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ABSTRACT OF THE DISSERTATION 

 

Deep Learning-Enabled Computational Imaging  

in Optical Microscopy and Air Quality Monitoring 

 

by 

 

Yichen Wu 

Doctor of Philosophy in Electrical and Computer Engineering 

University of California, Los Angeles, 2019 

Professor Aydogan Ozcan, Chair 

 

 

Exponential advancements in computational resources and algorithms have given birth to the 

new paradigm in imaging that rely on computation to digitally reconstruct and enhance images. 

These computational imaging modalities have enabled higher resolution, larger throughput 

and/or automatic detection capabilities for optical microscopy. An example is lens-less digital 

holographic microscope, which enables snapshot imaging of volumetric samples over wide field-

of-view without using imaging lenses. Recent developments in the field of deep learning have 

further opened up exciting avenues for computational imaging, which offer unprecedented 

performance thanks to their capability to robustly learn content-specific complex image priors. 

This dissertation introduces a novel and universal modeling framework of deep learning -

based image reconstruction technique to tackle various challenges in optical microscopic 
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imaging, including digital holography reconstructions and 3D fluorescence microscopy. Firstly, 

auto-focusing and phase recovery in holography reconstruction are conventionally challenging 

and time-consuming to digitally perform. A convolutional neural network (CNN) based approach 

was developed that solves both problems rapidly in parallel, enabling extended depth-of-field 

holographic reconstruction with significantly improved time complexity from O(mn) to O(1). 

Secondly, to fuse advantages of snapshot volumetric capability in digital holography and 

speckle- and artifact-free image contrast in bright-field microscopy, a CNN was used to 

transform across microscopy modalities from holographic image reconstructions to their 

equivalent high contrast bright-field microscopic images. Thirdly, 3D fluorescence microscopy 

generally requires axial scanning. A CNN was trained to learn defocuses of fluorescence and 

digitally refocusing a single 2D fluorescence image onto user-defined 3D surfaces within the 

sample volume, which extends depth-of-field of fluorescence microscopy by 20-fold without any 

axial scanning, additional hardware, or a trade-off of imaging resolution or speed. This enables 

high-speed volumetric imaging and digital aberration correction for live samples.  

Based on deep learning powered computational microscopy, a hand-held device was also 

developed to measure the particulate matters and bio-aerosols in the air using the lens-less digital 

holographic microscopic imaging geometry. This device, named c-Air, demonstrates accurate, 

high-throughput and automatic detection, sizing and classification of the particles in the air, 

which opens new opportunities in deep learning based environmental sensing and personalized 

and/or distributed air quality monitoring.   
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Chapter 1 Computational microscopy and digital holography 

For centuries, biomedical imaging has been powered by optical compound microscopes, 

leading to numerous discoveries at the micro- and nano-scale 1,2. Over the last few decades, as 

the computational resources become exponentially faster, cheaper, more powerful and portable 3, 

computational microscopy have emerged that rely on computation to digitally generate high-

resolution images over large sample areas and volumes 4–7. Among these different computational 

microscopy techniques, digital holography is one of the most widely explored modalities as it 

permits high-throughput 3D imaging of phase and amplitude information of specimen 8–15.  

A specific example is lens-less digital holographic on-chip microscopy 16,17, which digitally 

reconstructs microscopic images of specimens without using any lenses, as a result of which it 

can be made much smaller, lighter and lower-cost (Figure 1.1(a)). Furthermore, the limited 

space-bandwidth product of objective lenses in a conventional microscope can be significantly 

surpassed by a lens-less microscope, enabling ultra-wide field of view (FOV) that are orders of 

magnitude larger than the FOV of a conventional microscope (see Figure 1.1(b) for a 

comparison). Such lens-less imaging designs have enabled high-resolution and high-throughput 

imaging of specimens using compact, portable and cost-effective devices to potentially address 

various point-of-care, global-health and telemedicine related challenges, including cancer and 

disease diagnosis 4,18,19, environmental monitoring 20–24, microbial viability testing 25, 3D motion 

tracking of biological samples 26–29, analyzing high-energy particle tracks 30, among others 31, 23. 

In this chapter, I will first derive a general formulation of imaging system by its point spread 

function (PSF), which forms the foundation of various computational imaging approaches that 

will be expanded throughout this dissertation. Next, using the example of lens-less microscope, I 

will discuss design and operation principles behind digital holography imaging and image 
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reconstruction, as well as various computational techniques to improve the quality and/or 

efficiency for image reconstruction. This chapter also includes a brief discussion of my 

contributions in sparsity based iterative phase recovery 32 and simultaneous super resolution and 

color imaging for digital holography 33, in sections 1.8 and 1.9 , respectively.  

 Part of this chapter have previously been published in Y. Wu, and A. Ozcan. “Lensless 

Digital Holographic Microscopy and Its Applications in Biomedicine and Environmental 

Monitoring.” Methods, 136 (March 1, 2018): 4–16.  

 

Figure 1.1 Lens-less holographic on-chip microscopy. (a) Schematics of a lens-less on-chip microscope, including 

(A) a partially coherent light source (e.g., a multi-mode fiber-coupled LED), (B) the sample to be imaged (sample 

plane), and (C) image sensor chip (sensor plane). (b) Color reconstruction of a Pap smear. The reconstruction 

resolution and image quality are comparable to conventional microscope images, shown in the inset. Reprinted from 

Ref. 34 

1.1 Modeling of an imaging systems by PSF and inverse problems 

Many imaging systems can be considered as a linear system 35. Specifically, for coherent 

imaging system such as holography, the system response is linear to the complex amplitude 

because each point on the object is synchronized; in contrast to the incoherent imaging system 
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such as bright field microscopy or fluorescence microscopy, where the points on the object is 

independent to each other and the system response is linear to image intensity.  

Linearity of the imaging system leads to the definition of PSF, which can be considered as the 

impulse response of the imaging system, i.e. for an object function f(x, y) = ∫ f(u, v) ⋅ δ(x −
∞

−∞

u, y − v)dudv, its output to the linear imaging system H{⋅} is: 

 g(x, y) = H{f(x, y)} = ∫ f(u, v) ⋅ H{δ(x − u, y − v)}dudv
∞

−∞

 (1.1) 

where the h(x, y; u, v) = H{δ(x − u, y − v)} is defined as system PSF. In discrete representations, 

this forward model of a linear imaging system can be equivalently written as: 

 g = Hf + n (1.2) 

where f ∈ R𝑁  and g ∈ RM  are the discrete (vectorized) representation of the object f(x, y) and 

system output image g(x, y), respectively, n ∈ RM  is the additive noise, and H ∈ R𝑀×𝑁  is the 

discrete matrix representation of the integral with PSF h(x, y; u, v) in equation (1.1). The PSF 

incorporates different properties of the system, including but not limited to, the finite aperture of 

microscope objective lens (diffraction limit), size and spatial responsivity of the image sensor 

pixels, blurring, and system aberrations etc., into a single measurable property. A major task in 

computational imaging, known as image restoration (or reconstruction), is to solve the inverse 

problem of equation (1.2), i.e., restore the object function f given one or more measured images g, 

with or without knowledge of the system function H and noise model n. This task in general is 

ill-conditioned as the solution is not unique, but some of these inverse problems can be robustly 

solved using iterative methods, which I will expand in sections 1.6, 1.7 and 1.8; and more 

recently using non-iterative deep learning approaches, which I will expand in Chapter 2. 
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For some imaging systems, the PSF can be further assumed to be spatially-invariant, i.e., 

h(x, y; u, v) = h(x − u, y − v), which leads to the convolution relation: 

 g(x, y) = ∫ f(u, v) ⋅ h(x − u, y − v)dudv
∞

−∞

= f(x, y) ⋆ h(x, y) (1.3) 

where ⋆ represents convolution operation. In discrete representations, this becomes: 

  g = h ⋆ f + n (1.4) 

If we take the Fourier transform on both side of equation (1.3), the convolution becomes 

point-wise multiplication for the system and object function, i.e., 

 G(fx, fy) = F(fx, fy) ∗ H(fx, fy) (1.5) 

 G = H ∗ F + n (1.6) 

where * represents point-wise multiplication, and G, F, H are Fourier transforms of g, f, h , 

respectively. This means, the convolution relation of a spatially-invariant PSF facilitates the 

Fourier analysis of the microscopy system, which not only provides additional insights to the 

system in the spatial frequency domain, but also enables efficient computation through fast 

Fourier transforms (FFTs). One example is numerical propagation for digital holography 

reconstruction, as will be detailed in section 1.5. 

1.2 Theory of digital in-line holography 

Holography encodes three-dimensional (3D) information of sample through the interference 

of the scattered sample light and the un-scattered reference light in a hologram, which can be 

both in-line or off-axis geometries 35. In in-line holography, the sample wave and reference wave 

co-propagate in the same direction, whereas there is an angle between the two waves in off-axis 

holography. In holography, the object is semi-transparent and it can be approximated as:  

 𝑡(𝑥0, 𝑦0) = 1 + 𝛥𝑡(𝑥0, 𝑦0) (1.7) 
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where Δ𝑡 ≪ 1. When this object is locally illuminated by a plane wave 𝐴, it will propagate 

coherently over a distance of 𝑧2, where 𝑧2 is the spacing between the sample and sensor planes: 

 𝑅[𝑧2]{𝐴 ⋅ 𝑡(𝑥0, 𝑦0)} = 𝑅[𝑧2]{𝐴} + 𝑅[𝑧2]{𝐴 ⋅ 𝛥𝑡(𝑥0, 𝑦0)} = 𝐴′ + 𝑎(𝑥, 𝑦) (1.8) 

where 𝑅[𝑧2]{⋅} is the free-space propagation operator over a depth of 𝑧2. A hologram is formed 

by the interference of the scattered sample beam 𝑎(𝑥, 𝑦) with the un-scattered reference beam 𝐴′, 

and the intensity of this interference is recorded by e.g., an image sensor chip: 

 𝐼(𝑥, 𝑦) = |𝐴′ + 𝑎(𝑥, 𝑦)|2 = |𝐴′|2 + 𝐴′∗ ⋅ 𝑎(𝑥, 𝑦) + 𝐴′ ⋅ 𝑎∗(𝑥, 𝑦) + |𝑎(𝑥, 𝑦)|2 (1.9) 

where the object-related holographic information is encoded within the second and third terms, 

which are complex conjugates of each other; the first term can be subtracted out using a 

background image (without the object present), and the fourth term (i.e., |𝑎(𝑥, 𝑦)|2) can be 

ignored since Δ𝑡 ≪ 1. In fact, this last term represents the self-interference of the scattered 

waves from the specimen, which does not contain any useful information as far as holography is 

concerned. Digital holography digitally reconstructs an image of the object from its hologram. In 

section 1.5, I will introduce basic reconstruction method for digital holography, which will be 

followed by more advanced approaches in sections 1.6, 1.7 and 1.8 as well as in Chapter 2. 

1.3 Design principles of lens-less microscope 

Lens-less on-chip microscope stems from in-line holography (Figure 1.1(a)), where a semi-

transparent sample is placed on top of an image sensor with a typical spacing of < 1 mm (z2 

distance). A partially coherent light source illuminates at > 2-3 cm (z1 distance) above the sample; 

as a result, the sample casts an in-line hologram, recorded by an image sensor. The light source 

can be either a monochromator 36,37 or a laser 4,38 in a benchtop system or a light emitting diode 

(LED) in a portable device 17,39 with an optional spectral filter (to fine tune the temporal 

coherence) 40. The benefits of a partially coherent source (both temporally and spatially), 
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compared to its coherent counterpart (e.g., a laser source) include reduced speckle and multiple 

reflection interference noise as well as much easier automated alignment of digital images for 

e.g., lateral and axial resolution enhancement16,41. Unlike other digital holographic microscopes, 

an on-chip microscope does not need to use a small (e.g., sub-micron) pinhole since z1>>z2; in 

fact it can operate with very large apertures (e.g., 50-100 µm) without affecting its spatial 

resolution (detailed below and in Ref. 9). Although the coherence is partial, free space diffraction 

over >2-3 cm (i.e., z1 distance) creates enough coherence on the sample/sensor plane so that each 

individual point can be effectively considered coherent with respect to its local neighbors. In 

addition, because 𝑧1 ≫ 𝑧2, the magnification of lens-less microscopy is unit, meaning that the 

FOV is equal to the entire active area of the image sensor chip.  

There are several factors that can limit the resolution of a holographic on-chip microscope, 

including e.g., diffraction, pixel size, image chip area and coherence of the system. Theoretically, 

if the pixel size can be arbitrarily small and the coherence is perfect over a large sensor area, then 

an image that is ideally reconstructed using a lens-less on-chip microscope is diffraction limited, 

with a maximum detectable spatial frequency of ~n/λ, where n is the refractive index of the 

medium between the sample and the sensor plane, and λ is the illumination wavelength. 

In practice, an important limitation of the lens-less on-chip microscope resolution is created 

by the pixel size of the sensor due to its unit magnification. From Nyquist sampling theorem, the 

half-pitch resolution of a reconstructed image equals to the pixel size of the image sensor chip, 

which using a state-of-art CMOS image sensor chip (e.g., the ones used in smart phone cameras) 

will be about one micron. With additional image processing, e.g., pixel super-resolution 

algorithms (section 1.4), an effective pixel size that is much smaller than the wavelength of light 

can be digitally synthesized from a series of images that are shifted with respect to each other.  
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The coherence of the illumination can be another source of resolution limitation due to partial 

spatial coherence and/or temporal coherence. In a lens-less on-chip holographic microscope, the 

spatial coherence diameter at the sample plane is proportional to  ∙ z1/D , where D  is the 

aperture size at the illumination plane, which can be a simple pinhole or a multi-mode fiber. For 

a given  and z1, the choice of D affects not only the diameter of the spatial coherence at the 

sensor plane (which determines the effective numerical aperture in an object’s in-line hologram) 

but also the spatial smearing that is induced at the hologram plane. To expand on the latter point, 

a given illumination aperture, 𝑇(𝑥, 𝑦), effectively smears the hologram intensity17,42, i.e., 

 𝐼𝑚𝑒𝑎𝑠 = 𝐼𝑐𝑜ℎ ⋆ 𝑇 (−
𝑧1
𝑧2
𝑥, −

𝑧1
𝑧2
𝑦) (1.10) 

where 𝐼𝑐𝑜ℎ is the hologram assuming perfect spatial coherence over a large image sensor area 

(e.g., using an infinitesimally small pinhole), and  𝐼𝑚𝑒𝑎𝑠 is the measured hologram, and ⋆ stands 

for the spatial convolution operation. Equation (1.10) states that the aperture function is de-

magnified by a factor of 𝑀 = 𝑧1/𝑧2  and projected onto the hologram plane. Intuitively, this 

convolution relation of Equation (1.10) can be thought as an incoherent super-position of an 

infinite number of holograms, each of which is generated by an infinitesimal point source inside 

the aperture region, and assuming a perfectly incoherent illumination source across 𝑇(𝑥, 𝑦), each 

one of these point sources is incoherent with respect to others (Figure 1.2 (a)). To avoid this 

resolution limit due to pinhole or illumination aperture size, the projected/de-magnified aperture 

needs to be smaller than the pixel size so that the projected aperture equivalently merges into the 

pixel function. For an on-chip holographic microscope, this is easy to satisfy since 𝑀 =
𝑧1

𝑧2
≫ 1; 

for example, for an aperture diameter of 100 µm, and a z2 distance of 400 µm, a z1 distance 

of >3-4 cm should be sufficient for a typical CMOS imager chip that has a pixel size of ~1-2 µm.  
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Figure 1.2 Limitation of resolution by coherence in lens-less microscope. (a) Spatial coherence limit and source 

smearing effect. As a geometric intuition, individual point sources within the aperture generates super-imposed and 

shifted hologram that adds in intensity, so the spatial coherence limits the resolution in the sense that a scaled 

aperture convolves with the hologram. (b) Temporal coherence limit. The coherence length of optical wave limits 

the maximum angle of spatial resolution to interfere and be recorded. (c) Resolution characterization experiment 

using USAF-1951 resolution target. The illumination is set very far away so spatial coherence doesn’t play a role. 

Temporal coherence plays an important role in resolution when the spectrum bandwidth is not narrow enough (red). 

With sufficient temporal coherence, the period resolution is around twice the pixel size (blue).  

The temporal coherence of the illumination is another factor that is crucial for the spatial 

resolution of an on-chip holographic microscope and is determined by the coherence length ΔLc 

of illumination source, which is a function of the spectral bandwidth Δλ of the source 43:  

 ΔLc ≈ √
2 ln 2

π
⋅
λ2

n ⋅ Δλ
 (1.11) 

where n is refractive index, and λ is illumination wavelength. As illustrated in Figure 1.2(b), In 

order for a spatial frequency component of the object to be recorded at the sensor plane, the 

difference of the optical path-length of this high frequency scattered wave and the vertical 

reference wave should not exceed the temporal coherence length. Accordingly, the maximum 
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angle ( 𝜃𝑚𝑎𝑥 )  for any scattered plane wave component that can contribute to an object’s 

hologram can be determined as:  

 cos 𝜃𝑚𝑎𝑥 =
𝑧2

𝑧2 + Δ𝐿𝑐
 (1.12) 

Based on this temporal coherence length consideration, for a z2 distance of ~ 400 µm, as an 

example, the bandwidth of the partially coherent light source needs to be smaller than 20 nm in 

order to achieve a resolution of ~ 1 µm (which is close to the pixel size). Figure 1.2 (c) plots the 

analytical trend (equation (1.12)) and some experimental result of temporal coherence limit on 

resolution image resolution as a function of z2 distances, under two spectral bandwidths, center 

wavelengths and pixel sizes at the image sensor. In this, the z1 distance is selected to be 

sufficiently large so that the spatial coherence and the illumination aperture do not compromise 

resolution. For a narrower illumination bandwidth, and assuming that the spatial coherence does 

not pose a limitation, then the resolution of an on-chip holographic microscope is limited by the 

under-sampling that is created by the pixel pitch of the sensor chip, which can be overcome 

using e.g., pixel super-resolution techniques, as will be detailed in section 1.4. 

1.4 Pixel super-resolution for lens-less digital holographic imaging 

As discussed in the previous section, one limiting factor for resolution in an on-chip 

holographic microscope is pixelation and thus under-sampling of spatial frequency information 

at the hologram plane. To achieve resolution beyond the pixel-pitch limit, we can employ a 

technique called pixel super-resolution (PSR) 44–46. In PSR, the object’s hologram is shifted 

laterally in sub-pixel increments, and at each location on the shifting grid, a low resolution (LR) 

hologram is captured. This relative lateral shift of the hologram with respect to the sensor array 

plane can be achieved by e.g., shifting the image sensor chip 4, the sample 47, or the illumination 

source 46,48.  In a portable on-chip imaging device, the mechanical shifts required for PSR can be 
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replaced by an array of LEDs that are sequentially turned on/off to cast sub-pixel shifted 

holograms of a static sample 48. Using multiple LR holograms, a higher-resolution hologram can 

be digitally synthesized. One algorithm that can be used for this purpose is called “shift-and-add”, 

in which the low-resolution holograms are up-sampled, shifted, and digitally added 49. 

The shift-and-add algorithm, although simple in concept and computation, is based on the 

assumption that the LR holograms are sub-pixel shifted on a uniform grid, and that pixel function 

is ideally a delta function, δ(x, y) . This assumption puts part of the burden on hardware 

alignment and partially limits the choice of image sensors that can be used. When these 

assumptions for shift-and-add are harder to satisfy, more versatile techniques, which are based 

on e.g., iterative optimization, can also be used 45,46. These iterative methods generally solve an 

optimization problem to minimize a cost function such as: 

 x∗ = argmin∑‖Wi ⋅ x − yi‖p
q

i

+  ⋅ γ(x) (1.13) 

This cost function typically contains two parts: the first part ∑ ‖Wi ⋅ x − yi‖p
q

i  uses some 

norm (e.g., p=1 or 2 with q=1 or 2, respectively) to minimize the distance between the optimal 

solution (x∗) and i different measurements, where Wi represents the digital process of shifting 

and down-sampling of an image and yi is a lower resolution measurement. The second part γ(x) 

is a regularization parameter to maintain/regulate some desired quality in the reconstructed 

image, for instance, smoothness (derivative) 45, sparsity (l1-norm) 50, or sparsity in its derivative 

(total variation) 44,51, where  serves as a coefficient that balances the strength of regularization 

term. Since the transformations represented by Wi  are linear, this cost function is typically 

convex 52, and can be optimized via convex optimization algorithms, for instance, gradient-based 

and conjugate-gradient based descent algorithms 45,49. Through iterations, some of the spatial 

artifacts that are typically present in “shift-and-add” based solutions due to the non-uniform shift 
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grid or finite pixel function, can be minimized. When applied to digital holographic on-chip 

imaging 46, the high frequency fringes of an object’s hologram become quite visible after PSR 

(see Figure 1.3(d-e)), which is used to reconstruct higher resolution images of the samples. By 

using PSR with a vertical only illumination angle, periodic structures with a line-width as small 

as ~300 nm was resolved at 530 nm illumination wavelength, equivalent to an effective 

numerical aperture (NA) of ~0.9 (Figure 1.3(f)) 15,16.  

 

Figure 1.3 Pixel super-resolution (PSR) for digital holographic on-chip imaging. Subpixels shifts in a digital 

hologram can be achieved through (a) source shifting, (b) an array of static light sources, e.g., fiber-coupled LEDs 

that are individually controllable,  sensor shifting, or (c) sample shifting using e.g., a micro-fluidic flow. (d) An in-

line hologram before PSR. (e) Pixel super-resolved version of the same object’s hologram. (f) Reconstructed 

gratings with 338 nm line-width using PSR. (g) Microscope comparison of the same region of interest. Reprinted 

from Ref. 34. 

In addition to sampling sub-pixel shifted holograms through e.g., source, sample or sensor 

shifting, coherent imaging also offers other methods to achieve super-resolved pixels, for 
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instance, by varying the illumination wavelengths with small increments (e.g., ~ 2-3 nm) 53, or 

by varying the propagation distances (i.e., z2) 
54,55. Some recent work has also used deep-learning 

to achieve PSR 56–60, also covering microscopy applications 60.  

1.5 Digital hologram reconstruction and auto-focusing  

In digital holography, the image of a sample, both amplitude and phase, can be reconstructed 

through a digital back-propagation step. One method of digital back-propagation is the angular 

spectrum method 35. The angular spectrum is defined in the Fourier domain following the 

Helmholtz wave equation for the complex amplitude uz(x, y): 

 (
∂2

∂z2
+
∂2

∂x2
+
∂2

∂y2
)uz(x, y) + k

2uz(x, y) = 0 (1.14) 

where k = 2πn/λ is the wave-number for illumination wavelength 𝜆 and refractive index 𝑛 of 

the medium. Taking the Fourier transform of U(fx, fy) = FT{u(x, y)}, we have: 

 
𝜕2

𝜕𝑧2
𝑈𝑧(𝑓𝑥 , 𝑓𝑦) + [𝑘

2 − (2𝜋𝑓𝑥)
2 − (2𝜋𝑓𝑦)

2
] 𝑈𝑧(𝑓𝑥, 𝑓𝑦) = 0 (1.15) 

which is a wave equation and has solution (for k2 ≥ (2𝜋𝑓𝑥)
2 + (2𝜋𝑓𝑦)

2
) as: 

 𝑈𝑧(𝑓𝑥, 𝑓𝑦) = 𝑈0(𝑓𝑥, 𝑓𝑦) ⋅ 𝑒
𝑗√𝑘2−(2𝜋𝑓𝑥)2−(2𝜋𝑓𝑦)

2
⋅𝑧
= 𝑈0(𝑓𝑥, 𝑓𝑦) ⋅ 𝐻(𝑓𝑥, 𝑓𝑦) 

(1.16) 

This means, to numerically propagate a complex wave, the complex wave can be first 

transformed into spatial frequency (Fourier) domain, multiplied by a propagation kernel H(fx, fy) 

(also known as angular spectrum, which is a function of the propagation distance (𝑧)), and is 

finally transformed back into the spatial domain, using e.g., FFTs. Due to the periodicity of 

discrete Fourier transform, symmetric padding or tapered average padding on the hologram are 

frequently used before propagation to avoid ringing artifacts. Zero-padding in the frequency 

(Fourier) domain can also be used to effectively interpolate the propagated image in spatial 
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domain, which maintains the contrast by avoiding artifacts that are introduced using other image 

interpolation method such as bicubic interpolation 61.  

In lens-less microscope (Figure 1.1(a)), the propagation distance equals to the distance 

between the sample plane and the sensor plane (i.e. 𝑧 = 𝑧2). Accurate estimation of this sample-

to-sensor distance (𝑧2 ) of different parts of the 3D object is crucial to the quality of the 

reconstructed holographic image. This 𝑧2 distance estimation step is known as auto-focusing. A 

widely accepted auto-focusing method involves digitally propagating the recorded hologram to 

various axial distances, where a focusing criteria is evaluated on each propagated image, and a 

local maxima or minima of the criteria is selected as the focal plane. Various auto-focusing 

criteria has been evaluated for digital holographic imaging, including Tamura coefficient 62, edge 

sparsity 63 and others 64–69. Edge sparsity has been demonstrated as one of the most robust criteria 

in auto-focusing, among others 63,70. To speed up the auto-focusing search process, I also 

employed a fast searching algorithm, consisting of two steps: a rough focus step to search for a 

concave interval, and a fine focus step to find the exact focus based on golden ratio search 23.  

Since the opto-electronic sensor is only sensitive to the intensity of the impinging light, the 

back-propagation step converts the object’s hologram (equation (1.9)) into four different terms:  

 𝑅[−𝑧2]{𝐴
∗ ⋅ 𝐼(𝑥, 𝑦)} = |𝐴|2 ⋅ [1 + Δ𝑡(𝑥, 𝑦) + 𝑅[−2𝑧2]{Δ𝑡

∗(𝑥, 𝑦)}] + 𝑅[−𝑧2]{|𝑎(𝑥, 𝑦)|
2}   (1.17) 

where the first term on the right-side is a DC-background, the second term is the reconstructed 

object function, the third term is the twin image artifact and the fourth term is the back-

propagated self-interference term. This is related to the fact that the recorded hologram has only 

amplitude information and its phase is initially missing 71. In some imaging applications 26,27, 

where the objects of interest are small and relatively isolated/sparse, the twin image does not 

pose a significant challenge for the quality of the reconstructed image, and a simple back-

propagation can then be sufficient for these applications. In others, the image quality would be 
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compromised by the twin image and self-interference related noise terms, thus needs to be 

improved using e.g., phase recovery techniques, as will be detailed in subsequent sections.  

1.6 Phase recovery using object support 

One of the basic phase retrieval methods uses of an object mask constraint 17,71, where a 

threshold defines a 2D mask on the object plane, and parts of the back-propagated hologram on 

the object plane that lie outside of the mask regions are considered noise and are iteratively 

removed. In addition to thresholding, this 2D object mask/support can also be defined through a 

microscope image of the same region, using e.g., a hybrid design that includes a traditional lens-

based microscope as well as a lens-less on-chip microscope 72. This object-mask constraint 

works very well for imaging objects that are relatively small and isolated with a clear boundary. 

As an example, Figure 1.4 demonstrates the flowchart of a phase recovery algorithm, using 

object support which is quite effective in eliminating both the twin image noise as well as the 

multiple interferences in the background (shown as the ripples), enhancing the contrast and 

signal to noise ratio (SNR) for the objects of interest (isolated particles) in the output image.  

 

Figure 1.4 Object-support phase recovery for holographic images of aerosol particles. Hyperparameters: p=0.5, 

decay = 0.95, k = 2, N1 = 100, N2 = 10. Threshold defined as 3 times background standard deviation from 

background mean. Processing time is ~3 s for a 512×512 patch on GPU.  
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However, for samples that are confluent and connected, e.g., tissue slides or blood smears, it 

is more challenging to depict an object mask. More advanced algorithms using additional 

measurement constraints are needed for phase retrieval in these types of spatially dense and 

connected samples, which will be detailed in the following sub-sections. Furthermore, as will be 

discussed in Chapter 2, there are also emerging deep-learning and convolutional neural network 

based holographic image reconstruction and phase recovery methods that achieve excellent 

elimination of twin image noise and self-interference related spatial artifacts even for a dense and 

connected sample and using a single measurement constraint. 

1.7 Phase recovery using measurement diversities 

For imaging dense and connected samples, phase recovery methods that use additional 

measurements at different sample-to-sensor distances (heights) can be used. These lens-less 

holographic measurements at different heights impose physical measurement constraints that the 

twin image and other sources of noise terms do not satisfy. From these multiple lens-less 

measurements at different heights, a complex-valued object image can be recovered numerically, 

by digitally propagating among different measurement planes and replacing the amplitude of the 

calculated field at each plane by the square root of the measured intensity, while keeping the 

phase information unchanged. This process can be repeated for e.g., 10-30 iterations until a 

converged solution is achieved. The general framework of this type of an algorithm is called the 

Gerchberg-Saxton iterative error-reduction method 71,73. In different publications, it is also 

referred to as the iterative projection method 74,75, or multi-height phase recovery algorithm 4,19,76. 

In lens-less on-chip imaging, the multi-height phase recovery process typically requires 6-8 

heights to efficiently suppress the twin image noise and other spatial artifacts. Because the phase 

recovery problem is in general not convex, the solution may stagnate at a local optimum, which 



16 

is also known as the phase stagnation problem 4,77. One way to tackle this is to have an initial 

phase guess that is closer to the global optimum. The transport of intensity equation (TIE) 78,79 

has been demonstrated to be effective in providing an initial phase guess for the iterative multi-

height phase recovery to enable rapid convergence 4. Using this framework, lens-less on-chip 

imaging of pathology slides with a resolution and image quality/contrast comparable to a high-

end conventional compound microscope has been demonstrated (Figure 1.5) 4,80. In another 

study, a field-portable and cost-effective lens-less on-chip microscope based on the same multi-

height phase retrieval method was also demonstrated 40,81. 

 

Figure 1.5 Lens-less imaging of human breast pathology slide. (a) Full-FOV lens-less amplitude image of the 

specimen. For comparison, the typical digital FOV of conventional 20× and 40× microscope objectives are shown 

by solid rectangles. (b) Zoomed-in regions outlined by the yellow squares in (a), showing a disordered epithelium. (c) 

Microscope comparison image of (b) taken with a 40× objective lens (0.75 NA). (d) Super-resolved lens-less 

holograms that are used to generate the images shown in (b). Reprinted from Ref. 34 
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A recent work, inspired by the fact that almost all natural images, including those of 

biological samples, are sparse in the wavelet domain, has demonstrated that e.g., CDF9/7 

wavelet encoding can be used to simplify the phase recovery process in lens-less on-chip 

microscopy 32. This new approach, called sparsity-based multi-height phase retrieval, has 

demonstrated that high quality phase recovery and image reconstruction can be achieved using 

only two heights of hologram measurements for dense and connected biological samples, instead 

of the 6-8 heights employed in the regular multi-height phase retrieval method, giving a 

significant reduction in the number of measurements required (Figure 1.6). I will discuss other 

applications of sparse signal recovery and compressive sensing/sampling related approaches in 

computational lens-less digital holography in section 1.8.   

 

Figure 1.6 Sparsity based multi-height phase recovery (S-MH) achieves high quality phase recovery using 4× 

less hologram measurements than multi-height phase recovery (MH). (a) Reconstruction of the sample obtained 

by capturing holograms at 𝑁𝑧 = 8 heights and processed by multi-height phase recovery method. This image also 

serves as the reference image for comparison. (b) Same as (a), except for 𝑁𝑧 = 2. (c) Reconstruction obtained by 

capturing holograms at 𝑁𝑧 = 2 heights and processed by sparsity-based multi-height phase recovery method, which 

shows similar quality as (a) while using 4-fold less measurements. (d-f) Zoomed-in regions of (a-c) marked by blue 

rectangles. Reprinted from Ref. 32 
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As another degree of freedom, multiple angles of illumination can also be used for phase 

recovery, while at the same time increasing the effective NA of a reconstructed image through 

the synthetic aperture approach 38,54. In addition to iterative algorithms as described above, there 

are also recursive phase retrieval methods that use Kalman filtering and multiple out-of-focus 

measurements 82,83. Kalman filtering based recursive phase retrieval method offers good noise-

reduction performance and can robustly reconstruct objects at low SNR. A later work has also 

simplified the computational cost of this Kalman filtering based approach using a diagonal 

approximation of the correlation matrix 84. However, these methods require measurements (e.g., 

50-100 heights) compared to iterative multi-height phase recovery techniques (e.g., two heights) 

and their performance for high resolution imaging of dense and connected biological samples is 

relatively inferior in lens-less on-chip imaging. 

1.8 Compressive sensing/sampling and sparsity-based phase recovery 

Compressive sensing (or compressive sampling) framework aims to reconstructs a signal (x) 

using measurements (y) of much smaller dimension (dim (x) ≫ dim(y)), i.e., the measurement 

system, A, is under-determined. The basic assumption is that the signal to be reconstructed can 

be represented as a sparse function in some encoding domain. The compressive sensing/sampling 

inherently solves an optimization problem to recover a signal, 𝑥: 

 x∗ = argmin ‖Ax − y‖p
q
+α ⋅ card(Cx) (1.18) 

where 𝛼  is a regularization parameter, 𝐶  is the encoding matrix, card (⋅)  is the cardinality 

function, which minimizes the number of non-zero elements in 𝐶𝑥.  

Under some assumptions 52, the above non-convex problem can be equivalent to the 

following convex optimization problem:  

 x∗ = argmin ‖Ax − y‖p
q
+ α ⋅ ‖Cx‖1      (1.19) 
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The compressive sensing/sampling framework requires that the sought signal is sparse in 

some encoding domain range(C), and that the basis of the measurement matrix A is uncorrelated 

with that of the encoding matrix C. The form of the encoding matrix C depends on the a priori 

information on the sample or its image. For instance, if the image/sample itself is sparse (e.g., a 

fluorescently tagged object), then C = I would be sufficient, where I is the identity matrix. As 

another example, if the image’s derivative is sparse (i.e., only a few jumps in the image), then C 

can simply be selected as a 2D gradient operator D,  and TV(x) = ‖Dx‖1 is usually called the 

total variation or TV-norm 85. In statistics and machine learning literature, this is also known as 

the least absolute shrinkage and selection operator (LASSO) method 86,87. 

Using compressive sensing/sampling, digital holographic phase recovery performance can be 

significantly improved 88. Some of the early work shows that the wave propagation itself is an 

efficient encoding scheme in compressive sensing, which enables e.g., single-height digital 

holographic phase recovery without the need for an object mask 89, and 3D sectioning of samples 

from 2D holographic measurements, among other achievements 90,91. However, these schemes 

that use wave propagation as a sparse encoder mostly work for objects that are relatively isolated 

and sparse, and cannot work with dense and connected biological samples, which is an important 

application of lens-less microscopy. As discussed in the earlier sub-section, sparse signal 

recovery can also be used to image dense objects using a lens-less on-chip microscope by 

merging it with multi-height based iterative phase recovery to reduce the number of heights that 

is required to two heights. Compressive sensing has also been used in lens-less multi-spectral 

imaging, to demultiplex images obtained with a wavelength-multiplexed illumination 92, and to 

significantly increase the resolution of lens-less fluorescence on-chip microscopy and undo the 

effects of diffraction 50,93–95. 
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1.9 Color imaging in lens-less digital holographic microscopy 

In many applications, including e.g., biomedical related ones, a color image is preferred, as it 

provides additional information and contrast of the sample. However, holography uses a quasi-

monochromatic illumination for temporal coherence considerations. To get a color image of a 

sample, multiple holograms under different illumination wavelengths can be acquired and 

digitally combined to synthesize a color image. For instance, holograms using illumination 

wavelengths at the red (R), green (G) and blue (B) parts of the spectrum can be sequentially 

recorded, reconstructed separately and then digitally merged into a color image 20,38. This 

requires 3-fold increase in data acquisition compared to that of a monochrome reconstruction. 

One method to have less number of measurements for color imaging is called YUV 

averaging 40,96. In this approach, high resolution and high-quality images (through PSR and 

phase recovery, i.e., without pixelation and twin image artifacts) are only acquired at a single 

illumination wavelength to create the Y channel (brightness) of a color image. Two additional 

low-resolution holograms are captured, back-propagated, and merged to get the U and V 

channels (color) of the image. Unfortunately, since this YUV averaging method smears the color 

information carried out in the U and V channels, color leakage is observed at the borders of an 

object (e.g., a stained cell). Moreover, because the Y channel comes from a single wavelength, 

the brightness of the image is biased by the transmission of the sample at that wavelength (see 

e.g., the third column of Figure 1.7).  

Another method to improve the color imaging efficiency of an on-chip holographic 

microscope is to simultaneously use three illumination wavelengths, which effectively generates 

a multiplexed hologram that is formed by the summation of each hologram intensity at different 

color channels. This multiplexed hologram, captured through a Bayer color filter array (CFA) on 

a color image sensor chip, can be de-multiplexed through a matrix inverse operation using the 
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pre-calibrated spectrum of the sensor response 33,97–99. However, because the pixels of different 

color channels on a Bayer CFA are not at the same location, conventional demoisaicing methods 

that rely on interpolation of different channels generate color artifacts at rapidly oscillating 

holographic fringes. This color artifact is much more pronounced in holography because a 

hologram contains high frequency fringes and through digital wave propagation, these localized 

color artifacts can permeate to the entire object image.  This fringe-related color artifact can be 

digitally mitigated by using PSR to generate virtual pixels that super-impose upon each other. 

This approach is known as demosaiced pixel super-resolution (D-PSR) method, and has been 

shown to generate high-fidelity color images of stained biological samples using multi-

wavelength illumination with sources that are simultaneously on 33,49. As an example, Figure 1.7 

demonstrates the imaging of color-stained Pap smears using D-PSR, YUV averaging, and 

sequential RGB illumination in holographic imaging, where D-PSR achieves similar color 

imaging performance compared to RGB sequential but requires three folds less number of 

measured holograms. An alternative technique for color imaging in a holographic on-chip 

microscope combines a lens-less microscope with a mobile-phone based microscope, through 

wavelet fusion of mobile-phone microscope’s low-resolution color images with a pixel super-

resolved lens-less reconstruction at a single wavelength 100. 
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Figure 1.7 Wide field-of-view lens-less holographic color imaging of a Papanicolaou Smear. (a) Full field-of-

view lens-less holographic image that is reconstructed using D-PSR under wavelength-multiplexed illumination at 

470 nm, 527 nm and 624 nm. N = 144 raw holograms are used for this reconstruction. (b,f,j) Zoomed-in regions of 

(a). (c,g,k) Same zoomed in regions-of-interest reconstructed using the YUV color-space averaging method 96; N+3 

= 147 raw holograms are used. YUV color-space averaging method shows intensity bias and color leakage artifacts. 

(d,h,l) Same zoomed in regions-of-interest reconstructed using sequential RGB illumination 38; 3N = 432 raw 

holograms are used. (e,i,m) Lens-based microscope images of the same samples are provided for comparison. These 

microscope images are blurred in some regions due to limited depth-of-focus of the objective-lens compared to lens-

less holographic imaging. Typical FOVs of a 40x and a 20x objective-lens are also shown in (a) for comparison with 

lens-less microscope. Reprinted from Ref. 33 
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Chapter 2 Deep learning in computational microscopy  

Deep learning is a state-of-art machine learning technique to automatically analyze signals or 

data, which uses multi-layered neural networks. The word “deep” refers to the fact that there are 

tens, sometimes hundreds, of layers in the neural networks; in fact, it has been shown that a 

deeper network can perform better for many modern tasks 101,102,102,103. The basic building block 

of these neural networks, which is also known as artificial “neurons”, is a combination of a linear 

filter and a nonlinear activation function, which, when put together, can approximate an arbitrary 

function 104. Neural network was first proposed in 1940s 105, and many fundamentals of neural 

network were established around 1990s 106–109. Recently, there is a renaissance of deep neural 

networks, which is powered by large amount of data, advancements in parallel computation 

power and various open-source frameworks 110–113. Deep neural networks have been proven to be 

very effective in a variety of tasks including image classification 101–103,107,114, natural language 

processing 115 and playing strategic games 116, among others 117,118.  

More recently, deep learning has been used for many applications in computational 

microscopy, solving inverse problems for image restoration, which I will detail in section 2.1. 

Among other neural network architectures, convolutional neural network (CNN) have been 

shown to be very effective in processing images, partially thanks to their shift-invariant 

properties. In section 2.2, I will introduce the design and implementation of CNNs, which will be 

used throughout this dissertation. Based on these fundamentals, in sections 2.3, 2.4 and 2.5, I will 

detail my inventions and contributions in deep learning enabled three-dimensional computational 

microscopy, for applications in digital holography, bright field microscopy and fluorescence 

microscopy, respectively.  

Part of this chapter have been previously published in:  
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• Y. Wu et al., “Extended Depth-of-Field in Holographic Imaging Using Deep-Learning-Based 

Autofocusing and Phase Recovery.” Optica 5, no. 6 (June 20, 2018): 704–10.;  

• Y. Wu et al., “Bright-Field Holography: Cross-Modality Deep Learning Enables Snapshot 3D 

Imaging with Bright-Field Contrast Using a Single Hologram.” Light: Science & Applications 2019;  

• Y. Wu et al., “Three-Dimensional Propagation and Time-Reversal of Fluorescence Images.” Nature 

Methods 2019 (accepted);  

• Y. Rivenson, Y. Wu, and A. Ozcan. “Deep Learning in Holography and Coherent Imaging.” 

Light:Science&Application 8, no. 1 (September 11, 2019): 1–8.;  

• K. Hann, Y. Rivenson, Y. Wu, and A. Ozcan., “Deep learning-based image reconstruction and 

enhancement in optical microscopy.” Proceeding of IEEE 2019 (accepted).  

2.1 Image restoration and reconstruction using deep learning 

Chapter 1 introduced the modeling of imaging system by PSF, as well as iterative algorithms 

such as error reduction and compressive sensing etc. to solve inverse problems (equation (1.2)) 

for various image restoration and reconstruction tasks including pixel super resolution and phase 

recovery. Here, I will introduce how deep learning can significantly improve the results of 

similar tasks, and enable novel tasks beyond the capability of conventional algorithms.  

2.1.1 Single image super resolution  

Optical microscopes have finite aperture, which limits the extent of spatial frequencies that 

can pass through the system, and therefore defines the smallest resolvable feature d: 

 d =
λ

2NA
  (2.1) 

where λ is the wavelength of illumination, and NA is numerical aperture of the imaging system, 

which defines the ability of the lens to gather diffracted object light from a fixed distance, and 

cannot exceed the refractive index of the sample medium. For instance, a fundamental diffraction 
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limit is λ/2 in the air (refractive index 1), which restricts resolution in the visible range to be 

around 200-300 nm, unless other super resolution techniques that beats the diffraction of light 

are employed. Another resolution limit in optical microscopy comes from the finite spatial 

sampling of the image sensor chip, where the smallest resolvable feature cannot exceed twice the 

effective pixel size of the system, as has been detailed in section 1.4.  

As described in section 1.1, these effects can all be attributed together to the system PSF, 

which in some cases can be assumed to be spatially invariant (equation (1.3)), but in general is 

spatially variant due to system aberrations introduced by various optical components as well as 

the mismatch of the sample refractive indices and the optical medium (equation (1.1)). The 

inverse problem of such PSF-related resolution degradation is known as super resolution by 

deconvolution, which aims to recover the missing spatial frequencies in a microscopy system by 

solving the inverse problem. Although this problem in general is ill-conditioned, because an 

infinite set of high-resolution images can all degrade to the same low resolution image (i.e. 

spatial frequencies beyond diffraction limit can be arbitrarily extrapolated), such extrapolation in 

theory can be feasible based on the measured (or a-priori known) spatial frequencies of an 

object119, using, for example, the principle of analytical continuation 120. In practice, the success 

of frequency extrapolation is fundamentally related to the imaging system’s signal to noise ratio 

(SNR)119 and a-prior knowledges; in fact, better results can be achieved with more accurate a-

priori knowledge of the signal (e.g. sample image properties and structures) and system PSF. 

A deep neural network acquires such a-priori knowledge through training with accurately 

registered image pairs of low-resolution images as input and corresponding high resolution 

images as ground truth label. After training, the deep neural network can perform a statistical 

inference acting on the low-resolution input images to match the corresponding high-resolution 
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labels.  For microscopy applications, this form of super-resolution is far reaching as it allows for 

larger fields of view to be measured per acquired image, which can be particularly useful for 

high throughput imaging. In other words, low NA objective lenses can image a much larger field 

of view as illustrated in Figure 2.1(a), thus the technique improves over the native space-

bandwidth product of an objective lens 121. This super-resolution image enhancement has been 

demonstrated for fluorescence, bright-field, and coherent (holographic) imaging systems, as 

illustrated in Figure 2.1(b-d). In many cases, the deep networks were also able to generalize to 

different types of samples that were not part of the training set. For example, super-resolution of 

bright-field microscopy images that were trained with one tissue type and was successfully tested 

on another 122. Recently, a unique framework termed as Deep-Z uses deep learning to selectively 

deconvolves the spatial features that come into focus, while convolving other features that go 

out-of-focus, endowing snapshot 3D refocusing capability of coherent imaging and holography 

to incoherent fluorescence microscopy 123. I will expand Deep-Z approach in section 2.5.  

 

Figure 2.1 Super-resolution and image quality enhancement using deep learning. (a) A fluorescence 

microscopy image captured with a 20× objective lens and 10× field-of-view (FOV) marked. (b) Zoomed in region of 
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(a) showing a network perform super-resolution of a 10×/0.4NA input image. Images taken from Ref. 124. (c) Super-

resolution of a bright-field microscope image. Input image is taken using a 40×/0.95NA microscope objective. 

Images taken from Ref. 122. (d) Super-resolution of an image created using digital holographic microscopy. Images 

taken from Ref. 125. Input is imaged using a 4×/0.13NA microscope objective. Images taken from Ref. 125. (e) Super-

resolution of a scanning electron microscope (SEM) image. Images taken from Ref. 126.  

In addition to light microscopy, similar techniques have also been applied to enhance images 

acquired by a scanning electron microscope (SEM) 126 (see Figure 2.1(e)). SEM imaging is not 

limited by the wavelength of electrons, but instead by aberrations and pixel size of the imaging 

system. For the latter, de-aliasing through deep learning can be used to perform pixel super-

resolution of electron microscopy images, so that the electron doses and related sample damage 

can be reduced, without sacrificing adequate SNR. SEM can also be expensive and slow to 

image large areas at the nanoscale level, which could be improved using the same method. 

2.1.2 Phase recovery and hologram reconstruction 

As discussed in section 1.5, one of the most important and challenging tasks in digital 

holography is phase recovery, since the opto-electronic sensor is only sensitive to the intensity of 

the impinging light. Many optical and/or numerical methods have been proposed for phase 

recovery analytically or iteratively 34 (see e.g. sections 1.6, 1.7 and 1.8 for details). In contrast to 

these physics-driven hologram reconstruction approaches, emerging data-driven alternatives 

based on deep learning have recently demonstrated rapid and robust holographic image 

reconstruction from a single hologram. These data-driven approaches use accurately-registered 

and labeled image data to train a CNN; these high-quality image labels used as the ground truth 

for the training phase can be obtained from e.g., known sample structures 127 (Figure 2.2(a)), or 

by using a physics-based iterative reconstruction method 128 (Figure 2.2(b)).  After its training, 
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the network can blindly transform a distorted, low-quality image obtained from a single 

hologram intensity into the desired high-quality label/image 127,128 (Figure 2.2). In general, a 

better reconstruction quality can be achieved through physics-based learning approaches, for 

example, by first refocusing the hologram (without phase recovery) onto the object plane, and 

then using deep learning based inference (see e.g., Figure 2.2(b-d)).  

 

Figure 2.2 Deep learning-based hologram reconstruction. (a) An end-to-end CNN was trained to transform a 

hologram directly to a phase image127. (b) The raw hologram (i.e., without phase information) was numerically 

focused to the sample plane and was used as an input for the network to match the phase-recovered image128. The 

sample is a Pap smear specimen. (c) The raw hologram was propagated to an approximate distance within a sample 

volume, and the deep network generated an extended depth-of-field reconstruction of the whole sample volume, also 

performing auto-focusing129. The specimen is a 3D distributed aerosol sample. (d) Similar to (b) but implemented on 

holograms under low-photon and poor SNR conditions130. Adapted with permission from Ref. 131 
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A recent work129 further demonstrated the ability of a trained deep neural network to perform, 

simultaneously, auto-focusing and phase recovery to generate an extended depth-of-field image 

from a single hologram measurement (Figure 2.2(c)). In this deep learning-based framework, 

which is termed Holographic Imaging using Deep Learning for Extended Focus (HIDEF), the 

network is trained using pairs of randomly defocused (backpropagated) holograms and their 

corresponding in-focus, phase-recovered images. HIDEF significantly decreases the time 

complexity of holographic image reconstruction in 3D through simultaneous refocusing and 

phase recovery of 3D distributed sample points, which is done all in parallel. I will expand this 

HIDEF approach in section 2.3. 

Deep learning has also been used to perform denoising of object images reconstructed from 

their holograms, to substantially increase the SNR of the output images130,132 (Figure 2.2(d)). In 

one of these approaches 132, the network was trained using high SNR images as the labels, along 

with computationally simulated input images that had lower SNR. The trained network was then 

used to blindly perform robust speckle noise reduction in experimentally obtained image data. A 

similar framework 130 was also used to successfully retrieve the shape of an object from its 

photon-starved hologram with an SNR that is close to one.  

In addition to being more data efficient (using only a single hologram measurement), these 

deep learning-based hologram reconstruction methods also demonstrate a four- to thirty-fold 

increase in the reconstruction speed compared with the state-of-the-art iterative hologram 

reconstruction algorithms 129,130.  

2.1.3 Imaging through scattering media and diffraction tomography 

The applications of deep learning in coherent imaging systems are not limited to holography, 

which assumes a single-scattering event. Using accurately-labeled and cross-registered datasets 
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of input-label image pairs, a deep neural network can also be trained to digitally reverse multiple-

scattering events and reconstruct a sample’s image even through scattering media, where the 

scattering event can also be approximated by a system PSF in the forward model defined as in 

section 1.1. For example, a deep neural network was trained for image reconstruction through 

glass diffusers under coherent illumination 133,134 (Figure 2.3(a)). A related method was also 

demonstrated to reconstruct and classify handwritten digits from input images of speckle patterns, 

obtained through multimode fiber propagation over a distance of up to 1 km135 (Figure 2.3(b)).  

 

Figure 2.3 Deep learning-based imaging through complex media. (a) Imaging through a diffuser134. Reprinted 

with permission from Ref. 134. (b) Imaging through a multi-mode fiber135. (c) Learning-based diffraction tomography 

reconstruction136. (d) Speckle noise reduction in diffraction tomography137. Reprinted from Ref. 131 

Deep learning has also been applied to optical diffraction tomography. In one of the earlier 

studies in this field, Kamilov et al. demonstrated that a trained, fully connected neural network 

can form an inverse model to reconstruct the 3D refractive index distribution of cells from 

diffraction tomography recordings 136 (Figure 2.3(c)). Recently, it has been also demonstrated 
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that a CNN can be trained and used for an ill-conditioned inverse imaging problem, providing 

tomographic reconstruction of densely layered objects from limited angle intensity projection 

recordings 138. Another recent work has successfully utilized a generative adversarial network 

(GAN) for reducing dynamic speckle noise in diffraction tomography images (Figure 2.3(d)), 

using unregistered pairs of input and label images during the training process 137.  

2.1.4 Transformation between microscopy modalities and contrast mechanisms 

Another interesting avenue is to learn a statistical transformation between two different 

microscopic imaging modalities and/or contrast mechanisms, which allows the network to 

achieve results that are not possible using standard forward model-based inverse problem 

solutions. Using this deep learning-based approach, cost-effective or simpler microscopes can 

take the same quality of measurements as the gold-standard microscopes, helping to democratize 

microscopy related research and innovation. An example is lens-less digital holographic 

microscope, which has the advantage of compactness, cost-effectiveness, snapshot volumetric 

imaging and wider field-of-view. However, the image quality and contrast of a lens-less 

microscope is inferior compared to a benchtop bright field microscope due to various sources of 

coherent noise. Using cross-modality deep learning transformation, I developed a framework that 

transforms lens-less holography image to the equivalence of benchtop bright field image (Figure 

2.4(b)) 139. This unique framework is known as “bright field holography”, which I will expand in 

section 2.4. Similar transformation has also been demonstrated for low-cost and portable 

cellphone microscopes, which corrects the aberrations and improves the resolution and SNR of a 

cellphone microscope image (Figure 2.4(a)) 140. As another example, cross-modality image 

transformations can be used to enhance the resolution of a microscopy modality beyond the 
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diffraction limit, transforming diffraction limited confocal microscopy images into stimulated 

emission depletion (STED) microscopy equivalent images (Figure 2.4(c))141. 

 

Figure 2.4 Transforming the images between different microscope modalities and contrast mechanisms.  (a) 

Cellphone microscope image transformed into a benchtop microscope equivalent image. (b) Lens-less digital 

holographic (DH) microscope image transformed into a benchtop bright-field microscope equivalent image. (c) 

Confocal microscope image transformed into a stimulated emission depletion (STED) equivalent image. (d) Label-

free phase contrast image stack transformed into fluorescence-labeled image. (e) Label-free auto-fluorescence image 

transformed into histologically stained bright-field microscope equivalent image. (f) Label-free quantitative 

reconstructed phase image transformed into histologically stained bright-field microscope equivalent image.  

Using similar framework, deep learning has also been used to perform image transformations 

across different contrast mechanisms. One of the most interesting direction for this application is 

bypassing chemical labeling techniques (normally used to add exogenous contrast to biological 

samples), where deep learning can be used to transform one or more label-free images of the 

sample with indigenous contrast such as quantitative phase or auto-fluoresce into an equivalent 
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image of the chemically labeled sample. Such transformation has multiple benefits including: (1) 

saves the cost and labor for staining; (2) expedite the imaging and diagnostic process; (3) 

provides the possibility to virtually staining the same sample (such as a tissue section) by more 

than one contrast mechanisms; and (4) improve upon the repeatability of physical stains against 

lab-to-lab and technician-to-technician variations 142. As an example, Rivenson et al.143 

demonstrated the efficacy of the deep learning-based staining using images of a single 

autofluorescence channel of an unstained tissue, and that the technique can be applied to several 

different tissue types and histological stains (Figure 2.4(e)).  It was also demonstrated that 

additional excitation channels or imaging modalities can also be used to increase the staining 

quality, in cases where some of the tissue constituents do not provide meaningful contrast at a 

single band 143,144. These techniques can also be used with other contrast mechanisms and 

microscope modalities, such as optical coherence tomography (OCT)145,146,  quantitative phase 

imaging (Figure 2.4(f)) 147, Raman microscopy 148,149 as well as other rapid staining methods 150–

152. As another example, deep learning was successful in predicting fluorescently-tagged neuron 

images using unlabeled quantitative phase images (phase contrast image stack) 153, enabling the 

detection of specific markers without the need of potentially lengthy, costly and toxic process of 

labeling (Figure 2.4(d)). 

2.2 Network and training 

The image restorations and transformations described above, as well as many others 154,155, 

are generally enabled by supervised optimization of CNNs using accurately-registered image 

pairs (Figure 2.5(a)). CNNs typically contain tens to hundreds of layers of convolution kernels 

(filters), bias terms, and non-linear activation functions. Through a process of training (which is 

a one-time effort), the weights of these filters and biases of the neural network are adjusted in a 
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way that minimizes the error between the network output image and the “gold standard” target 

labels, in terms of a user-defined cost or loss function (for example, mean squared error loss106 

Figure 2.5(b)). This trained network can subsequently be used to perform a pre-defined image 

reconstruction task with a single forward-pass through the network, yielding its inference. Such 

inference typically only takes a fraction of a second (using e.g., a standard graphics processing 

unit, GPU) without the need for manual tuning of any hyperparameters or a refinement of the 

physical assumptions made regarding the image reconstruction model; in fact, this non-iterative 

single forward-pass reconstruction capability forms one of the major advantages of deep 

learning-based solutions to inverse problems in imaging. In this section, I will introduce the 

strategies to build and implement a deep neural network for microscopic image reconstruction. 

 

Figure 2.5 Training a deep neural network for image reconstruction. (a) Training workflow of an image 

reconstruction deep neural network, including data acquisition, physics-based constraints, image registration, and 

training. (b) An example network training and testing procedure, where the network learns to match the input image 

to a target label (ground truth image) using a given loss/cost function. Reprinted from Ref. 131 

2.2.1 Neurons, layers and network architecture 

Several different types of layers are used by neural networks, including fully-connected 

layers, which connect between each neuron in two consecutive layers; pooling layers, which find 
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e.g., the maximum or average of adjacent tensor values; and convolutional layers, which provide 

a spatially limited connectivity across successive layers. Using all convolutional layers in a 

network, as in a CNN, has the property of parameter sharing and shift-invariance that enables 

homogenous detection of features within the image regardless of their locations, which is 

especially useful for microscopic image processing. It also allows for scaling of the network, 

where the testing can be performed on images of different sizes from training. Another desirable 

property of deep CNNs is that the convolutional layers can create hierarchical data 

representations 156. Each convolutional layer maps successive data tensor xi by convolution: 

 xi+1 = CONV(xi) = Wi,j ⋆ xi + bi,j (2.2) 

where CONV stands for the convolution operator (including the bias terms), and Wi,j and bi,j are 

the trainable convolutional filter and bias terms of layer i and channel j,  respectively. The size of 

convolutional filter (e.g. 3 × 3) defines the receptive field of the convolutional layer, i.e. the size 

of the image feature that can be perceived by this layer. Larger receptive field can be achieved by 

cascading convolutional layers and/or pooling layers. In fact, it has been shown that cascading 

smaller filters (3 × 3) is more effective than using a larger filter (e.g. 5 × 5, or 7 × 7) directly 102.  

A nonlinear activation function is typically used right after a convolutional or fully connected 

layer. While a number of nonlinear functions exist, rectified linear unit (ReLU) have become 

among the most popular 157,  which is defined as: 

 ReLU(x) = {
x, if x > 0
0, otherwise

 (2.3) 

ReLU is favorable because its gradient is cheap to compute and it mitigate the vanishing gradient 

problem 108, which facilitates highly efficient training of very deep neural networks 157–159. 

The arrangement of layers into a neural network is called network architecture. A variety of 

network architectures have been developed; a few general types of them are most popular and 
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have been repeatedly demonstrated effective103,160,161. Regardless of architecture, some hyper-

parameters of the network need to be tuned. An example is network size, which can be changed 

through the number of layers as well as number of channels in each layer of the network. Tuning 

these parameters can ensure that the network size is large enough to extract and learn important 

features but not so large that it overfits to training data 162,163. For CNN, the size of convolutional 

and pooling layers also controls the effective receptive field and should be designed to 

sufficiently contain all the required information164. Hyper-parameters are often tuned manually 

by trying (cross-validating) different designs; an active area of research now is aiming automatic 

and optimal tuning of these hyperparameters of a neural network 165–167.  

2.2.2 U-Net 

One of the most popular network architectures for microscopic image transformations is U-

net 161,168, which was originally used for image semantic segmentation but has been widely 

applied to image transformation ever since.  Figure 2.6(a) illustrates an example U-Net, which 

has U shape and consists of a series of convolutional blocks and skip connections to allow the 

network to go deeper without vanishing gradients issues. It has a down-sampling path and a 

symmetric up-sampling path. In this example, there are five down-sampling blocks. Each block 

contains two convolutional layers that map the input tensor xk to the output tensor xk+1: 

 xk+1 = xk + ReLU[CONVk2{ReLU[CONVk1{xk}]}] (2.4) 

where the subscript of CONV denotes the number of channels in the convolutional layer; e.g., 

k1 = 25, 72, 144, 288, 576 and k2 = 48, 96, 192, 384, 768 for levels k = 1, 2, 3, 4, 5 . The “+” 

sign in equation (1.10) represents a residual connection 103, which improves the convergence and 

performance of the CNN. The connection between two consecutive down-sampling blocks is a 

max-pooling layer (e.g., 2×2 pooling to perform a 2× down-sampling).  
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Figure 2.6 Generative adversarial network. (a) Generator network, using U-Net architecture. The network can 

also be trained and tested solely without discriminator as a CNN for image transformations. (b) Discriminator 

network,  using VGG architecture. The network can also be trained and tested solely without generator as a CNN for 

e.g., image classifications. The numbers represent the size and the channels of each block. ReLU: rectified linear 

unit. Conv: convolutional layer. This network was used for Deep-Z (section 2.5). 

The fifth down-sampling block connects to up-sampling path, in which there are four up-

sampling blocks that are symmetric to the down-sampling path, each contains two convolutional 

layers that map the input tensor yk+1 to the output tensor yk: 

 yk = ReLU[CONVk4{ReLU[CONVk3{CAT(xk+1, yk+1)}]}] (2.5) 

where the CAT(⋅) operator represents the concatenation of the tensors along the channel direction, 

k3 and k4 are the number of channels in the convolutional layers, e.g.,  k3 = 72, 144, 288, 576 

and k4 = 48, 96, 192, 384 for levels k = 1, 2, 3, 4, respectively. This symmetric pairs of down-
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sampling and up-sampling path potentially enables U-Net to separate and learn features at 

different spatial/size levels, whereas down-sampling allows a large receptive field. Different 

from a simpler encoder-decoder architecture169, the additional skipping connections (marked in 

gray in Figure 2.6(a)) allows data to pass from down sampling to up sampling path at each level. 

U-Net, together with GAN (detailed below), forms the basic tool for the emerging computational 

microscopy approaches that I will expand in sections 2.3, 2.4 and 2.5. 

2.2.3 Generative adversarial network (GAN) 

Generative adversarial networks use two competing networks: a generator network G(. )and a 

discriminator network D(. ). Whereas U-Net can be used for generator for image transformation, 

an additional discriminator network can be jointly trained that discriminate between generated 

images G(x) and the ground truth label images z, by minimizing the discriminator loss function: 

 LD =
1

2N
⋅∑[D(G(x(i)))]

2
N

i=1

+
1

2N
⋅∑[D(z(i)) − 1]

2
N

i=1

 (2.6) 

where N is the number of images used in each batch (e.g., N = 20), G(x(i)) is the generator 

output for the input x(i), z(i) is the corresponding target label, D(. ) is the discriminator. This loss 

function is used to teach the discriminator to distinguish between the generated images and the 

ground truth label images. On the other side, the generator learns to “fool” the discriminator to 

classify its outputs as ground truth, by minimizing the generator loss function: 

 LG =
1

2N
⋅∑[D(G(x(i))) − 1]

2
N

i=1

 (2.7) 

For image transformation tasks, additional terms such as mean absolution error (MAE) loss 

(see section 2.2.5 for details) can be added to the generator loss, to “condition” the network 

output such that the pixel location and structural information of input image is preserved 170: 
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 LG =
1

2N
⋅∑[D(G(x(i))) − 1]

2
N

i=1

+ α ⋅
1

2N
⋅∑MAE(x(i), z(i))

N

i=1

 (2.8) 

where α is a hyper-parameter that balances the generator and MAE loss (e.g. α =0.02). During 

training, LG and LD are iteratively updated, and the generator and discriminator competes, where 

both of their performance are improved. Adding a discriminator, with carefully tuned hyper-

parameters, usually improves the image transformation result of the generator, which generates 

images with higher quality and resolution compared to CNN (i.e. training the generator only) 139.  

The architecture of discriminator can be a classification CNN. For instance, the discriminator 

in Figure 2.6(b) is a VGG102 style CNN that consists of 6 consecutive convolutional blocks, 

each of which maps the input tensor zi to the output tensor zi+1, for a given level i: 

 zi+1 = LReLU[CONVi2{LReLU[CONVi1{zi}]}] (2.9) 

where the LReLU stands for leaky ReLU operator with a slope of 0.01. The subscript of the 

convolutional operator represents its number of channels, e.g., i1 = 48,96,192, 384, 768, 1536  

and i2 = 96,192, 384, 768, 1536, 3072, for the convolution block i = 1, 2, 3, 4, 5, 6, respectively. 

Subsequent flattening layers and fully connected layers were used to map the convolutional 

features into a discriminator score, which falls within (0, 1), using a Sigmoid activation function. 

2.2.4 Data acquisition and image registration  

Since supervised learning requires gold standard labels, it is important to acquire and register 

high-quality image datasets to train the deep network. CNNs have proven to generalize very well, 

but they are much more effective when trained on a dataset that is designed specifically for the 

test dataset that it will be used for. The training image datasets can be created in different ways. 

Most commonly, the input and gold-standard label images are imaged separately (by e.g., 

different optical microscope hardware) and then accurately registered to each other; alternatively, 
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the input images can be digitally generated using numerical degradation from label images 

(equation (1.2)), following e.g., a physical model or calibration of system PSF. These simulated 

datasets are typically much easier to create, but the efficacy of network performance depends on 

the accuracy of the forward model, which sometimes is a challenge to obtain beyond a simplified 

approximation. On the other hand, if both input and ground truth label images are experimentally 

obtained, they often need to be accurately registered to each other. Image registration for training 

data preparation is a one-time effort, which will be detailed below. A third method that can be 

used to generate training image data is to computationally reconstruct gold-standard label images. 

For instance, multi-height phase recovery (section 1.7) can be used to reconstruct phase 

recovered images using 4-8 hologram measurements, and a deep neural network can be trained 

to learn the transformation between a back-propagated single hologram to the computationally 

phase recovered image. This is used in HIDEF approach, as will be detailed in section 2.3. 

When both the gold standard labels and the input images are experimentally acquired, 

different registration techniques can be used to spatially match these images to each other: (1) 

intensity-based registration (e.g. intensity cross-correlation), (2) feature-based registration (e.g. 

SIFT features) 171, and (3) deep learning based registration 172,173. Whereas intensity-based 

registration typically works well even at the sub-pixel level when the two sets of images comes 

from similar imaging modalities, feature based registration methods can be more general across 

different modalities. In practice, a combination of registration steps may be needed. Since there 

can be huge variations between the images, especially when captured using different microscopy 

modalities, a unique workflow should be tailored for a given application of interest 174,147,140. 

Section 2.5 explains a working example to accurately register two stack of images across wide 

field and confocal microscopies, enabling deep-learning based virtual refocusing across different 
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fluorescence microscopy modalities 123. Note that some image transformation networks such as 

CycleGANs175 do not need registered input and label images. However, without accurate 

registration for input-label image pairs, there is a possibility for artefacts.  

Depending on the sample variation, the required training data size can range from a few 

thousand image patches to hundreds of thousands of patches or more. While deep learning has 

been shown to be highly effective on small datasets 176, a CNN in general works better when the 

training dataset is large enough such that the network can learn the entire sample space from it. 

However, for certain microscopy applications where either samples or images are rare and/or 

challenging to obtain, limited image data can lead to the network to overfit to the training data 

and not generalize well to test datasets.  One popular method for improving the performance of 

neural networks with limited training data is transfer learning 177–179. This process typically 

involves training a network on a large dataset that has similar features to the dataset that the 

network will be used on. Then using the trained parameters as parameter, the entire network or 

the last few layers of the network can be further tuned using the smaller dataset of interest. 

Another method is to augment the image dataset using techniques such as image rotation, 

flipping, shifting, and distortion 180, which also prevents the network from over-fitting.  

Normalization of both the input image data and the ground truth labels can also significantly 

improve the consistency of the network inference. Most deep networks are highly nonlinear, 

meaning that small differences at the input images can cause relatively large differences at the 

network output. Therefore, any variations in the illumination source intensity or the exposure 

time of the microscopy system should be normalized during the training and testing phases.  

2.2.5 Image quality evaluation 

Several image quality evaluation criteria can be used as loss functions during supervised 

training, or for evaluating the output of the network after training. For registered image pairs, the 
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network output images Iout can be were evaluated with reference to the corresponding ground 

truth images IGT using e.g., mean square error (MSE), root mean square error (RMSE), MAE,  

correlation coefficient, and structural similarity (SSIM) 181. MSE is one of the most widely used 

error metrics, defined as: 

 MSE(Iout, IGT) =
1

Nx ⋅ Ny
‖Iout − IGT‖

2

2
 (2.10) 

where Nx  and Ny  represent the number of pixels in the x and y directions, respectively. The 

square root of MSE results in RMSE. Compared to MSE, MAE uses 1-norm difference (absolute 

difference) instead of 2-norm difference, which is less sensitive to significant outlier pixels: 

 MAE(Iout, IGT) =
1

Nx ⋅ Ny
‖Iout − IGT‖

1
 (2.11) 

The correlation coefficient is defined as: 

 
corr(Iout, IGT) =

∑ ∑ (Ixy
out − μout)(Ixy

GT − μGT)yx

√(∑ ∑ (Ixy
out − μout)

2
yx ) (∑ ∑ (Ixy

GT − μGT)
2

yx )

     
(2.12) 

where 𝜇𝑜𝑢𝑡 𝑎𝑛𝑑 𝜇𝐺𝑇 are the mean values of the images 𝐼𝑜𝑢𝑡 𝑎𝑛𝑑 𝐼𝐺𝑇 respectively.  

While these criteria can be used to quantify errors in the network output compared to the GT, 

they are not strong indicators of the perceived similarity between two images. SSIM aims to 

address this shortcoming by evaluating the structural similarity in the images, defined as: 

 SSIM(Iout, IGT) =
(2μoutμGT + C1)(2σout,GT + C2)

(μout
2 + μGT

2 + C1)(σout
2 + σGT

2 + C2)
     (2.13) 

where 𝜎𝑜𝑢𝑡 and 𝜎𝐺𝑇 are the standard deviations of 𝐼𝑜𝑢𝑡 𝑎𝑛𝑑  𝐼𝐺𝑇 respectively, and 𝜎𝑜𝑢𝑡,𝐺𝑇 is the 

cross-variance between the two images. 

In addition to these measures, images quality can also be evaluated using a non-referenced 

measure, such as Blind/Reference-less Image Spatial Quality Evaluator (BRISQUE) 182. 
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2.3 Extended depth-of-field holographic imaging using deep learning  

Holography encodes the three-dimensional (3D) information of a sample in the form of an 

intensity-only recording. However, as described in Chapter 1, to decode the sample image from 

its hologram(s), auto-focusing and phase-recovery are needed, which are in general cumbersome 

and time-consuming to digitally perform. Here I develop a convolutional neural network (CNN) 

based approach that simultaneously performs auto-focusing and phase-recovery to significantly 

extend the depth-of-field (DOF) and the reconstruction speed in holographic imaging. For this, a 

CNN is trained by using pairs of randomly de-focused back-propagated holograms and their 

corresponding in-focus phase-recovered images. After this training phase, the CNN takes a 

single back-propagated hologram of a 3D sample as input to rapidly achieve phase-recovery and 

reconstruct an in-focus image of the sample over a significantly extended DOF. This deep 

learning based method fundamentally improves the algorithm time-complexity of holographic 

image reconstruction from O(nm) to O(1), where n refers to the number of individual object 

points or particles within the sample volume, and m represents the focusing search space within 

which each object point or particle needs to be individually focused. The presented approach 

may also be used to computationally extend the DOF of other imaging modalities.   

2.3.1 Introduction 

Holography 2,16,17,34,35,183–185 encodes the three-dimensional (3D) information of a sample 

through interference of the object’s scattered light with a reference wave. Through this 

interference process, the intensity of a hologram that is recorded by e.g., an image sensor, 

contains both the amplitude and phase information of the sample. Recovery of this object 

information over a 3D sample space has been the subject of numerous holographic imaging 

techniques 27,41,183–187. In a holographic image reconstruction process, there are two major steps. 
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One is phase-recovery, which is required since only the intensity information of the holographic 

pattern is recorded at a given digital hologram. In general, for an off-axis holographic imaging 

system 184–187, this phase-recovery step can be achieved relatively easier compared to an in-line 

holography set-up, at the cost of a reduction in the space-bandwidth product of the imaging 

system. For in-line holography, on the other hand, iterative phase-recovery approaches that 

utilize measurement diversity and/or prior information regarding the sample have been 

developed 4,17,32–34,38,71,75,76,188–190. Regardless of the specific holographic set-up that is employed, 

phase-recovery needs to be performed to eliminate the twin-image and self-interference related 

spatial artifacts in the reconstructed phase and amplitude images of the sample.  

       The other crucial step in holographic image reconstruction is auto-focusing, where the 

sample-to-sensor distances (i.e., relative heights) of different parts of the 3D object need to be 

numerically estimated. Auto-focusing accuracy is vital to the quality of the reconstructed 

holographic image such that the phase-recovered optical field can be back-propagated to the 

correct object locations in 3D. Conventionally, to perform auto-focusing, the hologram is 

digitally propagated to a set of axial distances, where a focusing criterion is evaluated at each 

resulting complex-valued image. This step is ideally performed after the phase-recovery step, but 

can also be applied before it, which might reduce the focusing accuracy 63. Various auto-focusing 

criteria have been successfully used in holographic imaging, including e.g., the Tamura 

coefficient62, the Gini Index64 and others63,65–70. Regardless of the specific focusing criterion that 

is used, and even with smart search strategies23, the auto-focusing step requires numerical back-

propagation of optical fields and evaluation of a criterion at typically >10-20 axial distances, 

which is time-consuming for even a small field-of-view (FOV). Furthermore, if the sample has 

multiple objects at different depths, this procedure needs to repeat for every object in the FOV.  
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       Some recent work has also utilized deep learning to achieve auto-focusing. Z. Ren et al. 

formulated auto-focusing as a classification problem and used a convolutional neural network 

(CNN) to provide rough estimates of the focusing distance with each classification class (i.e., bin) 

having an axial range of ~3 mm, which is more appropriate for imaging systems that do not need 

precise knowledge of the axial distance of each object191. As another example, T. Shimobaba et 

al. used a CNN regression model to achieve continuous auto-focusing, also with a relatively 

coarse focusing accuracy of >5 mm192. In parallel to these recent results, CNN-based phase-

recovery methods that use a single intensity-only hologram to reconstruct a two-dimensional 

object’s image have also been demonstrated127,127,128,128. However, in these former approaches 

the neural networks were trained with in-focus images, where the sample-to-sensor (hologram) 

distances were precisely known a priori based on the imaging set-up or were separately 

determined based on an auto-focusing criterion. As a result, the reconstruction quality degraded 

rapidly outside the system depth-of-field (DOF); for example, for high resolution imaging of a 

pathology slide (tissue section), ~4 µm deviation from the correct focus distance resulted in loss 

of resolution and distorted the sub-cellular structural details.128 

      Here, I demonstrate a deep learning based holographic image reconstruction method that 

performs both auto-focusing and phase-recovery at the same time using a single hologram 

intensity, which significantly extends the DOF of the reconstructed image compared to previous 

approaches, while also improving the algorithm time-complexity of holographic image 

reconstruction from O(nm) to O(1). This approach is termed as HIDEF (Holographic Imaging 

using Deep learning for Extended Focus) and it relies on training a CNN with not only in-focus 

image patches, but also with randomly de-focused holographic images along with their 

corresponding in-focus and phase-recovered images, used as reference. Overall, HIDEF 
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significantly boosts the computational efficiency and the reconstruction speed of high-resolution 

holographic imaging by simultaneously performing auto-focusing and phase-recovery and 

increases the robustness of the image reconstruction process to potential misalignments in the 

optical set-up by extending the DOF of the reconstructed images (Figure 2.7).  

 

Figure 2.7 HIDEF achieves simultaneous phase-recovery and auto-focusing, significantly extending the DOF 

of holographic image reconstruction. ASP: angular spectrum propagation. Modified from Ref. 129 

2.3.2 Results and Discussion 

To demonstrate the success of HIDEF, in the initial set of experiments, I used aerosols that 

are captured by a soft impactor surface and imaged by an on-chip holographic microscope, 

where the optical field scattered by each aerosol interferes with the directly transmitted light 

forming an in-line hologram, sampled using a CMOS imager, without the use of any lenses23. 

The captured aerosols on the substrate are dispersed in multiple depths (z2) as a result of varying 

particle mass, flow speed, and flow direction during the air sampling period23. Based on this set-

up, the training image dataset had 176 digitally-cropped non-overlapping regions that only 

contained particles located at the same depth, which are further augmented by 4-fold to 704 

regions by rotating them to 0, 90, 180 and 270 degrees. For each region, I used a single hologram 

intensity and back-propagated it to 81 random distances, spanning an axial range of -100 µm to 

100 µm away from the correct global focus, determined by auto-focusing using the Tamura of 

the Gradient criterion63. I then used these complex-valued fields as the input to the network. The 
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target images used in the training phase (i.e., the reference images corresponding to the same 

samples) were reconstructed using multi-height phase-recovery (MH-PR) that utilized 8 different 

in-line holograms of the sample, captured at different z2 distances, to iteratively recover the 

phase information of the sample, after an initial auto-focusing step performed for each height193. 

      After this training phase, next I blindly tested the HIDEF network on samples that had no 

overlap with the training or validation sets; these samples contained particles spread across 

different depths per image FOV. Figure 2.8 illustrates the success of HIDEF and how it 

simultaneously achieves an extended DOF and phase-recovery. For a given in-line hologram of 

the captured aerosols (Figure 2.8(a)), I first back-propagate the hologram intensity to a coarse 

distance of z2 = 1 mm away from the active area of the CMOS imager, which is roughly 

determined based on the effective substrate thickness used in the experiment. This initial back-

propagated hologram yields a strong twin image because of the short propagation distance (~1 

mm) and the missing phase information. This complex-valued field, containing both the true and 

twin images, is then fed to the CNN. The output of the CNN is shown in Figure 2.8(a), which 

demonstrates the extended DOF of HIDEF with various aerosols, spread over an axial range of 

~90 µm, that are all brought into focus at the network output. In addition to bringing all the 

particles contained in a single hologram to a sharp focus, the network also performed phase-

recovery, resulting in phase and amplitude images that are free from twin image and self-

interference related artifacts. Figure 2.8(b-c) also compare the results of the network output with 

respect to a standard MH-PR approach that used eight in-line holograms to iteratively retrieve 

the phase information of the sample. These comparisons clearly demonstrate both the 

significantly extended DOF and phase-recovery performance of HIDEF, achieved using a single 

hologram intensity with a non-iterative inference time of < 0.2 s. In comparison, the iterative 
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MH-PR approach took ~4 s for phase-recovery and an additional ~2.4 s for auto-focusing to the 

individual objects at eight planes, totaling ~6.4 s for the same FOV and object volume, i.e., >30-

fold slower compared to HIDEF.  

 

Figure 2.8 Extended-DOF reconstruction of aerosols at different depths using HIDEF. (a) After its training, 

HIDEF CNN brings all the particles within the FOV into focus, while also performing phase-recovery. Each 

particle’s depth is color-coded, with respect to the back-propagation distance (1 mm), as shown with the color-bar 

on the right. (b) As a comparison, MH-PR images of the same FOV show that some of the particles come into focus 

at different depths, and become invisible or distorted at other depths. For each particle’s arrow, the same color-

coding is used as in (a). (c) The enhanced-DOF of HIDEF is illustrated by tracking a particle’s amplitude full-width-

half-maximum (FWHM) as a function of the axial defocus distance. HIDEF preserves the particle’s FWHM 
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diameter and its correct image across a large DOF of >0.2 mm, which is expected since it was trained for this range 

of defocus (± 0.1 mm). On the other hand, MH-PR results show a much more limited DOF, as also confirmed with 

the same particle’s amplitude images at different defocus distances, reported at the bottom. Reprinted from Ref. 129 

 In these results, I used a coarse back-propagation step of 1 mm, before feeding the CNN with 

a complex-valued field. An important feature of HIDEF is that this back-propagation distance, z2, 

does not need to be precise, and HIDEF can provide the same extended DOF image regardless of 

the initial back-propagation distance (z2) selection initial, as long as it’s within the range of 

defocusing that the network was trained for (+/- 0.1 mm in this case, see Ref. 129 for details).  

       Interestingly, although the network was only trained with globally de-focused hologram 

patches that only contain particles at the same depth/plane, it learned to individually focus 

various particles that lie at different depths within the same FOV (see Figure 2.8(a)). Based on 

this observation, one can argue that the HIDEF network does not perform the physical equivalent 

of free-space back-propagation of a certain hologram FOV to a focus plane. Instead, it 

statistically learns both in-focus and out-of-focus features of the input field, segments the out-of-

focus parts and replaces them with in-focus features, in a parallel manner for a given hologram 

FOV. From an algorithm time-complexity perspective, this is a fixed processing time for a given 

hologram patch, i.e., a complexity of O(1), instead of the conventional O(nm), where n defines 

the number of individual object points or particles within the 3D sample volume, and m is the 

discrete focusing search space.  

Based on the above argument, if the network statistically learns both in-focus and out-of-

focus features of the sample, one could think that this approach should be limited to relatively 

sparse objects (such as the one shown in Figure 2.8). To test this hypothesis with non-sparse 

samples, next I tested HIDEF on the holograms of spatially connected objects such as tissue 
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slices, where there is no opening or empty region within the sample plane. For this goal, using 

the same CNN architecture, I trained the network with 1,119 hologram patches (corresponding to 

breast tissue sections used in histopathology), which were randomly propagated to 41 distances 

spanning an axial defocus range of -100 µm to 100 µm with respect to the focal plane. In this 

training phase, I used MH-PR images as the target/reference. The blind testing results are 

summarized in Figure 2.9, which clearly demonstrate that HIDEF can simultaneously perform 

both phase-recovery and auto-focusing for an arbitrary, non-sparse and connected sample.  

 

Figure 2.9 Comparison of HIDEF results against free-space back-propagation (CNN Input) and MH-PR (MH 

Phase Recovered) results, as a function of axial defocus distance (dz). The test sample is a thin section of a 

human breast tissue sample. The first two columns use a single intensity hologram, whereas the third column (MH-

PR) uses eight in-line holograms of the same sample, acquired at different heights. These results clearly demonstrate 
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that the HIDEF network simultaneously performs phase-recovery and auto-focusing over the axial defocus range 

that it was trained for (i.e., |dz| ≤ 100 µm in this case). Outside this training range (marked with red dz values), the 

network output is not reliable. See Visualization 3 and Visualization 4 for a detailed comparison. Scale bar: 20 µm. 

Reprinted from Ref. 129 

In Figure 2.9, we also see that MH-PR images naturally exhibit a limited DOF: even at an 

axial defocus of ~5 µm, some of the fine features at the tissue level are distorted. With more 

axial de-focus, the MH-PR results show significant artificial ripples and loss of further details. 

HIDEF, on the other hand, is very robust to axial defocusing, and is capable of correctly focusing 

the entire image and its fine features, while also rejecting the twin image artifact at different de-

focus distances, up to the range that it was trained for (±0.1 mm).  

However, as illustrated in Figure 2.9, beyond its training range, HIDEF starts to generate 

false features. Note that we do not see a physical smearing or diffraction-related smoothening 

effect as one continues to defocus in a range that the network was not trained for, rather in this 

defocus range that is “new” to the network, it still gives relatively sharp, but unrelated features. 

This implies that the network does not learn or generalize a specific physical process such as 

wave propagation, hologram formation or light interference; if it were to generalize such 

physical processes, one would not see sudden appearances of completely unrelated spatial 

features at the network output as one gradually goes outside the axial defocus range that it was 

trained for. In fact, this highlights a unique aspect of deep learning-based and data-driven 

holographic image reconstruction framework that is presented here: the output images of the 

network are driven by the image transformation that the neural network was trained for (between 

the input and gold standard label images), and this learned transformation creates output images 

that deviate from wave equation-based (physics-driven) solutions. An important example of this 
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is shown in Figure 2.8, where the network rapidly performed phase recovery and auto-focusing 

on all the particles that lie at different depths within the sample volume, bringing all the particles 

into focus at the output image. This image transformation from the network input to the output 

deviates from wave equation-based solutions that propagate a phase recovered field to different 

planes, where some particles will be in focus and some others will be out of focus, driven by 

free-space wave propagation. 

      To further quantify the improvements made by HIDEF, next I compared the amplitude of the 

network output image against the MH-PR result at the correct focus of the tissue section, and 

used the structural similarity (SSIM) index 181 for this comparison, defined as in equation (2.13). 

Figure 2.10 shows the mean SSIM index calculated across an axial de-focus range of -100 µm to 

100 µm, which was averaged across 180 different breast tissue FOVs that were blindly tested. 

Consistent with the qualitative comparison reported in Figure 2.9, HIDEF outputs SSIM values 

that are significantly higher than the hologram intensities back-propagated to the exact focus 

distances, owing to the phase-recovery capability of the network. Furthermore, as shown in 

Figure 2.10, compared to a CNN (with the same network architecture) that is trained using only 

in-focus holograms (with exact z2 values), HIDEF has a much higher SSIM index for de-focused 

holograms, across a large DOF of ~0.2 mm. Interestingly, the network that is trained with in-

focus holograms beats HIDEF for only one point in Figure 2.10, i.e., for dz = 0 µm, which is 

expected as this is what it was specifically trained for. However, this small difference in SSIM 

(0.78 vs. 0.76) is visually negligible (see Ref. 129 for details). 

So far, I demonstrate the unique capabilities of HIDEF to simultaneously perform phase-

recovery and auto-focusing, yielding at least an order of magnitude increase in the DOF of the 

reconstructed images, as also confirmed by Figure 2.8 and Figure 2.9. To further extend the 
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DOF of the neural network output beyond 0.2 mm, one can use a larger network (with more 

layers, weights and biases) and/or more training data, containing severely defocused images as 

part of its learning phase. Certainly, the proof-of-concept DOF enhancement reported here is not 

an ultimate limit for the presented approach. In fact, to better emphasize this opportunity I also 

trained a third neural network, following the HIDEF architecture, with a training image set that 

contained randomly defocused holograms of breast tissue sections, with an axial defocus range 

of -0.2 mm to 0.2 mm. The performance comparison of this new network against the previous 

one (demonstrated in Figure 2.9) is reported in Figure 2.10. As shown in this comparison, by 

using a training image set that included more defocused holograms, I was able to significantly 

extend the axial defocus range to 0.4 mm (i.e., +/- 0.2 mm), where the HIDEF network 

successfully performed both auto-focusing and phase-recovery, at the same output image.  

 

Figure 2.10 SSIM values as a function of the axial defocus distance. Each one of these SSIM curves is averaged 

over 180 test FOVs (512-by-512 pixels) corresponding to thin sections of a human breast tissue sample. The results 

confirm the extended-DOF of the HIDEF network output images, up to the axial defocus range that it was trained 

for. Reprinted from Ref. 129 
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The results reported here provide compelling evidence for some unique opportunities created 

by statistical image reconstruction methods enabled by especially deep learning. HIDEF can be 

especially useful for wide-field, holographic imaging applications by digitally bringing a large 

sample volume into focus in real time, such as field-portable and cost-effective imaging flow-

cytometers 194, enabling label-free and high-throughput screening of large volumes of liquid 

samples in field settings. As another example, this deep-learning based reconstruction method 

was also used to characterize particle aggregation-based bio-sensors over a wide imaging field of 

view greater than 20 mm2 and achieved high throughput and rapid detection of viruses195. In yet 

another example, a portable and cost-effective device that senses bio-aerosols in the field was 

developed, which used HIDEF to rapidly reconstruct the microscopic images of captured bio-

aerosols for their automatic detection and label-free classification, achieving an accuracy of 

>94% for different types of pollen and mold spores 24, which I will expand in section 3.2. In 

addition, the HIDEF approach can also be easily adapted to computationally extend the DOF of 

other imaging modalities, including e.g., fluorescence microscopy. 

2.3.3 Methods 

Network and architecture 

The architecture of the CNN architecture is inspired by U-Net 196, and it consists of a down-

sampling path as well as a symmetric up-sampling path (see section 2.2.2 and Figure 2.6(a) for 

details). Through a chain of down-sampling operations, the network learns to capture and 

separate the true image and twin image spatial features of a holographic input field at different 

scales32. This CNN architecture is implemented using TensorFlow, an open-source deep learning 

software package 110. During the training phase, the CNN minimizes the l1-norm distance of the 

network output from the target/label images, and iteratively updates the network’s weights and 
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biases using the adaptive moment estimation (Adam) optimizer 197, with a learning rate of 10-4. 

For each image dataset, the ratio of the training to cross-validation was set to 14:3. The training 

and blind testing of the network were performed on a PC with six-core 3.60 GHz CPU, 16GB of 

RAM, using Nvidia GeForce GTX 1080Ti GPU. On average, the training process takes ~40 h for 

e.g., 200,000 iterations, corresponding to ~100 epochs. After the training, the network inference 

time for a hologram patch of 512 x 512 pixels (with phase and amplitude channels) is < 0.2 s. 

 

2.4 Holography reconstruction with bright field contrast  

Digital holographic microscopy enables the 3D reconstruction of volumetric samples from a 

single snapshot hologram. However, unlike a conventional bright-field microscopy image, the 

quality of holographic reconstructions is compromised by interference fringes as a result of twin 

images and out-of-plane objects. Here, I demonstrate that cross-modality deep learning using a 

generative adversarial network (GAN) can endow holographic images of a sample volume with 

bright-field microscopy contrast, combining the volumetric imaging capability of holography 

with the speckle- and artifact-free image contrast of incoherent bright-field microscopy. I 

illustrate the performance of this “bright-field holography” method through the snapshot imaging 

of bioaerosols distributed in 3D, matching the artifact-free image contrast and axial sectioning 

performance of a high-NA bright-field microscope. This data-driven deep-learning-based 

imaging method bridges the contrast gap between coherent and incoherent imaging and enables 

the snapshot 3D imaging of objects with bright-field contrast from a single hologram, benefiting 

from the wave-propagation framework of holography. 

 

2.4.1 Introduction 
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Digital holographic microscopy encodes the volumetric information of a sample into a single 

2D diffraction pattern. Thus, digital holographic microscopy enables the reconstruction of 

volumetric samples from a single hologram without mechanical scanning 16,34,62,183,184,187. 

However, for most practical applications, holographic images cannot match the speckle- and 

artifact-free image contrast of incoherent bright-field microscopy. Some of these holographic 

artifacts include twin-image and self-interference artifacts, which are related to missing phase 

information; additional artifacts appear due to the long coherence length/diameter of the 

illumination source, which creates speckle and background interference from out-of-focus or 

unwanted objects in the optical path. Stated differently, since the point spread function (PSF) of 

a coherent imaging system has non-diminishing ripples along both the lateral and axial directions, 

out-of-focus objects will create interference fringes overlapping with the in-focus objects in the 

holographic reconstruction, which degrades the image contrast when reconstructing volumetric 

samples. These issues can be partially mitigated by using different holographic reconstruction 

methods and sometimes also by using additional measurements17,32,34,71,76,91,127–129. 

Here, I use a deep neural network to perform cross-modality image transformation from a 

digitally backpropagated hologram corresponding to a given depth within the sample volume 

into an image that is equivalent to a bright-field microscopy image acquired at the same depth 

(Figure 2.11). Since a single hologram is used to digitally propagate image information to 

different sections of the sample to virtually generate a bright-field equivalent image of each 

section, this approach combines the snapshot volumetric imaging capability of digital holography 

with the speckle- and artifact-free image contrast and axial sectioning performance of bright-

field microscopy. Following its training, the deep neural network has learned the statistical 

image transformation between a holographic imaging system and an incoherent bright-field 
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microscope; therefore, I refer to this approach as “bright-field holography”. In some sense, deep 

learning brings together the best of both worlds by fusing the advantages of both the holographic 

and incoherent bright-field imaging modalities. 

 

Figure 2.11 Bright-field holography. High-contrast bright-field imaging of a volumetric sample requires 

mechanical axial scanning and the acquisition of many successive images (e.g., N=101 here spans ±500 µm in 

depth). Bright-field holography, enabled by deep learning, fuses the volumetric imaging capability of holography 

with the speckle- and artifact-free image contrast of incoherent bright-field microscopy to generate bright-field 

equivalent images of a volume from a single hologram (N=1 image). Reprinted from Ref. 139 

2.4.2 Results and discussion 

Holographic reconstruction with brightfield contrast and color 

I used a generative adversarial network (GAN)170,198,199 to perform the holographic to bright-field 

image transformation (Figure 2.6). The network’s training dataset was made up of images from 

pollen samples captured on a flat substrate using a sticky coverslip24. The coverslip was scanned 

in 3D using a bright-field microscope (Olympus IX83, 20×/0.75 NA objective lens), and a stack 

of 121 images with an axial spacing of 0.5 µm was captured for each region of interest to 

constitute the ground-truth labels. Next, using a lens-less holographic microscope24, in-line 
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holograms were acquired corresponding to the same fields-of-view (FOV) scanned with the 

bright-field microscope. By progressively applying a series of image registration steps from the 

global coordinates to the local coordinates of each image patch, the backpropagated holograms at 

different depths were precisely matched to the bright-field microscopy ground-truth image stack 

in both the lateral and axial directions (see Methods for details). These registered pairs of 

backpropagated holograms and bright-field microscopy images were then cropped into ~6,000 

patches of 256 × 256 pixels for training. 

It should be emphasized that these steps need to be performed only once for the training of 

the GAN architecture, after which the generator network can blindly take a new hologram that it 

has never seen before and infer the corresponding bright-field image at any arbitrary depth 

within the sample volume in nearly real time (e.g., the inference time for a FOV of ~0.15 mm2 is 

~0.1 s using a single Nvidia 1080 Ti GPU). Figure 2.12 presents an example of these blind 

testing results for several pollen mixtures, where the backpropagated holograms are 

compromised by twin-image and self-interference artifacts as well as speckle and out-of-focus 

interference. On the other hand, the generator network’s output image for each depth clearly 

shows improved contrast and is free of the artifacts and noise features observed in the 

backpropagated holograms. These results match well with the corresponding bright-field images 

(the ground truth) at the same sample depths. In addition, the deep network correctly colorizes 

the output images based on the morphological features in the complex-valued input image, using 

an input hologram acquired with a monochrome sensor (Sony IMX219PQ, 1.12 µm pixel size) 

and narrowband illumination (𝜆 = 850 𝑛𝑚, bandwidth ~ 1 nm), such that the output matches the 

color distribution of the bright-field ground-truth image. This can be seen in Figure 2.12 for the 

yellow ragweed pollens and oak tree pollens as well as the white Bermuda grass pollens. 
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Furthermore, the root mean square error (RMSE), structural similarity index (SSIM)181, and 

universal image quality index (UIQI) 200 were used to quantitatively demonstrate the close 

resemblance of the network inferences to the bright-field microscopy ground-truth images, as 

shown in Figure 2.12.  

 

Figure 2.12 Imaging of a pollen mixture captured on a substrate. Each input hologram is shown with a larger 

FOV to better illustrate the fringes. Each network output image is quantitatively compared against the corresponding 

bright-field microscopy ground-truth image using the root mean square error (RMSE), the structural similarity index 

(SSIM), and the universal image quality index (UIQI). Reprinted from Ref. 139 

Blind inference of the network on volumetric 3D sample 

Although the deep network was trained only with pollen mixtures captured on 2D substrates, it 

can successfully perform inference for the volumetric imaging of samples at different depths. 

Figure 2.13 illustrate a pollen mixture captured in 3D in a bulk volume of polydimethylsiloxane 

(PDMS) with a thickness of ~800 µm. A single in-line hologram of this sample (Figure 2.13(c)) 

was captured and numerically backpropagated to different depths within the sample volume. By 
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feeding these backpropagated holographic images into the trained network, we obtained output 

images (Figure 2.13) that are free of speckle artifacts and various other interferometric artifacts 

observed in holography (e.g., twin images, fringes related to out-of-focus objects, and self-

interference). These images match the contrast and depth-of-field (DOF) of bright-field 

microscopy images that were mechanically focused onto the same plane within the 3D sample.  

 

Figure 2.13 Use of cross-modality deep learning in bright-field holography to fuse the volumetric imaging 

capability of holography with the speckle- and artifact-free image contrast performance of incoherent bright-

field microscopy. The pollen sample is dispersed in 3D throughout a bulk volume of PDMS (thickness ~ 800 µm). 

BP: digital backpropagation. Reprinted from Ref. 139 

It is also worth noting that the snapshot volumetric reconstruction performance presented in 

this work cannot be obtained through standard coherent denoising or phase recovery methods. To 

provide an example of this, in Figure 2.14, I compare the results of an object-support-based 
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phase recovery method 17,71 applied to the same sample hologram that was backpropagated to 

different heights. As shown in this figure, the iterative phase recovery method indeed improved 

the contrast-to-noise ratio (CNR)201 of the backpropagated holographic images from ~2 to ~3, 

especially suppressing some of the twin-image-related artifacts. However, the out-of-focus 

fringes created by the 3D object were not adequately sectioned out and remained as 

reconstruction artifacts even after iterative phase recovery. In contrast, the deep neural network 

output transformed the defocused coherent fringes into diminished incoherent blobs, achieving a 

high CNR of >15-25, very well matching the ground-truth images captured by the high-NA 

bright-field microscope, as shown in Figure 2.14. 

 

Figure 2.14 Comparison of bright-field holography against an iterative phase recovery method for a 

volumetric pollen sample. Object support-based phase recovery17,71 was used (with 20 iterations). The network 

output and bright-field microscope ground truth images were converted into gray scale for comparison. Contrast to 

noise ratio (CNR)201, which is defined as the ratio of the contrast (the average of the pixel amplitudes outside the 

CNR mask minus the average of the pixel amplitudes inside the mask) with respect to noise (the standard deviation 

of the pixel amplitudes outside the mask), was used to quantitatively compare the results, with the corresponding 

CNR values marked by a red number on the upper-left corner of each image. Reprinted from Ref. 139 
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Transforming holographic PSF to incoherent bright field PSF  

To further quantify this cross-modality transformation performance, I imaged samples containing 

1 μm polystyrene beads and trained another GAN following the same method. Next, I blindly 

tested a sample containing 245 individual/isolated microbeads and measured their 3D PSF 

distributions before and after GAN inference (Figure 2.15). An example of this comparison is 

shown in Figure 2.15(a), where the backpropagated holograms contain significant interference 

artifacts that were removed by the GAN, yielding images that match the high contrast of the 

mechanically scanned bright-field microscopy ground-truth images.  

 

Figure 2.15 3D PSF comparison using 1 μm beads. (a) 3D imaging of a single microbead and a comparison of the 

standard holographic backpropagation results against the network output and the images captured by a scanning 

bright-field microscope via N=81 scans with an axial step size of 0.5 µm. (b) Lateral PSF FWHM histogram 

comparison corresponding to 245 individual/isolated microbeads. (c) Same as in (b), except for the axial PSF 

FWHM histograms. Reprinted from Ref. 139 
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Figure 2.15(b) shows the distributions of the lateral and axial full-width-at-half-maximum 

(FWHM) values corresponding to the 3D PSFs obtained using these 245 microbeads. Due to the 

interference artifacts and low contrast, the FWHM values of the PSFs of the backpropagated 

hologram (input) are randomly distributed in the lateral direction, with a median FWHM of 

2.7176 µm. In contrast, the lateral FWHM values of the PSFs of the GAN output images are 

monodisperse, with a median FWHM of 1.8254 µm, matching that of the scanning bright-field 

microscopy ground truth (1.8719 µm). Due to the longer coherence length, the PSFs of the 

backpropagated hologram (input) are longer in the axial direction, with a median FWHM of 

12.9218 µm, compared to the scanning bright-field microscopy ground truth, with a median 

FWHM of 9.8003 µm. The network inference results show a significantly narrower PSF 

distribution in the axial direction, with a median FWHM of 9.7978 µm, very well matching that 

of the ground truth obtained with the scanning bright-field microscope (Figure 2.15(b)).  

2.4.3 Conclusion 

This deep-learning-enabled cross-modality image transformation between holography and 

bright-field imaging can potentially eliminate the need to mechanically scan a volumetric sample. 

It is benefited from the digital wave-propagation framework of holography to virtually scan 

throughout the sample volume, and each one of these digitally propagated fields is transformed 

into bright-field microscopy equivalent images that exhibit the spatial and color contrast as well 

as the shallow DOF expected from incoherent microscopy. In this regard, my deep-learning-

enabled hologram transformation network achieves the best of both worlds by fusing the 

volumetric digital imaging capability of holography with the speckle- and artifact-free image 

contrast of bright-field microscopy. This capability can be especially useful for the rapid 

volumetric imaging of samples flowing within a liquid 194. This approach can also be applied to 
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other holographic microscopy and/or incoherent microscopy modalities to establish a statistical 

image transformation from one mode of coherent imaging into another incoherent microscopy 

modality. This work enables the inference of a whole 3D sample volume from a single snapshot 

hologram, thus reintroducing coherent holographic imaging as a powerful alternative to high-NA 

bright-field microscopy for the task of high-throughput volumetric imaging, and therefore 

represents a unique contribution to the field of coherent microscopy. 

2.4.4 Methods 

Digital holographic and scanning bright-field microscopy image acquisition 

The holographic images were acquired using a customized lens-less imaging system. The system 

consisted of a vertical-cavity surface-emitting laser (VCSEL) diode ( 𝜆 = 850 𝑛𝑚 ) for 

illumination, a complementary metal–oxide–semiconductor (CMOS) image sensor (Sony 

IMX219PQ, 1.12 µm pixel size) and a Raspberry Pi 2 for system control. This near-infrared 

illumination was chosen to enable the use of all four Bayer channels of the color image sensor 

chip to improve the pixel-size-limited resolution of the hologram that could be achieved in a 

single snapshot. The sample was mounted on a 3D printed sample holder placed ~500 µm above 

the image sensor surface. The illumination source was placed ~8 cm above the sample plane 

without any additional spatial or spectral filter. 

The bright-field microscopy images were captured by an inverted scanning microscope 

(IX83, Olympus Life Science) using a 20×/0.75 NA objective lens. The microscope scanned 

each sample at different lateral locations, and at each location, an image stack of -30 µm to 30 

µm with a 0.5 µm step size was captured. After the capture of these bright-field images, the 

microscopy image stack was aligned using the ImageJ plugin StackReg202, which corrected the 

rigid shift and rotation caused by the inaccuracy of the microscope scanning stage. 
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Image registration and training data preparation 

The success of the cross-modality transform relies on accurate registration of the back-

propagated holograms with the scanning bright-field microscope images in 3D. This registration 

can be divided into two parts. The first part laterally matches a bright-field image (2048 × 2048 

pixels) to that of the hologram using SURF feature based registration 203. The second part further 

refines the registration in x-y and z directions, where Pyramid elastic registration204 was 

performed on the image pairs closest to the focal plane to further warp the image pairs to each 

other. To match the heights of the backpropagated holograms and the corresponding bright-field 

microscopy image stacks, the focal planes were estimated and cross-registered as “zero” height, 

and the relative axial propagation distance was determined to match the axial scanning step size 

of the bright-field microscope (0.5 µm). The digital hologram’s focal plane was estimated using 

the holographic autofocusing with edge sparsity criterion63. (see Ref.139 for details). 

Network and training 

The GAN implemented here consisted of a generator network and a discriminator network, as 

shown in Figure 2.6. The generator network employed a variation of the U-Net196 design with 

minor modifications and additional residual connections103. The discriminator network was a 

convolutional neural network with six convolutional blocks and two fully connected (linear) 

layers. The original training data consisted of ~6,000 image pairs, which were augmented to 

30,000 image pairs by random rotation and flipping. The validation data were not augmented. In 

each training iteration, the generator network was updated six times using Adam optimizer with 

learning rate 10-4, then the discriminator network was updated three times using Adam optimizer 

with learning rate 3×10-5. The network was evaluated on validation set every 50 iterations for the 

mean absolute error (MAE) loss, and the best one was chosen with the lowest MAE loss. The 
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network was built on TensorFlow110. The training and inference were performed on a PC with a 

six-core 3.6 GHz CPU and 16 GB of RAM using a Nvidia GeForce GTX 1080 Ti GPU. On 

average, the training process took ~ 90 hours for ~ 50,000 iterations (equivalent to ~ 40 epochs). 

After training, the network inference time was ~ 0.1 s for an image patch of 256×256 pixels. 

 

2.5 Three-dimensional (3D) virtual refocusing of fluorescence images  

Unlike holography, fluorescence microscopy lacks an image propagation and time-reversal 

framework, which necessitates scanning of fluorescent objects to obtain 3D images. In this 

section, I demonstrate that a deep convolutional neural network can be trained to virtually 

propagate and refocus a 2D fluorescence image onto user-defined 3D surfaces within the sample 

volume. With this data-driven computational microscopy framework, I imaged the neuron 

activity of a Caenorhabditis elegans worm in 3D at up to 100 Hz using a time-sequence of 

fluorescence images acquired at a single focal plane, digitally increasing the depth-of-field of the 

microscope by 20-fold without any axial scanning, additional hardware, or a trade-off of imaging 

resolution or speed. Furthermore, I demonstrate that this learning-based approach can correct for 

sample drift, tilt, and other image aberrations, all digitally performed after the acquisition of a 

single fluorescence image. This unique framework also cross-connects different imaging 

modalities to each other, enabling 3D refocusing of a single wide-field fluorescence image to 

match confocal microscopy images acquired at different sample planes. This deep learning-based 

3D image refocusing method might be transformative for imaging and tracking of 3D fluorescent 

samples, especially over extended periods of time, mitigating photo-toxicity, sample drift, 

aberration and defocusing related challenges associated with standard 3D fluorescence 

microscopy techniques. 
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2.5.1 Introduction 

Three-dimensional (3D) fluorescence microscopic imaging is essential for biomedical and 

physical sciences as well as engineering, covering various applications 205–211. Unlike coherent 

imaging systems, such as holography, fluorescence emission from samples is both spatially and 

temporally incoherent, and therefore fluorescence microscopy in general lacks digital image 

propagation and time-reversal framework that is commonly employed in coherent microscopy 

for 3D imaging 212–214. In fact, high-throughput acquisition of fluorescence image data for a 3D 

sample remains a challenge in microscopy research. 3D fluorescence information is usually 

acquired through scanning across the sample volume, where several 2D fluorescence 

images/measurements are obtained, one for each focal plane or point in 3D , which forms the 

basis of e.g., confocal 215, two-photon 209, light-sheet 211,216,217 or various super-resolution 

206,208,218–221 microscopy techniques. However, because scanning is used, the image acquisition 

speed and the throughput of the system for volumetric samples are limited to a fraction of the 

frame-rate of the camera/detector, even with optimized scanning strategies 215 or PSF 

engineering 211,222. Moreover, because the images at different sample planes/points are not 

acquired simultaneously, the temporal variations of the sample fluorescence can inevitably cause 

image artifacts. Another concern is the photo-toxicity of illumination and photo-bleaching of 

fluorescence since parts of the sample can be repeatedly excited during the scanning process. 

To overcome some of these challenges, non-scanning 3D fluorescence microscopy methods 

have also been developed, so that the entire 3D volume of the sample can be imaged at the same 

speed as the detector framerate. One of these methods is fluorescence light-field microscopy 

210,223–226. This system typically uses an additional micro-lens array to encode the 2D angular 

information as well as the 2D spatial information of the sample light rays into image sensor 

pixels; then a 3D focal stack can be digitally reconstructed from this recorded 4D light-field. 



68 

However, using a micro-lens array reduces the spatial sampling rate which results in a sacrifice 

of both the lateral and axial resolution of the microscope. Although the image resolution can be 

improved by 3D deconvolution 210 or compressive sensing 224 techniques, the success of these 

methods depends on various assumptions regarding the sample and the forward model of the 

image formation process. Furthermore, these computational approaches are relatively time-

consuming as they involve an iterative hyperparameter tuning as part of the image reconstruction 

process. A related method termed multi-focal microscopy has also been developed to map the 

depth information of the sample onto different parallel locations within a single image 227,228. 

However, the improved 3D imaging speed of this method also comes at the cost of reduced 

imaging resolution or field-of-view (FOV) and can only infer an experimentally pre-defined 

(fixed) set of focal planes within the sample volume. As another alternative, the fluorescence 

signal can also be optically correlated to form a Fresnel correlation hologram, encoding the 3D 

sample information in interference patterns 5,10,229. To retrieve the missing phase information, 

this computational approach requires multiple images to be captured for volumetric imaging of a 

sample. Quite importantly, all these methods summarized above, and many others, require the 

addition of customized optical components and hardware into a standard fluorescence 

microscope, potentially needing extensive alignment and calibration procedures, which not only 

increase the cost and complexity of the optical set-up, but also cause potential aberrations and 

reduced photon-efficiency for the fluorescence signal.  

Here I introduce a digital image refocusing framework in fluorescence microscopy by 

training a deep neural network using microscopic image data, enabling 3D imaging of 

fluorescent samples using a single 2D wide-field image, without the need for any mechanical 

scanning, additional hardware or parameter estimation. This data-driven fluorescence image 
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refocusing framework does not need a physical model of the imaging system, and rapidly 

refocuses a 2D fluorescence image onto user-defined 3D surfaces. In addition to rapid 3D 

imaging of a fluorescent sample volume, it can also be used to digitally correct for various 

aberrations due to the sample and/or the optical system. This deep learning-based approach, 

termed as Deep-Z, computationally refocus a single 2D wide-field fluorescence image onto 3D 

surfaces within the sample volume, without sacrificing the imaging speed, spatial resolution, 

field-of-view, or throughput of a standard fluorescence microscope.   

In Deep-Z framework, an input 2D fluorescence image (to be digitally refocused onto a 3D 

surface within the sample volume) is first appended with a user-defined digital propagation 

matrix (DPM) that represents, pixel-by-pixel, the axial distance of the target surface from the 

plane of the input image (Figure 2.16). Deep-Z is trained using a conditional generative 

adversarial neural network (GAN) 170,198 using accurately matched pairs of (1) various 

fluorescence images axially-focused at different depths and appended with different DPMs, and 

(2) the corresponding fluorescence images (i.e., the ground truth labels) captured at the 

correct/target focus plane defined by the corresponding DPM. Through this training process that 

only uses experimental image data without any assumptions or physical models, the generator 

network of GAN learns to interpret the values of each DPM pixel as an axial refocusing 

distance, and outputs an equivalent fluorescence image that is digitally refocused within the 

sample volume to the 3D surface defined by the user, where some parts of the sample are 

focused, while some other parts get out-of-focus, according to their true axial positions with 

respect to the target surface.  
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Figure 2.16 Refocusing of fluorescence images using Deep-Z. (a) By concatenating a digital propagation matrix 

(DPM) to a single fluorescence image, and running the resulting image through a trained Deep-Z network, digitally 

refocused images at different planes can be rapidly obtained, as if an axial scan is performed at the corresponding 

planes within the sample volume. The DPM has the same size as the input image and its entries represent the axial 

propagation distance for each pixel and can also be spatially non-uniform. The results of Deep-Z inference are 

compared against the images of an axial-scanning fluorescence microscope for the same fluorescent bead (300 nm), 

providing a very good match. (b) Lateral FWHM histograms for 461 individual/isolated fluorescence nano-beads 

(300 nm) measured using Deep-Z inference (N=1 captured image) and the images obtained using mechanical axial 

scanning (N=41 captured images) provide a very good match to each other. (c) Same as in (b), except for the axial 

FWHM measurements for the same data set, also revealing a very good match between Deep-Z inference results and 

the axial mechanical scanning results. Reprinted from Ref. 123. 
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To demonstrate the success of this unique fluorescence digital refocusing framework, I 

imaged Caenorhabditis elegans (C. elegans) neurons using a standard wide-field fluorescence 

microscope with a 20×/0.75 numerical aperture (NA) objective lens, and extended the native 

depth-of-field (DOF) of this objective (~1 µm) by ~20-fold, where a single 2D fluorescence 

image was axially refocused using Deep-Z to z = ±10 µm with respect to its focus plane, 

providing a very good match to the fluorescence images acquired by mechanically scanning the 

sample within the same axial range. Similar results were also obtained using a higher NA 

objective lens (40×/1.3 NA). Using this deep learning-based fluorescence image refocusing 

technique, I further demonstrated 3D tracking of the neuron activity of a C. elegans worm over 

an extended DOF of ±10 µm using a fluorescence video acquired at a single focal plane.  

Furthermore, to highlight some of the additional degrees-of-freedom enabled by Deep-Z, I 

used spatially non-uniform DPMs to refocus a 2D input fluorescence image onto user-defined 3D 

surfaces to computationally correct for aberrations such as sample drift, tilt and spherical 

aberrations, all performed after the fluorescence image acquisition and without any 

modifications to the optical hardware of a standard wide-field fluorescence microscope.  

Another important feature of this Deep-Z framework is that it permits cross-modality digital 

refocusing of fluorescence images, where the GAN is trained with gold standard label images 

obtained by a different fluorescence microscopy modality to teach the generator network to 

refocus an input image onto another plane within the sample volume, but this time to match the 

image of the same plane that is acquired by a different fluorescence imaging modality compared 

to the input image. I term this related framework Deep-Z+. To demonstrate this unique capability, 

I trained Deep-Z+ with input and label images that were acquired with a wide-field fluorescence 

microscope and a confocal microscope, respectively, to blindly generate at the output of this 
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cross-modality Deep-Z+, digitally refocused images of an input wide-field fluorescence image 

that match confocal microscopy images of the same sample sections. 

After its training, Deep-Z remains fixed, while the appended DPM provides a “depth tuning 

knob” for the user to refocus a single 2D fluorescence image onto 3D surfaces and output the 

desired digitally-refocused fluorescence image in a rapid non-iterative fashion. In addition to 

fluorescence microscopy, Deep-Z framework might potentially be applied to other incoherent 

imaging modalities, and in fact it bridges the gap between coherent and incoherent microscopes 

by enabling 3D digital refocusing of a sample volume using a single 2D incoherent image. Deep-

Z is further unique in that it enables a computational framework for rapid transformation of a 3D 

surface onto another 3D surface within the fluorescent sample volume using a single forward-

pass operation of the generator network.   

2.5.2 Results 

Digital refocusing of fluorescence images using Deep-Z 

Deep-Z enables a single intensity-only wide-field fluorescence image to be digitally refocused to 

a user-defined surface within the axial range of its training. Figure 2.16(a) demonstrates this 

concept by digitally propagating a single fluorescence image of a 300 nm fluorescent bead 

(excitation/emission: 538 nm/584 nm) to multiple user defined planes. The native DOF of the 

input fluorescence image, defined by the NA of the objective lens (20×/0.75 NA), is ~ 1 µm;  

Deep-Z digitally refocus the image of this fluorescent bead over an axial range of ~ ±10 µm, 

matching the mechanically-scanned corresponding images of the same region of interest (ROI), 

which form the ground truth. Note that the PSF in Figure 2.16(a) is asymmetric in the axial 

direction, which provides directional cues to the neural network regarding the digital 

propagation of an input image by Deep-Z. Unlike a symmetric Gaussian beam230, such PSF 
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asymmetry along the axial direction is ubiquitous in fluorescence microscopy systems231. To 

further quantify Deep-Z output performance I used PSF analysis; Figure 2.16(b-c) illustrate the 

histograms of both the lateral and the axial full-width-half-maximum (FWHM) values of 461 

individual/isolated nano-beads distributed over ~ 500 × 500 µm2. The statistics of these 

histograms very well agree with each other, confirming the match between Deep-Z output 

images calculated from a single fluorescence image (N=1 measured image) and the 

corresponding axially-scanned ground truth images (N=41 measured images). This quantitative 

match highlights the fact that Deep-Z indirectly learned, through image data, the 3D propagation 

of fluorescence light. However, this learned capability is limited to be within the axial range 

determined by the training dataset (e.g., ±10 µm in this work).  

Next, I tested the Deep-Z framework by imaging the neurons of a C. elegans nematode 

expressing pan-neuronal tagRFP 232. Figure 2.17 demonstrates the blind testing results for Deep-

Z based refocusing of different parts of a C. elegans worm from a single wide-field fluorescence 

input image. Using Deep-Z, non-distinguishable fluorescent neurons in the input image were 

brought into focus at different depths, while some other in-focus neurons at the input image got 

out-of-focus and smeared into the background, according to their true axial positions in 3D; see 

the cross-sectional comparisons to the ground truth mechanical scans provided in Figure 2.17. 

For optimal performance, this Deep-Z was specifically trained using C. elegans samples, to 

accurately learn the 3D PSF information together with the refractive properties of the nematode 

body and the surrounding medium. Similar results were also obtained for a 40×/1.3NA objective 

lens, where Deep-Z successfully refocused the input image over an axial range of ~ ±4 µm.  In 

addition to 3D imaging of the neurons of a nematode, Deep-Z also works well to digitally 

refocus the images of fluorescent samples that are spatially denser such as the mitochondria and 
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F-actin structures within bovine pulmonary artery endothelial cells (BPAEC); see Ref.123 for 

examples of these results. 

 

Figure 2.17 3D imaging of C. Elegans neuron nuclei using Deep-Z. Different ROIs are digitally refocused using 

Deep-Z to different planes within the sample volume; the resulting images provide a very good match to the 

corresponding ground truth images, acquired using a scanning fluorescence microscope. The absolute difference 

images of the input and output with respect to the corresponding ground truth image are also provided on the right, 

with structural similarity index (SSIM) and root mean square error (RMSE) values reported, further demonstrating 

the success of Deep-Z. Scale bar: 25 µm. Reprinted from Ref. 123. 
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3D functional imaging of C. elegans using Deep-Z 

An important application of 3D fluorescence imaging is neuron activity tracking; for example 

genetically modified animals that express different fluorescence proteins are routinely imaged 

using a fluorescence microscope to reveal their neuron activity. To highlight the utility of Deep-

Z for tracking the activity of neurons in 3D, I recorded a fluorescence video of a C. elegans 

worm at a single focal plane (z = 0 µm) for ~35 sec, using a 20×/0.8NA objective lens with two 

fluorescence channels: FITC for neuron activity and Texas Red for neuron locations. The input 

video frames were registered with respect to each other to correct for the slight body motion of 

the worm between the consecutive frames. Then, each frame at each channel of the acquired 

video were digitally refocused using Deep-Z to a series of axial planes from -10 µm to 10 µm 

with 0.5 µm step size, generating a virtual 3D fluorescence stack for each acquired frame. To 

quantify the neuron activity using Deep-Z output images, I  segmented voxels of each individual 

neuron using the Texas Red channel (neuron locations), and tracked the change of the 

fluorescence intensity, i.e., Δ𝐹(𝑡) = 𝐹(𝑡) − 𝐹0, in the FITC channel (neuron activity) inside each 

neuron segment over time, where 𝐹(𝑡) is the neuron fluorescence emission intensity and 𝐹0 is its 

time average; see Methods for details. A total of 155 individual neurons in 3D were isolated 

using Deep-Z output images, as shown in Figure 2.18(b), where the color represents the depth (z 

location) of each neuron. For comparison, the results of the same segmentation algorithm applied 

on just the input 2D image identified only 95 neurons without any depth information. Figure 

2.18(c) plots the activities of the 70 most active neurons, which were grouped into clusters C1-

C3 based on their calcium activity pattern similarities (see Methods for details). Figure 2.18(c) 

reports that cluster C3 calcium activities increased at t = 14 s, whereas the activities of cluster C2 

decreased at a similar time point. These neurons very likely correspond to the motor neurons 
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type A and B that promote backward and forward motion, respectively, which typically anti-

correlate with each other233. Cluster C1 features two cells that were comparatively larger in size, 

located in the middle of the worm. These cells had three synchronized short spikes at t = 4, 17 

and 32 sec. Their 3D positions and calcium activity pattern regularity suggest that they are 

neuronal or muscle cells of the defecation system that initiates defecation in regular intervals in 

coordination with the locomotion system 234.  

 

Figure 2.18 C. Elegans neuron activity tracking in 3D using Deep-Z. (a) Maximum intensity projection (MIP) 

along the axial direction of the median intensity image taken across the time sequence. The red channel (Texas red) 

labels neuron nuclei. The green channel (FITC) labels neuron calcium activity. A total of 155 neurons were 

identified, 70 of which were active in calcium activity. Scale bar: 25 µm. Scale bar for the zoom-in regions: 10 µm. 

(b) All the 155 localized neurons are shown in 3D, where depths are color-coded. (c) 3D tracking of neuron calcium 

activity events corresponding to the 70 active neurons. The neurons were grouped into 3 clusters (C1-C3) based on 

their calcium activity pattern similarity (see Methods section). The locations of these neurons are marked by the 

circles in (a). The colors of the circles represent different clusters: C1(blue), C2(cyan) and C3(yellow). 
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Note that all this 3D tracked neuron activity was in fact embedded in the input 2D 

fluorescence image sequence acquired at a single focal plane within the sample, but could not be 

readily inferred from it. Through the Deep-Z framework and its 3D refocusing capability to user 

defined surfaces within the sample volume, the neuron locations and activities were accurately 

tracked using a 2D microscopic time sequence, without the need for mechanical scanning, 

additional hardware, or a trade-off of resolution or imaging speed. Since Deep-Z generates 

temporally synchronized virtual image stacks through purely digital refocusing, it can be used to 

match the imaging speed to the limit of the camera framerate, by using e.g., the stream mode, 

which typically enables a short video of up to 100 frames per second. To highlight this 

opportunity, I used the stream mode of the camera of a Leica SP8 microscope (see the Methods 

section for details) and captured two videos at 100 fps for monitoring the neuron nuclei (under 

the Texas Red channel) and the neuron calcium activity (under the FITC channel) of a moving C. 

elegans over a period of 10 sec, and used Deep-Z to generate virtually refocused videos from 

these frames over an axial depth range of +/- 10 µm; see Ref. 123 for details.  

 

Deep-Z based aberration correction using spatially non-uniform DPMs  

The results reported up to now used uniform DPMs in both the training phase and the blind 

testing in order to refocus an input fluorescence image to different planes within the sample 

volume. Note that, even though Deep-Z was trained with uniform DPMs, in the testing phase one 

can also use spatially non-uniform entries as part of a DPM to refocus an input fluorescence 

image onto user-defined 3D surfaces, thanks to the convolutional nature of the network. This 

capability enables digital refocusing of the fluorescence image from a 3D surface onto another 

3D surface, defined by the pixel mapping of the corresponding DPM.  
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Such a unique capability can be useful, among many applications, for simultaneous auto-

focusing of different parts of a fluorescence image after the image capture, measurement or 

assessment of the aberrations introduced by the optical system (and/or the sample) as well as for 

correction of such aberrations by applying a desired non-uniform DPM. To exemplify this 

additional degree-of-freedom enabled by Deep-Z, Figure 2.19 demonstrates the correction of the 

planar tilting and cylindrical curvature of two different samples, after the acquisition of a single 

2D fluorescence image per object. Figure 2.19(a) illustrates the first measurement, where the 

plane of a fluorescent nano-bead sample was tilted by 1.5° with respect to the focal plane of the 

objective lens. As a result, the left and right sides of the acquired raw fluorescence image 

(Figure 2.19(c)) were blurred and the corresponding lateral FWHM values for these nano-beads 

became significantly wider, as reported in Figure 2.19(e). By using a non-uniform DPM (see 

Figure 2.19(b)), which represents this sample tilt, Deep-Z can act on the blurred input image 

(Figure 2.19(c)) and accurately bring all the nano-beads into focus (Figure 2.19(d)), even 

though it was only trained using uniform DPMs. The lateral FWHM values calculated at the 

network output image became monodispersed, with a median of ~ 0.96 µm (Figure 2.19(f)), in 

comparison to a median of ~ 2.14 µm at the input image. Similarly, Figure 2.19(g) illustrates the 

second measurement, where the nano-beads were distributed on a cylindrical surface with a 

diameter of ~7.2 mm. As a result, the measured raw fluorescence image exhibited defocused 

regions as illustrated in Figure 2.19(i), and the FWHM values of these nano-bead images were 

accordingly broadened (Figure 2.19(k)), corresponding to a median value of ~ 2.41 µm. On the 

other hand, using a non-uniform DPM that defines this cylindrical surface (Figure 2.19(h)), the 

aberration in Figure 2.19(i) was corrected using Deep-Z (Figure 2.19(j)), and similar to the 
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tilted sample case, the lateral FWHM values calculated at the network output image once again 

became monodispersed, as desired, with a median of ~ 0.91 µm (Figure 2.19(l)). 

 

Figure 2.19 Non-uniform DPMs enable digital refocusing of a single fluorescence image onto user-defined 3D 

surfaces using Deep-Z.  (a) Measurement of a tilted fluorescent sample (300 nm beads). (b) The corresponding 

DPM for this tilted plane. (c) Measured raw fluorescence image; the left and right parts are out-of-focus in different 

directions, due to the sample tilt. (d) The Deep-Z output rapidly brings all the regions into correct focus. (e,f) report 

the lateral FWHM values of the nano-beads shown in (c,d), respectively, clearly demonstrating that Deep-Z with the 

non-uniform DPM brought the out-of-focus particles into focus. (g) Measurement of a cylindrical surface with 
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fluorescent beads (300 nm beads). (h) The corresponding DPM for this curved surface. (i) Measured raw 

fluorescence image; the middle region and the edges are out-of-focus due to the curvature of the sample. (j) The 

Deep-Z output rapidly brings all the regions into correct focus. (k,l) report the lateral FWHM values of the nano-

beads shown in (i,j), respectively, clearly demonstrating that Deep-Z with the non-uniform DPM brought the out-of-

focus particles into focus. Scale bar in zoomed regions: 2 µm. Reprinted from Ref. 123. 

Cross-modality digital refocusing of fluorescence images: Deep-Z+ 

Deep-Z framework enables digital refocusing of out-of-focus 3D features in a wide-field 

fluorescence microscope image to user-defined surfaces. The same concept can also be used to 

perform cross-modality digital refocusing of an input fluorescence image, where the generator 

network can be trained using pairs of input and label images captured by two different 

fluorescence imaging modalities, which is termed as Deep-Z+. After its training, the Deep-Z+ 

network learns to digitally refocus a single input fluorescence image acquired by a fluorescence 

microscope to a user-defined target surface in 3D, but this time the output will match an image of 

the same sample captured by a different fluorescence imaging modality at the corresponding 

height/plane. To demonstrate this unique capability, I trained a Deep-Z+ network using pairs of 

wide-field microscopy images (used as inputs) and confocal microscopy images at the 

corresponding planes (used as ground truth labels) to perform cross-modality digital refocusing 

(see the Methods for training details). Figure 2.20 demonstrates the blind testing results for 

imaging microtubule structures of BPAEC using this Deep-Z+ framework. As seen in Figure 

2.20, the trained Deep-Z+ network digitally refocused the input wide field fluorescence image 

onto different axial distances, while at the same time rejecting some of the defocused spatial 

features at the refocused planes, matching the confocal images of the corresponding planes, 

which serve as our ground truth. For instance, the microtubule structure at the lower left corner 

of a ROI in Figure 2.20, which was prominent at a refocusing distance of z = 0.34 µm, was 
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digitally rejected by Deep-Z+ at a refocusing distance of z = -0.46 µm since it became out-of-

focus at this axial distance, matching the corresponding image of the confocal microscope at the 

same depth. As demonstrated in Figure 2.20, Deep-Z+ merges the sectioning capability of 

confocal microscopy with its image refocusing framework. Figure 2.20 also reports x-z and y-z 

cross-sections of the Deep-Z+ output images, where the axial distributions of the microtubule 

structures are significantly sharper in comparison to the axial scanning images of a wide-field 

fluorescence microscope, providing a very good match to the cross-sections obtained with a 

confocal microscope, matching the aim of its training.  

 

Figure 2.20 Deep-Z+: Cross-modality digital refocusing of fluorescence images. A single wide-field 

fluorescence image (63×/1.4NA objective lens) of BPAEC mgicrotubule structures (a) was digitally refocused using 
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Deep-Z+ to different planes in 3D (b), matching the images captured by a confocal microscope at the corresponding 

planes (c), retrieving volumetric information from a single input image and performing axial sectioning at the same 

time. Wide-field (WF) images are also shown in (c) for comparison. These scanning WF images report the closest 

heights to the corresponding confocal images, and have 60 nm axial offset since the two image stacks are discretely 

scanned and digitally aligned to each other. x-z and y-z cross-sections of the refocused images are also shown to 

demonstrate the match between Deep-Z+ inference and the ground truth confocal microscope images of the same 

planes; the same cross-sections (x-z and y-z) are also shown for a wide-field scanning fluorescence microscope, 

reporting a significant axial blur in each case. Each cross-sectional zoomed-in image spans 1.6 µm in z-direction 

(with an axial step size of 0.2 µm), and the dotted arrows mark the locations, where the x-z and y-z cross-sections 

were taken. (d) The absolute difference images of the Deep-Z+ output with respect to the corresponding confocal 

images are also provided, with SSIM and RMSE values, further quantifying the performance of Deep-Z+. For 

comparison, we also show the absolute difference images of the ‘standard’ Deep-Z output images as well as the 

scanning wide-field fluorescence microscope images with respect to the corresponding confocal images, both of 

which report increased error and weaker SSIM compared to |GT - Deep-Z+|. The quantitative match between |GT - 

WF| and |GT - Deep-Z| (see d) also suggests that the impact of 60 nm axial offset between the confocal and wide-

field image stacks is negligible. Scale bar: 10 µm. Reprinted from Ref. 123. 

2.5.3 Discussion 

I developed a unique framework (Deep-Z), powered by deep neural networks, that enables 

3D refocusing within a sample using a single 2D fluorescence image. This framework is non-

iterative and does not require hyperparameter tuning following its training stage. In Deep-Z, the 

user can specify refocusing distances for each pixel in a DPM (following the axial range used in 

the training), and the fluorescence image can be digitally refocused to the corresponding surface 

through Deep-Z. The Deep-Z framework is also robust to changes in the density of the 

fluorescent objects within the sample volume, the exposure time of the input images, as well as 

the illumination intensity modulation (see Ref. 123 for detailed analyses). Because the distances 

are encoded in DPM and modeled as a convolutional channel, the network can be trained with 
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uniform DPMs, which still allows various non-uniform DPMs to be applied during the inference 

stage as reported in the Results section for e.g., correcting the sample drift, tilt, curvature or other 

optical aberrations, which brings additional degrees-of-freedom to the imaging system. Through 

this Deep-Z framework, I bring the snapshot 3D refocusing capability of coherent imaging and 

holography to incoherent fluorescence microscopy, without any mechanical scanning, additional 

hardware components, or a trade-off of imaging resolution or speed. This not only significantly 

boosts the imaging speed, but also reduces the negative effects of photobleaching and 

phototoxicity on the sample, which is a crucial issue for fluorescence microscopy experiments.  

Practically, the retrievable axial range in this method depends on the SNR of the recorded 

image, i.e., if the depth information carried by the PSF falls below the noise floor, accurate 

inference will become a challenging task. In Results section, I demonstrated an enhancement of 

~20× in the DOF of a wide-field fluorescence image using Deep-Z. This axial refocusing range is 

in fact not an absolute limit but rather a practical choice for my training data, and it may be 

further improved through hardware modifications to the optical set-up by e.g., engineering the 

PSF in the axial direction 211,222,235–237. In addition to requiring extra hardware and sensitive 

alignment/calibration, such approaches would also require brighter fluorophores, to compensate 

for photon losses due to the insertion of additional optical components in the detection path. 

 

2.5.4 Methods 

Sample preparation 

Structural imaging of C. elegans neurons was carried out in strain AML18. AML18 carries the 

genotype wtfIs3 [rab-3p::NLS::GFP + rab-3p::NLS::tagRFP] and expresses GFP and tagRFP in 

the nuclei of all the neurons 232. For functional imaging, I used the strain AML32, carrying 
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wtfIs5 [rab-3p::NLS::GCaMP6s + rab-3p::NLS::tagRFP]. The strains were acquired from the 

Caenorhabditis Genetics Center (CGC). Worms were cultured on Nematode Growth Media 

(NGM) seeded with OP50 bacteria using standard conditions 238. For imaging, worms were 

washed off the plates with M9, and anaesthetized with 3 mM levamisole 239. Anaesthetized 

worms were then mounted on slides seeded with 3% Agarose. To image moving worms, the 

levamisole was omitted. 

Fluorescence image acquisition 

The fluorescence images of nano-beads, C. elegans structure and BPAEC samples were captured 

by an inverted scanning microscope (IX83, Olympus Life Science) using a 20×/0.75NA 

objective lens. A 130W fluorescence light source was used at 100% output power. Two bandpass 

optical filter sets were used: Texas Red and FITC. For all the samples, the scanning microscope 

had a motorized stage that moved the samples to different FOVs and performed image-contrast-

based auto-focus at each location. The motorized stage was controlled using MetaMorph® 

microscope automation software (Molecular Devices, LLC). At each location, the control 

software autofocused the sample based on the standard deviation of the image, and a z-stack was 

taken from -20 µm to 20 µm with a step size of 0.5 µm. The image stack was captured by a 

monochrome scientific CMOS camera (ORCA-flash4.0 v2, Hamamatsu Photonics K.K), and 

saved in non-compressed tiff format, with 81 planes and 2048 × 2048 pixels in each plane.   

The images of C. elegans neuron activities were captured by another scanning wide-field 

fluorescence microscope (TCS SP8, Leica Microsystems) using a 20×/0.8NA objective lens and 

a 40×/1.3NA objective lens. Two bandpass optical filter sets were used: Texas Red and FITC. 

The images were captured by a monochrome scientific CMOS camera (Leica-DFC9000GTC-

VSC08298). For capturing image stacks of anesthetized worms, the motorized stage controlled 
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by a control software (LAS X, Leica Microsystems) moved the sample slide to different FOVs. 

At each FOV, the control software took a z-stack from -20 µm to 20 µm with a step size of 0.5 

µm for the 20×/0.8NA objective lens images, and with a step size of 0.27 µm for the 40×/1.3NA 

objective lens images, with respect to a middle plane (z=0 µm). Two images were taken at each 

z-plane, for Texas Red channel and FITC channel respectively. For capturing 2D videos of 

dynamic worms, the control software took a time-lapsed video that also time-multiplexed the 

Texas Red and FITC channels at the maximum speed of the system.  

The BPAEC wide-field and confocal fluorescence images for Deep-Z+ were captured by 

another inverted scanning microscope (TCS SP5, Leica Microsystems). The images were 

acquired using a 63×/1.4 NA objective lens and FITC filter set was used. The wide-field images 

were recorded by a CCD with 1380×1040 pixels and 12-bit dynamic range, whereas the confocal 

images were recorded by a photo-multiplier tube (PMT) with 8-bit dynamic range (1024×1024 

pixels). The scanning microscope had a motorized stage that moved the sample to different 

FOVs and depths. At each location, a stack of 12 images with 0.2 µm axial spacing was recorded.  

Image pre-processing and training data preparation 

Each captured image stack was first axially aligned using an ImageJ plugin named “StackReg” 

202, which corrects the rigid shift and rotation within the stack. Then an extended depth of field 

(EDF) image was generated using another ImageJ plugin named “Extended Depth of Field” 240. 

This EDF image was used as a reference image to normalize the whole image stack, following 

three steps: (1) Triangular threshold241 was used on the image to separate the background and 

foreground pixels; (2) the mean intensity of the background pixels of the EDF image was 

determined to be the background noise and subtracted; (3) the EDF image intensity was scaled to 

0-1, where the scale factor was determined such that 1% of the foreground pixels above the 
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background were greater than one (i.e., saturated); and (4) each image in the stack was subtracted 

by this background level and normalized by this intensity scaling factor. For testing data without 

an image stack, steps (1) – (3) were applied on the input image instead of the EDF image.  

To prepare the training and validation datasets, on each FOV, a geodesic dilation 104 with 

fixed thresholds was applied on fluorescence EDF images to generate a mask that represents the 

regions containing the sample fluorescence signal above the background. Then, a customized 

greedy algorithm was used to determine a minimal set of regions with 256 × 256 pixels that 

covered this mask, with ~5% area overlaps between these training regions. The lateral locations 

of these regions were used to crop images on each height of the image stack, where the middle 

plane for each region was set to be the one with the highest standard deviation. Then 20 planes 

above and 20 planes below this middle plane were set to be the range of the stack, and an input 

image plane was generated from each one of these 41 planes. Depending on the size of the data 

set, around 5-10 out of these 41 planes were randomly selected as the corresponding target plane, 

forming around 150 to 300 image pairs. For each one of these image pairs, the refocusing 

distance was determined based on the location of the plane (i.e. 0.5 µm times the difference from 

the input plane to the target plane). By repeating this number, a uniform DPM was generated and 

appended to the input fluorescence image. The final dataset typically contained ~ 100,000 image 

pairs. This was randomly divided into a training dataset and a validation dataset, which took 85% 

and 15% of the data respectively. During the training process, each data point was further 

augmented five times by flipping or rotating the images by a random multiple of 90. The 

validation dataset was not augmented. The testing dataset was cropped from separate 

measurements with sample FOVs that do not overlap with the FOVs of the training and 

validation data sets. 
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Network architecture and training 

The Deep-Z network is formed by a least square generative adversarial network (LS-GAN) 

framework 242, and it is composed of two parts: a generator and a discriminator, as shown in 

Figure 2.6. The generator is a convolutional neural network (CNN) inspired by the U-Net 196, as 

detailed in section 2.2.2. The discriminator is a convolutional neural network that consists of six 

consecutive convolutional blocks. The Deep-Z network learns to use the information given by 

the appended DPM to digitally refocus the input image to a user-defined plane. In the training 

phase, the input data of the generator have the dimensions of 256 × 256 × 2, where the first 

channel is the fluorescence image, and the second channel is the user-defined DPM. The target 

data of generator have the dimensions of 256 × 256, which represent the corresponding 

fluorescence image at a surface specified by the DPM. The input data of the discriminator 

D(. ) have the dimensions of 256 × 256, which can be either the generator output or the 

corresponding target. During the training phase, the network iteratively minimizes the generator 

loss LG and discriminator loss LD, defined as in equations (1.11) and (1.13). Adam optimizer was 

used to minimize both LG and LD , with a learning rate of 10−4  and 3 × 10−5   for LG  and LD 

respectively. In each iteration, six updates of the generator loss and three updates of the 

discriminator loss were performed. The validation set was tested every 50 iterations, and the best 

network (to be blindly tested) was chosen to be the one with the smallest MAE loss on the 

validation set.  The network was implemented using TensorFlow 110, performed on a PC with 

Intel Core i7-8700K six-core 3.7GHz CPU and 32GB RAM, using an Nvidia GeForce 1080Ti 

GPU. On average, the training takes ~ 70 hours for ~ 400,000 iterations (equivalent to ~ 50 

epochs). After the training, the network inference time was ~ 0.2 s for an image with 512 × 512 

pixels and ~ 1s for an image with 1536 × 1536 pixels on the same PC.  



88 

Tracking and quantification of C. elegans neuron activity 

To localize individual neurons, the red channel stacks (Texas Red, neuron nuclei) were projected 

by median-intensity through the time sequence. Local maxima in this projected median intensity 

stack marked the centroid of each neuron and the voxels of each neuron was segmented from 

these centroids by watershed segmentation104, which generated a 3D spatial voxel mask for each 

neuron. A total of 155 neurons were isolated. Then, the average of the 100 brightest voxels in the 

green channel (FITC, neuron activity) inside each neuron spatial mask was calculated as the 

calcium activity intensity 𝐹𝑖(𝑡), for each time frame t and each neuron 𝑖 = 1,2, … ,155. The 

differential activity was then calculated, Δ𝐹(𝑡) = 𝐹(𝑡) − 𝐹0, for each neuron, where 𝐹0 is the 

time average of 𝐹(𝑡). 

By thresholding on the standard deviation of each  Δ𝐹(𝑡), I selected the 70 most active cells 

and performed further clustering on them based on their calcium activity pattern similarity using 

a spectral clustering algorithm 243,244. The calcium activity pattern similarity was defined as  

 Sij = exp
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   (2.14) 

for neurons i and j, which results in a similarity matrix S. σ = 1.5 is the standard deviation of 

this Gaussian similarity function, which controls the width of the neighbors in the similarity 

graph. The spectral clustering solves an eigen-value problem on the graph Laplacian L generated 

from the similarity matrix S, defined as the difference of weight matrix W and degree matrix D,  

 L = D −W   (2.15) 

where  
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 Wij = {
Sij if i ≠ j

0 if i = j
 (2.16) 

 Dij = {
∑Wij
j

if i = j

0 if i ≠ j

 (2.17) 

The number of clusters was chosen using eigen-gap heuristics244, which was the index of the 

largest general eigenvalue (by solving general eigen value problem 𝐿𝑣 = 𝜆𝐷𝑣) before the eigen-

gap, where the eigenvalues jump up significantly, which was determined to be k=3. Then the 

corresponding first k=3 eigen-vectors were combined as a matrix, whose rows were clustered 

using standard k-means clustering244, which resulted in the three clusters of the calcium activity 

patterns shown in Figure 2.18.  

 

Cross-modality alignment of wide-field and confocal fluorescence images 

Individual FOVs of each stack of the wide-field/confocal pair were stitched together using 

“Image Stitching” plugin of ImageJ 245. The stitched wide-field and confocal EDF images were 

then co-registered using a feature-based registration with projective transformation performed in 

Matlab (MathWorks, Inc) 203. Then the stitched confocal EDF images as well as the stitched 

stacks were warped using this estimated transformation to match their wide-field counterparts 

(Figure 2.21(a)). The non-overlapping regions of the wide-field and warped confocal images 

were subsequently deleted. Then the above-described greedy algorithm was used to crop non-

empty regions of 256 × 256 pixels from the remaining stitched wide-field images and their 

corresponding warped confocal images. The same feature-based registration was applied on each 

pair of cropped regions for fine alignment. This step provides good correspondence between the 

wide field image and the corresponding confocal image in the lateral directions (Figure 2.21(b)). 



90 

Although the axial scanning step size was fixed to be 0.2 µm, the reference zero-point in the 

axial direction for the wide-field and the confocal stacks needed to be matched. To determine 

this reference zero-point in the axial direction, the images at each depth were compared with the 

EDF image of the same region using structural similarity index (SSIM) 181, providing a focus 

curve (Figure 2.21(c)). A second order polynomial fit was performed on four points in this focus 

curve with highest SSIM values, and the reference zero-point was determined to be the peak of 

the fit (Figure 2.21(c)). The heights of wide-field and confocal stacks were then centered by 

their corresponding reference zero-points in the axial direction. For each wide-field image used 

as input, four confocal images were randomly selected from the stack as the target, and their 

DPMs were calculated based on the axial difference of the centered height values of the confocal 

and the corresponding wide-field images.  
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Figure 2.21 Registration of a wide-field fluorescence z-stack against a confocal z-stack. (a) Registration in the 

lateral direction. Both the wide-field and the confocal z-stacks were first self-aligned and extended depth of field 

(EDF) images were calculated for each stack. The EDF images were stitched spatially and the stitched EDF images 

from wide-field were aligned to those of confocal microscopy images. The spatial transformations, from stitching to 

the EDF alignment, were used as consecutive transformations to associate the wide-field stack to the confocal stack. 

(b) Non-empty wide-field ROIs of 256×256 pixels and the corresponding confocal ROIs were cropped from the 

EDF image, which were further aligned. The image here shows an example overlay of the registered image pair, 

with wide-field image in magenta and the corresponding confocal image in green. (c) To align the wide-field and 

confocal stacks in the axial direction, focus curves in the wide-field stack and the confocal stack were calculated and 

compared based on the corresponding SSIM values.   
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Chapter 3 Deep learning enabled air quality monitoring 

One of the major sources of air pollution is created by particulate matter (PM), which refers 

to the suspended biological or non-biological particles in air. PM in general can penetrate human 

respiration system and even blood and cause allergies, various diseases and even cancer. 

Currently, a majority of PM monitoring processes involve capturing samples in the field and 

analyzing the collected PMs in a remote laboratory, where a micro-biologist or microscopist 

examines the sample, typically using a microscope. These manual lab inspection-based 

approaches are very slow, time-consuming and expensive, thus there is an unmet need for mobile 

and cost-effective technologies that can rapidly and accurately measure the concentration of such 

bio-aerosols in the field, away from a lab. 

Using computational lens-less digital holographic microscopy, powered by machine learning 

and deep learning, I created a hand-held, high-throughput, and intelligent PM monitor, called c-

Air (pronounced as “see air”, where the letter “c” stands for “computation”). In section 3.1, I will 

describe accurate PM detection and sizing using c-Air device. In section 3.2, I will describe 

automatic and label-free bio-aerosol sensing using c-Air device.  

Part of this chapter has been previously published in  

• Y. Wu et al. “Air Quality Monitoring Using Mobile Microscopy and Machine Learning.” 

Light: Science & Applications 6, no. 9 (September 2017): e17046;  

• Y. Wu et al. “Label-Free Bioaerosol Sensing Using Mobile Microscopy and Deep Learning.” 

ACS Photonics 5, no. 11 (November 21, 2018): 4617–27.  

 

 



93 

3.1 Particulate matter monitoring 

Rapid, accurate, and high-throughput sizing and quantification of particulate matter (PM) in 

air is crucial for monitoring and improving air quality. Here, I demonstrate a field-portable cost-

effective platform for high-throughput quantification of particulate matter using computational 

lens-less microscopy and machine-learning. This platform, termed c-Air, is also integrated with a 

smartphone application for device control and display of results. This mobile device rapidly 

screens 6.5 L of air in 30 s and generates microscopic images of the aerosols in air. It provides 

statistics of the particle size and density distribution with a sizing accuracy of ~93%. I tested this 

mobile platform by measuring the air quality at different indoor and outdoor environments and 

measurement times, and compared our results to those of an Environmental Protection Agency–

approved device based on beta-attenuation monitoring, which showed strong correlation to c-Air 

measurements. Furthermore, I used c-Air to map the air quality around Los Angeles International 

Airport (LAX) over 24 hours to confirm that the impact of LAX on increased PM concentration 

was present even at >7 km away from the airport, especially along the direction of landing flights. 

With its machine-learning based computational microscopy interface, c-Air can provide a cost-

effective mobile solution for highly accurate and distributed sensing of air quality.  

3.1.1 Introduction 

Particulate matter (PM) is a mixture of solid and liquid particles in air and forms a significant 

form of air pollution. PM sources include, for example, direct emission from a source, such as a 

construction site, smokestack, or fire, or a result of complex chemical reactions emitted from 

power plants, industrial production, and automobiles.246 PM with a general diameter of 10 μm 

and smaller, which is termed PM10, can cause serious health problems because it can become 

lodged deep in the lungs and even enter the bloodstream. A smaller PM size category, PM2.5, 
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which represents particles with a diameter of 2.5 μm or smaller, has been declared a cause of 

cancer by the WHO.247 Furthermore, PM is a major environmental issue on account of reduced 

visibility (haze). Monitoring PM air quality as a function of space and time is critical for 

understanding the effects of industrial activities, studying atmospheric models, and providing 

regulatory and advisory guidelines for transportation, residents, and industries.  

Currently, PM monitoring is performed at designated air sampling stations, which are 

regulated by the US Environmental Protection Agency (EPA) and similar agencies in different 

countries. Many of these advanced automatic platforms use either beta-attenuation monitoring 

(BAM)248 or a tapered element oscillating microbalance (TEOM)248 instrument. BAM 

instruments sample aerosols on a rotating filter. Using a beta-particle source, they measure the 

beta-particle attenuation induced by the accumulated aerosols on the filter. TEOM-based 

instruments, on the other hand, capture aerosols in a filter cartridge, which contains a glass tube 

tip that vibrates at varying frequencies according to the mass of the captured aerosols. These 

devices provide accurate PM measurements at high throughputs. However, they are cumbersome 

and heavy (~30 kg), relatively expensive (~$50,000–100,000), and require specialized personnel 

or technicians for regular system maintenance, e.g., every few weeks. Owing to these limitations, 

only approximately 10,000 of these air sampling stations exist worldwide.  

In addition to these high-end PM measurement instruments, several commercially available 

portable particle counters are available at a lower cost of approximately $2,000249,250 and in some 

cases much higher, ~$7,000-8,000.251 These commercially available optical particle counters 

resemble a flow-cytometer, which drives the sampled air through a small channel. A laser beam 

focused on the nozzle of this channel is scattered by each particle that passes through the channel. 

The scattering intensity is then used to infer the particle size. Because of its serial read-out nature, 
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the sampling rate of this approach is limited to < 2-3 L/min and in some sub-micron particle 

detection schemes <0.8 L/min.251 Furthermore, accurate measurement of either very high or low 

concentrations of particles is challenging for these devices, which limits the dynamic range of 

the PM measurement. Aside from these limitations, the scattering cross-section, which comprises 

the quantity actually measured by this device type, heavily depends on the 3D morphology and 

refractive properties of the particles. This can cause severe errors in the conversion of the 

measured scattered light intensities into actual particle sizes. Finally, none of these designs offers 

a direct measure, i.e., a microscopic image of the captured particles, which is another limitation 

because further analysis of a target particle of interest after its detection cannot be performed. 

On account of these limitations, many air sampling activities continue to use microscopic 

inspection and counting. Basically, air samples are manually obtained in the field using a 

portable sampler that employs various processes, such as cyclonic collection, impingement, 

impaction, thermophoresis, or filtering.252–255 The sample is then sent to a central laboratory, 

where it is post-processed and manually inspected under a microscope by an expert. This type of 

microscopic analysis provides the major advantage of more accurate particle sizing, while 

enabling the expert reader to recognize the particle shape and type. These capabilities yield 

additional benefits in more complicated analyses of air pollution, such as identification of a 

specific aerosol type. In this method, however, the sampling and inspection processes are 

separated; i.e., the sampling is performed in the field, whereas the sample analysis is conducted 

in a remote professional lab. This significantly delays the reporting of the results. Furthermore, 

the inspection is manually performed by a trained expert, which considerably increases the 

overall cost of each air-quality measurement. Furthermore, this conventional microscope-based 
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screening of aerosols cannot be conducted in the field, because these benchtop microscopes are 

cumbersome, heavy, expensive, and require specialized skills to operate.  

As a transformative solution to the above outlined limitations of existing air quality 

measurement techniques, I developed a hand-held and cost-effective platform for automated 

sizing and high-throughput quantification of PM using computational lens-less microscopy and 

machine learning. As an alternative to conventional lens-based microscopy techniques, in a 

computational lens-less microscopy approach, the sample is directly positioned on top of an 

image sensor chip with no optical components between them.15,16 Such an on-chip microscope 

can computationally reconstruct images of transmissive samples over a very large field-of-view 

of >20 mm2. Based on this computational on-chip imaging concept and a unique machine 

learning enabled particle analysis method, I demonstrate the design of c-Air -- a lightweight 

(~590 g), hand-held and cost-effective air-quality monitoring system. This mobile system utilizes 

a micro-pump, an impaction-based air-sampler, and a lens-less holographic on-chip microscope 

that is integrated with a custom-written machine learning algorithm for remote data processing 

and particle analysis. The c-Air platform (Figure 3.1 and Figure 3.2) operates with a 

smartphone application (app) for device control and data display. It can rapidly screen 6.5 L of 

air volume in 30 s, generating microscopic phase and amplitude images of the captured aerosols, 

while also automatically providing the PM sizing distribution with a sizing accuracy of ~93%.   

By measuring the air quality using c-Air over several hours at an EPA-approved air-quality 

monitoring station, I confirmed that the c-Air PM measurements closely matched those of an 

EPA-approved BAM device. I further tested c-Air prototypes in various indoor and outdoor 

locations in California. In some of these experiments, a significant increase in ambient PM 

caused by the so-called Sand Fire near Santa Clarita, California on July 23, 2016 was detected. 
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Finally, I conducted a 24-h spatio-temporal mapping of air pollution near Los Angeles 

International Airport (LAX) using the c-Air prototypes. The results revealed the occurrence of a 

temporal modulation of PM that correlates with the total number of flights at LAX. This 

modulation was present even at a distance of > 7 km from LAX along the direction of landing 

flights. Because c-Air is based on computational microscopic imaging and machine learning, I 

believe that the c-Air platform and its unique capabilities are broadly applicable to numerous air-

quality-related applications, and it can provide cost-effective, compact, and mobile solutions for 

spatio-temporal mapping of both indoor and outdoor air quality. 
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Figure 3.1 c-Air platform. (a)–(b) Photos of the device from different perspectives. A quarter is placed beside the 

device in (b) for scale. (c) 3D computer-aided-design (CAD)-drawing overview of the device, including (A) 

rechargeable battery, (B) vacuum pump (13 L/min), (C) illumination module with fiber-coupled LEDs of red (624 

nm), green (527 nm), and blue (470 nm), (D) impaction-based air sampler with (E) a sticky coverslip on top of (F) 

the image sensor. (d) Schematic drawing of impaction-based air sampler on a chip. (e) Whole field-of-view 

differential hologram image of an aerosol sample during sampling, and zoomed-in regions of its reconstruction. The 

device is powered by a rechargeable battery (A), and controlled by a microcontroller (Raspberry Pi A+).  The 

assembly and packaging are 3D-printed. Reprinted from Ref. 23 
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Figure 3.2 c-Air work flow and app interface.  (a) iOS-based c-Air app interface:  (i) “Welcome” screen of the 

app with different options. (ii) “Take Measurement” screen with a device-logo-shaped sampling button. (iii) 

Changing the device connection. The user can change the device to be connected by typing the IP address of the 

device. (iv) “Map View” of history samples. The air samples can be viewed by touching the pinpoint. (v) “List View” 

of history samples. Each entry is a sample that shows the device name and capture time. (vi) View of one sample 

result. The “graph” option shows a histogram of the particle sizing. (b) Workflow on the c-Air device. (c) Workflow 

on the server to support the processing of air samples. After the sample image and GPS location are sent to the 

server, the server processes the images, and the result is sent to the smartphone app, where it is rendered and 

displayed. (GPS: global position system; ML: machine learning). Reprinted from Ref. 23 
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3.1.2 Results and discussion 

Particle sizing accuracy using machine learning         

I used a machine-learning algorithm trained on size-calibrated particles to obtain a mapping 

from the detected spatial characteristics of the particles to their diameter (see Methods in sub-

section 3.1.4 for details).  Figure 3.3 depicts how well the predicted particle diameter, 𝐷𝑝𝑟𝑒𝑑, 

based on this machine learning algorithm, agrees with the ground-truth measured diameter, 𝐷𝑟𝑒𝑓. 

The sizing errors for training and testing sets are defined in equations (3.7) and (3.8), 

respectively. The dotted black line in Figure 3.3 represents the reference for 𝐷𝑟𝑒𝑓 = 𝐷𝑝𝑟𝑒𝑑. As 

shown in Figure 3.3, using machine learning, c-Air achieved an average sizing accuracy of 

approximately 93% for both the training and blind testing sets. 

 

Figure 3.3 Machine learning based particle detection and sizing with high accuracy using c-Air. The 

designated bead sizes are shown in the uppermost table. The microscope-calibrated size distribution is plotted as the 

histogram within the large figure. The large figure in the background shows the machine-learning mapped size 



101 

(𝐷𝑝𝑟𝑒𝑑) using c-Air. It is compared to the microscope-measured size (𝐷𝑟𝑒𝑓) for both training and testing sets. The 

middle dashed line represents  𝐷𝑝𝑟𝑒𝑑 = 𝐷𝑟𝑒𝑓 . The sizing error, which is defined by equations (6) to (7), is shown in 

the lower-right table in both µm and the relative percentage. A ~93% accuracy using machine-learning-based sizing 

is demonstrated. Reprinted from Ref. 23 

Particle size distribution measurements and repeatability of the c-Air platform 

I employed two c-Air devices (which were designed to be identical) and conducted repeated 

measurements at four locations: (1) the class-100 clean room of California NanoSystems 

Institute (CNSI) on 6/21/2016; (2) the class-1000 clean room at CNSI on 5/23/2016; (3) the 

indoor environment in the Engineering IV building at the University of California, Los Angeles 

(UCLA) campus on 5/25/2016; and (4) the outdoor environment at the second floor patio of the 

Engineering IV building on 05/23/2016.  At each location, we obtained seven samples for each 

c-Air device with a sampling period of 30 s between the two successive measurements. These 

sample c-Air images were processed as described in the Methods section, and the particle size 

distributions for each location were analyzed and compared.  

Figure 3.4 (a) to (c) show a box-whisker plot of the data distribution for total suspended 

particulate (TSP), PM10, and PM2.5 at these four locations. The points, marked by an “x” 

symbol, were excluded as outliers from the box plot with a whisker length of 1.5 (99.3% 

confidence). It is interesting to note that c-Air measured the TSP density at ~7 counts/L for the 

class-100 clean room and 25 counts/L for the class-1000 clean room at CNSI, which are both 

comparable to the ISO 14644-1 clean room standards256, i.e., 3.5 counts/L for the class-100 

clean room and 36 counts/L for the class-1000 clean room for particles ≥ 0.5 μm. 
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Figure 3.4 c-Air repeatability tests at different locations. (a)–(c) Box-plot of the repeatability test results using 

two c-Air devices (A and B) at the (1) class-100 clean room of CNSI on 06/21/2016; (2) class-1000 clean room at 

CNSI on 05/23/2016; (3) indoor environment of the UCLA Engineering IV building on 05/25/2016; and (4) outdoor 

environment at the second floor patio of the UCLA Engineering IV building on 05/23/2016. The box-plot was 

generated using the box-whisker plot method with a whisker length of 1.5 (99.3% confidence) to exclude outliers, 

which are marked by the symbol “x.” (d)–(g) Particle size and density distribution histogram comparison at each 

location: (d) Class-100 clean room; (e) class-1000 clean room; (f) indoor environment; and (g) outdoor environment. 

Seven samples for each c-Air device with a sampling period of 30 s were obtained at each location. Reprinted from 

Ref. 23 
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The measurements of TSP, PM10, and PM2.5 densities from the same data set were 

additionally used to elucidate two aspects of the repeatability of the c-Air platform, i.e., the intra-

device and inter-device repeatability.  The intra-device repeatability is defined as the extent to 

which the measurement result varies from sample to sample using the same c-Air device to 

measure the air quality in the same location (assuming that the air quality does not change from 

measurement to measurement with a small time lag in between). The strong intra-device 

repeatability of c-Air is evident in the “max–min” perspective in the box plot of Figure 3.4. 

The inter-device repeatability is defined as the extent to which the results vary from each 

other using two c-Air devices that are designed as identical to measure the air quality in the same 

location. This can be qualitatively viewed by comparing the measurement result of device A and 

device B in Figure 3.4. To further quantify the inter-device repeatability, I performed a µ-test 

(i.e., Mann–Whitney µ-test or Wilcoxon rank sum test) on the 2 × 4 sets of measurement data 

from devices A and B at four different locations. In the µ-test, I aimed to verify the null 

hypothesis (𝐻 = 0) for two sets of samples, 𝑋 and 𝑌: 

 H = 0 ∶ P(X > Y) = P(Y > X) =
1

2
 (3.1) 

that is, to test if the medians of the two samples are statistically the same. Compared to other 

tests for repeatability, e.g., the student t-test, the µ-test requires fewer assumptions and is more 

robust.257 I thus used a Matlab built-in function, ranksum, to perform the µ-test, and the 

hypothesis results and prominent p-values are summarized in Table 3.1. As shown in this table, 

the null hypothesis 𝐻 = 0 is valid for all the 2 × 4 sets of measurement data (from devices A 

and B at four different locations), showing the strong inter-device repeatability of my c-Air 

platform. 
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Table 3.1 Inter-device repeatability using µ-test. 

c-Air measurements showing forest fire influence at extended distances  

On July 22, 2016, the so-called Sand Fire struck near the Santa Clarita region in California and 

remained uncontained for several days.258,259 Figure 3.5(a) marks both the locations of this wild 

fire and the UCLA campus. Although UCLA was more than 40 km from the location of the fire, 

on July 23 around noon, smoke and ashes filled the sky near UCLA, as shown in the photo of 

Figure 3.5(b). We obtained six air samples using the c-Air device at an outdoor environment at 

UCLA, as described in the above sub-section. We compared the results with a previous sample 

obtained on a typical day, July 7, 2016, using the same device and at the same location. The data 

of both days contained six 30-s air samples measured with c-Air, with a ~2-min interval between 

the successive samples. For each day, the particle size distributions of the six samples were 

averaged and the standard deviations were plotted as the histogram in Figure 3.5(c). The results 

showed that the outdoor PM density significantly increased on the day of the wild fire, especially 

for particles smaller than 4 μm, which showed an approximately 80% increase. This increase in 

the density of smaller particles is natural because comparatively smaller particles can travel this 

long distance (> 40 km) and still have significant concentrations in air.   
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Figure 3.5 Particle size and density of the UCLA outdoor environment affected by the Sand Fire on 

07/22/2016.  (a) Map showing the area struck by the Sand Fire on 07/22/2016–07/23/2016. UCLA is also pinpointed 

on the map; it is more than 40 km from the fire location. (b) A photograph taken at ~5:00 p.m. from the second floor 

patio of the UCLA Engineering IV building. (c) Histogram comparison of the sample measured on a regular day, 

07/07 at ~4:00 p.m., and the day of the Sand Fire, 07/22 at ~5:00 p.m., at the same location using c-Air. Each 

histogram bar plot with a standard deviation bar was generated from six 30-s samples. The background map of (a) is 

cropped from Ref. 260. Reprinted from Ref. 23 

On September 1, 2017, another forest fire struck La Tuna Canyon Park in the greater Los 

Angeles area, California, which was later known as the La Tuna Fire.261,262 As this forest fire 

progressed, I used our c-Air device and took a series of measurements at different geographical 

locations. The image processing result of the c-Air measurements shows that a significant 

portion of the aerosols that the La Tuna Fire generated have comparatively small size, high 

absorption, and noncircular shapes, which suggests that they are irregularly shaped soot-type 

black carbon from a hot-burning and flaming event.263 Figure 3.6 plots the particle sizing results. 

Particle sizing was performed at three spatial locations, namely, location 1 (9042 Wildwood 

Avenue), location 2 (9760 La Tuna Canyon Road), and location 3 (9078 La Tuna Canyon Road), 

as shown in Figure 3.6 (a), using two platforms: a commercial optical particle counter (OPC) 

and c-Air. The OPC samples the air through a small channel at 2.83 L/min. From Figure 3.6 (f–
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h), we see that with decreasing distance to the fire site (especially at location 3), the total 

sampled PM concentration increases, and most of the particles contributing to this increase are 

particles smaller than 2 µm, the count density of which is more than doubled. A similar trend is 

also observed by the commercial OPC, which shows an increase in particles with sizes of 1.0–2.5 

µm and a significant increase in particles with sizes of 0.5–1.0 µm [as shown in Figure 3.6 (c-e)]. 

This is consistent with previously reported laboratory test results, where open-flame-generated 

black-carbon agglomerates (soot) were usually smaller than geologically produced dust,264,265 

with a typical size range of 20–2000 nm.266,267 

 

Figure 3.6 Particle sizing results at different locations. (a) Map of measurement locations during the La Tuna Fire 

on 09/01/2017. The blue arrows mark the wind direction. (b) Photograph of forest fire on top of a mountain that was 
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witnessed remotely at measurement location 3. (c–e) Particle sizing results at locations 1–3 using a commercial OPC. 

(f–h) Particle sizing results at the same locations using c-Air device. A significant increase is observed, especially in 

smaller particles, with decreasing distance to the fire site. Reprinted from Ref. 263 

Comparison of c-Air with a standard BAM PM2.5 instrument 

On August 16, 2016, I employed a c-Air device at the Reseda Air Quality Monitoring Station 

(18330 Gault St., Reseda, CA, USA) and obtained a series of measurements during a 15-h period 

starting from 6:00 a.m. I compared the performance of the c-Air device with that of the 

conventional EPA-approved BAM PM2.5 measurement instrument (BAM-1020, Met One 

Instruments, Inc.). The EPA-approved BAM-1020 pumps air at ~16.7 L/min and has a rotating 

filter amid airflow that accumulates PM2.5 to be measured each hour. A beta-particle source and 

detector pair inside measures the attenuation induced by the accumulated PM2.5 on the filter and 

converts it to total mass using the Beer–Lambert law. The quantity reported from BAM-1020 is 

hourly averaged PM2.5 mass density in μg/m3. In comparison, the c-Air device is programmed 

to obtain a 30-s average particle count per 6.5 L of air volume. It performs sizing and 

concentration measurements using optical microscopic imaging (see Methods for details).  

To enable a fair comparison, I obtained four 30-s measurements each hour, with 10- to 15-

min intervals between consecutive c-Air measurements. I measured the PM2.5 densities 

corresponding to these samples and obtained their average as the final measured PM2.5 density 

for a given hour. This c-Air average was compared to the hourly average PM2.5 mass density 

measured by BAM-1020. The measurements of the c-Air device were obtained on the roof of the 

Reseda Air Sampling Station close to the inlet nozzle of BAM-1020; however, it was situated ~2 

m from it to avoid interference between the two systems. 

Figure 3.7 plots the comparison of the measurement results from c-Air and BAM-1020.  
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Figure 3.7 Comparison of c-Air results against a standard BAM PM2.5 instrument. (a) Superimposed hourly 

plot of (right axis) particle density counted by a c-Air device, and (left axes) hourly accumulated PM2.5 total mass 

density measured by the standard BAM PM2.5 instrument at the Reseda Air Sampling Station. (b) Linear correlation 

plot of PM2.5 hourly average count density measured by c-Air (y-axis) with a PM2.5 hourly average mass density 

measured by BAM-1020 PM2.5 measurement device (x-axis). The BAM-PM2.5 data were downloaded from Ref. 

268.  Reprinted from Ref. 23 

As shown in Figure 3.7 (c), c-Air’s hourly average PM2.5 count density result (blue curve) 

closely follows the same trend as the EPA-approved BAM PM2.5 mass density result (cyan 

curve). I also plotted hourly averaged TSP (red curve) and PM10 (green curve) in Figure 3.7 (a), 

which follows a similar trend as PM2.5. Lastly, I found a linear correlation between the BAM 

PM2.5 measurements and c-Air PM2.5 count density measurements, as shown in Figure 3.7 (b), 

where the x-axis is the PM2.5 mass density in μg/m3 measured by the BAM-1020, and the y-

axis is the PM2.5 count density in counts/L  measured by the c-Air device. Some of the 

variations between the two techniques may be due to several reasons: (1) Each PM2.5 particle 

may have a different weight; therefore, the PM2.5 count density may not directly convert to mass 

density of the particles; (2) There may be some air-quality variations within each hour; thus, our 

four 30-s measurements may not accurately represent the whole hourly average reported by 
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BAM-1020; (3) The cut-off size of our impactor is ~1.4 μm, which means particles smaller than 

this size may not be efficiently counted by our device, whereas they are counted by BAM-1020.  

Note also that, in Figure 3.7 (a) at 7:00 to 9:00 a.m., the original measurements by BAM-1020 

are missing on account of the replacement of the rotating filter, which is required for the 

instrument’s maintenance. Instead, these data points are replaced by the average of the 7:00 to 

9:00 a.m. time windows on Fridays, which were measured within the same month (see Ref. 268).  

 

Spatial-temporal mapping of air-quality near LAX 

On September 6, 2016, I employed two c-Air devices, device A and device B, to measure the 

spatio-temporal air quality changes around LAX. To this end, I obtained two 24-h measurements 

spanning two different routes that represent the longitudinal and latitudinal directions, centered 

at LAX (see Figure 3.8 and Figure 3.9). I selected six locations in each route and performed 

measurements with 2h interval in each route over 24h. These raw c-Air measurements were sent 

to server for automatic processing to generate the particle size statistics at each time and location.  

Route 1 extended from LAX to the east in a longitudinal direction, as shown in Figure 3.8 

(a). Along this route, I selected six sites that were located at 3.37 km , 4.34 km , 5.91 km , 

7.61 km, 9.95 km, and 13.1 km east of LAX, respectively. LAX shows a pattern of a large 

number of flights throughout the day (7 a.m. to 11 p.m.); however, it shows a prominent valley at 

late night (~2 a.m.), where the number of flights is minimal, as shown by the cyan curves in 

Figure 3.8 (a). As depicted in bubble boxes (1) to (6) in Figure 3.8 (a), the c-Air measurement 

results of both PM2.5 and PM10 also show such a valley during late night, which illustrates the 

relationship between the total number of flights at LAX and the nearby PM pollutants. As the 

distance increases from LAX, this modulation weakens.  
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Figure 3.8 LAX measurements in the longitudinal direction using c-Air. (a) Noise map near LAX. The east side 

of LAX is where airplanes arrive; it is marked by tiny airplane icons. We obtained a 24-h PM measurement on 

09/06/2016–09/07/2016 at the following locations: (1) 5223 W. Century Blvd., (2) 10098 S. Inglewood Ave., (3) 

4011 W. Century Blvd., (4) 3000 W. Century Blvd., (5) 1407 W. 101st St. and (6) 9919 S. Avalon Blvd., as marked 

on (a). The fourth time point at location (a-6) was excluded from the curve because there was a large water sprinkler 

turned on during the measurement, which affected the c-Air performance. (b) Correlation slope plotted for locations 

(1–6) as a function of their longitudinal distances from LAX. (c) Daily average PM plotted for locations (1–6) as a 

function of their longitudinal distances from LAX. The third point in (b)–(c), as marked by a black arrow, is 

inconsistent with the trend, which we believe is on account of the presence of an immense (~3,400 spaces) parking 

lot nearby that specific measurement location. (a) depicts the noise maps of the second quarter of 2016 near LAX 

cropped from Ref. 269. The total number of flights, represented by the cyan curve of (a-1) to (a-6), is plotted from the 

data given by Ref. 270. Reprinted from Ref. 23. 
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To quantify this correlation, I defined two measures: (1) the correlation slope, which is the 

slope of the linear mapping from the total number of flights to the PM10 or PM2.5 count density 

(plotted as a function of the longitudinal distance from LAX in Figure 3.8 (b)), and (2) the daily 

average PM measured by c-Air, which is the 24-h average PM10 or PM2.5 count density for 

each location (also plotted as a function of the longitudinal distance from LAX in Figure 3.8 (c)). 

These figures show an exponential trend for both the correlation slope and the daily average PM 

as a function of the distance from LAX. Moreover, they indicate that the impact of the airport in 

increasing air pollution is significant, even >7 km from its location. This has also been 

independently confirmed in earlier studies,271 using a commercially available optical scattering 

based PM detection technology251 that has a limited dynamic range of particle size and density, 

and more than an order of magnitude lower throughput compared to ours due to its serial read-

out scheme as discussed in our Introduction section.  

Unlike Route 1, Route 2 extended from the south to the north of LAX, spanning a latitudinal 

direction. The six locations chosen in this route were 3.58 km, 1.91 km, 0.50 km, 0.01 km, 

−1.46 km, and −2.19 km north of LAX, respectively. Similar to Route 1, bubble boxes (1) to (6) 

of Figure 3.9 plot the time variations of the PM concentration during the sampling points 

corresponding to Route 2. These results once again show a similar trend of PM variation in 

accordance with the total number of flights at LAX. Similar to Route 1, as the measurement 

location distance from LAX increases, the modulation strength diminishes. The above finding is 

supported by the correlation slope shown in Figure 3.9(b) and the daily average PM shown in 

Figure 3.9(c), both of which are a function of the latitudinal distance north of LAX. We note that 

the decrease is more rapid in this latitudinal direction (south-to-north, Route 2) than the 
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longitudinal direction (west-to-east, Route 1), which may be on account of the typical west winds 

near LAX during the summer, which cause the particles to travel longer distances in air.272 

 

Figure 3.9 LAX measurements in the latitudinal direction using c-Air. (a) Noise map near LAX. We obtained a 

24-h PM measurement on 09/06/2016–09/07/2016 at locations (1) 6076 W. 76th St., (2) 8701 Airlane Ave., (3) 5625 

W. Century Blvd., (4) 10400 Aviation Blvd., (5) 5457 W. 117th St., and (6) 5502 W. 122nd St., as marked on (a). (b) 

Correlation slope plotted for locations (1–6) as a function of their latitudinal distances from LAX. (c) Daily average 

PM plotted for locations (1–6) as a function of their latitudinal distances from LAX. (a) is the noise map of the 

second quarter of 2016 near LAX cropped from Ref. 269. Reprinted from Ref. 23. 
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3.1.3 Conclusion 

In this section, I demonstrated a portable and cost-effective PM imaging, sizing, and 

quantification platform, called c-Air, which uses lens-less computational microscopy and 

machine learning. The platform consists of a field-portable device weighing approximately 590 g, 

a smartphone app for device control and display of results, and a remote server for automated 

processing of digital holographic microscope images for PM measurements based on a custom-

developed machine learning algorithm. The performance of the device was validated by 

measuring air quality at various indoor and outdoor locations, including an EPA-regulated air 

sampling station, where I compared c-Air results with those of an EPA-approved BAM device, 

and a close correlation was shown. I further used c-Air platform for spatio-temporal mapping of 

air-quality near LAX, which showed the PM concentration varying throughout the day in 

accordance with the total number of flights at LAX. The strength of this correlation, as well as 

the daily average PM, exponentially decreased as a function of the increasing distance from LAX. 

The c-Air platform, with its microscopic imaging and machine learning interface, can have a 

wide range of applications in air quality regulation and improvement. 

3.1.4 Methods 

Impaction-based air-sampler 

To capture aerosols, I employ an impaction-based air sampler (i.e., an impactor)  on account of 

its high-throughput, simple hardware, and compatibility with microscopic inspection.273 As 

shown in Figure 3.1(d), the impactor consists of an impaction nozzle and a sticky sampling 

coverslip (Air-O-Cell Sampling Cassette, Zefon International, Inc.). A pump drives the laminar 

airstream through the nozzle at high speed. The sticky coverslip is placed to directly face the 

airstream. The airstream can be easily redirected while the aerosol inside the stream impacts with 
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and is collected by the sticky coverslip. This collection is subsequently used for computational 

imaging. The aerosol capture by the impactor is actually a random process. The probability that 

an individual aerosol particle passing through the impactor will be captured depends on the 

particle size, laminar airflow rate, and nozzle width.  This probability is related to the Stokes 

number (Stk):252 

 𝑆𝑡𝑘 =
𝜌𝑃𝑑𝑃

2𝑈𝐶𝑐
9𝜂𝐷𝑗

 (3.2) 

where 𝜌𝑃  is the particle mass density, 𝑑𝑃  denotes the particle diameter, 𝑈 represents the flow 

velocity, 𝜂  is the air viscosity, 𝐷𝑗  denotes the nozzle diameter, and 𝐶𝑐  is the slip correction 

coefficient. The impaction efficiency increases as 𝑆𝑡𝑘 increases. Based on the same terminology, 

the cut-off size, 𝑑50, is defined as the diameter of the particle at which the impaction efficiency 

decreases to 50%. In my experimental design, the air sampler (with a nozzle of 1.1 mm by 

14.5 mm) was connected to and driven by a miniaturized pump (M00198, GTEK Automation) 

with a throughput of 13 L/min. Based on the above relationship, the 50% cut-off sampling 

diameter of the c-Air can be estimated as 𝑑50 = 1.4 μm.274 

c-Air lens-less on-chip microscope and air sampling design 

For rapid imaging and inspection of the collected aerosols, I combined the impactor with a lens-

less microscope, as shown in Figure 3.1. Similar to a typical lens-less imaging setup, the sticky 

coverslip, which was the sample to be imaged, together with the impactor nozzle cartridge, was 

directly placed on a color complementary metal-oxide semiconductor (CMOS) image sensor 

(OV5647, 5 MPix, 1.4 μm pixel size) at a distance of approximately 400 μm from the image 

sensor to the sticky coverslip. Three fiber-coupled light-emitting diodes (LEDs) (red: 624 nm; 

green: 527 nm; blue: 470 nm) were fixed on top of the device sampler tube at 
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approximately 8 cm from the image sensor chip. Using LED illumination, the aerosol samples, 

which were captured by the sticky coverslip, casted in-line holograms. These holograms were 

recorded by the CMOS image sensor for holographic reconstruction and further processing to 

determine the PM statistics.  

The image capturing and air sampling processes are illustrated in Figure 3.2(b). When the 

user hits “capture a sample” from the app interface, the three LEDs are sequentially turned on/off, 

and three background images are thereby obtained. These background images depict the state of 

the air-sampler surface prior to the intake of the air to be sampled. Next, the pump was powered 

on to push the air through the sampler for 30 s, thereby screening 6.5 L of air. The three LEDs 

were then sequentially turned on/off, and three sample images were thereby obtained with the 

newly captured aerosol particles. These background images and sample images were both synced 

to the server for further processing. After subtraction of the sample image from its corresponding 

background image, a differential hologram was formed, which contained the information of only 

the newly captured particles. For particle sizing, I used only the images captured under the green 

LED illumination. By merging all the differential holographic images captured using the three 

LEDs, red–green–blue color images of the captured particles could also be obtained, revealing 

the color information of the specimen, if desired. To avoid awaiting completion of the steps 

before a new sample could be obtained, I programmed the sampling process in a parallel way. 

Accordingly, when a new sampling request arrived before the previous result was synced, the un-

synced sample was cached first. It was later synced when the device became idle. The entire 

device sampling process was controlled by a custom-developed program on a microcomputer 

(Raspberry Pi A+), along with a custom-designed circuit. 
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Particle detection using digital “peeling” 

Direct back-propagation of the acquired hologram (using Equation (1.17)) to the auto-focused 

sample plane generates a spatial artifact, called the twin-image noise. This twin-image artifact 

affects the detection of aerosols. To address this problem, I employ an iterative particle peeling 

algorithm8 in holographic reconstruction process, combined with a support vector machine 

(SVM)-based learning model to further reject these spatial artifacts. This peeling algorithm 

contains four cycles of detection and erasing (“peeling out”) of the particles at progressively 

increasing thresholds, i.e., 0.75, 0.85, 0.92, and 0.97, where the background is centered at 1.0 

during the differential imaging process. The highest threshold (0.97) is selected as 3𝜎 from the 

background mean, where  𝜎 ≈ 0.01  is the standard deviation of the background. I use a 

morphological reconstruction process104 to generate the image mask instead of using a simple 

threshold. Because most particles have a darker center and a somewhat weaker boundary, using a 

single threshold may mask parts of the particle, potentially causing the particle to be missed or 

re-detected multiple times in subsequent peeling cycles. This is avoided by using a 

morphological reconstruction process.  

In each cycle of this digital particle peeling process, I first adjust the image focus using the 

auto-focusing algorithm (see section 1.5). Then, the morphological reconstruction is employed to 

generate a binary mask, where each masked area contains a particle. For each mask, I crop a 

small image (100 × 100 pixels) and perform fine auto-focusing on this small image to find the 

correct focus plane of the corresponding particle. At this focus plane, I extract various spatial 

features of the particle, e.g., minimum intensity 𝐼𝑚, average intensity 𝐼𝑎, area 𝐴, and maximum 

phase 𝜃𝑀 . We then propagate the image to five different planes uniformly spaced between 

20 μm above and 20 μm below this focus plane. The Tamura coefficient62 of this focus plane is 
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calculated and compared to the coefficients of these five other planes. The ratio of the Tamura 

coefficient at this focus plane against the highest Tamura coefficient of all six planes is defined 

as another feature, 𝑅𝑇𝑎𝑚. These four features, 𝐼𝑚, 𝜃𝑀, 𝐴, and 𝑅𝑇𝑎𝑚, are then fed into an SVM-

based learning model to digitally separate spatial artifacts from true particles and reject such 

artifacts. This learning algorithm is detailed in the following sub-section. After all the detected 

particles in this peeling cycle are processed, I digitally peel out these “counted” particles, i.e., 

replace the thresholded area corresponding to each detected particle with the background mean, 

on both the image and twin image planes. I then move to the next peeling cycle with a higher 

threshold and repeat the same steps. 

After completing all four peeling cycles, the extracted features, 𝐼𝑚, 𝜃𝑀, and 𝐴, are further 

utilized for particle sizing using a machine-learning algorithm, as detailed further below. This 

sizing process is only performed on true particles, which generates a histogram of particle sizes 

and density distributions, as well as various other parameters, including, for example, TSP, 

PM10, and PM2.5, reported as part of c-Air result summary. 

Elimination of false-positives using a trained support vector machine 

To further avoid false-positives in detecting aerosols, I used a trained linear SVM that is based 

on four features, 𝐼𝑚, 𝜃𝑀, 𝐴, and 𝑅𝑇𝑎𝑚, as described in the previous sub-section, to distinguish 

spatial artifacts from true particles and increase c-Air detection accuracy. These spatial features 

were selected to provide the best separation between the true- and false-particles. To train this 

model, I obtained two air sample images using a c-Air prototype, one indoor and one outdoor. 

Then, in addition to our c-Air based analysis, I physically extracted the sampling coverslip and 

inspected the captured particles under a benchtop bright-field microscope using a 40X objective 

lens. I compared the thresholded areas in peeling cycle and lens-less reconstruction process with 
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the images of the benchtop microscope to mark each one of these detected areas as a true particle 

or a false one. Using this comparison, I labeled a total of more than 2,000 thresholded areas and 

fed half of this training data into our SVM model275 (implemented in Matlab using the function 

“svmtrain”). The other half was used for blind testing of the model, which showed a precision of 

0.95 and a recall of 0.98. 

Machine learning based particle detection and sizing 

I used a custom-designed machine-learning algorithm trained on size-calibrated particles to 

obtain a mapping from the detected spatial characteristics of the particles to their diameter. For 

this purpose, I used some spatial features extracted from the holographic particle images, 

including e.g., minimum intensity 𝐼𝑚, average intensity 𝐼𝑎, and area 𝐴, and developed a second-

order regression model that maps these features to the sizes of the detected particles in microns. 

The model is deterministically learned from size-labeled particle images, which are manually 

sized using a standard benchtop microscope. Specifically, after I extract features 𝐼𝑚, 𝐼𝑎, and 𝐴 of 

the masked region in a particle peeling cycle, I strive to find a model, f, that maps these features 

to the particle diameter 𝐷 (in microns), i.e., 

 D = f(Im, Ia, √A) (3.3) 

where 𝑓 can potentially have infinite dimensions. However, I employ a simplified second-order 

polynomial model of 𝑓 and extend the features to the second-order by defining. Then, I define a 

linear mapping, 𝜃, that relates the second-order features to the diameter of the particle:  

 X = [1, Im, Ia, √A, Im
2 , Ia

2, A, ImIa, Im√A,  Ia√A]  (3.4) 

 D = f(Im, Ia, √A) = θ
TX ̂ = θT(

X − μ

σ
)   (3.5) 
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where T refers to the transpose operation, and 𝜇 and 𝜎 represent the mean and standard deviation 

of 𝑋, respectively. Based on the above mapping, I used 395 size-labeled microbeads for training 

and blind testing. These polystyrene microbeads ranged in diameter from ~1 μm to ~40 μm, as 

shown in Figure 3.3. The ground truth sizes of these particles were manually measured under a 

benchtop microscope with a 100×/0.95NA objective lens. The same samples were additionally 

imaged using the c-Air platform to obtain the corresponding lens-less images and extract spatial 

features, 𝐼𝑚, 𝜃𝑀, and 𝐴. For training the machine learning model, I first randomly and evenly 

separated the microbead samples into respective training and testing sets. After extending the 

features to the second-order (equation (3.4)) and performing normalization (equation (3.5)), I 

fitted the parameter vector 𝜃 by minimizing the difference between the training feature mapping 

(𝜃𝑇𝑋̂𝑡𝑟) and the calibrated diameter (𝐷𝑡𝑟
𝑚𝑖𝑐) i.e., 

 min
θ
 ‖θTX̂tr − Dtr

mic‖
1
 (3.6) 

This minimization was performed by CVX, a software package designed for solving convex 

optimization problems.276 The same trained parameter was then applied for the cross-validation 

set, which was comprised of another 197 microbeads. Particle sizing training errors (𝐸𝑡𝑟) and 

testing errors (𝐸𝑐𝑣) were validated by evaluating the norm of difference: 

 Etr = ‖θ
TX̂tr − Dtr

mic‖
p
 (3.7) 

 Ecv = ‖θ
TX̂cv − Dcv

mic‖
p
 (3.8) 

where 𝜃𝑇𝑋̂𝑐𝑣 is the testing feature mapping, and 𝐷𝑐𝑣
𝑚𝑖𝑐 is the calibrated diameter for the testing 

set. In addition,  𝑝 = 1   is used for calculating the “mean error,” and p =  ∞  is used for 

calculating the “maximum error.” Note that this training process only needs to be done once, and 

the trained parameter vector, 𝜃, and the normalization parameters, 𝜇 and 𝜎, are then saved and 
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subsequently used for blind particle sizing of all the captured aerosol samples using c-Air 

devices. 

Converting particle count to particle density 

For each sample (and the corresponding c-Air differential hologram), the particle detection 

and sizing algorithm, as described in the main text, provides the particle count in the number of 

particles for different sizes/diameters. To facilitate a more universal unit, I convert the sampling 

particle count, 𝑁𝑖, to particle density 𝑛𝑖 (in counts/L) using the following equation: 

 ni =
Ni
Q ⋅ t

⋅
Lsensor
Ltotal

 (3.9) 

where 𝑄 = 13 L/min is the flow rate of air, and 𝑡 = 0.5 min is the typical sampling duration. In 

addition, 𝐿𝑡𝑜𝑡𝑎𝑙 = 15.5 mm  is the total length of the impactor nozzle slit, and 𝐿𝑠𝑒𝑛𝑠𝑜𝑟 =

3.67 mm is the part of the slit being imaged, which equals the longer edge of the CMOS sensor 

active area. The conversion equation here assumes that the particle distribution is uniform along 

the sampler nozzle length, which is a valid assumption because the nozzle tapering is in its 

orthogonal direction, while the structure of the impactor in length direction is spatially invariant. 

 

3.2 Label-Free Bioaerosol Sensing  

Conventional bio-aerosol sensing requires the sampled aerosols in the field to be transferred 

to a laboratory for manual inspection, which can be rather costly and slow, also requiring a 

professional for labeling and microscopic examination of the samples. Here, built upon my 

previous work of c-Air described in section 3.1,  I demonstrate label-free bio-aerosol sensing 

using a field-portable and cost-effective device based on holographic microscopy and deep-

learning, which screens bio-aerosols at a throughput of 13 L/min. Two different deep neural 
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networks are designed to rapidly reconstruct the amplitude and phase images of the captured bio-

aerosols, and to classify the type of each bio-aerosol that is imaged. As a proof-of-concept, I 

studied label-free sensing of common bio-aerosol types, e.g., Bermuda grass pollen, oak tree 

pollen, ragweed pollen, Aspergillus spore, and Alternaria spore and achieved >94% classification 

accuracy. The presented label-free bio-aerosol measurement device, with its mobility and cost-

effectiveness, will find several applications in indoor and outdoor air quality monitoring. 

3.2.1 Introduction 

A human adult inhales about seven liters of air every minute, which on average contains 102-

103 micro-biological cells (bio-aerosols) 277,278. In some contaminated environments, this number 

can easily exceed 106 277,279–281.  These bio-aerosols are micro-scale airborne living organisms 

that originate from plants or animals, and include pollens, mold/fungi spores, bacteria, and 

viruses. They are generated both naturally and anthropogenically, from e.g. animal houses 282,283, 

composting facilities 282,283, and construction sites 283. These bio-aerosols can stay suspended in 

the air for prolonged periods of time 282, remain at significant concentrations even far away from 

the generating site (up to one kilometer) 284–286, and can travel through continental distances 287. 

Basic environmental conditions, such as temperature and moisture level, can also considerably 

influence bio-aerosol formation and dispersion 283,288. Inhaled by a human, they can stay in the 

respiratory tract and cause irritation, allergies, various diseases including cancer and even pre-

mature death 247,277,278,282,283,286,287,289,290. In fact, bio-aerosols account for 5-34% of indoor 

particulate matter (PM) 291. In recent years, there has been increased interest in monitoring 

environmental bio-aerosols, and understanding their composition, to avoid and/or mitigate their 

negative impacts on human health 277,283,292,293, in both peacetime and in threat of biological 

attacks 290.  
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Currently, most of the bio-aerosol monitoring activities still rely on a technology that was 

developed more than fifty years ago 283,294,295. In this method, an aerosol sample is taken in the 

inspection site using a sampling device such as an impactor, a cyclone, a filter, or a spore trap. 

This sample is then transmitted to a laboratory, where the aerosols are transferred to certain 

liquid media or solid substrates and inspected manually under a microscope or through culture 

experiments. The microscopic inspection of the sample usually involves labeling through a 

colorimetric or fluorescence stain to increase the contrast of the captured bio-aerosols under a 

microscope 296,297. Regardless of the specific method that is employed, the use of manual 

inspection in a laboratory, following a field collection, significantly increases the costs and 

delays the reporting time of the results. Partially due to these limitations, out of ~10,000 air-

sampling stations worldwide, only a very small portion of them have bio-aerosol 

sensing/measurement capability. Even in developed countries, bio-aerosol levels are only 

reported on a daily basis at city scales 298. As a result, human exposure to bio-aerosols is hard to 

quantify with the existing set of technologies.  

Driven by this need, different techniques have been emerging towards potentially label-free, 

on-site and/or real-time bio-aerosol monitoring. In one of these techniques, the air is driven 

through a small channel, and an ultraviolet (UV) source is focused on a nozzle of this channel, 

exciting the auto-fluorescence of each individual bio-aerosol flowing through the nozzle 299–303. 

This auto-fluorescence signal is then captured by one or more photodetectors, used to 

differentiate bio-aerosols from non-fluorescent background aerosols. Recently, other machine 

learning algorithms have also been applied to classify bio-aerosols from their auto-fluorescence 

signals302,303. However, measuring auto-fluorescence may not provide sufficient specificity 

towards classification. To detect weak auto-fluorescence signals, this design also requires strong 
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UV sources, sensitive photodetectors and high-performance optical components, making the 

system relatively costly and bulky. Furthermore, the sequential read-out scheme in these flow-

based designs also limits their sampling rate and throughput to < 5 L/min. Alternative bio-

aerosol detection methods rely on anti-bodies to specifically capture bio-aerosols of interest on 

e.g., a vibrational cantilever 304,305, or a surface plasmon resonance (SPR) substrate 292,306, which 

can then detect these captured bio-aerosols through a change in the cantilever vibrational 

frequency or a shift in the SPR spectrum, respectively. These approaches provide very sensitive 

detection of a specific type of bio-aerosols. However, their performance can be compromised by 

non-specific binding and/or changes in the environmental conditions (e.g., temperature, moisture 

level etc.), impacting the effectiveness of the surface chemistry. Moreover, the reliance to 

specific antibodies makes it harder for these approaches to scale up the number of target bio-

aerosols and cover unknown targets. Bio-aerosol detection and composition analysis using 

Raman spectroscopy has also been demonstrated 307,308. However, due to weaker signal levels 

and contamination from background spectra, the sensitivities of these methods have been 

relatively low despite their expensive and bulky hardware; it is challenging to analyze or detect 

e.g., a single bio-aerosol within a mixture of other aerosols. It is also possible to detect bio-

aerosols by detecting their genetic material (e.g., DNA), using polymerase chain reaction (PCR) 

309, enzyme-linked immunosorbent assays (ELISA) 310 or metagenomics 311,312, all of which can 

provide high sensitivity and specificity. However, these detection methods are usually based on 

post-processing of bio-aerosols in laboratory environments (i.e., involves field sampling, 

followed by the transportation of the sample to a central laboratory for advanced processing), 

and are therefore low-throughput, also requiring an expert. Therefore, there is still an urgent 
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unmet need for accurate, label-free and automated bio-aerosol sensing to cover a wide range of 

bio-aerosols, ideally within a field-portable, compact and cost-effective platform.  

To address this need, I developed a high-throughput and mobile bio-aerosol detection system 

based on c-Air device (Figure 3.1) and deep learning. The device design uses a combination of 

an impactor and a lens-less digital holographic on-chip microscope 16,23,34,187,313: bio-aerosols in 

air are captured on the impactor substrate at a sampling rate of 13 L / min. These collected bio-

aerosols generate diffraction holograms recorded directly by an image sensor chip that is 

positioned right below the substrate. Each hologram contains information of the complex optical 

field (amplitude and phase information) of each individual bio-aerosol. After digital holograms 

of bio-aerosols are acquired and transmitted to a remote server, these holograms are rapidly 

processed through an image-processing pipeline (Figure 3.10), within a minute, reconstructing 

the entire field-of-view (FOV) of our device, i.e., 4.04 mm2, over which the captured bio-

aerosols are analyzed. Enabled by deep convolutional neural networks (CNNs) 129, this 

reconstruction algorithm first reconstructs both the amplitude and phase image of each individual 

bio-aerosol with sub-micron resolution, and then performs automatic classification of the imaged 

bio-aerosols into pre-trained classes and counting the density of each class in air. As a proof-of-

concept, I demonstrate the reconstruction and label-free sensing of five different types of bio-

aerosols: Bermuda grass pollen, oak tree pollen, ragweed pollen, Aspergillus spore, and 

Alternaria spore – as well as non-biological aerosols as part of the default background pollution. 

The Bermuda grass, oak tree and ragweed pollens have long been recognized as some of the 

most common grass, tree and weed-based allergens that can cause severe allergic reactions 

287,314–316. Similarly, the Aspergillus and Alternaria spores are two of the most common mold 

spores found in air 277,279–281,285 and can cause allergic reactions and various diseases 282,283,286,287. 
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Furthermore, Aspergillus spores have been proven to be a culprit of asthma in children 282. Some 

of these mold species/sub-species can also generate mycotoxins that weaken the human immune 

system 283. In this work, a deep CNN is trained to differentiate these six different types of 

aerosols, achieving an accuracy of 94% using our mobile instrument. This label-free bio-sensing 

platform can be further scaled up to specifically detect other types of bio-aerosols by training it 

using purified populations of new target object types as long as these bio-aerosols exhibit unique 

spatial and/or spectral features that can be detected through our holographic imaging system.  

 

Figure 3.10 Label-free bio-aerosol sensing. (a) Image reconstruction and bio-aerosol classification work-flow. (b) 

Architecture of the classification CNN. conv: convolutional layer. FC: fully-connected layer. Reprinted from Ref. 24 

To the best of my knowledge, this is the first demonstration of automated label-free sensing 

and classification of bio-aerosols using a portable and cost-effective device, which is enabled by 

computational microscopy and deep-learning. Compared to earlier results on PM sensing using 
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mobile microscopy without any classification capability (section 3.1), this section reports label-

free and automated bio-aerosol sensing using deep learning (which is used for both image 

reconstruction and classification), providing a unique capability for specific and sensitive 

detection and counting of e.g., pollen and mold particles in air. The presented platform can find a 

wide range of applications in label-free bio-aerosol sensing and environmental monitoring.  

3.2.2 Results and discussion 

Quantification of spatial resolution and field-of-view 

A USAF-1951 resolution test target is used to quantify the spatial resolution of our device, where 

the smallest resolvable line is group nine, element one (with a line width of 0.98 µm), which in 

this case is limited by the pixel pitch of the image sensor chip (1.12 µm). For the current bio-

aerosol sensing application, this resolution provides accurate detection performance, revealing 

the necessary spatial features of the particles in both the phase and amplitude image channels, as 

will be detailed in subsequent sub-sections. In case future applications require better spatial 

resolution to reveal even finer spatial structures of some target bio-aerosols, the resolution of our 

platform can be further improved by using an image sensor chip with a smaller pixel pitch, 

and/or by applying pixel super-resolution techniques that can digitally achieve an effective pixel 

pitch < 0.5 µm 33,48,53.  

In my device design, the image sensor chip has an active area of 3.674 𝑚𝑚 × 2.760 𝑚𝑚 =

10.14 𝑚𝑚2 , which would normally be the sample FOV for a lens-less on-chip microscope. 

However, the imaging FOV is smaller than this because the sampled aerosols deposit directly 

below the impaction nozzle, thus the active FOV of the mobile instrument is defined by the 

overlapping area of the image sensor chip and the impactor nozzle, which results in an effective 
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FOV of 3.674 𝑚𝑚 × 1.1 𝑚𝑚 = 4.04 𝑚𝑚2. This FOV can be further increased up to the active 

area of the imager chip by customizing the impactor design with a larger nozzle width.  

 

Label-free bio-aerosol image reconstruction 

For each bio-aerosol measurement, two holograms are taken (before and after sampling the air) 

by the device, and their per-pixel difference is calculated forming a differential hologram 26,317. 

This differential hologram is numerically back-propagated in free space by an axial distance of 

~750 µm to roughly reach the object plane of the sampling surface (see Methods for details). 

This axial propagation distance does not need to be precisely known, and in fact all the aerosols 

within this back-propagated image are automatically autofocused and phase recovered at the 

same time using a deep neural network that was trained with out-of-focus holograms of particles 

(within +/-100 µm of their corresponding axial position) to extend the depth-of-field (DOF) of 

the reconstructions 129, i.e. the HIDEF approach as described in section 2.3. This feature of the 

neural net is extremely beneficial to speed up auto-focusing and phase recovery steps since it 

reduces the computational complexity of the reconstructions from O(n·m) to O(1), where n refers 

to the number of aerosols within our FOV and m refers to the axial search range that would have 

been used for auto-focusing each particle using classical holographic reconstruction methods. In 

this regard, deep learning is crucial to rapidly reconstruct and auto-focus each bio-aerosol’s 

phase and amplitude image. 

To illustrate the reconstruction performance of this method, Figure 3.11 shows the raw 

holograms, back-propagation and neural network results of six different cropped region-of-

interests (ROIs), one for each of the six classes used in this paper (Bermuda grass pollen, oak 

tree pollen, ragweed pollen, Alternaria mold spores, Aspergillus mold spores, and generic dust).  
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Figure 3.11 Examples of the reconstructed images of different types of bio-aerosols. (a) Cropped raw hologram. 

(b) Back-propagated holographic reconstruction. (c) CNN-based hologram reconstruction. (d) Corresponding 

regions of interest imaged by a benchtop scanning microscope with 40× magnification.  Reprinted from Ref. 24 
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The propagation distance (750 µm) is not exact for all these particles, which would normally 

result in de-focused images. This defocus is corrected automatically by my trained neural 

network, as shown in Figure 3.11(c). In addition, the twin-image and self-interference artifacts 

of holographic imaging (e.g., the ripples at the background of Figure 3.11(b)) are also 

eliminated in Figure 3(c), demonstrating phase-recovery in addition to auto-focusing on each 

captured particle. Microscope comparisons captured under a 20×/0.75NA objective with a 2× 

adapter are also shown for the same six ROIs (Figure 3.11(d)). The neural network output 

(Figure 3.11(c)) clearly illustrates the morphological differences among these different aerosols, 

in both the real and imaginary channels of the reconstructed images, providing unique features 

for classification of these aerosols, as will be discussed in the next sub-section.  

Bio-aerosol image classification 

A separate CNN is developed that takes a cropped ROI and automatically assigns one of the six 

class labels for each detected aerosol (see Figure 3.10 and Methods for details). Table 3.2 

reports the classification precision and recall on the testing set, as well as their harmonic mean, 

known as F-number (F#), which are defined as: 

 Precision =
True Positive

True Positive + False Positive
 (3.10) 

 Recall =
True Positive

True Positive + False Negative
 (3.11) 

 F# =
2 ⋅ Precision ⋅ Recall

Precision + Recall
 (3.12) 

As shown in Table 3.2, an average precision of ~94.0%, and an average recall of ~93.5% are 

achieved for the six labels using this classification CNN for a total number of 1,391 test particles 

that were imaged by my instrument. In Table 3.2, the classification performance of my mobile 

device is relatively lower for Aspergillus spores compared to other classes. This is due to the fact 
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that (1) Aspergillus spores are smaller in size (~ 4 µm), so their fine features may not be well-

revealed under the current imaging system resolution, and (2) the Aspergillus spores sometimes 

cluster and may exhibit a different shape compared to an isolated spore (for which the network 

was trained for). In addition to these, the background dust images used in our testing are captured 

along the major roads with traffic. Although it should contain mostly non-biological aerosols, 

there is a finite chance that a few bio-aerosols may also be present in our data set, leading to 

mislabeling. Table 3.2 also compares the performance of two other classification methods on the 

same data set, namely AlexNet 101 and support vector machine (SVM) 318. AlexNet, although has 

more trainable parameters in the network design (because of the larger fully connected layers), 

performs ~1.8% worse in precision and 1.2% worse in recall compared to the CNN developed in 

this work. SVM, although very fast to compute, has significantly worse performance than our 

CNN models, reaching only 78.1% precision and 73.2% recall on average for our testing set. 

Both the SVM and AlexNet are trained and tested on the same training, validation, and testing 

sets, matching the CNN designed, also using a similar number of epochs (~200). 

 

Table 3.2 Precision and recall of our bio-aerosol classification results using a convolutional neural network. 

Comparison of our neural network against two other machine learning methods, AlexNet 101 and support vector 

machine (SVM) 318, is also provided. 
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Bio-aerosol mixture experiments  

To further quantify the label-free sensing performance of c-Air platform, I did two additional 

sets of experiments – one with a mixture of the three pollens, and another with a mixture of the 

two mold spores. In addition, in each experiment there were also unavoidably dust particles 

(background PM) other than the pollens and mold spores that were introduced into our device 

and were sampled and imaged on the detection substrate. The sampled sticky substrate in each 

experiment was also examined (after lens-less imaging) under a scanning microscope with 40× 

magnification, where the corresponding FOV that was analyzed by c-Air was scanned and the 

captured bio-aerosols inside each FOV were manually labeled and counted by a microbiologist 

(for comparison purposes). The results of this comparison are shown in Figure 3.12(a-f), where 

Figure 3.12(a-d) is from four independent pollen mixture experiments and Figure 3.12(e,f) is 

from two independent mold spores mixture experiments.  

To further quantify the detection accuracy, Figure 3.12(g-l) plots the results of Figure 

3.12(a-f) individually for each of the six classes, where the x-axis is the manual count made by 

an expert and the y-axis is the automatic count generated by our mobile device. In these results, 

we observe a relatively large overcounting for Alternaria and undercounting for Aspergillus in 

Figure 3.12(e,f), as also seen by their larger root mean square error (RMSE). This may be 

related to the fact that (1) the mold spores are smaller and therefore relatively more challenging 

to classify using the current resolution of our system, and (2) the mold spores tend to coagulate 

due to moisture, which may confuse the CNN model when they are present in the same ROI 24. 

These results might be further improved using per-pixel semantic segmentation 196 instead of 

performing classification with a fixed window size. 

 



132 

 

Figure 3.12 Bio-aerosol mixture experiments. (a-f) Deep-learning based automatic bio-aerosol detection and 

counting using our mobile device for six different experiments with varying bio-aerosol concentrations, and their 

comparisons against manual counting performed by a microbiologist under a benchtop scanning microscope with 

40× magnification are shown. (g-l) Quantification of our counting accuracy for different types of aerosols. The 

dashed line refers to y = x. Root mean square error (RMSE) is also shown in each sub-figure. Reprinted from Ref. 24 
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Field sensing of oak tree pollens  

In the Spring of 2018, I used c-Air to measure bio-aerosols in air close to a line of four oak trees 

(Quercus Virginiana) at the University of California, Los Angeles campus 319. A three-minute air 

sample is taken close to these trees at a pumping rate of 13 L / min, as illustrated in Figure 

3.13(a). 

 

Figure 3.13 Sensing of oak tree pollens in the field. (a) Field testing of c-Air device is performed under a line of 

four oak trees in Los Angeles (Spring of 2018). (b) Full-FOV reconstruction of the captured aerosol samples is 

shown, where oak pollen bio-aerosols that are detected by deep learning-based classification algorithm are marked 

by red circles. The zoomed-in images of these detected particles, with real (left) and imaginary (right) images, 

reconstructed also using a deep neural network, are shown in (1) – (12). A comparison image captured later using a 

benchtop microscope under 40× magnification is also shown for each region. Softmax classification scores for each 

captured aerosol are also shown on top of each ROI. The two misclassification cases, (1) and (5), are marked in red. 

(c) A cluster of oak particles is misclassified as Bermuda pollen. Its location is highlighted by a blue square in (b). 

Reprinted from Ref. 24 
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The whole FOV reconstruction of this sample is shown in Figure 3.13(b), which also 

highlights different ROIs corresponding to the oak tree pollens automatically detected by the 

deep learning-based algorithm. In these 12 ROIs, there are two false positive detections (Figure 

3.13(b-1) and Figure 3.13(b-5)), which are actually plant fragments that have elongated shapes. 

This problem might be addressed in the future by including such plant fragment images in our 

training dataset as an additional label. Next, I examined the entire FOV to screen for the false 

negative detections of oak tree pollens. Of all the detected bio-aerosols, we see that the CNN 

missed one cluster of oak tree pollens within the FOV, as marked by a blue rectangle in Figure 

3.13(b) and shown in Figure 3.13(c), which is classified as Bermuda with a high score. From 

Figure 3.13(c), we see that this image contains two oak tree pollens clustered together, and since 

the training dataset only included isolated oak tree pollens it was misclassified as a Bermuda 

grass pollen, which is generally larger in size and rounder in shape than an oak tree pollen. 

Although the occurrence of clustered pollens is relatively rare, these types of misclassifications 

may be reduced by including clusters of pollen examples in the training dataset, or using per-

pixel semantic segmentation instead of a classification CNN.   

 

3.2.3 Conclusion 

In summary, this mobile bio-aerosol sensing platform is hand-held, cost-effective and accurate. I 

envision that it can be used to build a wide-coverage automated bio-aerosol monitoring network 

in a cost-effective and scalable manner, which can rapidly provide accurate response for spatio-

temporal mapping of bio-aerosol concentrations. The device is controlled wirelessly and can 

potentially be carried by unmanned vehicles such as drones to access bio-aerosol monitoring 

sites that may be dangerous for human inspectors.  



135 

3.2.4 Methods 

Computational-imaging-based bio-aerosol monitoring 

The c-Air device design is similar to the one described in section 3.1.4 and in Figure 3.1, with 

minor modifications. In this case, an infrared vertical-cavity surface-emitting laser (VCSEL) 

diode (OPV300, TT Electronics, 𝜆𝑝 = 850 𝑛𝑚) illuminates the collected aerosols from above, 

casting an in-line hologram of the samples, which is recorded by a newer CMOS image sensor 

chip (Sony IMX219PQ, pixel pitch 1.12 µm). These in-line holograms are sent to a remote 

server where the aerosol images are analyzed automatically. To avoid secondary light sources 

from the reflection and refraction of the transparent impactor nozzle, a 3D-printed black cover is 

used to tightly cover the impactor surface. A driver chip (TLC5941NT, Texas Instruments) 

controls the current of our illumination VCSEL at its threshold (3 mA), which provides adequate 

coherence without introducing speckle noise. 850 nm illumination wavelength is specifically 

chosen to use all of the four Bayer channels on the color CMOS imager, since all the four Bayer 

channels have equal transmission at this wavelength, making it function like a monochrome 

sensor for our holographic imaging purposes. Benefited from this, as well as higher coherence of 

the laser diode, a better spatial resolution is achieved. The entire mobile device is powered by a 

Lithium polymer (Li-po) battery (Turnigy Nano-tech 1000mAh 4S 45~90C Li-po pack) and 

controlled by a newer embedded single board computer (Raspberry Pi Zero W).  

Simultaneous autofocusing and phase recovery of bio-aerosols using deep learning 

To simultaneously perform digital autofocusing and phase recovery for each individual aerosol, a 

CNN-based method is used 129, built using Tensorflow 110. This CNN is trained using HIDEF 

approach (section 2.3), with up to a defocus distance of ± 100 µm. Due to limited graphical 

memory of our computer, the full FOV back-propagated image (9840 × 3069 × 2) cannot be 
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processed directly; it is therefore divided into 12-by-5 patches of 1024-by-1024 pixels with a 

spatial overlap of 100-pixels between images. Each individual patch is processed in sequence 

and the results are combined after this reconstruction step to reveal the bio-aerosols captured 

within the entire FOV. Each patch takes ~ 0.4 s to process, totaling ~ 25 s for the entire FOV.  

Aerosol detection algorithm 

A multi-scale spot detection algorithm similar to Ref. 320 is developed to detect and extract each 

aerosol ROI. The algorithm takes six levels of high pass filtering of the complex amplitude 

image per ROI, obtained by the difference of the original image and the blurred images filtered 

by six different kernels. These high-passed images are per-pixel multiplied with each other to 

obtain a correlation image. A binary mask is then obtained by thresholding this correlation image 

with three-times the standard deviation added to the mean of the correlation image. This binary 

mask is dilated by 11 pixels, and the connected components are used to estimate a circle with the 

centroid and radius of each one of the detected spots, which marks the location and rough size of 

each detected bio-aerosol. To avoid multiple detections of the same aerosol, a non-maximum 

suppression criterion is applied, where if an estimated circle has more than 10% of overlapping 

area with another circle, only the bigger one is considered/counted. The resulting centroids are 

cropped into 256×256 pixel ROIs, which are then fed into the classification CNN, detailed in the 

next sub-section. This algorithm takes < 5 s for the whole FOV, and achieves better performance 

compared to conventional circle detection algorithms such as circular Hough transform 321, 

achieving 98.4% detection precision and 92.5% detection recall 24.  

Deep learning-based classification of bio-aerosols 
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The classification CNN architecture is shown in the zoom-in part of Figure 3.10(b), which is 

inspired by ResNet 103. The network contains five residual blocks, where each block maps the 

input tensor 𝑥𝑘 into output tensor 𝑥𝑘+1, for a given block 𝑘 (𝑘 = 1,2,3,4,5), i.e., 

 xk
′ = xk + ReLU[CONVk1{ReLU[CONVk1{xk}]}] (3.13) 

 xk+1 = MAX(xk
′ + ReLU[CONVk2{ReLU[CONVk1{xk

′ }]}]) (3.14) 

where ReLU stands for rectified linear unit operation, CONV stands for the convolution operator 

(including the bias terms), and MAX stands for the max-pooling operator. The subscript 𝑘1 and 

𝑘2 denote the number of channels in the corresponding convolution layer, where 𝑘1 equals to the 

number of input channels and 𝑘2  expands the number of channels twice, i.e. 𝑘1 =

16, 32, 64, 128, 256  and 𝑘2 = 32, 64, 128, 256, 512  for each residual block (𝑘 = 1,2,3,4,5 ). 

Zero padding is used on the tensor xk
′  to compensate the mismatch between the number of input 

and output channels. All the convolutional layers use a convolutional kernel of 3×3 pixels, a 

stride of one pixel, and a replicate-padding of one pixel. All the max-pooling layers use a kernel 

of two pixels, and a stride of two pixels, which reduces the width and height of the image by half.  

Following the residual blocks, an average pooling layer reduces the width and height of the 

tensor to one, which is followed by a fully-connected (FC) layer of size 512×512. Dropout with 

0.5 probability is used on this FC layer to increase performance and prevent overfitting. Another 

fully connected layer of size 512×6 maps the 512 channels to 6 class scores for final 

determination of the class of each imaged bio-aerosol.  

During training, the network minimizes the soft-max cross-entropy loss between the true 

label and the output scores: 

 L =∑[− log (
efyi(xi)

∑ efj(xi)j

)]

i

 (3.15) 
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where  fj(xi) is the class score for the class j given input data xi, and yi is the corresponding true 

class for xi . The dataset contains ~1,500 individual 256×256 pixel ROIs for each of the six 

classes, totaling ~10,000 images. 70% of the data for each class is randomly selected for training, 

and remaining images are equally divided to validation and testing sets. The training takes ~2 h 

for 200 epochs. The best trained model is selected to be the one that gives lowest soft-max loss 

for the validation set within 200 training epochs. The testing takes < 0.02 s for each 256×256 

pixel ROI. For a typical FOV with e.g., ~500 particles, this step is completed in ~10 s. 
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Chapter 4 Conclusion 

Computational imaging, which relies on computational algorithms to form the image, 

overcomes various limitations of conventional hardware-centered imaging paradigm and enabled 

many breakthroughs in optical microscopy. Recently, we are experiencing a renaissance in 

computational microscopy, enabled by novel statistical tools which stems from deep neural 

networks and data-driven machine learning. Compared to analytical and iterative solutions 

(Chapter 1), emerging deep neural networks learns content-aware priors that can be considered 

as a task-specific regularizer to the inverse problems, which offers unprecedented performance 

in various image reconstruction tasks including image super resolution, phase recovery, and 

transformation between different microscope modalities and contrast mechanisms.  

In summary of Chapter 2, my contributions to deep learning based computational imaging 

include: (1) I introduced HIDEF approach that solves digital holographic phase recovery and 

auto-focusing simultaneously. The HIDEF approach is non-iterative and quickly generates an 

extended DOF phase-recovered reconstruction from a single hologram recording, which 

fundamentally reduces the required measurement from 4-8 to a single hologram, and improves 

the algorithm complexity of digital holographic image reconstruction from O(nm) to O(1). 

HIDEF has since been widely used for rapid holographic reconstruction of planktons, pollens 

and smaller molecules. (2) I designed “Bright-field holography” approach that bridges the 

contrast gap between coherent and incoherent imaging modalities using deep CNN. Coherent 

imaging such as digital holography enables 3D imaging of objects from a snapshot hologram, 

benefiting from the wave-propagation framework. However, the reconstructed image contrast is 

inferior to incoherent modalities like bright field microscopy due to various sources of coherent 
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noises. Bright-field holography uses a GAN to transform a back-propagated hologram into the 

equivalent image scanned by a high-NA bright field microscope, fusing the advantages of 

coherent and incoherent imaging into the same framework. (3) I invented Deep-Z for 3D virtual 

refocusing of fluorescence images onto user defined surfaces. Fluorescence microscopy 

generally lacks the propagation framework and requires axial scanning to image 3D samples. In 

Deep-Z, a neural network learns the defocus behavior of fluorescence and enables such 

refocusing framework, providing 20-fold DOF extension without axial scanning, additional 

hardware, or a trade-off of imaging resolution or speed. 

Deep learning has also enabled computational environmental sensing, including air quality 

monitoring. In summary of Chapter 3, my contributions here include: (4) I made c-Air, which is 

a portable computational microscope, powered by machine learning, for aerosol monitoring. 

c-Air uses lens-less digital holographic imaging geometry and provides high-throughput, 

(screens 6.5 liters of air in 30 seconds), cost-effective and portable sensing of particulate matters, 

with a sizing accuracy of 93%. Using c-Air, I reported intriguing results for PM monitoring 

during forest fires and near major airports.  (5) Based on c-Air, I provided a novel framework 

for label-free bio-aerosol sensing using deep learning. Using CNNs, I achieved > 94% 

accuracy in label-free sensing and classification of some of the most common bio-aerosols, 

automatically using the portable c-Air device.  

Microscopy is an ideal platform for deep learning as the instruments are high-precision and 

the results are highly repeatable. In the long run, I believe deep learning will play an increasingly 

more important role in computational optical microscopy and environmental sensing, which will 

be driven by the design of novel learning algorithms, network architectures, improvements in 

parallel computing resources, as well as new applications. Specifically, deep learning-based 
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image reconstruction techniques, such as HIDEF, demonstrates the power of data-driven 

approach, and will continue to find wider applications. Bright-field holography, as well as other 

cross-modality/contrast transformations enabled by deep learning, will act like a catalyst that 

accelerate the wide adoption of holography and other coherent imaging techniques in biomedical 

applications. Deep-Z provides a unique framework for incoherent image digital refocusing, 

which will be especially useful for imaging fast events of live samples with significantly reduced 

photo-damage. The c-Air device, with its mobility and cost-effectiveness, and powered by deep 

learning, will find several commercial applications in indoor and outdoor air quality monitoring.  
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