way of organizing such practices
may be different at the collective-level [21, 36, 66, 83]. Doing so enables us to better study the
dynamics of elite developers’ work practices and their impacts, thus deriving meaningful findings
and implications.

3.4 Collecting Project Outcomes Data: Productivity andQuality
Since one of the research goals is to investigate the impact of elite developers’ activity on project
outcomes (RQ3), we need to collect project-outcomes data. We consider two project outcomes:
productivity and quality, which are viewed as the most important project outcomes [82]. Each of
them has two indicators, which are introduced as follows.

ACM Trans. Softw. Eng. Methodol., Vol. 28, No. 1, Article 1. Publication date: January 2019.



Unveiling Elite Developers’ Activities in Open Source Projects 1:11

For productivity, the first indicator is: the number of a project’s all new commits in a project-month
5.

Thus, for project i in monthm, we use NewCim to denote it. In many studies focusing on the OSS
development and community, the number of commits is considered as the productivity metric (e.g.,
[80–82]). Therefore, we adopt this widely-used productivity indicator. Note that we count the
commits from all contributors rather than from elite developers only, because we measure the
impact on the productivity of the whole team. The second indicator is the average cycle time of a

project’s closed bugs in a project-month. Similarly, for project i in monthm, we use BCTim to denote
it. Such an indicator has been used to measure project productivity in a bunch of prior studies (e.g.,
[47, 87]).

Following the conventions in previous SE literature (e.g., [45, 62, 82]), we first operationalize the
code quality by the number of bugs found during a project-month. We simply use NewBim to denote
it. On GitHub, the issue can be of various types, e.g., discussion, new feature request, improvement
request, and so on. To categorize these issues, software developers often employ some keywords
to tag them. However, because tagging is often project-specific, we adopt Vasilescu et al.’s [82]
method to distinguish bug issues from other issue types in this study. We set up a list of bug-related
keywords, including defect, error, bug, issue, mistake, incorrect, fault, and flaw, and then search for
these words in both the issue tags and issue titles. If any tags or title of an issue contains at least
one keyword, we identify it as a bug issue. Similarly, as the productivity data, we compute the
number of new bug issues in every project-month. In addition to counting the newly found bugs
in each project-month, our study also includes a second quality indicator: Monthly Bug Fix Rate
(BFRim ), which is defined as:

BFRim =
No. o f Fixed Buдs

No. o f Found Buдs
, f or project i in month m.

The Bug Fix Rate is one of the key metrics related to the defect removal process [31, 88]. In fact, it
partially represents the effectiveness of the quality assurance process by characterizing the birth
(finding a new bug) to death (fixing a bug) process of defect removal [51]. If BFRim < 1, it indicates
that the project’s quality risk is accumulating.

3.5 Identifying the Elite Developers
Following the method used in Hanisch et al.’s study [38], we leverage GitHub’s repository permis-
sion mechanism to identify the elite developer. Being an elite developer in a project means s/he
obtained write permission for an organization’s repository. By gaining this level of permission, the
developer can performmany tasks on a repository without requesting, for example, directly pushing
commits to a repository, creating and editing releases, and merging pull requests. In addition, with
write permission of the repository, the developer is able to perform several types of administrative
work, such as submitting code reviews that affect a pull request’s mergeability, applying labels to
tasks and milestones to the repository, and marking an issue as duplicate, which would let the issue
lose public attention.

Unfortunately, GitHub does not allow anyone other than the repository owners to access the list
of members obtaining specific permissions. We apply a permissions check mechanism to determine
the elites. When a developer in the repository performs a task that requires the write permission,
we tag this developer with “elite-ship” of the repository. As we observed in this study, we found
that a project’s elite developers might also suffer survival issue [53], thus we set 90 days6 as the

5To simply the following discussion, we use the term “project-month” to denote a given month in a project.
6Literature on survival analysis of open-source developer usually use 30 days or 90 days as a time window [53]. When
we examined the raw data we have, we found that 30 days (1 month) is too short. But 90 days (3 months) is a good time
interval to avoid rush decisions on judging if someone gains/loses the elite identity.

ACM Trans. Softw. Eng. Methodol., Vol. 28, No. 1, Article 1. Publication date: January 2019.



1:12 Wang, Feng, et al.

length of the “elite-ship”, and use this time-window to filter developers who were inactive. During
this three-month period, if this developer performs any task that also requires the write permission,
her “elite-ship” would get renewed for another three months, starting from the month when she
performed the task.
Compared with other elite-developer-identification methods based on metrics or network [43],

our methods have several advantages. First, our method takes a dynamic view of the status of being
an elite developer. It is designated for the open-source community where developers have very
high mobility in terms of entering and leaving7. Secondly, our method reflects the socialization
process of gaining power and status in a community. Thirdly, our method respects the fact that
some developers may be nominated as elite developers before making substantial contributions,
particularly in the company-sponsored projects. Lastly, our method avoids dealing with themarginal
cases resulting from the arbitrarily set threshold, e.g., the 1/3 cut-off used in [25].

3.6 Data Analysis
Tab. 3 presents the mapping between RQs and corresponding data-analysis methods. We will
introduce them in detail in the rest of this section.

Table 3. Research questions and corresponding data analysis methods.

RQs Data Analysis Methods

RQ1 Descriptive statistics
RQ2 Descriptive statistics, ANOVA
RQ3 Project-specific fixed effects Panel Regressions

(LSDV estimator with Diagnostics)

All statistical analyses are performed with R 3.4.1 [60], and its associated packages for macOS
High Sierra (version 10.13.1). We follow the ASA’s principles to present and interpret statistical
significance [86].

3.6.1 Summarize Activities for RQ1. Answering RQ1 does not require complicated analysis tech-
niques. We use descriptive statistics to derive results and findings for this research question. Note
that we code the raw GitHub activities into four broad activity categories (communicative, organi-
zational, supportive, and typical) according to [72] (described in Section 3.2). Doing so helps us
to derive meaningful insights instead of fragile, overly detailed information in the raw activities.
For all sampled projects, we calculate the total of elite developers’ activities over the four broad
categories. Thus, we have a 4-tuple for each project as follows:

< Com,Orд, Sup,Typ >

We also compute the percentage of elite developers’ activities over the entire project’s activities.
All results are reported in Section 4.1.

3.6.2 Identifying Activity Trend for RQ2. To answer RQ2, we first group the activities according to
the month of their occurrences. Then, similarly, for a project i in each month m, we can calculate a
similar 4-tuple:

< Comim ,Orдim , Supim ,Typim >

where i ∈ {1, ..., i, ..., 20}, andm ∈ {1, ...,m, ..., 36}.
7For company-sponsored projects, the mobility may also result from organizational and individual career changes.

ACM Trans. Softw. Eng. Methodol., Vol. 28, No. 1, Article 1. Publication date: January 2019.



Unveiling Elite Developers’ Activities in Open Source Projects 1:13

Since the different projects have different numbers of elite developers, cross-project comparisons
require to average the project-level data to individual-level. We simply calculate the average
activities per developer over the four categories. Then, we can calculate the individualized monthly
growth rates of activities in each category for each project. Given that there are 20 projects, for
each category, we have 20 growth rates. We use one-way ANOVA to see if there is any difference
across the four categories regarding the growth rates.

3.6.3 Identifying Correlations with Project Outcomes for RQ3. Answering RQ1 and RQ2 provides
the data we need to answer RQ3. Before discussing the analysis methods, we first examine the data.

We want to investigate the correlations between a project’s elite developers’ effort distributions
and project outcomes. The independent variables are the effort distributions over the four categories
of activities, which can be easily extracted from the collected data. The dependent variables are four
indicators of project outcomes (productivity: NewCim , BCTim ; quality: NewBim , BFRim), which
are adapted from the prior software engineering literature. Given that we have broken a project’s
data into months when answering RQ2 and using “month” as the analysis unit, we have one data
case for each project i at each monthm. Therefore, we have 720 (20 projects × 36 months) data
cases, in total. Each data case is in the following form:

< NewCim , BCTim , NewBim , BFRim , S −Comim , S −Orдim , S − Supim , S −Typim >

where i ∈ {1, ..., i, ..., 20}, andm ∈ {1, ...,m, ..., 36}.
The S −Comim represents the share of communicative activities in all four categories of activities

per elite developer for project i in monthm. Similar denotations apply to the other three. Note that,

S −Comim + S −Orдim + S − Supim + S −Typim = 1 (1)

Answering RQ3 is identifying the relationships between these four independent variables and
four dependent variables NewCim , BuдCim , NewBim , and BFRim . A natural solution is performing
regression analysis. Our data is panel data (cross-sectional: from 20 projects; longitudinal: 36 months
per project). Thus, simple OLS multivariate linear regression is not a proper technique because we
cannot assume there is no difference among the 20 projects and 36 data points.

To correctly identify the relationships, we employ Econometric methods to deal with the panel
data [91]. Intuitively, each project has its own characteristics, so we use the project-specific fixed ef-
fects models8. The analyses actually estimate parameters for the following four regression equations
(2) to (5).

NewCim = β1 × S −Comim + β2 × S −Orдim + β3 × S − Supim + αi + uit (2)

BCTim = β1 × S −Comim + β2 × S −Orдim + β3 × S − Supim + αi + uit (3)

NewBim = β1 × S −Comim + β2 × S −Orдim + β3 × S − Supim + αi + uit (4)

BFRim = β1 × S −Comim + β2 × S −Orдim + β3 × S − Supim + αi + uit (5)

8We also empirically perform model diagnostics which proves fixed-effect models are better than both OLS and random
effects models, see Section 4.3.1.

ACM Trans. Softw. Eng. Methodol., Vol. 28, No. 1, Article 1. Publication date: January 2019.



1:14 Wang, Feng, et al.

Note that we do not include S −Typim into Regression Equations 2–5. The reason is straightfor-
ward: the sum of S −Typim and the other three is always “1” according to Eq. 1. Thus, it is perfectly
correlated with the other three. Including it will lead to a significant multicollinearity problem9.
For each dependent variable, we use the least-squares dummy variables (LSDV) estimator to

estimate the parameters in the project-specific fixed effects models. After we finish the model
estimation, we perform a series of regression diagnostics for examining the time-specific effects
and empirically justifying the use of fixed effects models. These regression diagnostics include:
time-fixed effects testing, F-test for (pFtest), Hausman Test (pHtest), Heteroskedasticity testing,
and so on. Given that our sampled projects consist of 11 company-sponsored projects and 9 non-
company-sponsored ones. It is natural to investigate if effort distributions’ impacts on project
outcomes are sensitive to these project characteristics. Therefore, we perform the same regression
analyses to the two sub-samples. The results are reported accordingly. All the panel regressions, if
not otherwise stated, are performed with R’s plm package [20].

4 RESULTS AND FINDINGS
In this section, we report the results and findings. We organize them according to the three RQs.
All data has been made publicly available for download10.

Table 4. Activities amount that has happened on each sampled project.

Project Com. Org. Sup. Typ.

Total Elite% Total Elite% Total Elite% Total Elite%

Aframe 4908 0.46 455 0.99 19400 0.85 5180 0.72
Alamofire 5967 0.18 1773 1.00 11906 0.61 1465 0.62
Exoplayer 9293 0.32 2293 1.00 22197 0.71 5361 0.87
finagle 2488 0.30 46 0.93 2947 0.46 2753 0.49
fresco 5283 0.29 290 1.00 10481 0.64 1923 0.77
guava 3161 0.29 664 0.99 7724 0.71 2239 0.53
immutable-js 2909 0.15 28 0.75 5869 0.59 1057 0.52
jest 19073 0.36 1025 0.99 39995 0.66 5015 0.43
marko 1937 0.38 403 0.95 5525 0.79 2956 0.93
Moya 5376 0.43 416 0.61 22808 0.42 2860 0.73
nightmare 3105 0.14 24 1.00 4963 0.48 892 0.50
rclone 7475 0.23 182 1.00 15243 0.66 2781 0.80
react 35086 0.37 3730 1.00 83036 0.74 9640 0.59
recharts 3199 0.15 54 0.85 4980 0.41 1396 0.66
splitebrowser 6129 0.42 493 1.00 11589 0.70 1751 0.84
stf 1694 0.33 25 0.64 2672 0.55 837 0.69
tensorflow 97940 0.48 28236 0.92 183485 0.75 43029 0.50
tesseract 4870 0.35 116 1.00 9805 0.59 2512 0.55
tidb 16240 0.80 1944 0.98 45451 0.91 8305 0.89
ZeroNet 2853 0.27 120 1.00 4881 0.56 2650 0.79

Mean 11949.30 0.34 2115.85 0.93 25747.85 0.64 5230.10 0.67

9In fact, no coefficient can be estimated for it in R.
10All experiment result, including intermediate outputs and raw data, can be downloaded at: https://drive.google.com/drive/
folders/10ibmz2svPRf3jfRtm7mbiouo9ATaYAoB

ACM Trans. Softw. Eng. Methodol., Vol. 28, No. 1, Article 1. Publication date: January 2019.

https://drive.google.com/drive/folders/10ibmz2svPRf3jfRtm7mbiouo9ATaYAoB
https://drive.google.com/drive/folders/10ibmz2svPRf3jfRtm7mbiouo9ATaYAoB


Unveiling Elite Developers’ Activities in Open Source Projects 1:15

4.1 RQ1: Elite Developers’ Activities.
Tab. 4 provides the basic demographic statistics of the activities in each project according to
their categories. Except for the communicative activities, elite developers perform over 50% of
the activities for those in all three of the remaining categories. For each project, our results
have confirmed the finding from other studies on the core or elite developers of Open Source
communities, e.g., [32, 55, 85], and elite developers in the community contributed most of the
source-code submission. In our sample, 67 percent of typical development tasks are performed by a
project’s elite developers.

0

25

50

75

100

Com Org Sup Typ

Activity Category

E
lit

e%

Fig. 3. The distributions of elite devel-

opers’ activity shares in each activity

category over 20 projects.

In addition to elites’ code submission, we also found em-
pirical evidence that elite developers are also “responsible”
for most other types of events. Besides organizational events
(according to our definitions, most organizational events au-
tomatically require the write permission), elite developers
perform over 60% of supportive activities and even created
34% of communicative activities. See Fig. 3 for the percentage
distribution of elites’ contribution.
Moreover, comparing to non-elite developers, the average

numbers of activities performed by an elite developer per
month are much higher in all categories (see Fig. 4). We ob-
serve orders of magnitude differences between them. On aver-
age, an elite developer performs 7 times more communication
activities, 145 times more organizational activities, 22 times
more supportive activities, and 22 times more typical activities
than a non-elite developer per month. Thus, on an individual
basis, we argue that elite developers may have major impacts on projects based on their activity
amount.

0

10

20

Communication Organization Supportive Typical

Activity Category

A
ve

ra
ge

 N
o.

 o
f A

ct
iv

iti
es

Non−elite

Elite

Fig. 4. Average monthly activities comparisons between elite and non-elite developers.

Answers to RQ1. Based on the events in each category, we can answer RQ1 as follows:

On GitHub, elite developers have contributed to the project in various ways in addition to

performing over 60% code contributions. They need to manage the community by delegating tasks

to other developers with special expertise, managing parallel development among contributors,

ACM Trans. Softw. Eng. Methodol., Vol. 28, No. 1, Article 1. Publication date: January 2019.



1:16 Wang, Feng, et al.

creating documentations for the project, and also participating in discussions with teammates,

external developers, and peripheral users.

4.2 RQ2: The Evolution of Elite Developers’ Activities.

2015-11 2017-05 2018-11
0

10

20

30

40
Communicative

2015-11 2017-05 2018-11
0

10

20

30

40
Supportive

2015-11 2017-05 2018-11
0

10

20

30

40
Organizational

2015-11 2017-05 2018-11
0

10

20

30

40
Typical

Fig. 5. Trends of individual elite developer’s activities in the four activity categories of the Tensorflow.

4.2.1 Individual Activities of Elite. For the most complex project in our project sample, Tensorflow,
we found that there is a steady increase in communicative, supportive, and organizational events
for each elite developer (shown in Fig. 5). Though supportive events change dramatically because of
the period of software patches and releases, it still shows an increase in the longitudinal perspective.
The increase of organizational events may be due to the scale increase of the team (the number of
active elite developers has increased from 29 to 270 for Tensorflow). However, we found the amount
of code submissions by elite developers has stabilized since the initial project release phase, even
for fast growing projects such as Tensorflow. In order to verify whether this focus shifts of elite
developers are common in our sampled projects, we test the differences in growth rates of activity
categories as the next.

4.2.2 Comparing Growth Rates of the Four Types of Activities. As mentioned in Section 3.6.2, we
calculate the average monthly growth rates of activities per elite developer over the communicative,
supportive, and typical activities11 for each project. Thus, we have 20 growth rates for these three
11For organizational activities, many months do not record such type of activities. This prohibits us from calculating the
growth rate.

ACM Trans. Softw. Eng. Methodol., Vol. 28, No. 1, Article 1. Publication date: January 2019.



Unveiling Elite Developers’ Activities in Open Source Projects 1:17

categories of activities. We then perform one-way ANOVA to test if there is any difference in
growth rates.
The results shows significant differences (F(2,57) = 8.452, p < 0.001). We perform the post-hoc

analysis using the Tukey’s HSD test to identify the differences between the three categories. The
results indicate the growth rates of typical activities are significantly lower than the growth rates
of the other two (Typical vs. Communicative: p = 0.002, Typical vs. Supportive: p = 0.002). In fact,
elite developers’ typical activities even decrease over the time (average growth rate = −1.63%).
Though this number seems not that big, it actually means an elite developer only does half of the
technical work she used to do 3 years ago. Meanwhile, their work on communicative and supportive
are doubled in the same period.
We do not perform the same ANOVA procedures to the non-elite’s data for cross-group com-

parisons (i.e., elite vs. non-elite) due to practical constraints. In many months, the non-elite’s
activity counts are 0. Thus, calculating growth rates would lead to many “division by zero” prob-
lems. However, qualitatively, we could not observe any significant increases on the three types of
non-technical activities over the time, while the numbers of non-elite’s technical activities in each
project-month do increase over the time.
Answers to RQ2. Based on the result of one-way ANOVA test and Tukey’s HSD test, we can
answer RQ2 as follows:

With the progress of the project, an elite developer tends to put more efforts into communicative

and supportive activities while she significantly reduces her involvements in typical development

activities.

4.3 RQ3: Elite Developers’ Activities’ Impacts on Project Outcomes.
We present our findings to RQ3 with a series regression models (Tab. 5 and 6) characterizing
relationships between the shares of activities in the three categories and the product productivity
and quality indicators. These models are developed using the econometrics techniques discussed in
Section 3.6.3. We also perform regression diagnostics to empirically examine the justification of
using fixed effects models in model development. For all 12 regressions, fixed effects models are
better choices than pooled OLS and random models.
Note that all regression models establish correlations only, rather than causalities. However,

when interpreting the results, we may give some propositions implying possible but not definitive
causalities, which is a common practice in data-driven research related to human and social factors
[13, 19, 33]. All these implied causalities shall not be considered as established without further
confirmatory studies [67].

4.3.1 Regression Results of Project Productivity. Tab. 5 summarizes the results of the regression
models for the two project productivity indicators: the no. of new commit of project i in monthm
(NewCim ), and the average bug cycle time of project i in monthm (BCTim ). Models P1 and P2 use
the data of all 20 sampled projects, thus represent whole sample regression results. Models P3 and
P4 use the data of 9 non-company-sponsored projects, while models P5 and P6 use the data of 11
company-sponsored projects. Thus, models P3–P6 are representing sub-sample regression results.
Now let us have a look at what these models indicate.
A. Project Productivity—Whole Sample Regression Results

In Model P1, two independent variables (S −Comim , S − Supim ) are significant; and both have neg-
ative regression coefficients (−155.96, −138.21). This implies that negative correlations between
the effort elite developers put on communicative and supportive activities, and the no. of new

ACM Trans. Softw. Eng. Methodol., Vol. 28, No. 1, Article 1. Publication date: January 2019.



1:18 Wang, Feng, et al.

T
a
b
l
e
5
.
R
e
g
r
e
s
s
i
o
n
m
o
d
e
l
s
f
o
r
p
r
o
j
e
c
t
p
r
o
d
u
c
t
i
v
i
t
y
.

W
ho

le
Sa
m
pl
e

Su
b-
sa
m
pl
e
(N
on

-C
om

pa
ny

)
Su

b-
sa
m
pl
e
(C
om

pa
ny

)
N
ew

Co
m
m
it

Bu
g
Cy

cl
e
Ti
m
e

N
ew

Co
m
m
it

Bu
g
Cy

cl
e
Ti
m
e

N
ew

Co
m
m
it

Bu
g
Cy

cl
e
Ti
m
e

M
od

el
P1

(β
)

M
od

el
P2

(β
)

M
od

el
P3

(β
)

M
od

el
P4

(β
)

M
od

el
P5

(β
)

M
od

el
P6

(β
)

(S
E
)

(S
E
)

(S
E
)

(S
E
)

(S
E
)

(S
E
)

S
−
C
om

im
−1

55
.9
6*
*

−1
70
.7
1

−1
25
.0
7*
**

−3
81
.8
0

−2
28
.6
8*

−1
6.
44

(4
9.
20
)

(1
43
.9
6)

(2
8.
11
)

(2
12
.0
9)

(9
2.
85
)

(2
02
.6
6)

S
−
O
rд

im
1.
38

−1
48
.6
1*

−1
37
.2
8*

−2
14
.7
1*

20
3.
10

−1
53
.8
5

(1
21
.2
5)

(5
4.
65
)

(7
0.
24
)

(1
29
.6
)

(2
23
.4
7)

(1
87
.4
9)

S
−
Su

p
im

−1
38
.2
1*
**

47
3.
60
**
*

−9
1.
25
**
*

55
3.
17
**

−2
04
.6
6*
*

40
1.
30
**

(3
5.
52
)

(1
03
.9
4)

(2
0.
34
)

(1
53
.3
9)

(6
6.
16
)

(1
44
.4
0)

U
n
o
b
s
e
r
v
e
d
t
i
m
e
-
i
n
v
a
r
i
a
n
t
e
ff
e
c
t
s
(α

i)
¶

−.
−*

**
−.
−*

**
−.
−*

**
−.
−*

**
−.
−*

**
−.
−*

**

M
u
l
t
i
p
l
e
R
2

0.
88
4

0.
74
5

0.
68
6

0.
74
0

0.
89
1

0.
75
1

A
d
j
u
s
t
e
d
M
u
l
t
i
p
l
e
R
2

0.
88
0

0.
73
6

0.
67
3

0.
73
0

0.
88
7

0.
74
2

F
†

23
1.
10
**
*

88
.3
5*
**

60
.4
5*
**

73
.8
9

22
2.
00
**
*

82
.4
4*
**

*:
p
<
0.
05
,*
*:
p
<
0.
01
,*
**
:p
<
0.
00
1.

¶ :
Th

e
un

ob
se
rv
ed

tim
e-
in
va
ri
an
te

ffe
ct
s
ar
e
a
ve
ct
or

ra
th
er

th
an

a
si
ng

le
co
effi

ci
en
t.
To

ke
ep

th
e
pa
pe
rc

on
ci
se
,w

e
do

no
ti
nc
lu
de

th
em

,
in
st
ea
d,
w
e
sh
ow

th
e
si
gn

ifi
ca
nt

le
ve
ls
of

th
em

.
† :
Fo
rM

od
el
1
–
2:
de
gr
ee
so

ff
re
ed
om

(D
F
s)
ar
e
(2
3,
69
7)
;f
or

M
od

el
3
–
4:
de
gr
ee
so

ff
re
ed
om

ar
e
(1
2,
31
2)
;f
or

M
od

el
5
–
6:
de
gr
ee
so

ff
re
ed
om

ar
e
(1
4,
38
2)
.

ACM Trans. Softw. Eng. Methodol., Vol. 28, No. 1, Article 1. Publication date: January 2019.



Unveiling Elite Developers’ Activities in Open Source Projects 1:19

commits in each project-month. A possible interpretation of the results is as follows. We already
know that elite developers are still major contributors of the source code. When they invest more
efforts on non-technical activities such as communicative and supportive ones, they may have
less time to contribute to the source code; thus, the whole project may have fewer new commits
(productivity loss).

In Model P2 which the dependent variable is BCTim , two independent variables (S −Orдim ,
S − Supim ) are significant. S −Orдim has a negative regression coefficient (−148.61), while S − Supim
has a positive coefficient (473.60). Obviously, there are negative correlations between elite devel-
opers’ efforts in organizational activities and average bug cycle time in each project-month, and
positive correlations between elite developers’ efforts in supportive activities and average bug
cycle time in each project-month. Given that the activities of managing bug fix and code review are
in the “organizational” category (see Fig. 2), more elites’ efforts in activities in this category might
help to shorten the bug cycle time. Meanwhile, similar to the results and interpretation for Model
P1, performing more supportive activities may occupy elite developers’ time on fixing bugs, and
thus lead to longer bug cycle time (productivity loss). Since S − Supim ’s effect is much stronger
than S −Orдim ’s and its shares are often much more than S −Orдim ’s (Avg.: 0.61 vs. 0.03), we
could expect an overall effect of longer bug cycle time (productivity loss).
B. Project Productivity—Sub-Sample Regression Results.

The regression results in Models P3–P6 are pretty much similar to those in Models P1 and P2 with
some minor differences. Let us first have a look at the regression models based on non-company-
sponsor projects’ data (Models P3 and P4). In Model P3, S −Orдim becomes a significant variable,
indicating that performing more organizational activities is also negatively correlated with the
no. of new commits in each project-month (productivity loss). In Model P4, the correlations between
efforts on each category and the average bug cycle time in each project-month (BCTim) are the
same. For the regression models based on company-sponsor projects’ data (Models P5 and P6),
correlations in Model P5 are as same as those in Model P1. However, in Model P6, S −Orдim is no
longer significant. A possible explanation may be that: company-sponsored projects often have
established routine bug fixing processes, and hence elite developers’ mediation in this process is
not as important.
In addition, the adjusted R2s of Models P5 & P6 are higher than Models P3 & P4. Particularly,

Model P5’s is over 20% higher than Model P3’s. These differences indicate that models built around
the elite developers’ activities work better for company-sponsored projects.

4.3.2 Regression Results of Project Quality. We have briefly discussed the regression results of
project productivity. Now, let us turn to the regression results of project quality. Tab. 6 summarizes
the results of the regression models for the two project productivity indicators: the no. of new bugs
of project i in monthm (NewCim ), and the big fixed rate of project i in monthm (BFRim ). Similarly,
Models Q1 and Q2 use the data of all 20 sampled projects, thus represent whole sample regression
results. Models Q3 and Q4 use the data of 9 non-company-sponsored projects, while models Q5
and Q6 use the data of 11 company-sponsored projects. Thus, models Q3–Q6 are representing
sub-sample regression results.
A. Project Quality—Whole Sample Regression Results

In Model Q1, the quality indicator is NewCim . There are two significant independent variables
(S −Orдim , S − Supim ); and both have positive regression coefficients (50.13, 18.31). This indicates
positive correlations between the effort elite developers put on organizational and supportive
activities, and the no. of new bugs found in each project-month. The interpretation of the results
shall be similar to the above. Doing non-technical work may make the elite have less time to

ACM Trans. Softw. Eng. Methodol., Vol. 28, No. 1, Article 1. Publication date: January 2019.



1:20 Wang, Feng, et al.

T
a
b
l
e
6
.
R
e
g
r
e
s
s
i
o
n
m
o
d
e
l
s
f
o
r
p
r
o
j
e
c
t
q
u
a
l
i
t
y
.

W
ho

le
Sa
m
pl
e

Su
b-
sa
m
pl
e
(N
on

-C
om

pa
ny

)
Su

b-
sa
m
pl
e
(C
om

pa
ny

)
N
ew

Bu
g

Bu
g
Fi
x
Ra

te
N
ew

Bu
g

Bu
g
Fi
x
Ra

te
N
ew

Bu
g

Bu
g
Fi
x
Ra

te
M
od

el
Q
1
(β
)

M
od

el
Q
2
(β
)

M
od

el
Q
3
(β
)

M
od

el
Q
4
(β
)

M
od

el
Q
5
(β
)

M
od

el
Q
6
(β
)

(S
E
)

(S
E
)

(S
E
)

(S
E
)

(S
E
)

(S
E
)

S
−
C
om

im
4.
13

−2
.2
4*
**

1.
43

−1
.2
8*
**

5.
23

−3
.1
1*
**

(5
.2
6)

(0
.3
5)

(3
.9
1)

(0
.3
4)

(9
.5
9)

(0
.6
1)

S
−
O
rд

im
50
.1
3*
**

−0
.6
3

6.
48

−0
.6
2

88
.6
9*
**

−0
.3
5

(1
2.
97
)

(0
.8
7)

(9
.7
7)

(0
.8
5)

(2
3.
09
)

(1
.4
7)

S
−
Su

p
im

18
.3
1*
**

1.
12
**
*

−7
.6
7*
*

0.
60
*

26
.9
9*
**

1.
50
**
*

(3
.8
0)

(0
.2
6)

(2
.8
3)

(0
.2
5)

(6
.8
4)

(0
.4
4)

U
n
o
b
s
e
r
v
e
d
t
i
m
e
-
i
n
v
a
r
i
a
n
t
e
ff
e
c
t
s
(α

i)
¶

−.
−*

**
−.
−*

**
−.
−*

**
−.
−*

**
−.
−*

**
−.
−*

**

M
u
l
t
i
p
l
e
R
2

0.
85
7

0.
64
9

0.
66
7

0.
76
1

0.
87
1

0.
60
8

A
d
j
u
s
t
e
d
M
u
l
t
i
p
l
e
R
2

0.
85
3

0.
63
7

0.
65
4

0.
75
2

0.
86
6

0.
59
4

F
†

18
6.
2*
**

56
.0
9*
**

52
.0
5*
**

83
.0
7*
**

18
4.
2*
**

42
.3
1*
**

*:
p
<
0.
05
,*
*:
p
<
0.
01
,*
**
:p
<
0.
00
1.

¶ :
Th

e
un

ob
se
rv
ed

tim
e-
in
va
ria

nt
eff

ec
ts
ar
e
a
ve
ct
or

ra
th
er

th
an

a
si
ng

le
co
effi

ci
en
t.
To

ke
ep

th
e
pa
pe
rc

on
ci
se
,w

e
do

no
ti
nc
lu
de

th
em

,i
ns
te
ad
,w

e
sh
ow

th
e
si
gn

ifi
ca
nt

le
ve
ls
of

th
em

.
† :
Fo
rM

od
el
1
–
2:
de
gr
ee
so

ff
re
ed
om

(D
F
s)
ar
e
(2
3,
69
7)
;f
or

M
od

el
3
–
4:
de
gr
ee
so

ff
re
ed
om

ar
e
(1
2,
31
2)
;f
or

M
od

el
5
–
6:
de
gr
ee
s

of
fr
ee
do

m
ar
e
(1
4,
38
2)
.

ACM Trans. Softw. Eng. Methodol., Vol. 28, No. 1, Article 1. Publication date: January 2019.



Unveiling Elite Developers’ Activities in Open Source Projects 1:21

work on code. Thus, non-elite developers may have to take more responsibilities on source code
development. Their code may contain more bug (quality loss).

InModel Q2, the quality indicator isBFRim . Two independent variables are significant (S −Comim ,
S − Supim ). S −Comim ’s coefficient is negative, signifying negative correlations between the ef-
fort elite developers put on communicative activities and each month’s bug fix rate. Meanwhile,
S − Supim ’s coefficient is positive, indicating positive correlations between the elite’s efforts in
supportive activities and each month’s bug fix rate. Interpreting such correlations may be a bit
tricky. For the negative correlations between S −Comim and BFRim , we can interpret it in a way
similar to the previous ones. The positive correlations between S − Supim and BFRim may suggest
that: by putting more efforts into supportive activities, elite developers help to make the defect
removal process work well12. Since S −Comim ’s share are only about 1/4 of S − Supim ’s (Avg.: 0.16
vs. 0.61) and its negative coefficient is just twice of S − Supim ’s (-2.24 vs. 1.12), we could expect an
overall effect of higher bug fix rate in average (quality gain).
B. Project Quality—Sub-Sample Regression Results

Again, we split the whole sample dataset into two sub-sample datasets according to whether a
project is sponsored by a commercial company, and develop regression models using them. Models
Q3 and Q4 are based on non-company-sponsored projects’ data. In Model Q3, only S − Supim is
significant. Efforts on organizational activities are not negatively correlated with the no. of new
bugs in each project month. Model Q4 is similar to Model Q2. In general, the effects in Models Q5
& Q6 are quite similar to those in Models Q1 & Q2.

4.3.3 Time-related Effects. To further explore the time-related effects, we perform time-fixed effects
testing for the four whole sample models (Models P1, P2 in Tab. 5; and Models Q1, Q2 in Tab. 6).

For Model P1, where the number of new commits in each project-month is the dependent variable,
the time-fixed effects model is significant (F (38, 662) = 1.59, p = 0.02). However, the effects are
less significant (adjusted R2 = 0.01). Further examination of the time-fixed effects shows that the
time-related effects are positive and exhibit an increasing trend (Fig. 6.a). This indicates that the
number of new commits is less associated with elite developer activities in the later phases of the
project. However, for Model P2, where the bug cycle time in each project-month is the dependent
variable, the time-fixed effects model is not significant (F (38, 662) = 1.80, p < 0.01). The effects are
very small (adjusted R2 = 0.01). The time-related effects have slightly patterns (Fig. 6.b).

For Model Q1, where the number of new bugs in each project-month is the dependent variable,
the time-fixed effects model is significant (F (38, 662) = 3.29, p < 0.001). The results are similar
to the first one (Fig. 6.a). The time-related effects are positive and increasing in general (Fig. 6.c),
indicating the impact of elite developers’ activities on the number of the new bugs reported is
shrinking over time. For Model P2, where the bug fix rate in each project-month is the dependent
variable, the time-fixed effects model is not significant (F (38, 662) = 1.07, p = 0.36). No meaningful
effect could be detected (adjusted R2 = 0.00). The time-related effects may be irrelevant to this
quality indicator (Fig. 6.d).
The above analyses reveal that: although the time-related effects are significant, the project-

specific fixed effects models are much stronger than the time-related effects for all dependent
variables.
Answers to RQ3. Based on the above results, we can answer RQ3 as follows:

12Recall that BFRim is indeed a quality process metrics, see Section.

ACM Trans. Softw. Eng. Methodol., Vol. 28, No. 1, Article 1. Publication date: January 2019.



1:22 Wang, Feng, et al.

5 10 15 20 25 30 35

40
60

80
10
0

12
0

New Commit

Month

Ti
m

e-
re

la
te

d 
E

ffe
ct

s

(a) New Commit

5 10 15 20 25 30 35

50
10
0

15
0

20
0

25
0

30
0

35
0

Bug Cycle Time

Month
Ti

m
e-

re
la

te
d 

E
ffe

ct
s

(b) Bug Cycle Time

5 10 15 20 25 30 35

2
4

6
8

10
12

14

New Bug

Month

Ti
m

e-
re

la
te

d 
E

ffe
ct

s

(c) New Bug

5 10 15 20 25 30 35

-0
.2

0.
0

0.
2

0.
4

Bug Fix Rate

Month

Ti
m

e-
re

la
te

d 
E

ffe
ct

s

(d) Bug Fix Rate

Fig. 6. Changes of time-related effects.

Elite developers’ effort distributions have significant correlations with project outcomes.

(1) Project Productivity: (a) Efforts on communicative and supportive activities are negatively

correlated with the project productivity in terms of the number of new commits in each

project-month (productivity loss); (b) Efforts on organizational activities are positively

correlated with project productivity in terms of the the average bug cycle time in each

project-month; however, efforts on organizational activities have much stronger negative

effects. The overall effects are negative (productivity loss).

(2) Software Quality: (a) Efforts on organizational and supportive activities are positively

correlated with the number of newly-found bugs in each project-month (quality loss); (b)

ACM Trans. Softw. Eng. Methodol., Vol. 28, No. 1, Article 1. Publication date: January 2019.



Unveiling Elite Developers’ Activities in Open Source Projects 1:23

Efforts on communicative activities are negatively correlated with the bug fix rate in each

project-month; however, efforts on supportive activities have positive effects. Combine them

together, the overall effects are likely to be positive (quality gain).

(3) Except for the bug fix rate, time effect analyses show that the impacts exhibit some decreasing

trends with the progress of the project, which may result from the increasing proportion of

non-elite developers’ contributions in the latter stages of the project.

(4) In general, compared with the company-sponsored projects, effort distributions’ correlations

with project outcomes are less significant for non-company-sponsored projects.

5 DISCUSSION
5.1 Discussions of the Findings
First of all, our results and findings confirm the important roles of elite developers in open-source
development. As the results of RQ1 shows, they engaged in the majority of the projects’ activities,
though they only account for a small proportion of contributors in the entire community. Except
for communicative activities, elite developers account for over 50% activities in all the other three
categories. The results confirm prior literature dating back to early 2000s [24, 55]. We can conclude
that open-source projects are still largely driven by a small number of elite members after over 20
years of evolution. While such high concentrations may ensure bottom-line project outcomes, such
situations may not be optimal for long-term health of a project [23]. Engaging the non-elite users’
participation through mechanism and technology innovation is still a challenge [74].

Secondly, the results and findings of RQ2 show that the shifting of elite developers’ activities did
happen in most of the sampled projects. The activity shifting indicates the elite developers’ role
transitions with the growth of the project and the community. Organizational behavior theorists
often argue that such transitions may be risky and troublesome for both individuals and organi-
zations [4, 56]. Let us imagine a situation that an elite developer may be involved. She used to
enjoy the work of making technical contributions by committing high-quality code, but gradually,
she finds herself having to spend more and more time on supportive work and communicating
with novice users. This may conflict with her career goal. Unfortunately, at least in the software
engineering community, this has not received any attention. Future research is necessary to address
the issues related to such role transitions.

The results and findings of RQ3 reveal relationships between elite developers’ effort distributions
and project outcomes. In general, there are some negative associations. For three out of four project
outcome indicators (NewCim , BCTim , and NewBim ) our results suggest putting more efforts into
communicative, organizational, and supportive work is negatively correlated with the project
outcomes. Elite developers are humans who have limited time and attention resources every day. If
the three types of non-typical activities occupy too much of their time and attention resources, they
may not be able to guarantee the productivity and quality of their contributions to technical tasks.
Meanwhile, to fill such a gap, non-elite developers may have to contribute more in the development
tasks. Since those non-elite developers often do not have a comparable level of technical expertise,
their code could be more buggy, thus may lead to lower software quality [1]. However, for the last
project outcome indicator (BFRim ), our results show that the elite’s efforts in supportive work do
have positive correlations with project quality. A possible explanation is the efforts in supportive
activities does help to maintain a good defect removal process, thus improve the bug fix rate in
each project-month.

ACM Trans. Softw. Eng. Methodol., Vol. 28, No. 1, Article 1. Publication date: January 2019.



1:24 Wang, Feng, et al.

RQ3’s findings, if put together, describe a dilemma that elite developers often have to face in
their projects. With the growth of their projects, they need to spend more time on non-technical
tasks, which force them to reduce their technical contributions. Since their technical activities still
account for a majority of the project’s typical development work (see Tab. 4), the project would
also experience some productivity and quality loss. But doing more non-technical work is not
meaningless: it perhaps helps to maintain a project’s work processes (e.g., defect removal process)
and is paid back by some quality gains.

Another finding worth noting is the differences between non-company-sponsored projects and
company-sponsored projects. RQ3’s results indicate that company-sponsored projects tend to be
more influenced by their elite developers’ effort distributions. This is not surprising; such projects
often rely on a small amount of full-time employees as the elite developers. Some of them may lack
the interests to make voluntary contributions [50] and work a regular 8-hour daily schedule from 9
to 5. In case that non-technical work occupies more time, they do not use their own time to make
up for the technical work.

To sum up, our work does not only confirm the empirical observations of developers’ activities
in open source communities but also provides new findings and insights that shed light on future
research. For example, we observe the elite developers’ role transitions from the shifting of their
work concentrations. Thus, supporting such transitions has not yet been investigated. Besides, we
identify the impacts of effort distributions over the four broader categories on project outcomes.
As far as our best current knowledge, it is the first piece of empirical evidence on this topic. How
to leverage the findings to bring better project outcomes also requires follow-up research.

5.2 Practical Implications
Our findings suggest immediate practical implications. First, for most of the projects in our sample,
the increase of elite developers often fails to keep pace with the growth of projects. This leads
to heavy burdens to the elite developers. Indeed, many open-source projects seem to be too
conservative to guarantee a member the permissions to perform some administrative tasks. While
the open-source ideology is pretty progressive, its management structures are perhaps somewhat
pre-industrial, i.e., a very small amount of elites share most of the authorities and powers in the
community [18, 70, 83]. Decentralizing such authorities and powers, particularly that related to
routine work, might be a choice. It does not only alleviate elite developers’ burdens but also give
ordinary members in communities some extra motivations [65]. Besides, because the turnover of
the core reviewers is high and rapid [78], allowing some non-elite developers to share some elite
developers’ routine duties would help to offset the negative impacts of their turnovers.
Second, the differences between company-sponsored and non-company-sponsored projects

indicate that the company-sponsored projects more or less inherit the management practices of the
corporate world. Elite developers’ involvements in non-technical tasks influence project outcomes in
a more significant way. It seems that the elite developers tend to be trapped more on routine works.
In his dissertation [84], Wagstrom has shown that the vertical integration between companies
and open-source communities would inevitably lead to increases in unnecessary communicative
and organizational practices. Given the limited time and attention resources of developers, these
unnecessary non-technical practices may hurt a project’s productivity. Thus he recommended
focusing on communication “meeting individual coordination requirements.” According to our
results, his recommendation is still valid. Besides, from a company’s perspective, avoiding “copying”
their internal governing structures may be necessary even for the projects they dominate [35, 69].

ACM Trans. Softw. Eng. Methodol., Vol. 28, No. 1, Article 1. Publication date: January 2019.



Unveiling Elite Developers’ Activities in Open Source Projects 1:25

5.3 Design Implications
With the growth of the project, elite developers often have to give more effort to communicative
and supportive tasks. Our study reveals such a shifting of work may have negative impacts on
project outcomes. As we discussed before in Section 5.1, these tasks are often necessary and cannot
be ignored, building software tools to assist or partially free elite developers may be a good solution.

Building such tools are feasible. At least for many organizational and supportive activities, there
are technologies readily available. For instance, Assigned and Unassigned are two main events in
the organizational activity category (see Fig. 2). The main time cost for them is to identify the
assignee. These tasks can be easily automated with tools [3]. The supportive work can be divided
into two sets—maintenance and documentation. Let us have a look at maintenance activities first.
For many raw activities associated with maintenance, there are ready-to-use automated tools
built by researchers. For example, the CreateTag can be automated using techniques such as [17].
Automatic subscribed and unsubscribed can be realized through learning users’ characteristics [11].
For documentation tasks, there are many metric-based or machine learning techniques ready for
use [54, 93], thus automating some MarkedAsDuplicated and UnMarkedAsDuplicated tasks.
Current technologies may be less mature for helping elite developers on communicative tasks.

As shown in Fig. 2, communicative category contains four raw GitHub activities: Mentioned,
CommentDeleted, IssueComment, and CommitComment. For some specific activities related to Men-

tioned, researchers have developed techniques for automating them. For example, when mentioning
somebody to fix an issue, the bug-fixer recommendation technique developed by Kim et al. [46]
may be directly applied to identify the target of the mentioning. Besides, CommentDeleted tasks
can be automated. For example, a disruptive message by a member can be automated deleted by
a GitHub bot app equipped with advanced sentiment analysis techniques. Building automated
tools for IssueComment and CommitComment requires some advanced techniques on abstractive
semantic summarization and text generation, which are far from mature even in Natural Language
Processing community [52, 76, 89].
While there are many available techniques, most (if not all) of them have never been used by

practitioners. This may be because such techniques have not been integrated into elite developers’
normal workflow. As Terry Winograd and his colleagues [90] pointed out in their influential book
“Understanding computers and cognition: A new foundation for design”, a computing application must
be integrated to users’ workflow in a non-intrusive way to gain widespread use.

5.4 Recommendations
Our findings and the above discussions can be summarized into recommendations for practitioners
and researchers.

Recommendations for open source practitioners are:
• Open source projects may consider decentralizing the administrative authorities and powers

related to routine tasks.

• Project members should focus on communication “meeting individual coordination requirements.”

• Projects sponsored by companies should avoid copying their sponsors’ internal governing struc-

tures.

We can also consider future research (incl. tool design and implementation) efforts with the
following possible challenges.

• Further understanding of developer activities.

• Mechanism design for broadening participation in and sharing non-technical responsibilities.

• Tool support for relieving elite developers from routine administrative burdens by synthesizing

existing techniques to their routine workflow.

ACM Trans. Softw. Eng. Methodol., Vol. 28, No. 1, Article 1. Publication date: January 2019.



1:26 Wang, Feng, et al.

5.5 Threats to Validity
As any empirical studies, our study is not free of threats to validity. We briefly discuss them from
three perspectives.
First, from the perspective of construct validity, we are confident that there is no significant

threat. Our study involves six primary constructs, which are four categories of GitHub activities,
and project productivity and quality (each with two metrics, total four metrics). All their definitions
and operationalizations are based on prior literature. For the four activity categories, we follow the
standard procedure to develop the mappings between raw GitHub activities and these categories.
The two project outcomes are adapted from literature; and each of them is measured by two distinct
indicators. By using multiple indicators for one project outcome construct, our study does not only
avoid to oversimplify the concept of “productivity” and “quality”, but also brings more insights.
Thus, we have the confidence that most of the threats to construct validity have been removed.

Second, from the perspective of internal validity, we took multiple measures to ensure that the
data collection process avoids the most of perils summarized in [10, 44]. For example, all subjected
projects are all large ones with established governing structure and practices, and use pull requests
to manage members’ contributions. The data used in the study are objective human activity records
collected from online repositories. The analysis processes are unbiased. We use mature, widely-used
analysis techniques, and empirically justify the use of the fixed effects models in panel regressions.
One potential threat is that using GitHub data only. But doing so has its methodological jus-

tifications. While we acknowledge that the development trace data could be in multiple other
channels such as email, IRC, forums, and so on, an unfortunate fact is that not all of them are
publicly available. In fact, for the 20 projects studied in this paper, none of them has all the channels
data ready. If we use multiple data sources for some projects but a single data source for the rest,
guaranteeing the fair comparisons among them could be impossible. Moreover, using multiple
data sources selectively would pose serious threats to the “construct validity” because establishing
the mapping between activities and categories would require different protocols when crossing
data sources. Thus, but weighed the gain and loss of using multiple data sources, we decide to use
GitHub data only. At least, it guarantees the consistency at the methodological level, which is a
basic requirement for any scientific inquiry [12, 29, 48]. Thus, we view that not using multiple data
sources as a limitation but not a serious threat to internal validity, as pointed out by Margaret-Anne
Storey in her ICSE’19 keynote [75].

Third, from the perspective of external validity, we admit that our results may not be able to
be generalized to all open source projects. However, the sampled projects represent a wide range
of projects regarding the application domains. They also form a balanced sample of non-company-
sponsored and company-sponsored projects. One potential limitation is that all 20 projects are
large ones. We urge caution, however, for applying our findings in the context of small or medium
size open source projects.

6 CONCLUSION
While elite developers’ important role in open source development has been long known in software
engineering literature, their activities have not been yet thoroughly investigated. Using fine-grained
event data of 20 open source projects, our study paints a dynamic panorama of elite developers’
activity, as well as their activities’ impact on project outcomes in terms of project productivity and
product quality.
Our study yields a set of findings. First, our study confirms the essential roles of elite develop-

ers. Their activities account for the majority across all four types of broader activity categories:

ACM Trans. Softw. Eng. Methodol., Vol. 28, No. 1, Article 1. Publication date: January 2019.



Unveiling Elite Developers’ Activities in Open Source Projects 1:27

communicative, organizational, supportive, and typical. Second, our study reveals that elite devel-
opers’ activities shift to the “project management” tasks from “technical” work. We observe that
communicative and supportive activities increase much faster than typical development activities.
Third, elite developers’ effort distributions have significant correlations with project outcomes on
productivity and quality. When they put more efforts into communicative and supportive work,
a project’s productivity (measured by the number of new commits (NewCim ) and bug cycle time
(BCTim ) in each project-month) is likely to decrease. Besides, a project’s quality (measured by the
number of new bugs in each project-month (NewBim )) is negatively associated with their activities
on organizational and supportive tasks. But its another indicator—bug fix rate in each project-month
(BFRim )—is positively correlated with efforts in supportive activities, thus may increase when the
elite developers put more efforts into such type of activities. These findings reveal a complicated
picture of elite developers’ effort distributions, and also partially indicate a dilemma faced by many
OSS elite developers, i.e., with the growth of a project, its elite developers have to conduct more
communicative and supportive work. We discuss the practical and design implication of the study.

For future work, we plan to continue the focus on elite developers. We plan to replicate this study
with a larger sample of projects and go one step further to explore the contextualized, individual
differences among elite developers. Currently, the analysis unit is at the project-level, we also plan
to extend the study by performing analyses at multiple levels, e.g., at the individual-level or the
ecosystem-level. Moreover, project outcomes are much broader than productivity and quality. We
plan to explore some alternative project outcomes, particularly those related to social and human
development (e.g., the growth of newcomers). We will also design and implement tools to free
(at least partially) elite developers from increasing communicative and supportive tasks, allowing
them to maximize the impacts of their technical leadership in projects.

ACKNOWLEDGMENTS
This work is partially supported by National Science Foundation under awards CCF-1350837 and
IIS-1850067.

REFERENCES
[1] Mark Aberdour. 2007. Achieving quality in open-source software. IEEE Software 24, 1 (2007), 58–64.
[2] Juan Jose Amor, Gregorio Robles, and Jesus M. Gonzalez-Barahona. 2006. Effort Estimation by Characterizing Developer

Activity. In Proceedings of the 2006 International Workshop on Economics Driven Software Engineering Research (EDSER

’06). ACM, New York, NY, USA, 3–6. https://doi.org/10.1145/1139113.1139116
[3] John Anvik, Lyndon Hiew, and Gail C. Murphy. 2006. Who Should Fix This Bug?. In Proceedings of the 28th International

Conference on Software Engineering (ICSE ’06). ACM, New York, NY, USA, 361–370. https://doi.org/10.1145/1134285.
1134336

[4] Blake Ashforth. 2000. Role transitions in organizational life: An identity-based perspective. Routledge.
[5] Sogol Balali, Igor Steinmacher, Umayal Annamalai, Anita Sarma, and Marco Aurelio Gerosa. 2018. Newcomers’ Barriers.

. . Is That All? An Analysis of Mentors’ and Newcomers’ Barriers in OSS Projects. Computer Supported Cooperative

Work (CSCW) 27, 3 (01 Dec 2018), 679–714. https://doi.org/10.1007/s10606-018-9310-8
[6] Sebastian Baltes and Stephan Diehl. 2018. Towards a theory of software development expertise. In Proceedings of

the 2018 26th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of

Software Engineering. ACM, 187–200.
[7] Christian Bird. 2011. Sociotechnical coordination and collaboration in open source software. In 2011 27th IEEE

International Conference on Software Maintenance (ICSM). IEEE, 568–573.
[8] Christian Bird, Nachiappan Nagappan, Brendan Murphy, Harald Gall, and Premkumar Devanbu. 2011. Don’t touch my

code!: examining the effects of ownership on software quality. In Proceedings of the 19th ACM SIGSOFT symposium and

the 13th European conference on Foundations of software engineering. ACM, 4–14.
[9] Christian Bird, David Pattison, Raissa D’Souza, Vladimir Filkov, and Premkumar Devanbu. 2008. Latent Social Structure

in Open Source Projects. In Proceedings of the 16th ACM SIGSOFT International Symposium on Foundations of Software

Engineering (SIGSOFT ’08/FSE-16). ACM, New York, NY, USA, 24–35. https://doi.org/10.1145/1453101.1453107

ACM Trans. Softw. Eng. Methodol., Vol. 28, No. 1, Article 1. Publication date: January 2019.

https://doi.org/10.1145/1139113.1139116
https://doi.org/10.1145/1134285.1134336
https://doi.org/10.1145/1134285.1134336
https://doi.org/10.1007/s10606-018-9310-8
https://doi.org/10.1145/1453101.1453107


1:28 Wang, Feng, et al.

[10] Christian Bird, Peter C Rigby, Earl T Barr, David J Hamilton, Daniel M German, and Prem Devanbu. 2009. The promises
and perils of mining git. In 2009 6th IEEE International Working Conference on Mining Software Repositories. IEEE, 1–10.

[11] Tegawendé F Bissyandé, David Lo, Lingxiao Jiang, Laurent Réveillere, Jacques Klein, and Yves Le Traon. 2013. Got
issues? who cares about it? a large scale investigation of issue trackers from github. In 2013 IEEE 24th international

symposium on software reliability engineering (ISSRE). IEEE, 188–197.
[12] Kenneth S Bordens and Bruce B Abbott. 2002. Research Design and Methods: A Process Approach. McGraw-Hill.
[13] danah boyd and Kate Crawford. 2012. Critical questions for big data: Provocations for a cultural, technological, and

scholarly phenomenon. Information, Communication & Society 15 (01 2012), 662–679.
[14] Robert L Brennan and Dale J Prediger. 1981. Coefficient kappa: Some uses, misuses, and alternatives. Educational and

psychological measurement 41, 3 (1981), 687–699.
[15] Felix C Brodbeck. 1994. Software-Entwicklung: Ein Tätigkeitsspektrum mit vielfältigen Kommunikations-und Lernan-

forderungen. na.
[16] Gerardo Canfora, Massimiliano Di Penta, Rocco Oliveto, and Sebastiano Panichella. 2012. Who is Going to Mentor

Newcomers in Open Source Projects?. In Proceedings of the ACM SIGSOFT 20th International Symposium on the

Foundations of Software Engineering (FSE ’12). ACM, New York, NY, USA, Article 44, 11 pages. https://doi.org/10.1145/
2393596.2393647

[17] Oscar Chaparro, Jing Lu, Fiorella Zampetti, Laura Moreno, Massimiliano Di Penta, Andrian Marcus, Gabriele Bavota,
and Vincent Ng. 2017. Detecting Missing Information in Bug Descriptions. In Proceedings of the 2017 11th Joint Meeting

on Foundations of Software Engineering (ESEC/FSE 2017). ACM, New York, NY, USA, 396–407. https://doi.org/10.1145/
3106237.3106285

[18] Benjamin Collier, Moira Burke, Niki Kittur, and Robert E Kraut. [n.d.]. Promoting Good Management: Governance,
Promotion, and Leadership in Open Collaboration Communities.. In Proceedings of the 2010 International Conference on

Information Systems (ICIS’10). 220.
[19] Josh Cowls and Ralph Schroeder. 2015. Causation, Correlation, and Big Data in Social Science Research. Policy &

Internet 7 (08 2015), n/a–n/a. https://doi.org/10.1002/poi3.100
[20] Yves Croissant and Giovanni Millo. 2008. Panel Data Econometrics in R: The plm Package. Journal of Statistical

Software 27, 2 (2008), 1–43. https://doi.org/10.18637/jss.v027.i02
[21] Kevin Crowston, Hala Annabi, James Howison, and Chengetai Masango. 2004. EffectiveWork Practices for Software En-

gineering: Free/Libre Open Source Software Development. In Proceedings of the 2004 ACMWorkshop on Interdisciplinary

Software Engineering Research (WISER ’04). ACM, New York, NY, USA, 18–26. https://doi.org/10.1145/1029997.1030003
[22] Kevin Crowston and James Howison. 2005. The social structure of free and open source software development. First

Monday 10, 2 (2005).
[23] Kevin Crowston and James Howison. 2006. Assessing the health of open source communities. Computer 39, 5 (2006),

89–91.
[24] Kevin Crowston, Kangning Wei, James Howison, and Andrea Wiggins. 2008. Free/Libre Open-source Software

Development: What We Know and What We Do Not Know. ACM Comput. Surv. 44, 2, Article 7 (March 2008), 35 pages.
https://doi.org/10.1145/2089125.2089127

[25] Kevin Crowston, Kangning Wei, Qing Li, and James Howison. 2006. Core and periphery in free/libre and open source
software team communications. In Proceedings of the 39th Annual Hawaii International Conference on System Sciences

(HICSS’06), Vol. 6. IEEE, 118a–118a.
[26] Daniel Alencar da Costa, Uirá Kulesza, Eduardo Aranha, and Roberta Coelho. 2014. Unveiling Developers Contributions

Behind Code Commits: An Exploratory Study. In Proceedings of the 29th Annual ACM Symposium on Applied Computing

(SAC ’14). ACM, New York, NY, USA, 1152–1157. https://doi.org/10.1145/2554850.2555030
[27] Laura Dabbish, Colleen Stuart, Jason Tsay, and Jim Herbsleb. 2012. Social coding in GitHub: transparency and

collaboration in an open software repository. In Proceedings of the ACM 2012 conference on computer supported

cooperative work. ACM, 1277–1286.
[28] Barthélémy Dagenais, Harold Ossher, Rachel K. E. Bellamy, Martin P. Robillard, and Jacqueline P. de Vries. 2010. Moving

into a New Software Project Landscape. In Proceedings of the 32Nd ACM/IEEE International Conference on Software

Engineering - Volume 1 (ICSE ’10). ACM, New York, NY, USA, 275–284. https://doi.org/10.1145/1806799.1806842
[29] Martyn Denscombe. 2014. The Good Research Guide: For Small-scale Social Research Projects. McGraw-Hill Education

(UK).
[30] Luis Felipe Dias, Igor Steinmacher, and Gustavo Pinto. 2018. Who drives company-owned OSS projects: internal or

external members? Journal of the Brazilian Computer Society 24, 1 (2018), 16.
[31] Dino Distefano, Manuel Fähndrich, Francesco Logozzo, and Peter W. O’Hearn. 2019. Scaling Static Analyses at

Facebook. Commun. ACM 62, 8 (July 2019), 62–70. https://doi.org/10.1145/3338112
[32] Nicolas Ducheneaut. 2005. Socialization in an open source software community: A socio-technical analysis. Computer

Supported Cooperative Work (CSCW) 14, 4 (2005), 323–368.

ACM Trans. Softw. Eng. Methodol., Vol. 28, No. 1, Article 1. Publication date: January 2019.

https://doi.org/10.1145/2393596.2393647
https://doi.org/10.1145/2393596.2393647
https://doi.org/10.1145/3106237.3106285
https://doi.org/10.1145/3106237.3106285
https://doi.org/10.1002/poi3.100
https://doi.org/10.18637/jss.v027.i02
https://doi.org/10.1145/1029997.1030003
https://doi.org/10.1145/2089125.2089127
https://doi.org/10.1145/2554850.2555030
https://doi.org/10.1145/1806799.1806842
https://doi.org/10.1145/3338112


Unveiling Elite Developers’ Activities in Open Source Projects 1:29

[33] Liran Einav and Jonathan Levin. 2014. Economics in the age of big data. Science 346 (11 2014), 1243089. https:
//doi.org/10.1126/science.1243089

[34] Kristin E Flegal and Michael C Anderson. 2008. Overthinking skilled motor performance: Or why those who teach
canâĂŹt do. Psychonomic Bulletin & Review 15, 5 (2008), 927–932.

[35] Matt Germonprez, Julie E Kendall, Kenneth E Kendall, Lars Mathiassen, Brett Young, and Brian Warner. 2016. A theory
of responsive design: A field study of corporate engagement with open source communities. Information Systems

Research 28, 1 (2016), 64–83.
[36] Georgios Gousios, Margaret-Anne Storey, and Alberto Bacchelli. 2016. Work practices and challenges in pull-based

development: the contributor’s perspective. In Proceedings of the 38th IEEE/ACM International Conference on Software

Engineering (ICSE ’16). IEEE, 285–296.
[37] Philip J Guo, Thomas Zimmermann, Nachiappan Nagappan, and Brendan Murphy. 2011. Not my bug! and other

reasons for software bug report reassignments. In Proceedings of the ACM 2011 conference on Computer supported

cooperative work. ACM, 395–404.
[38] Marvin Hanisch, Carolin Haeussler, Stefan Berreiter, and Sven Apel. 2018. Developers’ Progression from Periphery

to Core in the Linux Kernel Development Project. In Academy of Management Proceedings, Vol. 2018. Academy of
Management Briarcliff Manor, NY 10510, 14263.

[39] James Howison and Kevin Crowston. 2014. Collaboration through open superposition: a theory of the open source
way. Management Information Systems Quarterly 38, 1 (2014), 29–50.

[40] Federico Iannacci. 2005. Coordination processes in open source software development: The Linux case study. Emergence:

Complexity & Organization 7, 2 (2005).
[41] Chris Jensen and Walt Scacchi. 2007. Role Migration and Advancement Processes in OSSD Projects: A Comparative

Case Study. In Proceedings of the 29th International Conference on Software Engineering (ICSE ’07). IEEE Computer
Society, Washington, DC, USA, 364–374. https://doi.org/10.1109/ICSE.2007.74

[42] Corey Jergensen, Anita Sarma, and Patrick Wagstrom. 2011. The onion patch: migration in open source ecosystems.
In Proceedings of the 19th ACM SIGSOFT symposium and the 13th European conference on Foundations of software

engineering (FSE’11). ACM, 70–80.
[43] Mitchell Joblin, Sven Apel, Claus Hunsen, and Wolfgang Mauerer. 2017. Classifying Developers into Core and

Peripheral: An Empirical Study on Count and Network Metrics. In Proceedings of the 39th International Conference on

Software Engineering (ICSE ’17). IEEE Press, Piscataway, NJ, USA, 164–174. https://doi.org/10.1109/ICSE.2017.23
[44] Eirini Kalliamvakou, Georgios Gousios, Kelly Blincoe, Leif Singer, Daniel M German, and Daniela Damian. 2014. The

promises and perils of mining GitHub. In Proceedings of the 11th working conference on mining software repositories

(MSR). ACM, 92–101.
[45] Foutse Khomh, Tejinder Dhaliwal, Ying Zou, and Bram Adams. 2012. Do faster releases improve software quality?:

an empirical case study of Mozilla Firefox. In Proceedings of the 9th IEEE Working Conference on Mining Software

Repositories. IEEE Press, 179–188.
[46] Dongsun Kim, Yida Tao, Sunghun Kim, and Andreas Zeller. 2013. Where should we fix this bug? a two-phase

recommendation model. IEEE Transactions on Software Engineering 39, 11 (2013), 1597–1610.
[47] Sunghun Kim and E James Whitehead Jr. 2006. How long did it take to fix bugs?. In Proceedings of the 2006 international

workshop on Mining software repositories. ACM, 173–174.
[48] Chakravanti Rajagopalachari Kothari. 2004. Research Methodology: Methods and Techniques. New Age International.
[49] Thomas D. LaToza, Gina Venolia, and Robert DeLine. 2006. Maintaining Mental Models: A Study of Developer Work

Habits. In Proceedings of the 28th International Conference on Software Engineering (ICSE ’06). ACM, New York, NY,
USA, 492–501. https://doi.org/10.1145/1134285.1134355

[50] Josh Lerner and Jean Tirole. 2002. Some simple economics of open source. The journal of industrial economics 50, 2
(2002), 197–234.

[51] Ytzhak Levendel. 1990. Reliability analysis of large software systems: Defect data modeling. IEEE Transactions on

Software Engineering 16, 2 (1990), 141–152.
[52] Jiwei Li, Michel Galley, Chris Brockett, Jianfeng Gao, and Bill Dolan. 2016. A Diversity-Promoting Objective Function

for Neural Conversation Models. In Proceedings of the 2016 Conference of the North American Chapter of the Association

for Computational Linguistics: Human Language Technologies (NAACL-HLT’16). 110–119.
[53] Bin Lin, Gregorio Robles, and Alexander Serebrenik. 2017. Developer turnover in global, industrial open source projects:

Insights from applying survival analysis. In 2017 IEEE 12th International Conference on Global Software Engineering

(ICGSE). IEEE, 66–75.
[54] DV Luciv, DV Koznov, George A Chernishev, Andrey N Terekhov, K Yu Romanovsky, and DA Grigoriev. 2018. Detecting

near duplicates in software documentation. Programming and Computer Software 44, 5 (2018), 335–343.
[55] Audris Mockus, Roy T. Fielding, and James D. Herbsleb. 2002. Two Case Studies of Open Source Software Development:

Apache and Mozilla. ACM Trans. Softw. Eng. Methodol. 11, 3 (July 2002), 309–346. https://doi.org/10.1145/567793.567795

ACM Trans. Softw. Eng. Methodol., Vol. 28, No. 1, Article 1. Publication date: January 2019.

https://doi.org/10.1126/science.1243089
https://doi.org/10.1126/science.1243089
https://doi.org/10.1109/ICSE.2007.74
https://doi.org/10.1109/ICSE.2017.23
https://doi.org/10.1145/1134285.1134355
https://doi.org/10.1145/567793.567795


1:30 Wang, Feng, et al.

[56] Nigel Nicholson. 1984. A theory of work role transitions. Administrative science quarterly (1984), 172–191.
[57] Siobhan O’Mahony and Fabrizio Ferraro. 2007. The emergence of governance in an open source community. Academy

of Management Journal 50, 5 (2007), 1079–1106.
[58] Brian T Pentland and Martha S Feldman. 2005. Organizational routines as a unit of analysis. Industrial and Corporate

Change 14, 5 (2005), 793–815.
[59] Huilian Sophie Qiu, Alexander Nolte, Anita Brown, A Serebrenik, and Bogdan Vasilescu. 2018. Going Farther Together:

The Impact of Social Capital on Sustained Participation in Open Source. In International Conference on Software

Engineering. IEEE Computer Society.
[60] R Development Core Team. 2008. R: A Language and Environment for Statistical Computing. R Foundation for Statistical

Computing, Vienna, Austria. http://www.R-project.org ISBN 3-900051-07-0.
[61] Foyzur Rahman and Premkumar Devanbu. 2011. Ownership, experience and defects: a fine-grained study of authorship.

In Proceedings of the 33rd International Conference on Software Engineering. ACM, 491–500.
[62] Baishakhi Ray, Daryl Posnett, Vladimir Filkov, and Premkumar Devanbu. 2014. A large scale study of programming

languages and code quality in github. In Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations

of Software Engineering. ACM, 155–165.
[63] Eric Raymond. 1999. The cathedral and the bazaar. Knowledge, Technology & Policy 12, 3 (1999), 23–49.
[64] Peter C. Rigby, Daniel M. German, and Margaret-Anne Storey. 2008. Open Source Software Peer Review Practices: A

Case Study of the Apache Server. In Proceedings of the 30th International Conference on Software Engineering (ICSE ’08).
ACM, New York, NY, USA, 541–550. https://doi.org/10.1145/1368088.1368162

[65] Jeffrey A Roberts, Il-Horn Hann, and Sandra A Slaughter. 2006. Understanding the motivations, participation, and
performance of open source software developers: A longitudinal study of the Apache projects. Management science 52,
7 (2006), 984–999.

[66] Bertil Rolandsson, Magnus Bergquist, and Jan Ljungberg. 2011. Open source in the firm: Opening up professional
practices of software development. Research Policy 40, 4 (2011), 576–587.

[67] Mike Savage and Roger Burrows. 2007. The Coming Crisis of Empirical Sociology. Sociology 41 (10 2007). https:
//doi.org/10.1177/0038038507080443

[68] Walt Scacchi. 2007. Free/Open Source Software Development. In Proceedings of the the 6th Joint Meeting of the European

Software Engineering Conference and the ACM SIGSOFT Symposium on The Foundations of Software Engineering (ESEC-

FSE ’07). ACM, New York, NY, USA, 459–468. https://doi.org/10.1145/1287624.1287689
[69] Mario Schaarschmidt, Gianfranco Walsh, and Harald FO von Kortzfleisch. 2015. How do firms influence open

source software communities? A framework and empirical analysis of different governance modes. Information and

Organization 25, 2 (2015), 99–114.
[70] Sonali K Shah. 2006. Motivation, governance, and the viability of hybrid forms in open source software development.

Management science 52, 7 (2006), 1000–1014.
[71] Emad Shihab, Akinori Ihara, Yasutaka Kamei, Walid M Ibrahim, Masao Ohira, Bram Adams, Ahmed E Hassan, and

Ken-ichi Matsumoto. 2013. Studying re-opened bugs in open source software. Empirical Software Engineering 18, 5
(2013), 1005–1042.

[72] Sabine Sonnentag. 1995. Excellent software professionals: Experience, work activities, and perception by peers.
Behaviour & Information Technology 14, 5 (1995), 289–299.

[73] Sabine Sonnentag. 1998. Expertise in professional software design: A process study. Journal of applied psychology 83, 5
(1998), 703.

[74] Igor Steinmacher, Tayana Conte, Marco Aurélio Gerosa, and David Redmiles. 2015. Social barriers faced by newcomers
placing their first contribution in open source software projects. In Proceedings of the 18th ACM conference on Computer

supported cooperative work & social computing. ACM, 1379–1392.
[75] Margaret-Anne Storey. 2019. Publish or Perish: Questioning the Impact of Our Research on the Software Developer. In

Proceedings of the 41st International Conference on Software Engineering: Companion Proceedings (ICSE ’19). IEEE Press,
Piscataway, NJ, USA, 2–2. https://doi.org/10.1109/ICSE-Companion.2019.00021

[76] Fei Liu Jeffrey Flanigan Sam Thomson and Norman Sadeh Noah A Smith. 2015. Toward Abstractive Summarization
Using Semantic Representations. , 1077-1086 pages.

[77] Marat Valiev, Bogdan Vasilescu, and James Herbsleb. 2018. Ecosystem-level determinants of sustained activity in
open-source projects: a case study of the PyPI ecosystem. In Proceedings of the 2018 26th ACM Joint Meeting on European

Software Engineering Conference and Symposium on the Foundations of Software Engineering. ACM, 644–655.
[78] Perry van Wesel, Bin Lin, Gregorio Robles, and Alexander Serebrenik. 2017. Reviewing career paths of the openstack

developers. In Proceedings of the 2017 IEEE International Conference on Software Maintenance and Evolution (ICSME ’17).
IEEE, 544–548.

[79] Bogdan Vasilescu, Kelly Blincoe, Qi Xuan, Casey Casalnuovo, Daniela Damian, Premkumar Devanbu, and Vladimir
Filkov. 2016. The sky is not the limit: multitasking across GitHub projects. In 2016 IEEE/ACM 38th International

ACM Trans. Softw. Eng. Methodol., Vol. 28, No. 1, Article 1. Publication date: January 2019.

http://www.R-project.org
https://doi.org/10.1145/1368088.1368162
https://doi.org/10.1177/0038038507080443
https://doi.org/10.1177/0038038507080443
https://doi.org/10.1145/1287624.1287689
https://doi.org/10.1109/ICSE-Companion.2019.00021


Unveiling Elite Developers’ Activities in Open Source Projects 1:31

Conference on Software Engineering (ICSE ’16). IEEE, 994–1005.
[80] Bogdan Vasilescu, Vladimir Filkov, and Alexander Serebrenik. 2013. Stackoverflow and github: Associations between

software development and crowdsourced knowledge. In 2013 International Conference on Social Computing. IEEE,
188–195.

[81] Bogdan Vasilescu, Daryl Posnett, Baishakhi Ray, Mark GJ van den Brand, Alexander Serebrenik, Premkumar Devanbu,
and Vladimir Filkov. 2015. Gender and tenure diversity in GitHub teams. In Proceedings of the 33rd Annual ACM

Conference on Human Factors in Computing Systems (CHI ’15). ACM, 3789–3798.
[82] Bogdan Vasilescu, Yue Yu, Huaimin Wang, Premkumar Devanbu, and Vladimir Filkov. 2015. Quality and productivity

outcomes relating to continuous integration in GitHub. In Proceedings of the 2015 10th Joint Meeting on Foundations of

Software Engineering (FSE ’15). ACM, 805–816.
[83] Georg Von Krogh and Eric Von Hippel. 2006. The promise of research on open source software. Management science

52, 7 (2006), 975–983.
[84] Patrick Wagstrom. 2009. Vertical interaction in open software engineering communities. PhD dissertation. Carnegie

Mellon University.
[85] Patrick Wagstrom, Corey Jergensen, and Anita Sarma. 2012. Roles in a networked software development ecosystem: A

case study in GitHub. (2012).
[86] Ronald L. Wasserstein and Nicole A. Lazar. 2016. The ASA’s Statement on p-Values: Context, Process, and Purpose.

The American Statistician 70, 2 (2016), 129–133.
[87] C.Weiss, R. Premraj, T. Zimmermann, and A. Zeller. 2007. How LongWill It Take to Fix This Bug?. In Fourth International

Workshop on Mining Software Repositories (MSR’07:ICSE Workshops 2007). 1–1. https://doi.org/10.1109/MSR.2007.13
[88] E. F. Weller. 2000. Practical applications of statistical process control [in software development projects]. IEEE Software

17, 3 (May 2000), 48–55. https://doi.org/10.1109/52.896249
[89] Tsung-Hsien Wen, Milica Gasic, Nikola Mrkšić, Pei-Hao Su, David Vandyke, and Steve Young. 2015. Semantically

Conditioned LSTM-based Natural Language Generation for Spoken Dialogue Systems. In Proceedings of the 2015

Conference on Empirical Methods in Natural Language Processing (EMNLP’15). 1711–1721.
[90] Terry Winograd, Fernando Flores, and Fernando F Flores. 1986. Understanding computers and cognition: A new

foundation for design. Intellect Books.
[91] Jeffrey M Wooldridge. 2015. Introductory Econometrics: A Modern Approach. Nelson Education.
[92] Judy L Wynekoop and Diane B Walz. 2000. Investigating traits of top performing software developers. Information

Technology & People 13, 3 (2000), 186–195.
[93] Daniel Bärl Torsten Zesch and Iryna Gurevych. 2012. Text Reuse Detection Using a Composition of Text Similarity

Measures. In Proceedings of the 24th International Conference on Computational Linguistics (COLING’212), Vol. 1. Citeseer,
167–184.

ACM Trans. Softw. Eng. Methodol., Vol. 28, No. 1, Article 1. Publication date: January 2019.

https://doi.org/10.1109/MSR.2007.13
https://doi.org/10.1109/52.896249



