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Abstract

There is substantial evidence that both NMDA receptor (NMDAR) hypofunction and
dysfunction of GABAergic neurotransmission contribute to schizophrenia, though the
relationship between these pathophysiological processes remains largely unknown. While
models using cell-type-specific genetic deletion of NMDARs have been informative, they
display overly pronounced phenotypes extending beyond those of schizophrenia. Here, we
used the serine racemase knockout (SRKO) mice, a model of reduced NMDAR activity rather
than complete receptor elimination, to examine the link between NMDAR hypofunction and
decreased GABAergic inhibition. The SRKO mice, in which there is a >90% reduction in the
NMDAR co-agonist D-serine, exhibit many of the neurochemical and behavioral
abnormalities observed in schizophrenia. We found a significant reduction in inhibitory
synapses onto CA1 pyramidal neurons in the SRKO mice. This reduction increases the
excitation/inhibition balance resulting in enhanced synaptically-driven neuronal excitability
without changes in intrinsic excitability. Consistently, significant reductions in inhibitory
synapse density in CA1 were observed by immunohistochemistry. We further show, using a
single-neuron genetic deletion approach, that the loss of GABAergic synapses onto pyramidal
neurons observed in the SRKO mice is driven in a cell-autonomous manner following the
deletion of SR in individual CA1 pyramidal cells. These results support a model whereby
NMDAR hypofunction in pyramidal cells disrupts GABAergic synapses leading to disrupted

feedback inhibition and impaired neuronal synchrony.

New and Noteworthy

Recently, disruption of E/I balance has become an area of considerable interest for
psychiatric research. Here, we report a reduction in inhibition in the serine racemase KO
mouse model of schizophrenia that increases E/I balance and enhances synaptically-driven
neuronal excitability. This reduced inhibition was driven cell-autonomously in pyramidal
cells lacking serine racemase, suggesting a novel mechanism for how chronic NMDA receptor

hypofunction can disrupt information processing in schizophrenia.
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Introduction

Schizophrenia is a devastating psychiatric disease characterized by psychosis along
with profound cognitive and social impairments. One prominent and enduring model
implicates hypofunction of N-methyl-D-aspartate receptors (NMDARs) in the broad
symptomatology of schizophrenia (Javitt and Zukin, 1991; Jentsch et al., 1997; Kirihara et al.,
2012; Nakazawa and Sapkota, 2020). For example, open channel NMDAR inhibitors, such as
phencyclidine (PCP) and ketamine, induce schizophrenia-like symptoms in healthy subjects
(Krystal et al., 1994; Lahti et al., 2001), and exacerbate both positive and negative symptoms
in patients with schizophrenia (Lahti et al., 1995a; Malhotra et al., 1997; Lahti et al., 2001),
supporting a shared mechanism between NMDAR dysfunction and schizophrenia
pathophysiology. In addition, mice with low levels of the obligatory GluN1 subunit of NMDA
receptor, so-called GluN1 hypomorphs, display behaviors and endophenotypes consistent
with schizophrenia (Mohn et al., 1999; Duncan et al., 2002; Duncan et al., 2004; Fradley et
al., 2005; Duncan et al., 2006; Moy et al., 2006; Bickel et al., 2008; Dzirasa et al., 20009;

Halene et al., 2009; Ramsey, 2009; Saunders et al., 2012).

Another well-supported hypothesis states that schizophrenia arises from changes in
the ratio of excitatory to inhibitory activity in the brain (E/I imbalance), specifically through
downregulation of GABAergic inhibition, and may represent a point of overlap between
schizophrenia and autism (Lewis et al., 2005; Sohal and Rubenstein, 2019). Decreases in
GABAergic markers in schizophrenia have been consistently observed in postmortem tissue
(Lewis et al., 1999; Lewis et al., 2004; Lewis et al., 2008; Gonzalez-Burgos et al., 2011; Stan
and Lewis, 2012; Glausier and Lewis, 2017). Furthermore, decreased GABAergic signaling
disrupts oscillatory activity in the brain — particularly gamma oscillations (Lodge et al., 2009)
— that may be important for a variety of cognitive processes (Sohal, 2016) including
perceptual binding (Singer and Gray, 1995), cognitive flexibility (Cho et al., 2015), and

attention (Tiesinga et al., 2004; Kim et al., 2016).

In the present study, we evaluated E/I balance in a mouse model of NMDAR
hypofunction associated with the knockout of serine racemase (SR), the biosynthetic enzyme
for the NMDAR co-agonist D-serine (Wolosker et al., 1999; Coyle and Balu, 2018). In contrast
to mouse models using broad genetic deletion of NMDARSs which have phenotypes extending
beyond the bounds of schizophrenia phenomenology (Nakazawa et al., 2017), similar to the

NMDAR hypomorph mice which have a severe reduction in NMDAR expression (Barkus et
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al., 2012; Gandal et al., 2012; Moy et al., 2012), the SRKO mice provide a more subtle and
potentially physiologically relevant model of NMDAR hypofunction (Coyle and Balu, 2018).
Indeed, deficiency of D-serine and the subsequent hypofunction of NMDARs has been
implicated in the pathophysiology of schizophrenia (Coyle, 2012). Genetic studies have
suggested that SR, as well as the degradation enzyme D-amino acid oxidase (DAAO) and G772,
an activator of DAAO, are putative risk genes for schizophrenia (Chumakov et al., 2002;
Detera-Wadleigh and McMahon, 2006; Goltsov et al., 2006; Morita et al., 2007; Shi et al.,
2008). In addition, D-serine levels in the CSF and serum are decreased in individuals with
schizophrenia (Hashimoto et al., 2003; Bendikov et al., 2007) and supplementation of
antipsychotics with D-serine improves negative and cognitive symptoms in patients with
schizophrenia (Tsai et al., 1998; Heresco-Levy et al., 2005; Lane et al., 2005). Consistent with
well-characterized hallmarks of schizophrenia, the SRKO mice have reductions in cortical
dendritic complexity and spine density, reduced hippocampal volume (Balu et al., 2012; Balu
et al., 2013), and impaired performance on cognitive tasks that can be improved with
exogenous D-serine administration (Basu et al., 2009; DeVito et al., 2011; Balu et al., 2012;

Balu and Coyle, 2014).

Here we show that SRKO mice also have a significant reduction in GABAergic synapses
onto the soma and apical dendrites of CA1 pyramidal neurons. This reduction in inhibition
increases the E/I ratio resulting in enhanced synaptically-driven neuronal excitability. Single
neuron deletion of SR revealed that the loss of inhibitory synapses is driven cell-
autonomously by the loss of SR in the pyramidal neurons, consistent with recent evidence
that NMDARs on pyramidal neurons regulate GABAergic synapse development (Lu et al.,
2013; Gu et al., 2016; Gu and Lu, 2018). These results support a model of pyramidal cell
NMDAR hypofunction directly leading to GABAergic dysfunction.

Materials and Methods

Animals

The SRKO mice are derived from the floxed SR mice (SRf), in which the first coding exon
(exon 3) is flanked by loxP sites as described (Basu et al., 2009; Benneyworth et al., 2012) and
are maintained on a C57Bl/6J background. Mice were group-housed in polycarbonate cages

and maintained on a 12-hour light/dark cycle. Animals were given access to food and water ad
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libitum. The University of California Davis Institutional Animal Care and Use Committee

approved all animal procedures.

Slice Preparation

Male SRf (labeled as WT) and SRKO mice (2—3 months old) were deeply anesthetized with
isoflurane, followed by cervical dislocation and decapitation. The brain was rapidly removed
and submerged in ice-cold, oxygenated (95% O./5% CO.) ACSF containing (in mm) as
follows: 124 NaCl, 4 KCl, 25 NaHCOs, 1 NaH.PO,, 2 CaCl,, 1.2 MgSO,, and 10 glucose (Sigma-
Aldrich). On a cold plate, the brain hemispheres were separated, blocked, and the hippocampi
removed. For extracellular recordings, 400 pum thick slices of dorsal hippocampus were cut
using a Mcllwain tissue chopper (Brinkman, Westbury, NY). For whole-cell recordings, a
modified transverse 300 pm slices of dorsal hippocampus were prepared by performing a
~10° angle blocking cut of the dorsal portion of each cerebral hemisphere (Bischofberger et
al., 2006) then mounting the cut side down on a Leica VT1200 vibratome in ice-cold,
oxygenated (95% 0./5% CO.) ACSF. Slices were incubated (at 32°C) for 20 minutes and then
maintained in submerged-type chambers that were continuously perfused (2—3 ml/min) with
oxygenated (95% 0./5% CO.) ACSF at room temperature and allowed to recover for at least
1.5-2 h before recordings. Just prior to the start of experiments, slices were transferred to a
submersion chamber on an upright Olympus microscope, perfused with warmed to 30.4°C
using a temperature controller (Medical System Corp.) normal ACSF saturated with 95%
0./5% CO.. For intracellular experiments the slices were bathed in a modified ACSF

containing 2.4 mM KCl.

Extracellular recordings

A bipolar, nichrome wire stimulating electrode (MicroProbes) was placed in stratum
radiatum of the CA1 region and used to activate Schaffer collateral (SC)-CA1 synapses. For
extracellular recordings, evoked fEPSPs (basal stimulation rate = 0.033 Hz) were recorded in
stratum radiatum using borosilicate pipettes (Sutter Instruments, Novato, CA) filled with
ACSF (resistance ranged from 5—10 MQ). To determine response parameters of excitatory
synapses, basal synaptic strength was determined by comparing the amplitudes of
presynaptic fiber volleys and postsynaptic fEPSP slopes for responses elicited by different
intensities of SC fiber stimulation. Presynaptic neurotransmitter release probability was
compared by paired-pulse ratio (PPR) experiments, performed at 25, 50, 100, and 200 msec

stimulation intervals. LTP was induced by high-frequency stimulation (HFS) using a 1x
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tetanus (1 s train of 100 Hz stimulation). At the start of each experiment, the maximal fEPSP
amplitude was determined and the intensity of presynaptic fiber stimulation was adjusted to
evoke fEPSPs with an amplitude ~30-40% of the maximal amplitude. The mean slope of
EPSPs elicited 55—60 min after HFS (normalized to baseline) was used for statistical
comparisons. For experiments performed in picrotoxin (PTX, Sigma-Aldrich; 50 uM) the CA3
region was removed. Analyses were performed with the Clampex 10.6 software suite
(Molecular Devices, San Jose, CA) and Prism 9.1 software (GraphPad Software, San Diego,
CA).

Whole-cell current clamp recordings

CA1 pyramidal neurons were visualized by infrared differential interference contrast
microscopy, and current clamp recordings were performed using borosilicate recording
electrodes (3—5 MQ) filled with a K+-based electrode-filling solution containing (in mM)-135
K-gluconate, 5 NaCl, 10 HEPES, 2 MgCl, 0.2 EGTA, 10 Na.-phosphocreatine, 4 Na-ATP, 0.4
Na-GTP (pH = 7.3, 290 mOsm). Passive and active membrane properties of CA1 pyramidal
cells were determined using three 500 ms current pulses 10 s apart. Current injections were
first recorded in increasing order (i.e. 0, 25, 50, 75, 100, 125, 150, and 200 pA) and then in
decreasing order. Values obtained from the responses elicited by the same current injection
were averaged. For input resistance, 500 ms current steps of 0 to —200 pA were injected in
—20 pA increments. Steady-state responses were measured as the average change in voltage
in the last 100 ms of the pulse. The slope of a regression line fitted to the voltage versus
current data was used to calculate input resistance. Sag currents were measured during the
100 pA hyperpolarizing steps and calculated as the initial voltage trough minus the steady-
state voltage change. Firing frequency versus injected current was measured as the number of
spikes per 500 ms step in 25 pA increments from 0 to 200 pA. Rheobase was determined by
injecting 0.5 ms square pulses in 2 pA steps and recording the strength of the first pulse to
elicit an action potential. Spike firing threshold and AP height were calculated by injecting a 2
ms square pulse of 1.8 nA. To measure the E/I ratio from CA1 pyramidal neurons, current
clamp recordings at holding potential of -60 mV were made in the absence of synaptic
blockers. E/I ratio was calculated from averaged baseline subtracted traces as the maximum
depolarization amplitude (in mV) divided by the maximum hyperpolarization amplitude in
the 300 ms after the stimulus. Synaptically-mediated excitability was determined with short
trains of synaptic stimulation (5 pulses at 100 Hz SC fiber stimulation) with the CA1

pyramidal neurons at holding potential of -60 mV in the absence of synaptic blockers. For
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both the E/I ratio and stimulation trains, the stimulus strength was adjusted so that the

initial PSP depolarization ~5 mV.

Whole-cell voltage clamp recordings

CA1 pyramidal neurons were visualized by infrared differential interference contrast
microscopy, and voltage-clamp recordings were performed using borosilicate glass recording
pipettes (3—5 MQ) filled with a Cs+-based electrode-filling solution containing (in mM): 135
Cs-methanesulfonate, 8 NaCl, 5 QX314 (Sigma-Aldrich), 0.3 EGTA, 4 Mg-ATP, 0.3 Na-GTP,
and 10 HEPES (pH = 7.3, 200 mOsm). Evoked IPSCs (eIPSCs), spontaneous IPSCs (sIPSCs),
and miniature IPSCs (mIPSCs) were recorded in presence of APV and NBQX (Tocris; 50 uM
and 10 uM APV respectively) to block AMPAR and NMDAR currents. Miniature EPSCs
(mEPSCs) were recorded in the presence of 100 uM PTX and 1 uM tetrodotoxin (TTX;
Alomone Laboratories, Jerusalem, Israel) to block action potential-dependent
neurotransmitter release, while mIPSCs were recorded in presence of 1 uyM TTX alone. The
outward IPSCs were completely blocked by PTX (50 uM). For the input/output (I/O) curves
of eIPSCs, the stimulus intensity of the threshold evoked response was first determined and
then stimulation was increased to develop the I/O curves. Recordings where series resistance
was > 25 MQ or unstable were discarded. Series resistance compensation was used in all
voltage-clamp recordings except in experiments examining miniature postsynaptic currents.
All recordings were obtained with a MultiClamp 700B amplifier (Molecular Devices), filtered
at 2 kHz, digitized at 10 Hz. Analysis was performed with the Clampex 10.6 software suite and

GraphPad Prism 9.1.

Single neuron SR deletion experiments

Neonatal [Po] SR mice of both sexes were stereotaxically injected with a low-titer rAAV1-
Cre:GFP viral stock (~1 x 102 vg/mL) targeting hippocampal CA1 as previously described
(Gray et al., 2011; Wong and Gray, 2018), resulting in very sparse transduction of CA1
pyramidal cells. At 2-3 months, the injected mice were anesthetized with isoflurane and
transcardially perfused with ice-cold artificial cerebrospinal fluid (ACSF), containing (in mM)
119 NaCl, 26.2 NaHCOs, 11 glucose, 2.5 KCl, 1 NaH.PO,, 2.5 CaCl,, and 1.3 MgSO,. Modified
transverse 300 um slices of dorsal hippocampus were prepared by performing a ~10° angle
blocking cut of the dorsal portion of each cerebral hemisphere (Bischofberger et al., 2006)
then mounting the cut side down on a Leica VT1200 vibratome in ice-cold cutting buffer.

Slices were incubated in 32°C NMDG solution containing (in mM) 93 NMDG, 93 HCl, 2.5
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KCl, 1.2 NaH.PO,4, 30 NaHCOs, 20 HEPES, 25 glucose, 5 sodium ascorbate, 2 thiourea, 3
sodium pyruvate, 10 MgSO,, and 0.5 CaCl. (Ting et al., 2018) for 15 mins, which we have
previously used to increase cell health in slices from older animals (Wong et al., 2020). Slices
were transferred to room temperature ACSF and held for at least 1 hr before recording. All
solutions were vigorously perfused with 95% O, and 5% CO.. Slices were transferred to a
submersion chamber on an upright Olympus microscope, perfused in room temperature
ACSF, and saturated with 95% O. and 5% CO.. CA1 neurons were visualized by infrared
differential interference contrast microscopy, and GFP+ cells were identified by
epifluorescence microscopy. Cre expression was generally limited to the hippocampus within
a sparse population of CA1 pyramidal neurons. Cells were patched with 3-5 MQ borosilicate
pipettes filled with intracellular solution containing (in mM) 135 cesium methanesulfonate, 8
NaCl, 10 HEPES, 0.3 Na-GTP, 4 Mg-ATP, 0.3 EGTA, and 5 QX-314 (Sigma, St Louis, MO)
and mIPSCs were recorded at 0 mV in the presence of 50 uM APV, 10 uM NBQX, and 0.5
uM TTX. Series resistance was monitored and not compensated, and cells were discarded if
series resistance varied more than 25%. Recordings were obtained with a Multiclamp 700B
amplifier (Molecular Devices, Sunnyvale, CA), filtered at 2 kHz, and digitized at 10 Hz.
Analysis was performed with the Clampex 10.6, MiniAnalysis, and GraphPad Prism 9.1
(GraphPad Software, San Diego, CA, USA).

Immunohistochemistry

Male C57Bl/6J, SR (labeled as WT) and SRKO mice (2—3 months old) were deeply
anesthetized with isoflurane and injected with a lethal dose of Fatal Plus (Vortech
Pharmaceuticals) pentobarbital solution. The mice were then perfused transcardially with
1xPBS followed by 4% paraformaldehyde (PFA; Electron Microscopy Sciences) in 1xPBS.
Brains were removed and post-fixed for 3 h in 4% PFA in 1xPBS. The fixed brains were then
cryoprotected stepwise, first in 10% sucrose in 1xPBS overnight, then in 30% sucrose in 1xPBS
overnight. Brains were then mounted and frozen in O.C.T. compound (Tissue-Tek®). Coronal
sections through the dorsal hippocampus were cut on a Leica CM3050 S cryostat at 10 um
and collected onto Superfrost™ Plus slides (Fisher). Sections were outlined with a
hydrophobic barrier pen and all subsequent incubation steps were performed in a humidified
chamber. The sections were blocked with 10% normal donkey serum in 1xPBS-T (0.5% Triton
X-100) for 1 h at room temperature and then probed overnight with rabbit anti-VGAT
antibody (Synaptic Systems, cat# 131 003, 1:500) in blocking solution at 4°C. The next day

sections were rinsed 3x with 1xPBS-T and then incubated with secondary antibody (Donkey
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anti-rabbit 647, Jackson, cat# 711-605-152, 1:400) in 1xPBS-T for 90 mins at room
temperature. The sections were then rinsed 3x with 1xPBS-T and counterstained with DAPI.
The sections were then mounted with Mowoil® mounting medium and covered with a glass
coverslip. Wild-type and SRKO slices were prepared and stained in parallel. After drying, a
series of images covering the hippocampus were collected on a Nikon C2 LSM with a Nikon
CFI Apo Lambda 60x 1.4 NA oil objective. Laser and PMT settings remained constant
between individuals and genotypes. Single images covering the regions of interest were
stitched in together in Nikon Elements software. Regions of interest of the stratum
pyramidale or stratum radiatum of hippocampal CA1 were analyzed using custom-written
journals (Elmer et al., 2013) in Metamorph software (v7.5, Molecular Devices) to identify and
quantify VGAT puncta density and intensity. Constraints for puncta identification is semi-
automated with the output visually inspected and calibrated to capture the majority of
punctal signal while removing artifacts. Two regions of interest for both stratum pyramidale
or stratum radiatum were analyzed for each of 3 individual animals per genotype. Data were
graphed and analyzed using GraphPad Prism 9.1 (GraphPad Software, San Diego, CA, USA).
Unpaired student’s t-tests were used to test for statistically significant differences between

genotypes.

Statistical analysis

Statistical comparisons were made with Student's unpaired t-test or two-way ANOVA with
Bonferroni’s multiple comparisons test as specified and appropriate, using GraphPad Prism
9.1 (GraphPad Software, San Diego, CA, USA). Spontaneous and miniature inhibitory
synaptic events were analyzed using Mini Analysis software (Synaptosoft, Fort Lee, NJ, USA).
Peaks of events were first automatically detected by the software according to a set threshold
amplitude of 6 pA. To generate cumulative probability plots for both amplitude and inter-
event time interval, the same number of events (50—200 events acquired after an initial 3 min
of recording) from each CA1 pyramidal neuron was pooled for each group, and input into the
Mini Analysis program. The Kolmogorov—Smirnov two-sample statistical test (KS test) was
used to compare the distribution of spontaneous and miniature events between WT and
SRKO mice.
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Results

Increased E/I balance in CAl pyramidal cells in SRKO mice

To investigate the properties of excitatory synaptic transmission in the SRKO mice, we first
conducted extracellular field recordings of SC-CA1 synapses in the SRKO mice. Consistent
with previous studies (Balu et al., 2013), the basal excitatory synaptic strength, determined by
comparing the amplitudes of presynaptic fiber volleys and field EPSP (fEPSP) slopes for
responses elicited by different intensities of SC fiber stimulation (input-output curve), was
unaltered in SRKO compared to WT slices (Fig. 1A, p=0.49, two-way ANOVA,
F(1,122)=0.467). We next examined the input-output (I/O) function of evoked monosynaptic
IPSCs through stimulation in the stratum radiatum in the presence of 10 uM NBQX and 50
uM AP5. We found a significant decrease in monosynaptic inhibition onto CA1 pyramidal
neurons in SRKO mice compared with WT (Fig. 1B, p=0.0001, two-way ANOVA,
F(1,224)=58.90; Bonferroni’s multiple comparisons test, *p<0.05). This difference was
characterized by a downward shift in the I/O curve showing the relationship between eIPSC
amplitude and stimulus intensity. There was also no change in paired-pulse ratio (PPR) of the
fEPSPs in the SRKO mice compared with WT mice (Fig. 1C, p=0.91, two-way ANOVA,
F(1,23)=0.012), which together with unaltered change in basal excitatory synaptic strength
suggests that there is no alteration of excitatory neurotransmission or presynaptic glutamate
release probability in the SRKO mice. PPR of eIPSCs was also unchanged in SRKO mice
compared to WT mice (Fig. 1D, p=0.82, unpaired t-test, t(34)=0.230), suggesting that the
reduction in inhibitory currents is not due to a change in the probability of GABA release.
Using whole-cell current clamp recordings, we next examined the impact of the reduction in
synaptic inhibition in the SRKO on the E/I ratio in CA1 pyramidal neurons by recording
compound EPSP/IPSPs at holding potential of -60 mV using current injection upon SC
stimulation. For this experiment, the peak depolarization of the PSP was set to approximately
5 mV (WT: 5.2+0.1 mV, n=15; SRKO: 5.1£0.1, n=20, p=0.343, unpaired t-test, t(33)=0.96) to
draw out the inhibitory component of compound EPSP/IPSPs (Fig. 1E). We found a
significant reduction in the IPSP component of the compound EPSP/IPSP (Fig. 1E, peak
IPSP amplitude, p=0.0008, unpaired t-test, t(33)=3.71). This decrease in IPSP amplitude
results in an increased E/I ratio (Fig. 1E, E/I ratio, p=0.0026, unpaired t-test, t(33)=3.26).
Together, these results suggest that a selective GABAergic impairment in the SRKO mice

leads to an increase in the E/I balance.
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Enhanced pyramidal cell excitability to synaptic stimulation in SRKO mice

Synaptic inhibition plays a key role in synaptic integration and spike initiation in neurons
(Gulledge et al., 2005). Indeed, at hippocampal SC-CA1 synapses, EPSP-spike potentiation,
an enhancement of spike probability in response to a synaptic input of a fixed slope, is
dependent on changes in GABAergic inhibition (Marder and Buonomano, 2004). Thus, in the
SRKO mice, we examined EPSP-spike coupling using short trains of SC stimulation (5 pulses
at 100 Hz). Stimulation intensity was adjusted for each neuron to normalize the initial
subthreshold EPSP to ~5 mV. We found a significantly increased probability of spiking in
SRKO CA1 pyramidal cells compared to WT (Fig. 2A, p<0.0001, two-way ANOVA,
F(1,150)=31.4), especially for the second, fourth and fifth stimulus (***p=0.013, Bonferroni's
multiple comparisons test, F(150)=3.34; **p=0.004, Bonferroni's multiple comparisons test,
F(150)=3.41; *p=0.013, Bonferroni's multiple comparisons test, F(150)=3.07, respectively).
Post-hoc analysis of the data in Fig. 2A showed a correlated increase in temporal summation
(Fig. 2B). Here, the peak PSP amplitude was measured after each stimulus, excluding data
after the cell fired its first action potential. The differing number of data points precluded
statistical analyses but this qualitative analysis supports an increase in temporal summation
from the reduction in inhibition in the SRKO CA1 pyramidal cells. Importantly, there were no
differences in the intrinsic excitability of CA1 pyramidal cells between SRKO and WT mice
(Fig. 2C, Table 1). We analyzed the number of spikes elicited during 500 ms steps of
somatically injected current and found no significant differences in the number of spikes
between WT and SRKO neurons at steps of any intensity (Fig. 2C, p=0.759, two-way
ANOVA, F(8,207)=0.621). There were also no significant differences in the resting membrane
potential, input resistance (Fig. 2D), rheobase, action potential threshold or height, or sag
amplitude between the CA1 neurons of WT and SRKO mice (Table 1). Together, these data
suggest that a reduction in inhibitory input onto CA1 pyramidal neurons in the SRKO mice
increases the E/I balance resulting in enhanced synaptically-driven neuronal excitability

without changes in intrinsic excitability.
Loss of picrotoxin-induced disinhibition during LTP in SRKO mice

In hippocampal SC-CA1 field LTP experiments induced with a HFS (e.g. 100 Hz tetanus), the
addition of a GABA, inhibitor (e.g. PTX) causes a disinhibition that enhances LTP (Fig. 3A,
P=0.0002, unpaired t-test, t(26)=4.38) (Wigstrom and Gustafsson, 1983). Due to the reduced
inhibition observed in the SRKO mice, we hypothesized that PTX-induced disinhibition might
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be disrupted. Consistently, we found that, in hippocampal slices from the SRKO mice, the
addition of PTX (50 uM) did not affect the magnitude of LTP induced with a single 100 Hz
tetanus (Fig. 3B, p=0.394, unpaired t-test, t(21)=0.871). Interestingly, comparing data
between WT and SRKO slices, we only observed significantly different LTP in the presence of
PTX (p=0.046, unpaired t-test, t(22)=2.11). In the absence of PTX, there was no difference in
LTP between WT and SRKO slices (p=0.623, unpaired t-test, t(25)=0.498), likely due to
baseline disinhibition in the SRKO slices. Thus, by removing the impact of the reduced
inhibition in the SRKO slices, the addition of PTX provides a more direct measure of the
impact of synaptic NMDAR hypofunction in LTP, consistent with previous studies (Basu et
al., 2009; Henneberger et al., 2010; Benneyworth et al., 2012; Balu et al., 2013; Balu et al.,

2016).
Reduced inhibitory synapses onto CAl pyramidal neurons of SRKO mice

To examine the source of the reduced GABAergic inhibition in the SRKO mice, we recorded
spontaneous IPSCs (sIPSC) from CA1 pyramidal cells (Fig. 4A-C). There were no significant
differences in sIPSC amplitude between SRKO and WT mice (Fig. 4A, p=0.138, unpaired t-
test, t(34)=1.42), though sIPSC frequency was significantly reduced (Fig. 4B, p=0.006,
unpaired t-test, t(34)=2.96). Similarly, mIPSC (Fig. 4D-F) frequency was significantly
reduced in CA1 pyramidal cells from the SRKO mice compared to WT (Fig. 4E, p=0.0003,
unpaired t-test, t(23)=4.29). There was also a small decrease in mIPSC amplitude in the
SRKO neurons (Fig. 4D, p=0.042, unpaired t-test, t(23)=2.15). These results suggest that
there is a significant reduction of inhibitory synapses onto CA1 pyramidal neurons in the
SRKO mice. Though there were no apparent differences in the I/O of excitatory responses at
SC-CA1 synapses (Fig. 1A), evoked and spontaneous neurotransmission may be distinct
(Kavalali, 2015). Thus, we also examined sEPSCs and mEPSCs from CA1 pyramidal neurons
(Fig. 5). We found no significant differences between cells from WT and SRKO mice in
sEPSC amplitude (Fig. 5A, p=0.79, unpaired t-test, t(22)=0.259), SEPSC frequency (Fig. 5B,
P=0.47, unpaired t-test, t(22)=0.732), or mEPSC frequency (Fig. 5D, p=0.70, unpaired t-
test, 1(26)=0.383). There was a small, significant increase in mEPSC amplitude in the SRKO
cells (Fig. 5E, p=0.016, unpaired t-test, t(26)=2.57), that appeared to be most at larger
amplitude synapses. Overall, these results, combined with Figure 1, suggest that fast

excitatory neurotransmission is largely normal in CA1 pyramidal cells from the SRKO mice.
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The reduced frequency of mIPSCs (Fig. 4E), in the absence of apparent changes in
presynaptic release probability (Fig. 1D), suggests a reduction in the number of GABAergic
synapses onto CA1 pyramidal neurons in the SRKO mice. We then confirmed this synaptic
reduction using immunohistochemistry (Fig. 6) by staining for the vesicular GABA
transporter (VGAT) in hippocampal slices. Consistent with a reduction of synapses from PV+
interneurons, which form perisomatic synapses onto CA1 pyramidal cells, there was a
significant reduction of VGAT density (Fig. 6A-B, left, p=0.028, unpaired t-test, t(4)=3.36)
and intensity (Fig. 6A-B, right, p=0.042, unpaired t-test, t(4)=2.95) in the CA1 pyramidal
cell layer in the SRKO mice compared with WT. Similarly, in the stratum radiatum, there was
a nonsignificant reduction in VGAT density (Fig. 6C-D, left, p=0.092, unpaired t-test,
t(4)=2.21) and a significant decrease in VGAT intensity (Fig. 6C-D, right, p=0.024, unpaired
t-test, t(4)=3.53), that was evenly distributed throughout the stratum radiatum (Fig. 6E)
suggesting a broader GABAergic synapse deficit. Taken together with the significant
reduction in mIPSC frequency, these results suggest that a loss of GABAergic synapse density

in the hippocampus underlies the increased E/I ratio in the SRKO mice.

Deletion of SR from CAl pyramidal neurons results in a cell-autonomous

reduction in GABAergic synapses

Early studies suggested that D-serine is exclusively synthesized and released by astrocytes
(Schell et al., 1995; Schell et al., 1997; Wolosker et al., 1999) leading to the classification of D-
serine as a gliotransmitter (Wolosker et al., 2002; Miller, 2004; Panatier et al., 2006). More
recent studies, using the SR knockout mice as controls, have strongly supported a
predominantly neuronal localization (Kartvelishvily et al., 2006; Yoshikawa et al., 2007; Miya
et al., 2008; Basu et al., 2009; Ding et al., 2011; Ehmsen et al., 2013; Balu et al., 2014;
Wolosker et al., 2016; Balu et al., 2018). Furthermore, in agreement with previous studies in
cultured neurons (Ma et al., 2014; Lin et al., 2016), we recently reported that SR localizes to
the apical dendrites and the post-synaptic density in situ in hippocampal CA1 pyramidal
neurons and regulates postsynaptic NMDARs (Wong et al., 2020). Importantly, while
conditional knockout (cKO) of SR from astrocytes has minimal impact on SR levels, cKO from
CaMKIIa-expressing forebrain glutamatergic neurons results in ~65% reduction of SR
expression in the cortex and hippocampus (Benneyworth et al., 2012). The remainder of SR
expression is thought to be from GABAergic interneurons. As such, we sought to determine if

the decrease in GABAergic synapses onto CA1 pyramidal neurons in the SRKO mice was due
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to the loss of SR in the pyramidal cells themselves. We utilized a single-neuron genetic
approach in the SR mice in which SR was removed in a sparse subset of CA1 pyramidal
neurons by neonatal stereotaxic injection of adeno-associated virus, serotype 1 expressing a
Cre recombinase GFP fusion protein (AAV1-Cre:GFP) (Fig. 7A). This mosaic transduction
allows for whole-cell recordings from Cre-expressing (Cre) and untransduced neurons (Ctrl)
(Fig. 7B) providing a measurement of the cell-autonomous effects of SR deletion. Similar to
the SRKO mice (Fig. 4), we found no differences in mIPSC amplitude (Fig. 7C, p=0.939,
unpaired t-test, t(19)=2.022), but significantly reduced mIPSC frequency (Fig. 7D, p=0.039,
unpaired t-test, t(19)=2.218) in Cre-expressing CA1 pyramidal neurons compared to control
neurons. These results suggest that cKO of SR from CA1 pyramidal neurons results in a cell-

autonomous reduction in GABAergic synapses.

Discussion

Broad NMDAR deletion causes overly pronounced phenotypes that do not adequately
model schizophrenia (Nakazawa et al., 2017). Germline deletion of NMDARSs from mice is
perinatally lethal (Forrest et al., 1994; Li et al., 1994; Kutsuwada et al., 1996) and embryonic
deletion from only forebrain pyramidal neurons results in death within the first month
(Iwasato et al., 2000; Ultanir et al., 2007; Quintero et al., 2008). Similarly, mice with a
homozygous embryonic deletion of NMDARSs from migrating forebrain GABAergic neurons
expressing the DIx5/6 promoter (Zerucha et al., 2000), are reportedly nonviable (Nakazawa
et al., 2017). Moreover, broad and regional deletion of NMDARSs severely disrupts cortical
patterning during development (Li et al., 1994; Iwasato et al., 2000). The NMDAR
hypomorph mice (Mohn et al., 1999), which have only 5-10% of wildtype NMDAR expression,
have been hailed as a major transgenic model of the NMDAR hypofunction in schizophrenia
(Gainetdinov et al., 2001), though they have also been highly criticized for having more global
cognitive impairments with earlier onset than what is seen in schizophrenia (Barkus et al.,
2012; Gandal et al., 2012; Moy et al., 2012). Interestingly, decreases in NMDAR protein is not
a consistent finding in schizophrenia (Catts et al., 2016), suggesting that the hypofunction
may be more functional (e.g. downstream signaling) than structural (Banerjee et al., 2015).
Indeed, NMDARSs are macromolecular machines (Fan et al., 2014) involved in a plethora of
signaling processes in neurons and complete loss of NMDARs could lead to a broad range of

allostatic changes. In this study, we utilized a mouse model of NMDAR hypofunction that
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involves a functional rather than structural reduction in NMDAR activity, the SRKO mice
(Basu et al., 2009). In the SRKO mice, there is a >90% decrease in the levels of D-serine, the
primary co-agonist for synaptic NMDARs in the forebrain (Mothet et al., 2000; Basu et al.,
2009). Indeed, deficiency of D-serine and the subsequent hypofunction of NMDARs has been
implicated in the pathophysiology of schizophrenia (Coyle, 2012) and the SRKO mice display
many well-characterized hallmarks of schizophrenia, including reductions in dendritic
complexity and spine density (Rosoklija et al., 2000; Balu et al., 2012; Balu et al., 2013) and

impaired performance on various cognitive tasks (Basu et al., 2009; Balu et al., 2013).

Using the SRKO mice, we have explored the relationship between NMDAR
hypofunction and GABAergic inhibition. Because interneurons expressing the calcium-
binding protein parvalbumin (PV+) are particularly affected in schizophrenia (Hashimoto et
al., 2003; Hashimoto et al., 2008; Mellios et al., 2009), previous studies have examined PV
expression in the SRKO mice. While one study reported a 26% reduction in PV+ cells in the
anterior cingulate cortex of the SRKO mice (Steullet et al., 2017), another found no change in
PV immunoreactivity in the hippocampus, prelimbic and infralimbic cortices (Benneyworth
et al., 2011). However, using electrophysiological approaches in ex vivo hippocampal slices we
found a significant reduction of GABAergic synapses onto CA1 pyramidal neurons in the
SRKO mice. This reduction of GABAergic synaptic inhibition onto pyramidal cells increases

the E/I balance resulting in enhanced synaptically-driven neuronal excitability.

Consistent with previous studies, baseline excitatory transmission and presynaptic
release probability were largely preserved in the SRKO mice (Basu et al., 2009; Balu et al.,
2013). Surprisingly, we found normal levels of LTP in the SRKO mice, which initially seemed
to be counter to previous studies (Basu et al., 2009; Henneberger et al., 2010; Benneyworth et
al., 2012; Balu et al., 2013; Balu et al., 2016). In each of those studies, however, inhibition was
blocked with picrotoxin. Indeed, in the presence of picrotoxin, we also observed a clear
reduction in LTP due to the isolation of the NMDAR hypofunction in the SRKO mice. These
results also suggested a loss of picrotoxin-induced disinhibition in the SRKO mice which we
show is due to a reduction in GABAergic synapses onto CA1 pyramidal neurons in the SRKO
mice. We speculate that this reduction of inhibitory synapses and the resulting increase in E/I
ratio in the SRKO mice represents a homeostatic compensation to normalize synaptic
plasticity. This is similar to recent work in four autism models where the increases in E/I

ratio were demonstrated to homeostatic changes (Antoine et al., 2019), though in that study
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there was a stabilization of synaptic drive and spiking by a coordinated decrease in excitatory
conductance (Antoine et al., 2019). In contrast, we observed increased synaptically-driven
spiking in ex vivo slices from the SRKO mice along with generally normal excitatory
responses. These differences may represent disparate compensatory demands and
homeostatic mechanisms in the cortical layer 2/3 neurons examined in the autism mutants
(Antoine et al., 2019) compared with the CA1 pyramidal cells studied here. Importantly, even
with the increase in E/I ratio, no epileptiform activity has been reported in the SRKO mice
during in vivo electrophysiology nor reported or observed seizure activity (Perez et al., 2017;
Aguilar et al., 2020; Balla et al., 2020), and one study reported that the SRKO mice had a
reduced susceptibility to seizures (Harai et al., 2012). The lack of apparent seizure activity
with the increase E/I ratio further suggests concurrent homeostatic processes, though we
cannot rule out covert temporal lobe epileptiform bursting in the SRKO mice. Furthermore,
other compensatory mechanisms could contribute to the normalization of LTP in the SRKO
mice, including an increase in hippocampal glycine levels (Ploux et al., 2020), and an
increased in synaptic GluN2B (Basu et al., 2009; Wong et al., 2020). Overall, these
homeostatic changes suggest that there is a prioritization of synaptic and cellular functions
over network function resulting in a disruption of the signal-to-noise ratio and impairing
cognition. Indeed, SRKO mice display impairments in task-elicited gamma power, enhanced
background broadband gamma activity, sensory gating impairments, working memory
deficits (Aguilar et al., 2020), and disruptions in the auditory steady-state response (Balla et

al., 2020), together supporting an aberrant signal-to-noise ratio impairing cognitive function.

We further show, using a single-neuron genetic deletion approach, that the loss of
GABAergic synapses onto pyramidal neurons observed in the SRKO mice is driven in a cell-
autonomous manner following the deletion of SR in individual CA1 pyramidal cells. Indeed,
recent studies have shown a critical role for NMDARSs on pyramidal neurons in regulating
GABAergic synapse development (Lu et al., 2013; Gu et al., 2016; Gu and Lu, 2018).
Specifically, deletion of the obligatory GluN1 subunit of NMDARs from single CA1 pyramidal
cells in early development leads to a significant reduction in mIPSC frequency and a loss of
GABAergic synapses (Gu et al., 2016). Importantly, a similar loss of GABAergic synapses
upon GluN1 deletion was observed in layer 2/3 pyramidal neurons in the motor cortex and
midbrain dopaminergic neurons in the ventral tegmental area (Gu and Lu, 2018), suggesting
a more generalizable mechanism. This work builds upon older pharmacological studies

showing that NMDAR activity can accelerate GABAergic synapse development (Harris et al.,
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1995; Aamodt et al., 2000; Henneberger et al., 2005; Lin et al., 2008). Interestingly,
NMDARSs have been found to co-localize with GABA4 receptors at GABAergic synapses in the
developing brain (Gundersen et al., 2004; Szabadits et al., 2011; Cserep et al., 2012), though
the function of this localization remains unclear. Here, the Cre-expressing virus was injected
within 24 hours after birth and the stochastic loss of the gene is thought to be complete by 4-5
days (Kaspar et al., 2002), followed by loss of the mRNA and protein. This time course
overlaps with inhibitory synapse formation, so it remains to be determined if there is
disrupted synaptogenesis or a loss of formed or maturing inhibitory synapses. However, these
results together support a model whereby NMDAR hypofunction on pyramidal neurons can
lead to GABAergic dysfunction through a loss of GABAergic synapses.

The cellular location of the NMDAR hypofunction in schizophrenia has been intensely
studied yet remains poorly understood. A large body of pharmacological studies using
uncompetitive NMDAR antagonists support a locus of NMDAR hypofunction on cortical
GABAergic interneurons, particularly PV positive cells (Hashimoto et al., 2003; Hashimoto et
al., 2008; Mellios et al., 2009). Notably, acute systemic administration of NMDAR
antagonists results in the increased activity of cortical pyramidal neurons (Suzuki et al., 2002;
Jackson et al., 2004), spillover of cortical glutamate (Moghaddam et al., 1997; Lorrain et al.,
2003), and increases in cortical gamma power (Driesen et al., 2013; Hunt and Kasicki, 2013),
indicative of increased E/I balance and pyramidal cell disinhibition. Similar evidence for
increased cortical excitability following administration of NMDAR antagonists have been
found in human studies (Lahti et al., 1995b; Lahti et al., 1995a; Breier et al., 1997;
Vollenweider et al., 1997). These findings are consistent with the increase in E/I balance and
disinhibition we observe here in the SRKO mice and in another recent study (Ploux et al.,
2020); however, NMDAR antagonists are thought to preferentially inhibit receptors on fast-

spiking PV-positive interneurons (Homayoun and Moghaddam, 2007).

Cell-type-specific knockouts of GluN1 from either pyramidal neurons or PV+
interneurons have provided additional insights into the locus of NMDAR hypofunction in
schizophrenia. For example, deletion of GluN1 from PV+ interneurons leads to cortical and
hippocampal disinhibition and an increase in the baseline gamma power in the hippocampus
(Korotkova et al., 2010; Carlen et al., 2012; Alvarez et al., 2020; Pafundo et al., 2021). In
addition, acute MK8o01-induced behaviors were not detected in these mice (Carlen et al.,

2012), providing decisive evidence for PV+ interneurons being the locus of NMDAR
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hypofunction upon systemic NMDAR antagonist administration in adult rodents.
Behaviorally, these mice have selective impairments in working memory, habituation, and
sociability, but display normal pre-pulse inhibition (PPI) (Korotkova et al., 2010; Carlen et
al., 2012; Saunders et al., 2013). Importantly, because PV-selective promoter expression, and
thus NMDAR removal, begins at 2-4 weeks of age (Taniguchi et al., 2011; Carlen et al., 2012;
Saunders et al., 2013; Alvarez et al., 2020), these mice may not fully model the

neurodevelopmental changes occurring in schizophrenia.

Similarly, mice with a deletion of GluN1 from forebrain pyramidal neurons using the
CaMKII promoter display a variety of schizophrenia-related phenotypes, including reductions
in social interaction, nest-building, and spatial working memory (McHugh et al., 1996;
Tatard-Leitman et al., 2015). Interestingly, there was also an increase in locomotor activity in
the CaMKII-Cre/GluN1 KO mice consistent with dopaminergic models of psychosis (van den
Buuse, 2010; Tatard-Leitman et al., 2015). Similar to our results, CA1 pyramidal cell
excitability was increased along with increased broadband local field potential power in the
CaMKII-Cre/GluN1 KO mice (Tatard-Leitman et al., 2015); however, this was an increase in
intrinsic excitability attributable to a reduction in GIRK2 channel activity, rather than due to
the loss of synaptic inhibition seen here. Furthermore, no changes in mRNA levels were found
in the hippocampus for the GABAergic markers GAD67, PV, cholecystokinin, and
somatostatin (Tatard-Leitman et al., 2015), suggesting a lack of effects on inhibition.
Importantly, the CaMKII promoter drives GluN1 deletion in these mice beginning at 3-4
weeks of age in CA1 pyramidal neurons which then spreads more broadly throughout the
forebrain by 4 months (Tsien et al., 1996). Thus, as with the deletion of GluN1 from PV+
interneurons, these mice may not recapitulate the developmental aspects of NMDAR

hypofunction.

Consistent with a reduction in synapses from PV+ basket cells, we found a significant
reduction in perisomatic VGAT puncta density and intensity in the CA1 pyramidal cell layer.
However, the density and intensity of VGAT puncta were also decreased in the stratum
radiatum with no apparent proximal-distal differences along the apical dendrites of CA1
pyramidal neurons, supporting a broad reduction of GABAergic synapses. Indeed, while PV+
interneurons are particularly affected in schizophrenia (Hashimoto et al., 2003; Hashimoto et
al., 2008; Mellios et al., 2009), multiple interneuron subtypes have been implicated (Benes et

al., 2008; Hashimoto et al., 2008; Morris et al., 2008; Beneyto et al., 2012) and hippocampal
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inhibitory networks appear especially sensitive to NMDAR hypofunction (Ling and Benardo,
1995; Grunze et al., 1996). Interestingly, the decreases in VGAT puncta density and intensity
were more extensive than the reductions in mIPSC frequency and amplitude. This difference
may be methodological or a sampling bias, but may also represent changes in VGAT

expression that are not linearly correlated with postsynaptic responsiveness.

Overall, our data suggest that a pyramidal cell locus of synaptic NMDAR hypofunction
could lead to GABAergic deficits through the impaired development of feedback inhibitory
synapses. Additional studies will be needed to elucidate the molecular mechanisms
underlying the role of NMDARs in GABAergic synapse development and to ascertain the
relationship between inhibitory synapses on pyramidal neurons and endophenotypes in

schizophrenia.
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Figure Legends
Figure 1: Increased E/I ratio in SRKO mice

(A) Left, view through the upright Olympus microscope of hippocampal slice with
stimulating electrode (left) and recording electrode (right) in s. radiatum. Middle,
representative sample traces of extracellular field recordings for WT and SRKO; scale bars:
0.5 mV, 5 msec. Normal basal synaptic transmission as measured by presynaptic fiber volley
amplitudes and postsynaptic fEPSP slopes for responses elicited by different intensities of
Schaffer collateral (SC) fiber stimulation in WT (n=10) and SRKO (n=10) hippocampal slices
(p=0.49, two-way ANOVA, F(1,122)=0.467). (B) Left, view through the upright Olympus
microscope of hippocampal slice with stimulating electrode (left) in s. radiatum and patch-
clamp recording electrode (right) in the CA1 pyramidal cell layer. Middle, representative
sample traces of evoked IPSC from WT and SRKO CA1 pyramidal cells at holding potential of
0 mV: scale bars: 100 pA, 200 msec. Input-output function of evoked IPSC amplitude versus
stimulating current strength show a significant decrease in inhibition in SRKO mice
(p=0.0001, two-way ANOVA, F(1,224)=58.90; Bonferroni’s multiple comparisons test,
*p<0.05; WT n=17, SRKO n=17). (C) Paired-pulse ratio is unchanged at SRKO SC-CA1
synapses compared to WT (p=0.91, two-way ANOVA, F(1,23)=0.012; WT: n=12, SRKO:
n=13). Inset, traces represent fEPSPs evoked by stimulation pulses delivered with a 25, 50,
100, 200 ms interpulse interval; scale bars: 0.5 mV, 50 ms. (D) Paired pulse ratio of IPSCs at
a 50 ms interpulse interval (WT: 1.056+0.049, n=12; SRKO: 1.076+0.057, n=24) indicating
that there is no change in the probability of inhibitory neurotransmitter release from
presynaptic terminals. Right, representative traces of evoked IPSCs from WT and SRKO CA1
pyramidal cells; scale bars: 50 pA, 50 msec. (E) Left, overlaid traces of compound excitatory
(EPSP) and inhibitory (IPSP) postsynaptic potentials evoked by SC stimulation in absence of
synaptic blockers at holding potential of -60 mV from SRKO (red) and WT (black) mice;
dashed line indicates the baseline; scale bars: 2 mV, 100 msec. Peak PSP depolarization was
set to approximately 5 mV for each cell. Peak IPSP amplitude is significantly decreased in
SRKO mice compared to WT mice (p=0.0008, unpaired t-test, t(33)=3.71, WT: 1.5£0.1 mV,
n=15; SRKO: 1.0+0.1, n=20). The E/I ratio in CA1 pyramidal cells calculated from EPSP and
IPSP peak amplitudes is greater in SRKO mice compared to WT (p=0.0026, unpaired t-test,
t(33)=3.26, WT: 3.7+0.2, n=16; SRKO: 5.5+0.4, n=20). Data represent mean + SEM.
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Figure 2: Increased synaptic excitability in SRKO mice

(A) Left, sample traces of APs/PSPs evoked by 5 pulses at 100 Hz SC fiber stimulation; scale
bars: 25 mV, 20 msec. Right, short trains of synaptic stimulation leads to significantly more
APs/PSP in SRKO compared to WT (PSP 1: p=0.001, two-way ANOVA, F(150)=4.34, PSP 4:
pP=0.004, two-way ANOVA, F(150)=3.41, PSP 5: p=0.013, two-way ANOVA, F(150)=3.07;
Bonferroni's multiple comparisons test, *p<0.05); WT: n=15, SRKO: n=17). (B) Temporal
summation of PSPs measured from the 100 Hz stimulation in (A) until the first action
potential for each cell (final n for each PSP shown in inset). (C) Left, Sample traces for o, -
100, -200, +100, and +200 pA current steps; scale bars: 50 mV, 100 msec. Right, intrinsic
excitability is unchanged in SRKO CA1 pyramidal neurons. Depolarization induced by
somatic current injection elicits similar numbers of APs in WT and SRKO cells (p=0.759, two-
way ANOVA, F(8,207)=0.6212; WT: n=12, SRKO: n=13) suggesting basal synaptic
transmission is unaffected. (D) Summary graph of resting membrane potential (Rm) (right)
and input resistance (IR) (left) showing no significance difference between WT and SRKO

CA1 pyramidal cells. Data represent mean + SEM.

Figure 3: Loss of picrotoxin-induced enhancement of LTP in SRKO mice

(A) Traces represent superimposed fEPSPs recorded from WT slices during baseline and 60
min after HFS in the presence (+) and absence (-) of 50 uM PTX; scale bars: 1 mV, 20 msec.
In slices from WT mice, PTX enhances LTP. Middle, the cumulative distribution of
experiments. Right, summary graph of mean percentage potentiation relative to baseline
demonstrating that PTX results in significantly enhanced LTP (-PTX: 138+5% of baseline,
n=16; +PTX: 178+7% of baseline, n=12; p=0.0002). (B) Traces represent superimposed
fEPSPs recorded from SRKO slices during baseline and 60 min after HFS in the presence (+)
and absence (-) of 50 uM PTX; scale bars: 1 mV, 20 msec. In slices from SRKO mice, PTX
does not enhance LTP. Middle, the cumulative distribution of experiments. Right, summary
graph of mean percentage potentiation relative to baseline showing no effect of PTX on LTP
in slices from SRKO mice (-PTX: 143+10% of baseline, n=11; +PTX: 154+8% of baseline,
n=11; p=0.394). Data represent mean + SEM.

Figure 4: Reduced spontaneous GABAergic synaptic transmission in SRKO mice



991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005

1006

1007

1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020

1021

(A-C) Spontaneous IPSCs from CA1 pyramidal cells. (A) The cumulative distribution of
sIPSC amplitude indicated larger amplitudes in SRKO compared with WT (KS Test,
P<0.0001), though the mean amplitude of SIPSCs are unchanged between slices from WT and
SRKO mice (WT: 16.41+0.708, n=18; SRKO: 17.66+0.414, n=18; p=0.138). (B) The
cumulative probability (KS test, p<0.0001) of inter-event intervals reveals a shift towards
longer intervals and the mean frequency of sIPSCs was significantly decreased in SRKO
compared to WT cells (WT: 6.55+0.38 Hz, n=19; SRKO: 4.80+0.45 Hz, n=18; p=0.006). (C)
Sample sIPSC traces from WT (black) and SRKO (red) mice; scale bars: 25 pA and 0.5 sec.
(D-F) Miniature IPSCs from CA1 pyramidal cells (D) The cumulative distribution (KS test,
P<0.0001) and mean amplitude of mIPSC were significantly reduced in SRKO compared with
WT mice (WT: 15.45 £0.43 pA, n=13; SRKO: 14.23+0.36 pA, n=12; p=0.042). (E) The
cumulative distribution (KS Test, p<0.0001) of inter-event intervals and the mean frequency
of mIPSCs are significantly decreased in SRKO compared to WT cells (WT: 6.79+0.54 Hz,
n=13; SRKO: 3.69+0.47 Hz, n=12; p=0.0003). (F) Sample mIPSC traces from WT (black)
and SRKO (red) mice; scale bars: 25 pA and 0.5 sec. Data represent mean + SEM.

Figure 5: Normal spontaneous excitatory synaptic transmission in SRKO mice.

(A-C) Spontaneous EPSCs from CA1 pyramidal cells. (A) The cumulative probability and
mean of SEPSC amplitudes were not significantly different between SRKO and WT mice (KS
Test, p>0.05; WT: 14.88+0.56 pA, n=12; SRKO: 14.68+0.56 pA, n=12; p=0.798). (B) The
cumulative probability (KS test, p>0.05) of inter-event intervals and mean frequency of
sEPSCs were also unchanged (WT: 4.74+0.68 Hz, n=12; SRKO: 5.59+0.95 Hz, n=12;
p=0.472). (C) Sample sEPSC traces from WT (black) and SRKO (red) mice; scale bars: 25 pA
and 0.5 sec. (D-F) Miniature EPSCs from CA1 pyramidal cells. (D) Cumulative probability
(KS Test, p<0.0001) and mean amplitude of mEPSCs were significantly changed between
SRKO and WT mice (WT: 13.24+0.54 pA, n=14; SRKO: 14.89+0.34 pA, n=14; p=0.016). (E)
The cumulative probability (KS test, p>0.05) of inter-event intervals and mean frequency of
mEPSCs were not significantly different between SRKO and WT mice (WT: 0.770+0.084 Hz,
n=14; SRKO: 0.812+0.072 Hz, n=14; p=0.705). (F) Sample mEPSC traces from WT (black)
and SRKO (red) mice; scale bars: 25 pA and 0.5 sec. Data represent mean + SEM.
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Figure 6: Reduced GABAergic synapses onto CA1 pyramidal neurons in SRKO mice.

(A) Representative images of VGAT labeling in the stratum pyramidale of CA1 hippocampus
show a reduction in VGAT antibody labeling in SRKO mice; scale bar indicates 5 um. (B)
Both normalized mean VGAT puncta density (WT: 1.000+£0.069, n=3; SRKO: 0.654+0.076,
n=3; p=0.028) and normalized mean VGAT puncta intensity in CA1 stratum pyramidale
(WT: 1.000+0.156, n=3; SRKO: 0.453+0.101, n=3; p=0.042) are significantly lower in SRKO
mice. (C) Representative images of VGAT labeling in the stratum radiatum of CA1
hippocampus show a reduction in VGAT labeling in SRKO mice; scale bar indicates 5 pum. (D)
There is a non-significant reduction in the normalized mean VGAT puncta density in stratum
radiatum of CA1 of SRKO mice (WT: 1.000+0.028, n=3; SRKO: 0.609+0.175, n=3;
Pp=0.092), while the normalized mean VGAT puncta intensity in stratum radiatum is
significantly reduced in the SRKO mice (WT: 1.000+0.128, n=3; SRKO: 0.452+0.088, n=3;
p=0.024). (E) Representative images of hippocampal CA1 show that the reduction in VGAT
signal is consistent across strata of CA1 in SRKO mice; scale bar indicates 20 um. Data

represent mean + SEM.

Figure 7: Cell-autonomous reductions in spontaneous GABAergic synaptic transmission

onto CA1 pyramidal cells following single-neuron SR deletion

(A) Representative image of the sparse transduction of CA1 pyramidal cells by AAV1-Cre:GFP
counterstained by DAPI. Scale bar indicates 100 um. (B) Schematic of the experimental
setup. Whole-cell mIPSC recordings were made from transduced (Cre+) and control CA1
pyramidal cells. (C) Cumulative probability and mean mIPSC amplitude. While cumulative
probability (KS test, p<0.0001) of mIPSC amplitude was significantly changed between Cre
and Cre+ neurons, the mean mIPSC amplitude from Cre+ neurons was not significantly
different than those from control cells (WT: 12.37+0.32 pA, n=11; SRKO: 11.42+0.34 pA,
n=10; p=0.939). (D) Cumulative probability of inter-event intervals and mean frequency of
mIPSCs. Cumulative probability (KS test, p<0.0001) and mean frequency from Cre+ neurons
were significantly decreased compared to control cells (WT: 1.74+0.27 Hz, n=11; SRKO:
0.88+0.28 Hz, n=10; p=0.039. (E) Sample mIPSC traces from control (black, top) and Cre+
(green, bottom) pyramidal neurons; scale bars: 25 pA and 0.5 sec; inset, 25 pA and 100 ms.

Data represent mean + SEM.
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Table 1: Intrinsic Excitability in Wild-Type and SRKO CA1 Pyramidal Neurons

Property Wild-type SRKO Student’s t-test P
(n=12) (n=13) (unpaired) value
RMP (mV)* 60.6 +0.5 -60.8 +0.5 t(48)=0.34 0.736
[-65 to -55] [-65 to -55]
Rinput(MQ) 174.6 £ 13.0 154.0+9.9 t(23)=1.27 0.216
[97.7 - 235.8] [89.4 —219.3]
Sag (mV)® -0.20 £ 0.001 -0.22+0.01 t(23)=1.27 0.219
[-0.17 to -0.24] [-0.14 to -0.26]
Rheobase (pA) 15.1+5.1 252+438 t(23)=1.45 0.159
[2.7 -59.3] [2.7-70.2]
AP Threshold (mV)® 492+08 -50.4+ 0.6 t(23)=1.19 0.247
[-44.3 to -52.7] [-44.8 to -53.1]
AP Height (mV) 120.9+£2.3 120.9 + 1.7 t(23)=0.01 0.989
[105 to 140] [110 to 134]
AHP Peak (mV) 279+ 0.4 -1.60 £ 0.3 t(23)=2.35 0.028"

[-5.75 to -0.845]

[-3.74 to -0.46]

Mean + SEM [range]
*For RMP: WT n=27, SRKO n=23
® junction potential not adjusted



Increased excitation-inhibition balance and loss of
GABAergic synapses in the serine racemase knockout
model of NMDA receptor hypofunction

D-Ser

excitatory
synapses

SRKO

1

inhibitory
synapses

mIPSC de
mEPSC

CA1 s.pyr
VGAT
DAPI

"'j]i;’/’ mIPSC unuhﬁ*-ﬂH&mW*ﬂNﬂ
mEPSC



	Article File
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Table 1
	Graphical Abstract



