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Abstract

Tropical Geometry of Curves

by

Madeline V Brandt

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor Bernd Sturmfels, Chair

Algebraic geometry is a classical subject which studies shapes arising as zero sets of
polynomial equations. Such objects, called varieties, may be quite complicated but many
aspects of their geometry are governed by discrete data. In turn, combinatorial structures
arising from particularly meaningful varieties, such as moduli spaces, are interesting in their
own right. In recent years tropical geometry has emerged as a robust tool for studying
varieties. As a result, many rich connections between algebraic geometry and combinatorics
have developed. Tropical geometry associates polyhedral complexes, like tropical varieties
and skeletons, to algebraic varieties. These encode information about the variety or the
equations they came from, providing insight in to the underlying combinatorial structure.

In this thesis, I develop tropical geometry of curves from the perspectives of divisors,
moduli spaces, computation of skeletons, and enumeration. Already, the realm of curves is
rich to explore using the tools of tropical geometry. This thesis is divided into five chapters,
each focusing on different aspects of the tropical geometry of curves.

I begin by introducing algebraic curves, tropical curves, and non-Archimedean curves.
The ways in which these objects interact is a common theme of this thesis. Tropical curves
are projections of non-Archimedean curves. Berkovich analytic spaces are heavenly abstract
objects which can be viewed by earthly beings through their tropical shadows.

In the second chapter, I develop divisors on tropical curves and tropicalize algebraic
divisors. Many constructions for classical curves related to divisors carry over to the tropical
world. This will include a tropical Jacobian, a tropical version of the Riemann-Roch theorem,
and a tropical Abel-Jacobi map. I first define and compute these objects. Then, I focus on
the symmetric power of a curve, because this functions as a moduli space for effective divisors
on the curve. I prove that the non-Archimedean skeleton of the symmetric power of a curve
is equal to the symmetric power of the non-Archimedean skeleton of the curve. Using this,
I prove a realizable version of the tropical Riemann-Roch Theorem.

In the third chapter I focus on moduli spaces. A recurring phenomenon in tropical
geometry is that the non-Archimedean skeleton of an algebraic moduli space gives a tropical
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one. I will develop detailed examples of this, following [1, 38, 99, 119]. Then, I define a
divisorial motivic zeta function for marked stable curves, and prove that it is rational.

In the fourth chapter I compute abstract tropicalizations or non-Archimedean skeletons
of a curve. In genus one [46, 77] and two [51, 70, 111] there are known methods for computing
these tropicalizations. I develop an algorithm for computing the abstract tropicalizations of
hyperelliptic and superelliptic curves. In higher genus, these are the only known results for
computing abstract tropicalizations of curves.

In the final chapter I study enumerative problems, following [90, 91, 96]. Tropical geom-
etry has proven to be a very useful tool in counting curves in the plane. I turn my attention
to surfaces in space, and develop tropical counting techniques in this domain. This leads to
a preliminary count of binodal cubic surfaces.
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1

Introduction

In this section, we develop the three main objects of study. Algebraic curves over valued
fields can be studied through the combinatorics of their models. Tropical curves, both
embedded and abstract, encode information about the algebraic curves they come from.
Non-Archimedean curves carry all of the structure we are interested in, but can be difficult
to compute. In Section 1.4, we summarize the main novel results in this dissertation.

1.1 Algebraic Curves

One approach to studying the geometry of a curve involves degenerating the curve. This
is done by placing the curve in a one-parameter family of smooth curves which degenerate
nicely into a union of irreducible components with simpler structure. For example, we may
allow a curve with positive genus to degenerate into a union of projective lines. Studying
degenerations in this manner can be useful because the degeneration transforms the curve
of interest into a simpler one, whereby some of the initial structure of the original curve
is preserved. The degenerate curve can have a rich combinatorial structure, enabling us to
study the curve from a new point of view.

Valued fields provide a mechanism for studying degenerations of curves. As an example,
let f(x, y, z) be a homogeneous polynomial of degree four over C defining a smooth projective
curve. Now consider the curve Xt defined over the power series ring C[[t]] by the equation

tf(x, y, z) + xy(y − 2x− 2z)(x− 2y − 2z).

Then, Xt gives a family of curves Xt → C in the following way: the fiber over a point a ∈ C
is the curve Xa defined by setting t = a in the above equation. This gives a family of smooth
curves degenerating to the singular curve given by the union of four lines when t = 0. To
obtain from Xt a curve with coefficients over a field, there are two reasonable things to do.
One would be to look at the curve defined over the field of fractions C((t)), and the other
would be to look at the curve defined over the residue field obtained by quotienting out by
the unique maximal ideal 〈t〉 of C[[t]] to obtain a curve over C, which is X0. The field C((t))
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is an example of a valued non-Archimedean field (see Examples 1.1.5 and 1.3.5). Curves
over non-Archimedean fields require special consideration and new techniques because non-
Archimedean fields come with an absolute value that fails the familiar Archimedean property
of the usual metric on the complex numbers.

To study the curve defined over C((t)), we may do one of two things.

1. Study the combinatorics of the intersections of the components in the special fiber, or

2. Use the structure given by the absolute value on C((t)) to analyze the geometry of the
degeneration.

These two approaches will give us tropical curves and non-Archimedean curves, respectively.
As we will see, these are closely related.

The above example can be generalized. We will see that curves over a valued field
naturally encode degenerations to nodal curves which can be studied combinatorially.

Valued Fields

Let us begin with some background on valued fields, which are the ground fields of interest
for tropical and non-Archimedean geometry. A good reference is [88, Section 2.1].

Definition 1.1.1. A valuation on a field K is a function v : K → R ∪ {∞} satisfying

1. v(a) =∞ if and only if a = 0,

2. v(ab) = v(a) + v(b),

3. v(a+ b) ≥ min{v(a), v(b)}.

Notation 1.1.2. The image of v is denoted by Γv, and is called the value group. The
valuation ring R is the set of all elements with non-negative valuation. The valuation ring
is a local ring with maximal ideal m given by all elements with positive valuation. The
quotient R/m is denoted by k and it is called the residue field.

Example 1.1.3 (trivial valuation). Every field has a trivial valuation v0 sending v0(K∗) to
0 and v(0) =∞.

Example 1.1.4 (p-adic valuation). Let p be a prime. The p-adic valuation on Q is defined
by taking v(a/b · pl) = l, where gcd(a, b) = 1 and p does not divide a or b. The local ring R
is the localization of Z at 〈p〉, and the residue field is Fp.

Example 1.1.5 (Laurent series). The Laurent series C((t)) are the formal power series with
coefficients in C:

c(t) = c1t
a1 + c2t

a2 + · · ·
for ai an increasing sequence of integers. The valuation is given by taking v(c) = a1.
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Example 1.1.6 (Puiseux series). The Puiseux series C{{t}} are the formal power series
with rational exponents and coefficients in C:

c(t) = c1t
a1 + c2t

a2 + · · ·

for ai an increasing sequence of rational numbers which have a common denominator. These
are the algebraic closure of the Laurent series. The valuation is given by taking v(c) = a1.
This is the field which will appear most frequently in examples throughout this dissertation.

A splitting of a valuation is a homomorphism φ : Γval → K∗ such that v(φ(w)) = w. The
element φ(w) is denoted tw.

Models of Curves

In this section we follow [43] for background on models of curves. We begin with a concrete
example to illustrate the ideas motivating the definitions that follow.

Example 1.1.7. Let K = C((t)) be the Laurent series. Then the valuation ring R is C[[t]].
Consider curve X in P2 over K defined by the equation

xy = tz2.

Then X is a smooth conic over K. However, we may view X as defining a family of smooth
curves with base parameter t close to but not equal to 0.

The equation xy = tz2 also defines a scheme X over R. The topological space Spec(R)
consists of two points. One is closed and corresponds to the maximal ideal m. The other is
open and corresponds to the zero ideal, and its closure is all of Spec(R). So, there are two
fibers to consider. The special fiber Xk = X ×R k has the equation xy = 0 in P2

C. So, the
special fiber is the union of two rational curves meeting at a node.

We now generalize the ideas present in this example. Let k be an algebraically closed
field. A curve over k is a reduced, proper, connected scheme X of dimension 1 over k. A
node of X is a point p ∈ X(k) such that the completion of the local ring at p is isomorphic
to k[[x, y]]/〈xy〉. If the curve is planar, this is equivalent to the condition that the partial
derivatives of its defining equation vanish but the Hessian matrix is nonsingular. A nodal
curve is a curve whose singularities are all nodes.

Definition 1.1.8. An n-marked curve over k is a tuple (X, p1, . . . , pn) where X is a curve
over k, and pi ∈ X(k) are distinct nonsingular points.

Definition 1.1.9. A nodal marked curve (X, p1, . . . , pn) is stable if Aut(X, p1, . . . , pn) is
finite. This means that there are only finitely many automorphisms of the curve X that fix
each p1, . . . , pn pointwise. Put more concretely, this means that each rational component
of X needs to have at least three “special points” on it, where a special point is either a
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node, a marked point, or a point of self-intersection (which is counted with multiplicity 2),
and each genus 1 component needs at least one special point. Stated more precisely, for
each irreducible component C of X, let φ : Cν → C denote the normalization of C. Then
(X, p1, . . . , pn) is stable if and only if

1. for every component C of geometric genus 0, we have

|C ∩ {p1, . . . , pn}|+ |{q ∈ Cν | φ(q) ∈ Xsing}| ≥ 3;

2. for every component C of geometric genus 1, we have

|C ∩ {p1, . . . , pn}|+ |{q ∈ Cν | φ(q) ∈ Xsing}| ≥ 1;

A stable n-marked curve of genus g only exists if 2g − 2 + n > 0.
Sometimes, we will be less strict. We say that X is semistable if every rational component

has at least two points which are marked points or points x in the normalization Cν such
that φ(x) is a singularity in X.

Let K be an algebraically closed field with a valuation. The topological space Spec(R)
has two points η and s, corresponding to the ideals 〈0〉 and m respectively.

Definition 1.1.10. If X is a scheme over Spec(R) then the generic fiber of X is the fiber
over the point η corresponding to the ideal 〈0〉 in R, and the special fiber is the fiber over
the point s corresponding to the ideal m in R.

Definition 1.1.11. If X is any finite type scheme over K, a model for X is a flat and finite
type scheme X over R whose generic fiber is isomorphic to X. We call this model stable if
the special fiber Xk = X ×R k is a stable curve over k.

The existence of stable models will allow us to degenerate curves over K into curves that
can be represented in a combinatorial way.

Semistable Reduction

A curve of genus at least two always admits a (semi)stable model by the semistable reduction
theorem. This result guarantees the existence of a model with a combinatorially tractable
special fiber and gives uniqueness of this fiber up to stabilization, making it crucial for the
construction of tropical curves. For more on stable and semistable reduction, see [59].

Theorem 1.1.12 (Semistable reduction theorem). Let K be a field with valuation and R its
valuation ring. Let X be a smooth projective curve over K of genus at least 2. Then there
exists a finite separable valued field extension K ′ of K such that there is a semistable model
X → R′. Any two such extensions are dominated by a third, and so they have special fibers
whose stable models are isomorphic.
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The proofs of this theorem contain somewhat algorithmic approaches, see [8] and [53].
However, computing a semistable reduction can be quite difficult. We now describe a pro-
cedure for finding a semistable model for the curve X when K has characteristic 0 by way
of example. This example appears in [22]. A good reference with more examples is [68].

Example 1.1.13. Consider the curve X in P2 over C{{t}} defined by

xyz2 + x2y2 + 29t(xz3 + yz3) + 17t2(x3y + xy3) = 0.

For this curve, the special fiber is a conic with two tangent lines, depicted in Figure 1.1(a).
We denote the conic by C and the two lines by l1 and l2.

The first step is to blow up the total space X , removing any singularities in the special
fiber, to arrive at a family whose special fiber is a nodal curve. We begin by blowing up
the total space at the point p1. The result, depicted in Figure 1.1(b), is that l1 and C are
no longer tangent, but they do intersect in the exceptional divisor, which we call e1. The
exceptional divisor e1 has multiplicity 2, coming from the multiplicity of the point p1. In the
figures, we denote the multiplicities of the components with grey integers, and a component
with no integer is assumed to have multiplicity 1. Next, we blow up the total space at the

(a) (b)

Figure 1.1: Semistable reduction in Example 1.1.13.

point labelled p′1 to get Figure 1.2(c). We denote the new exceptional divisor by e′1 with
multiplicity 4, and the curves l1 and C no longer intersect. All points except l2 ∩ C are
either smooth or have nodal singularities, so we repeat these two blowups here, obtaining
the configuration in Figure 1.2(d).

At this point, we have a family whose special fiber only has nodes as singularities, but it
is not reduced. To fix this, we make successive base changes of prime order p. Explicitly, we
take the p-th cover of the family branched along the special fiber. Then, if D is a component
of multiplicity q in the special fiber, either p does not divide q, in which case D is in the
branch locus, or else we obtain p copies of D branched along the points where D meets the
branch locus, and the multiplicity is reduced by 1/p.
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(c) (d)

Figure 1.2: Blowing up in Example 1.1.13.

(e) (f)

Figure 1.3: Base changes in Example 1.1.13.

In our example, we must make two base changes of order 2. Starting with Figure 1.2(d)
above, we see that l1, l2, and C are in the branch locus. The curves e′1 and e′2 are replaced
by the double cover of each of them branched at 2 points, which is again a rational curve.
We continue to call these e′1 and e′2, and they each have multiplicity 2. Then, e1 and e2 are
disjoint from the branch locus, so each one is replaced by two disjoint rational curves. The
result is depicted in Figure 1.3(e).

In the second base change of order 2, all components except e′1 and e′2 are in the branch
locus. The curves e′1 and e′2 each meet the branch locus in 4 points, which, by the Riemann-
Hurwitz theorem, means they will be replaced by genus 1 curves, see Figure 1.3(f).

The last step is to blow down all rational curves which meet the rest of the fiber exactly
once. The result is depicted in Figure 1.4. This process gives us a semistable model for X
with the special fiber in Figure 1.4.
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Figure 1.4: The special fiber of the semistable model obtained in Example 1.1.13

1.2 Tropical Curves

In this chapter, we develop two different notions of tropical curves. One is embedded tropi-
calization, in which a tropical curve is a one-dimensional balanced polyhedral complex. The
other is abstract tropicalization, in which a tropical curve is a weighted metric graph. We
begin with polyhedral complexes and embedded tropicalization, and then discuss metric
graphs and abstract tropicalization.

Polyhedral Complexes

Definition 1.2.1. A set X ⊂ Rn is convex if, for any two points in the set, the line segment
between them is also contained in the set. The convex hull conv(U) of a subset U ⊂ Rn is
the smallest convex set containing U .

We now describe some types of convex sets which will appear often in tropical geometry.
A polytope is a convex set which is expressible as the convex hull of finitely many points. A
polyhedral cone C in Rn is the positive hull of a finite subset of Rn:

C = pos(v1, . . . , vr) :=

{
r∑
i=1

λivi

∣∣∣∣∣ λi ≥ 0

}
.

A polyhedron is the intersection of finitely many half spaces. An equivalent definition of a
polytope is that it is a bounded polyhedron.

A face of a polyhedron C is determined by a linear functional w ∈ Rn, by selecting the
points in C where the linear functional is minimized:

facew(C) = {x ∈ C | w · x ≤ w · y for all y ∈ C}.

A face which is not contained in any larger proper face is called a facet.
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Definition 1.2.2. A polyhedral fan is a collection F of polyhedral cones such that every
face of a cone is in the fan, and the intersection of any two cones in the fan is a face of each.
For some examples and nonexamples, see Figure 1.5.

(a) Examples of fans. (b) Non-example of a fan.

Figure 1.5: Examples and non-examples of polyhedral fans.

Definition 1.2.3. A polyhedral complex is a collection Σ of polyhedra such that if P ∈ Σ
then every face of P is also in Σ, and if P and Q are polyhedra in Σ then their intersection
is either empty or also a face of both P and Q. See Figure 1.6 for an example. The support
|Σ| of Σ is the union of all of the faces of Σ.

Figure 1.6: An example of a polyhedral complex.

Definition 1.2.4. Let v1, . . . , vr be an ordered list of points in Rn. We fix a weight vector
w = (w1, . . . , wr) in Rr assigning a weight to each point. Consider the polytope in Rn+1

defined by P = conv((v1, w1), . . . , (vn, wn)). The regular subdivision of v1, . . . , vr is the
polyhedral complex on the points v1, . . . , vr whose faces are the faces of P which are “visible
from beneath the polytope”. More precisely, the faces σ are the sets for which there exists
c ∈ Rn with c · vi = wi for i ∈ σ and c · vi < wi for i 6∈ σ.

Example 1.2.5. Let {(0, 0), (1, 0), (0, 1), (1, 1)} ∈ R2 and consider the weight vector w =
(0, 1, 1, 0). Then the subdivision induced by w is given by the lower faces of the tetrahedron
conv((0, 0, 0), (1, 0, 1), (0, 1, 1), (1, 1, 0)) which is pictured in Figure 1.7. The subdivision is
pictured in Figure 1.8.
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Figure 1.7: The square lifted by the
weight vector w, viewed from below by
a tropical geometer.

Figure 1.8: The square with subdivision
induced by w.

Embedded Tropicalization

We will now see how to associate to an embedded variety its embedded tropicalization. This
will be a very structured polyhedral complex. We may view embedded tropical varieties as
geometry over the tropical semiring. In this section we follow [88, Chapter 3].

Definition 1.2.6. The tropical semiring T is the semiring (R,⊕,�), where for all a and b
in R, we have the operations

a⊕ b := min(a, b),

a� b := a+ b.

Let K be a field with a valuation valK which may be the trivial valuation. Consider the
ring K[x±1

1 , . . . , x±1
n ] of Laurent polynomials over K.

Definition 1.2.7. Given a Laurent polynomial

f =
∑
u∈Zn

cux
u,

we define its tropicalization trop(f) : Tn → T to be the function that is obtained from f
by replacing each cu by its valuation and performing all additions and multiplications in the
semiring T. That is,

trop(f)(w) = min
u∈Zn

(val(cu) + u · w) .

Classically, the variety of the Laurent polynomial f is a hypersurface in the algebraic
torus (K∗)n. In the same way, there will be a tropical hypersurface associated to trop(f).

Definition 1.2.8. The tropical hypersurface trop(V (f)) is the set

{w ∈ Rn | the minimum in trop(f)(w) is achieved at least twice}.
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Example 1.2.9. We compute the tropical line. Let f = x+y+1 ∈ C{{t}}[x±1, y±1]. Then,

trop(f)(x, y) = min (0 + (1, 0) · (x, y), 0 + (0, 1) · (x, y), 0) ,

= min(x, y, 0).

We must find for which x and y is this minimum achieved twice. There are 3 cases.

1. x and 0 are the winners: This happens when x = 0 and y ≥ 0. This is the ray pos(e2).

2. y and 0 are the winners: This happens when y = 0 and x ≥ 0. This is the ray pos(e1).

3. x and y are the winners: This gives the ray pos(−1,−1).

So, the tropical variety trop(V (f)) is as pictured in Figure 1.9.

Figure 1.9: The tropical line from Example 1.2.9.

Definition 1.2.10. Let I be an ideal in K[x±1
1 , . . . , x±1

n ], and let X = V (I) be its variety in
the algebraic torus T n. Then we define the tropicalization of X, denoted trop(X), to be:⋂

f∈I
trop(V (f)).

A tropical variety is any subset of Rn of the form trop(X), where X is a subvariety of T n.

In general, we cannot reduce the intersection to be over just any generating set of an
ideal I. Any finite intersection of tropical hypersurfaces is known as a tropical prevariety. A
tropical basis is a generating set for an ideal which works well with respect to tropicalization.

Definition 1.2.11. If T is a finite generating set of an ideal I in K[x±1
1 , . . . , x±1

n ], then it is
a tropical basis if

trop(V (I)) =
⋂
f∈T

trop(V (f)).

So, the tropical prevariety defined by elements of T equals the tropical variety defined by I.

Theorem 1.2.12 ([88, Theorem 2.6.6]). Let K be a valued field. Every ideal in K[x±1
1 , . . . , x±1

n ]
has a finite tropical basis.



1. INTRODUCTION 11

The Fundamental Theorem of Tropical Geometry (See [88, Theorem 3.2.3] for the com-
plete version) shows that tropical varieties can be obtained by tropicalizing classical varieties.

Theorem 1.2.13 (Fundamental Theorem of Tropical Geometry, see [88, Theorem 3.2.3]).
Let K be an algebraically closed field with a nontrivial valuation. Fix an ideal I in K[x±1

1 , . . . , x±1
n ].

The following sets are the same:

1. the tropical variety trop(V (I)) in Rn,

2. the closure in Rn of {(valK(y1), . . . , valK(yn)) | (y1, . . . , yn) ∈ V (I)}.

Furthermore, if V (I) is irreducible and w is any point in Γnval ∩ trop(V (I)), then the set
{y ∈ V (I) | val(y) = w} is Zariski dense in V (I).

Definition 1.2.14. Let Σ be a pure d-dimensional polyhedral complex in Rn. Then Σ is
connected through codimension 1 if, for any two d dimensional cells, there is a chain of d
dimensional cells which pairwise share facets.

We now present the Structure Theorem, which gives some necessary properties for a
polyhedral complex to be a tropical variety. We will not discuss the balancing condition at
length here, but refer the reader to [88, Definition 3.3.1] for more details.

Theorem 1.2.15. [Structure Theorem for Tropical Varieties] Let X be an irreducible d-
dimensional subvariety of T n. Then trop(X) is the support of a balanced, weighted, Γval-
rational polyhedral complex pure of dimension d. Moreover, that polyhedral complex is con-
nected through codimension 1.

We now turn our attention to the special case of tropical hypersurfaces. In this setting,
there is a nice combinatorial method for finding tropicalizations.

Definition 1.2.16. The Newton polytope Newt(f) of a Laurent polynomial f =
∑

u cux
u in

K[x±1
1 , . . . , x±1

n ] is
conv(u ∈ Zn | cu 6= 0).

Now, we are prepared to describe a way to relate a tropical hypersurface trop(V (f)) to
a regular subdivision of the Newton polytope of f .

Proposition 1.2.17 ([88, Proposition 3.1.6]). Let f ∈ K[x±1
1 , . . . , x±1

n ] be a Laurent polyno-
mial. The tropical hypersurface trop(V (f)) is the support of a pure Γval−rational polyhedral
complex of dimension n− 1 in Rn. It is the (n− 1)-skeleton of the polyhedral complex dual
to the regular subdivision of the Newton polytope of f induced by the weights val(cu) on the
lattice points in Newt(f).

Proposition 1.2.18 ([88, Proposition 3.3.2]). For a tropical polynomial F in n variables,
the hypersurface V (F ) is balanced for the weights coming from the lattice lengths of the edges
in the corresponding regular subdivision of Newt(F ).
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Example 1.2.19. We now compute trop(V (f)) where f = 7xy + 5x + 14y + 49 with the
7-adic valuation. The corresponding subdivision of the Newton polytope and tropical curve
are pictured in Figures 1.10 and 1.11.

Figure 1.10: The subdivision in Ex-
ample 1.2.19

Figure 1.11: The tropical curve in
Example 1.2.19

Metric Graphs

Now we develop a different type of tropicalization which can be associated to a curve. This
tropicalization is intrinsic to the curve, and does not depend on the embedding. We focus on
abstract tropicalizations of curves as opposed to higher dimensional varieties. In Section 1.3
we will see that this relates to something called the Berkovich skeleton, which can be used
to define the abstract tropicalization more generally. In this section, we will see how strata
in the special fiber of a semistable model correspond to cells in a polyhedral complex. For
curves, this polyhedral complex will be a metric graph, and the strata consist of components
and nodes.

Definition 1.2.20. A metric graph is a metric space Γ, together with a graph G and a
length function l : E(G)→ R>0∪{∞} such that Γ is obtained by gluing intervals e of length
l(e), or by gluing rays to their endpoints, according to how they are connected in G. In this
case, the pair (G, l) is called a model for Γ. An abstract tropical curve is a metric graph Γ
together with a weight function on its points w : Γ→ Z≥0, such that

∑
v∈Γw(v) is finite.

Edges of infinite length (meeting the graph in one endpoint) are called infinite leaves. A
bridge is an edge whose deletion increases the number of connected components.

The genus of a tropical curve (Γ, w) with model G is∑
v∈Γ

w(v) + |E(G)| − |V (G)|+ 1. (1.1)

We say that two tropical curves of genus greater than or equal to two are isomorphic if one
can be obtained from the other via graph automorphisms, or by removing infinite leaves or
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leaf vertices v with w(v) = 0, together with the edge connected to it. In this way, every
tropical curve has a minimal skeleton.

A model is loopless if there is no vertex with a loop edge. The canonical loopless model
of Γ, with genus of Γ ≥ 2 , is the graph G with vertices

V (G) := {x ∈ Γ | val(x) 6= 2 or w(x) > 0 or x is the midpoint of a loop} . (1.2)

If (G, l) and (G′, l′) are loopless models for metric graphs Γ and Γ′, then a morphism of
loopless models φ : (G, l)→ (G′, l′) is a map of sets V (G) ∪ E(G)→ V (G′) ∪ E(G′) with:

• All vertices of G map to vertices of G′.

• If e ∈ E(G) maps to v ∈ V (G′), then the endpoints of e must also map to v.

• If e ∈ E(G) maps to e′ ∈ E(G′), then the endpoints of e must map to vertices of e′.

• Infinite leaves in G map to infinite leaves in G′.

• If φ(e) = e′, then l′(e′)/l(e) is an integer. These integers must be specified if the edges
are infinite leaves.

We call an edge e ∈ E(G) vertical if φ maps e to a vertex of G′. We say that φ is harmonic
if for every v ∈ V (G), the local degree

dv =
∑
e3v,

φ(e)=e′

l′(e′)/l(e) (1.3)

is the same for all choices of e′ ∈ E(G′). If it is positive, then φ is nondegenerate. The degree
of a harmonic morphism is defined as ∑

e∈E(G),
φ(e)=e′

l′(e′)/l(e). (1.4)

We also say that φ satisfies the local Riemann-Hurwitz condition if:

2− 2w(v) = dv(2− 2w′(φ(v)))−
∑
e3v

(l′(φ(e))/l(e)− 1) . (1.5)

This is a reflection of the classical Riemann-Hurwitz condition. If φ satisfies this condition
at every vertex v in the canonical loopless model of Γ, then φ is an admissible cover [38].

Example 1.2.21. In Figure 1.12, we have a tree T and a metric graph Γ which admits a
harmonic morphism φ to T . All edges depicted in the image have the same length as the
corresponding edges in the tree, except for the bridge, which has length equal to half the
length of the corresponding edge in the tree.
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Figure 1.12: The tree T with 12 infinite leaves from Example 1.2.21 and the hyperelliptic
tropical curve Γ of genus 5 which admissibly covers T by φ.

Abstract Tropicalization

Now, our goal is to define an object called the abstract tropicalization which can be associated
to every curve, and does not depend on the embedding of the curve.

Let K be an algebraically closed valued field with valuation v and valuation ring R. Let
X be a reduced, nodal curve over K, and let X be a semistable model for X.

Definition 1.2.22. Let C1, . . . , Cn be the irreducible components of Xk, the special fiber of
X . The dual graph G of Xk is defined with vertices vi corresponding to the components Ci.
There is an edge eij between vi and vj if the corresponding components Ci and Cj intersect
in a node q. Then, the completion of the local ring OX ,q is isomorphic to R[[x, y]]/〈xy − f〉,
where R is the valuation ring of K, and f ∈ m, the maximal ideal of R. Then, we define
l(eij) = v(f). This gives a model (G, l) for a metric graph Γ. Setting w(vi) = g(Ci), we call
the tropical curve (Γ, w) the abstract tropicalization of X.

Figure 1.13 gives a schematic of a special fiber. Figure 1.14 gives its dual graph.

Remark 1.2.23. In genus g ≥ 2, any two semistable reductions are dominated by a third.
So, there is a unique stable model obtained by contracting the smooth rational components
meeting the rest of the curve in fewer than three points [68]. Hence, two different semistable
models will give the same tropical curve up to isomorphism of tropical curves.

Example 1.2.24. Consider the curve E over C{{t}} defined by

y2 = x3 + x2 + t4.

This is a smooth elliptic curve for t 6= 0. However, when t = 0, we have the curve defined by
the equation y2 = (x + 1)x2. This curve has self-intersection. Extending this to P2 gives a
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Figure 1.13: A special fiber Figure 1.14: A dual graph

semistable model. The formal completion at (0, 0) is R[u, v]/〈uv− t4〉, where x′ = x
√
x+ 1,

u = y − x′, and v = y + x′. Therefore, the abstract tropicalization is a cycle of length 4.

While a semistable model is guaranteed in the abstract, it is hard to compute. !n Chapter
4 we discuss the known methods for computing abstract tropicalizations of curves.

1.3 Non-Archimedean Curves

Classical complex algebraic geometry studies varieties over the complex numbers. In this set-
ting, every algebraic set in Cn decomposes as a finite union of complex manifolds. Many fun-
damental results in complex algebraic geometry are proved by viewing varieties as manifolds
and applying holomorphic functions, differential forms, Hodge theory, and Morse theory.

Now, algebraic geometers are interested in varieties over other fields, such as valued fields.
As with the complex numbers, these fields come with norms. However, these fields are non-
Archimedean, and this causes them to have a strange topology. As such, defining manifolds
over these fields in a straightforward way does not yield a useful theory. This can be fixed
through Berkovich spaces. Throughout this section, we follow the references [10, 106, 102].

Non-Archimedean Fields

First, we give some background on non-Archimedean fields. An Archimedean field K is one
satisfying the Archimedean axiom that for any x ∈ K∗, there is a positive integer n such that
|nx| > 1. While this axiom may feel natural and familiar, the real and complex numbers are
essentially the only fields satisfying this axiom. To be precise, they are the only complete
Archimedean fields. We now begin by introducing non-Archimedean fields, of which there
are many more examples.

Definition 1.3.1. Let K be a field. A map | · | : K → R≥0 is a seminorm if
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1. |0| = 0,

2. |1| = 1,

3. |f + g| ≤ |f |+ |g|.

It is called a norm if |f | = 0 if and only if f = 0. It is called multiplicative if |f · g| = |f | · |g|
for all f, g ∈ K. Lastly, it is called non-Archimedean if the ultrametric inequality holds:

|f + g| ≤ max{|f |, |g|}.

Remark 1.3.2. By setting valK(·) = − log(| · |) we obtain a valued field. Conversely, given
a valued field, we can obtain a non-Archimedean norm by defining | · | = εvalK(·) for ε ∈ (0, 1).

Definition 1.3.3. A field K with a norm | · |K is a non-Archimedean field if | · |K is a
multiplicative non-Archimedean norm.

Example 1.3.4. Let K be any field. Then the trivial norm, defined as |a|0 = 1 for all a 6= 0
and |0|0 = 0 makes K a non-Archimedean field.

Example 1.3.5. Let F be any field. Then the field of formal Laurent series K = F ((t))
is a non-Archimedean field with the norm |f |K = εordt(f) for ε ∈ (0, 1). Here, ordt(f) is the
smallest exponent of t with non-zero coefficient in the Laurent series expansion.

Example 1.3.6. Let p be a prime number. Consider Qp which is the completion of Q with
respect to | · |p. Then |a/b|p = εordp(a)−ordp(b) for ε ∈ (0, 1) makes Qp a non-Archimedean field.
Here, ordp(a) is the largest n such that pn divides a.

Example 1.3.7. If K is a non-Archimedean field with norm | · |, then | · | extends uniquely
to a norm on any algebraic extension K ′ of K. The field K ′ is complete if it is a finite
extension of K and K is complete. If K ′ is an algebraic closure of K, then its completion
K̂ ′ is still algebraically closed [23, Proposition 3.4.1.3].

In the theory of manifolds over the complex numbers, we have a process of taking a smooth
complex algebraic variety X and associating to it an analytic space (manifold) Xan. If X is
proper, then no information is lost in analytification: two smooth and proper varieties X and
Y are isomorphic if and only if Xan and Y an are isomorphic as complex manifolds (Serre’s
GAGA principle). Additionally, we can apply the tools of complex analysis, differential
geometry and algebraic topology to Xan.

We would like to be able to do something similar over here, namely, to make manifolds
over non-Archimedean fields. If we naively proceed with what was done in the complex case,
many of the nice properties such as the GAGA principle fail. In part, this is due to the
bizarre nature of the metric topology on a non-Archimedean field, which we now discuss.

Let K be a non-Archimedean field with the topology induced by the metric from | · |K .
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Definition 1.3.8. Let r ∈ R > 0. An open ball in K is a subset of the form

B−(a, r) = {x ∈ K | |x− a| < r}.

A closed ball in K is a subset of the form

B+(a, r) = {x ∈ K | |x− a| ≤ r}.

In each case, a is called the center of the ball and r is the radius.

Proposition 1.3.9. Let b ∈ B±(a, r) for a ∈ K and r ∈ R>0.

1. Then B±(b, r) = B±(a, r). In other words, any point of a ball is the center of the ball.

2. If two balls in K intersect, then one is included in the other.

3. Every ball in K is both open and closed in the metric topology.

4. The only connected subsets of K are the singletons and the empty set.

The result of Proposition 1.3.9 is that if we try to make K-analytic manifolds, we will
run into problems because they can be broken up into arbitrarily small disjoint open pieces
with no global geometric structure. For instance, let f and g be any two polynomials. Then
the piecewise function

h(x) =

{
f(x) if x ∈ B(0, 1)

g(x) otherwise

is continuous, and analytic in the sense that it is given by a convergent power series in a
neighborhood of every point. Ultimately, creating K-analytic manifolds in this way leads to
having too few isomorphism classes, and so the GAGA principle fails. The following theorem
gives an example of this.

Theorem 1.3.10 (Serre). Let K be a finite extension of Qp or Fp((t)) whose residue field has
order q. If X is a compact n-dimensional “naive” non-Archimedean analytic variety then X
is isomorphic to a disjoint union of S copies of B+(0, 1) for some unique S ∈ {1, . . . , q−1}.

In order to overcome this, we will need to put a lot more work into defining analytic
spaces over non-Archimedean fields.

Berkovich Spaces

The field of rational numbers Q is totally disconnected in its metric topology. In passing to R,
we are adding in new points that fill in the gaps in Q. Around 1990 Vladimir Berkovich for-
mulated the idea that there were too many points missing from non-Archimedean manifolds
for the naive definition to work. Adding in the missing points produces a path-connected,
locally compact Hausdorff space that contains all of the original points. If the field has a
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nontrivial norm and is algebraically closed, the original points are dense in the whole space.
Throughout this subsection, we follow the references [10, 102, 106].

We begin by defining Berkovich spaces on affine varieties. Let K be a non-Archimedean
field, and let f1, . . . , fr ∈ K[x1, . . . , xn]. Let X = V (f1, . . . , fr) be the variety defined by
f1, . . . , fr. If L is an extension field of K, then we write X(L) to denote the points y ∈ Ln
such that fi(y) = 0 for 1 ≤ i ≤ r. Let x ∈ X(K). Then the seminorm associated to x is a
multiplicative seminorm

| · |x : K[X] = K[x1, . . . , xm]/〈f1, . . . , fr〉 → R≥0

given by
|f |x = |f(x)|K ,

where the norm on the right hand side is the norm | · |K on K. There are other multiplicative
seminorms on K[X]. We will only consider multiplicative seminorms with the property that
the restriction of the seminorm to K is | · |K . Since the norm | · |K on K is non-Archimedean,
any seminorm on K[X] extending | · |K will also satisfy the ultrametric inequality.

Definition 1.3.11 (Berkovich space, affine case). The Berkovich analytification Xan is the
space of all multiplicative seminorms on K[X] that extend the given norm on K. For a
point x ∈ Xan, we denote the corresponding norm by | · |x. We endow Xan with the coarsest
topology such that for each f ∈ K[x], and x ∈ Xan, we have that the function on Xan given
by x 7→ |f |x is continuous.

If K[X] is nonzero, then Xan is nonempty. We see this as follows. The system of
polynomials f1, . . . , fr will have a common zero over the algebraic closure K. Since K
is complete, its norm extends uniquely to K. Then, a solution x with coordinates in K
determines a point of Xan given by |f |x = |f(x)|K . This observation is useful more generally.
If L is an extension field of K with a norm that extends the given one on K, then any solution
to f1, . . . , fr with coordinates in L determines a point on Xan.

Remark 1.3.12. The topology on Xan is the subspace topology for the natural inclusion
Xan ⊂ (RK[X]

≥0 ), where the topology on RK[X]
≥0 is the product topology of the topology on R.

We now see our first example of a Berkovich space.

Example 1.3.13 (Berkovich affine line, trivial valuation). Consider the affine line A1
K =

Spec(K[y]) in the case where the norm on K is trivial and K is algebraically closed. Then
any seminorm | · |x ∈ (A1

K)an is determined by the value of |y − a|x for all a ∈ K. Let us
analyze the possibilities.

1. If for f 6= 0 we have |f |x = 1, then | · |x = | · |0 is trivial. This gives a point in (A1
K)an.

2. If |y|x = r for some r > 1, then for all a ∈ K, we have

|y − a| = max{|y|x, |a|x} = max{r, 1} = r.
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This gives ray of norms in (A1
K)an parameterized by the number r. The ray is connected

to the point corresponding to the trivial norm at the point corresponding to r = 0.

3. If there exists a such that |y − a|x = r for some r ∈ [0, 1], then for all b 6= a, we have

|y − b|x = max{|y − a|x, |a− b|} = max{r, 1} = 1.

This gives, for each a ∈ K, an interval of norms in (A1
K)an parametrized by r. These

intervals are connected to the point corresponding to the trivial norm at the points
corresponding to r = 0.

So, the structure of (A1
K)an is a tree with an infinite stem, and infinite branches each corre-

sponding to elements of K (See Figure 1.15).

Figure 1.15: The space (A1
K)an when K is algebraically closed and trivially valued.

Example 1.3.14 (Berkovich affine line, [11]). Now suppose K is algebraically closed and
that it has a non-trivial, non-Archimedean valuation. We have the types of points described
in Theorem 1.3.15 in the Berkovich affine line.

Theorem 1.3.15 (Berkovich’s Classification Theorem [19]). Every point in (A1
K)an corre-

sponds to one of the four following types.

Type I: For a ∈ K and f ∈ K[y], we have norms |f |a = |f(a)|K.
Type II: For a ∈ K and r ∈ |K∗| we have norms |f |B(a,r) = supz∈B(a,r) |f(z)|.
Type III: For a ∈ K and r 6∈ |K∗| we have norms |f |B(a,r) = supz∈B(a,r) |f(z)|.
Type IV: If B(an, rn) is a family of nested balls with empty interior, then we have norms

|f |x = infn |f |B(an,rn).

These different types of points fit in to a tree as pictured in Figure 1.16. Let x, x′ ∈ (A1
K)an

be distinct type I or II points corresponding to the disks B(a, r) and B(a′, r′). There is
a unique path in (A1

K)an between x, x′ which can be described as follows. If B(a, r) ⊂
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B(a′, r′), then this path corresponds to all points of (A1
K)an corresponding to disks B such

that B(a, r) ⊂ B ⊂ B(a′, r′). These are totally ordered by containment. If a = a′, then this
is the disks {B(a, t) | r ≤ t ≤ r′}, which is homeomorphic to an interval. On the other hand,
if B(a, r) and B(a′, r′) are disjoint, the unique path between x and x′ consists of all points in
(A1

K)an corresponding to disks B(a, t) with r ≤ t ≤ |a−a′| or B(a′, t′) with r′ ≤ t′ ≤ |a−a′|.
We can visualize this path for any distinct points a, a′ ∈ K as follows. We start increasing

the radius of the degenerate disk B(a, 0) until it contains a′. This happens at the point
corresponding to B(a, |a − a′|) = B(a′, |a − a′|). Then, we decrease the radius to the point
B(a′, 0). So, we have added more points to fill the gaps in the totally disconnected space K.

Before defining Berkovich spaces more generally, we see how to relate Xan to Spec(K[X]).
Recall that Spec(K[X]) is the set of prime ideals of K[X] with the Zariski topology. Let x
be a point in Xan. The set of functions f ∈ K[X] such that |f |x = 0 is a prime ideal p. Let
κp be the residue field, meaning it is the fraction field of K[X]/p. The seminorm | · |x factors
through a norm on κp that restricts to the given norm on K.

For any extension field L over K, let VR(L) be the space of all norms on L that extend
the given norm on K. The map taking a point in Xan to the kernel of the corresponding
seminorm gives a surjection Xan → Spec(K[X]). The fiber over a point p is VR(κp). So,

Xan =
⊔
p∈X

VR(κp).

This decomposition motivates the following definition for the non-affine case.

Definition 1.3.16. Let X be an algebraic variety over a non-Archimedean field K. Then
we define the Berkovich analytification of X to be the set of multiplicative seminorms on
residue fields of points of X. That is,

Xan =

{
x = (ξx, | · |x)

∣∣∣∣ ξx ∈ Spec(K[X]), with residue field κ(ξx),
| · |x : κ(ξx)→ R≥0 is a seminorm extending | · |K

}
.

It has the coarsest topology such that the following two maps are continuous:

1. The map Xan → X sending x 7→ ξx;

2. For all open U ⊂ X, and for all f ∈ OX(U), the map x 7→ |f(ξx)|x is continuous.

It is essential that we allow ξx to be a non-closed point of the scheme X. This is because
if ξ is a closed point of X then κ(ξ) is a finite extension of k and there is a unique extension
of the absolute value on K to κ(ξ). So, there is only one point x in Xan with ξx = ξ, and
we obtain nothing new. When ξ is not closed, κ(ξ) is a transcendental extension of K and
there will be infinitely many extensions of the norm on K to κ(ξ).

Remark 1.3.17. We may instead wish to view Xan in terms of points of X defined over
normed extensions L of K. A normed extension L of K is a field L together with a norm
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| · | : L → R≥0 that extends the given norm on K. Consider triples (L, | · |, x) where L is
an extension of K, | · | is a norm extending the given norm on K, and x is a point of X
over L. We will say two such triples (L, | · |, x) and (L′, | · |′, x′) are equivalent if there is an
embedding L ⊂ L′ such that the restriction of | · |′ is | · | and x is identified with x′ by the
induced inclusion X(L) ⊂ X(L′). Then,

Xan = {(L, | · |, x)}/ ∼ .

Example 1.3.18 (Berkovich projective line [11]). We obtain the Berkovich projective line
(P1

K)an from (A1
K)an by adding a type I point at infinity, denoted∞. The topology of (P1

K)an

is the one-point compactification of (A1
K)an.

We can place a partial order on (A1
K)an by saying that x ≤ x′ if and only if |f |x ≤ |f |x′

for all f ∈ K[y]. In terms of disks, if x, x′ are points of type I, II, or III, then x ≤ x′ if and
only if the disk corresponding to x is contained in the disk corresponding to x′. There is a
unique least upper bound x∨x′ corresponding to the smallest disk containing both the disks
corresponding to x and x′. We extend this partial order to (P1

K)an by declaring that x <∞
for all x ∈ (A1

K)an. Then, we write

[x, x′] = {z ∈ (P1
K)an | x ≤ z ≤ x′} ∪ {z ∈ (P1

K)an | x′ ≤ z ≤ x}.

So that the unique path between x, y ∈ (P1
K)an is given by

lx,y = [x, x ∨ y] ∪ [x ∨ y, y].

We now describe the space (P1
K)an. Starting at a type II point corresponding to B(a, r),

we can navigate the space as follows. The branches emanating from this point are in one-
to-one correspondence with elements of P1

k. There is no branching at points of type III, and
these branches terminate at points of type I and IV. See Figure 1.16.

The following proposition tells us that Xan has reasonable topological properties and
that it retains the basic geometric properties of X.

Theorem 1.3.19 ([19]). Let X be a K-scheme of finite type. The topological space Xan is
locally compact and locally path connected. Moreover, we have that X is connected if and only
if Xan is connected, X is separated if and only if Xan is Hausdorff, and X is proper if and
only if Xan is compact. The induced topology on the subset X(K) of points with coordinates
in K is the metric topology. If K is algebraically closed with nontrivial valuation, then this
subset is dense in Xan.

Analytifying Curves

We now focus on Berkovich analytifications of curves, following [15]. Let K be a complete,
algebraically closed non-Archimedean field with non-trivial valuation and let X be a smooth,
proper, and geometrically integral algebraic curve over K.
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Figure 1.16: The Berkovich projective line when K is non-trivially valued.

If the genus of X is at least 1, there is a canonically defined subset Σ ⊂ Xan called the
skeleton of Xan, which is homeomorphic to a finite metric graph. The space Xan admits
a deformation retraction onto Σ. The fiber of each point in Σ of this retraction is a tree.
Then, Xan may have non-trivial global topology. See Figure 1.17.

First, we will describe the skeleton starting with a fixed model of the curve. Later, we
will define it using semistable vertex sets of Xan. Let R = {f ∈ K | |f | ≤ 1} denote
the valuation ring of K, and let k be its residue field. Let X be a semistable model for
X. Let Z = X0 denote its special fiber, and let π : X(K) → Z(k) denote the reduction
map. Suppose Z = ∪ti=1Zi, where the Zi are smooth and irreducible projective curves, each
containing at least two singular points of Z. Let Z∗i be the nonsingular affine curve obtained
from Zi by removing all singular points of Z from Zi. Denote by X∗i = π−1(Z∗i ). This is a
rigid analytic space. For each ordinary double point p ∈ Z(k) on components Zi and Zj, we
have Xp = π−1(Z∗i ∪ Z∗j ∪ {p}), which is also a rigid analytic space. As a rigid space, then
X is obtained by gluing the Xp along the subsets X∗i .

Then, Xan can be described by gluing (Xp)
an along the subsets (X∗i )an. The reduction

map π : X(K) → Z(k) then extends to a reduction map red : Xan → Z as follows.
Recall that points of Xan correspond to equivalence classes of points x of X(L) for normed
extensions L of K. This gives a map x : Spec(L) → K, which extends in a unique way by
the valuative criterion of properness to a map Spec(OL)→ X from the valuation ring of L.
Then, the reduction map red(x) is defined to be the image of the closed point. Then by [19,
Proposition 2.4.4], for each irreducible component Zi of Z, there is a unique point ξi of Xan

corresponding to the generic point of Zi.
We now describe the topological space Xan in terms of the dual graph G of Z (Definition
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1.2.22). Then the gluing data for Xan corresponds to the graph G. The spaces (X∗i )an are
contractible, and there is a deformation retraction ri : (X∗i )an � {ξi}. For each singular
point p of Z corresponding to the intersection of Zi and Zj, the space (Xp)

an deformation
retracts onto a line segment ep with endpoints ξi and ξj.

Then, the entire Berkovich space Xan admits a deformation retraction onto a metric
graph Γ with model G. Let r : Xan → Γ be this retraction map. For each x ∈ Γ, each
connected component of r−1(x)\{x} is a topological tree isomorphic to the open disk

B(0, 1)− = {x ∈ Kan | |y|x < 1}.

So far, we have seen how the skeleton is a subset of Xan associated to a semistable model
of X. We now define the skeleton in terms of semistable vertex sets of X, only making
reference to the space Xan itself, instead of starting with a model of X. This will provide
better understanding of the geometry of Berkovich curves, since semistable vertex sets will
allow us to break Xan in to simpler pieces. Each of these pieces is the preimage of an interval
or ray under the following tropicalization map.

Let A1
K = Spec(K[y]). We define the tropicalization map

trop : (A1
K)an → R ∪ {∞}

by trop(x) = − log(|y|x). Now, we describe several subsets of (A1
K)an, which we will use to

describe Berkovich curves.
For a ∈ K∗, the standard closed ball of radius |a| is B(a) = trop−1([val(a),∞]). The

standard open ball of radius |a| is B(a)+ = trop−1((val(a),∞]). For a, b ∈ K∗ with |a| ≤ |b|,
the standard closed annulus of inner radius |a| and outer radius |b| is defined to be S(a, b) =
trop−1([val(b), val(a)]). The standard open annulus of inner radius |a| and outer radius |b|
is S(a, b)+ = trop−1((val(b), val(a))).

We now define a section σ : R→ (A1
K)an of the tropicalization map by

σ(r) = | · |r where

∣∣∣∣∣
∞∑

n=−∞
ant

n

∣∣∣∣∣
r

= max{|an| exp (−rn) | n ∈ Z}.

The map σ is the only continuous section of trop.

Definition 1.3.20. Let A be a standard open or closed disk or annulus. Then the skeleton
of A is the closed subset Σ(A) = σ(R) ∩ A = σ(trop(A)).

Let X denote a smooth connected complete algebraic curve over K. We will define a
skeleton in Xan relative to a semistable vertex set.

Definition 1.3.21. A semistable vertex set of X is a finite set V of type II points of Xan such
that Xan\V is a disjoint union of open balls and finitely many open annuli. A decomposition
of Xan into a semistable vertex set and a disjoint union of open balls and finitely many open
annuli is called a semistable decomposition of X.
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Definition 1.3.22. Let V be a semistable vertex set of X. The skeleton of X with respect
to V is

Σ(X, V ) = V ∪
⋃
A

σ(A),

where A runs over all connected components of Xan\V that are generalized open annuli.

The skeleton Σ(X, V ) is compact. The connected components of Xan\Σ(X, V ) are open
balls B. The limit boundary of any connected component B is a single point x ∈ Σ(X, V )
[15, Lemma 3.4].

Definition 1.3.23. Let V be a semistable vertex set of X. We define a retraction τV :
Xan → Σ(X, V ) as follows. Let x ∈ Xan\Σ(X, V ) and let Bx be the connected component
of x in Xan\Σ(X, V ). Then the single point y ∈ Σ(X, V ) in the boundary limit of Bx is the
image τV (x) = y.

This retraction is continuous. If A is a generalized open annulus in the semistable de-
composition of X then τV restricts to the retraction τA : A→ Σ(A) as defined in Definition
1.3.20 [15, Lemma 3.8]. Then, the skeleton Σ(X, V ) has the structure of a metric graph, with
model given by (V,E), where the edges e ∈ E correspond to the closures of the skeletons of
the generalized open annuli in the semistable decomposition of X. In particular, Σ(X, V )
is a metric space. The length of an edge e coming from a standard open annulus of inner
radius |a| and outer radius |b| is equal to valK(a)− valK(b).

We now discuss the relationship between semistable vertex sets of X and semistable
models of X. Let X be a semistable model for X. Let V (X ) denote the inverse image of the
set of generic points of the special fiber Xk under the reduction map red : Xan → Xk.

Theorem 1.3.24 ([15]). Let X be a semistable model of X. Then V (X ) is a semistable
vertex set of X. We have that Σ(X, V (X )) is the incidence graph of Xk. The association
X 7→ V (X ) gives a bijection between the set of semistable models of X and the set of
semistable vertex sets of X.

Let X be a semistable model of X. The points of Xan corresponding to generic points
of irreducible components of Xk having arithmetic genus at least 1 is denoted S(Xan), and
it is independent of the model X . This is called the set of marked points of Xan. This set is
empty if and only if X is a Mumford curve.

Let x ∈ S(Xan) be a marked point of Xan. Let C be the irreducible component of Xk
with generic point ξ = red(x). We define the genus of x, denoted g(x), to be the genus of
the normalization of C.

Any semistable vertex set of X must contain all type II points with positive genus.

Proposition 1.3.25 (Genus formula [15]). Let X be a semistable model for X. Then

g(X) = g(Σ(X, V )) +
∑

x∈V (X )

g(x),

where g(X) is the genus of X, and g(Σ(X, V )) is the genus of Σ(X, V ) as a graph.
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Definition 1.3.26. If the genus of X is at least one, there is a maximal subgraph Σ ⊂
Σ(X, V ) containing the marked points S(Xan) and having no unmarked vertices of degree
1. The graph Σ is called the minimal skeleton of Xan. The skeleton does not depend on the
choice of model X of X. The graph Γ admits a deformation retraction onto Σ.

Example 1.3.27. LetX be an elliptic curve with multiplicative reduction, so that valK(j) < 0,
where j ∈ K is the j-invariant. Then the space Xan is as pictured in Figure 1.17. The
minimal skeleton is a circle of circumference − valK(j). Any type II point is a (minimal)
semistable vertex set of X.

Figure 1.17: The Berkovich analytification of an elliptic curve.

Faithful Tropicalization

As before, let K be a complete non-Archimedean field, and let X be a smooth proper
algebraic curve over K. Let i : X ↪→ An be an embedding of X, which gives generators
f1, . . . , fm of the coordinate ring K[X]. The tropicalization corresponding to i is the map
tropi : X → Rn is given by

tropi(x) = (− log |f1(x)|, . . . ,− log |fn(x)|).

This map can be extended to the analytification Xan to get a map πi : Xan → Rn given by

πi(x) = (− log |f1|x, . . . ,− log |fn|x).

The image of this map is equal to tropi(X). This explains the picture in the frontmat-
ter of this dissertation: shadows of the Berkovich skeleton can be viewed through various
embedded tropicalizations. We can relate the Berkovich analytification Xan to embedded
tropicalizations tropi(X) in the following way.
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Theorem 1.3.28. [105, Theorem 1.1] Let X be an affine variety over K. Then there is a
homeomorphism (given by the inverse limit of maps πi : Xan → An)

Xan → lim←− tropi(X). (1.6)

Given just one embedded tropicalization, how can we detect information about the
Berkovich skeleton? This is the problem of certifying faithfulness, as studied in [14, Sec-
tion 5.23]. In some cases, the embedded tropicalization contains enough information to
determine the structure of the skeleton of Xan.

Theorem 1.3.29 ([14, Corollary 5.38] and [16, Theorem 3.3]). Let X be a smooth curve in
Pnk of genus g. Further, suppose that dim(H1(trop(X),R)) = g, all vertices of trop(X) ⊂
Rn+1/R1 are trivalent, and all edges have multiplicity 1. Then the minimal skeletons of
trop(X) and Xan are isometric. In particular, if X is a smooth curve in P2

k whose Newton
polygon and subdivision form a unimodular triangulation, then the minimal skeletons of
trop(X) and Xan are isometric.

Example 1.3.30. Consider the curve X in P2 over C{{t}} defined by

xyz2 + x2y2 + 29t(xz3 + yz3) + 17t2(x3y + xy3) = 0.

Tropicalizing X with this embedding, we obtain the embedded tropicalization in Figure 1.18.
Since this is not a unimodular triangulation, Theorem 1.3.29 does not allow us to draw any

Figure 1.18: The Newton polygon from Example 1.3.30 with its regular subdivision on the
left, and the embedded tropicalization on the right.

conclusions. However we know from having computed the skeleton of this curve in Example
1.1.13 that this is in fact a faithful tropicalization. The two points with valence four in
Figure 1.18 each receive weight 1 in the abstract tropicalization.
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1.4 Contributions in this Dissertation

Now that we have the language of tropical geometry and non-Archimedean geometry, we are
prepared to state the main new results in this dissertation.

In Chapter 2: Divisors, I develop divisor theory on tropical curves and tropicalize the
space of effective degree d divisors on a classical curve. The original work in this chapter ap-
pears in the following places. The subsections “Tropical Jacobians,” “Tropical Abel-Jacobi
Map,” and “Tropical Schottky Problem” are based on [22], which is joint work with with
Barbara Bolognese and Lynn Chua. It was published in the book Combinatorial Algebraic
Geometry: Selected Papers from the 2016 Apprenticeship Program. The section “Tropicaliz-
ing Divisors” is joint work with Paul Helminck [26] and it will be published in the journal
Advances in Geometry. The section “Tropicalizing the Symmetric Power” is joint work with
Martin Ulirsch [28] and has been submitted to Transactions of the AMS.

The main results of this chapter are on tropicalizing the symmetric power of a curve [28].
Symmetric powers are moduli spaces for effective divisors on algebraic and tropical curves.
Celebrated results in tropical geometry involve identifying non-Archimedean skeletons of
classical moduli spaces with their combinatorial counterparts [1, 119, 38, 99]. The following
theorem, which is joint work with Martin Ulirsch, gives an incarnation of this principle.

Theorem 2.3.1. [28] Let C be a smooth, projective curve over a non-Archimedean field.
The symmetric power of the skeleton of C is the skeleton of the symmetric power of C.

This result allows us to prove a new version of the Riemann-Roch theorem on tropical
curves. In the proof, we construct a nice model of the symmetric power of a curve by
considering the fibered product

D iv+
d (C) := Spec(R)×Mg

D ivg,d,

where R is the valuation ring of K, the map Spec(R) → Mss

g → Mg gives a strictly

semistable model of X, and D ivg,d is the Deligne-Mumford stack defined in [99] which
compactifies the d-th symmetric power of the universal curve over Mg. The proof of this
result involves carefully describing the combinatorial structure of the strata of D iv+

d (C).
The strata are the loci where the corresponding dual graph and divisor are constant.

Example 1.4.1. Consider a curve with two smooth components each having genus larger
than one meeting in a node. Then our model has seven strata, corresponding to the combi-
natorial types of stable curves and divisors in Figure 1.19.

In Chapter 3: Moduli Spaces, I use this construction to develop a divisorial motivic zeta
function. The original work in this chapter appears in the section “Divisorial Motivic Zeta
Functions,” which is joint work with Martin Ulirsch [27]. It will appear in the Michigan
Mathematics Journal.

Our divisorial motivic zeta function Zdiv(X, ~p; t) is for marked stable curves (X, ~p). In
order to define it, we introduce a new moduli space D ivg,n,d which takes in to account the



1. INTRODUCTION 28

Figure 1.19: The strata in D iv+
d (C) in Example 1.4.1.

marked points. We prove Zdiv(X, ~p; t) is rational over the Grothendieck ring of varieties and
give a formula in terms of the dual graph of the curve [27].

Theorem 3.3.2. [27] Let (X, ~p) be a stable quasiprojective curve over a field k with n
marked points ~p. Then Zdiv(X, ~p; t) is rational over the Grothendieck ring K0(Var /k). If
G = (E, V ) is the dual graph of X, then

Zdiv

(
X, ~p; t

)
=

(
1− Lt

1− Lt− t+ t2

)|E|+n
(1− t)2|E|+n

∏
v∈V

Zmot

(
X̃v; t

)
,

where X̃v is the normalization of the component of X corresponding to the vertex v ∈ V ,
the function Zmot is Kapranov’s motivic zeta function, and L is the class of A1 in the
Grothendieck ring.

In Chapter 4: Skeletons, I compute skeletons of algebraic curves. The original work in
this chapter appears in the following places. The section “Hyperelliptic Curves” and the
subsection “Existence of Faithful Tropicalizations” are based on [22], which is joint work
with with Barbara Bolognese and Lynn Chua. It was published in the book Combinatorial
Algebraic Geometry: Selected Papers from the 2016 Apprenticeship Program. The section
“Superelliptic Curves” is joint work with Paul Helminck [26] and it will be published in
Advances in Geometry.

Despite the importance of skeletons to research in tropical geometry, it is relatively un-
known how to compute them explicitly. There is a moderate body of work in computing
skeletons in genus one [46, 77] and two [51, 70, 111] using many different approaches. My
main results in this area are algorithms which compute the tropicalizations of hyperelliptic
[22] curves y2 = f(x) and superelliptic [26] curves ym = f(x). The algorithms are combina-
torial and use the valuations of the differences of the roots of f , together with the degree m
as input. In genus higher than 3, there is no known general algorithm, and my result for the
superelliptic case is the only algorithmic method computing skeletons in this domain.

Theorems 4.4.5 and 4.5.17. [22, 26] Given a curve with equation ym = f(x) over a field
of characteristic 0 that is complete with respect to a non-Archimedean valuation, its skeleton
can be computed algorithmically.

Together with Paul Helminck, we show that using our definition of superelliptic weighted
tropical curves, each one of prime degree can be realized as the skeleton of an algebraic



1. INTRODUCTION 29

superelliptic curve. We also have computational results about the locus of superelliptic
tropical curves inside the moduli space of tropical curves. For instance, for odd primes p
there are 21447 maximal-dimensional types of tropical curves admitting a degree p map to
a tree with 14 leaves.

Example 1.4.2. The tropical superelliptic curves of degree 3 and genus 4 of maximal di-
mensional type are pictured below. The first one is the skeleton of the curve over C{{t}}
defined by

y3 = x3(x− t)(x− 1)2(x− 1− t)(x− 2)2(x− 2− t).

1

1

1

1

1 1
1 1 1 1 1 1 1 1

In Chapter 5: Enumeration, I count binodal cubic surfaces using tropical methods. The
original material in this chapter appears in the section “Counting Surfaces in Space,” and is
joint work with Alheydis Geiger [25] and will be published in Le Matematiche.

The Gromov-Witten invariants of the plane count the complex algebraic curves of a given
degree and genus passing through a given number of points. It is a breakthrough result of
Mikhalkin that this question can be rephrased tropically, and that these numbers agree [96].
For plane curves, it is much simpler to perform the tropical count because singularities of
tropical plane curves are well understood. Given the success of tropical methods in this case,
we may ask if it is possible to count surfaces tropically. In [91], the authors determine the
combinatorial types of nodes that a one-nodal tropical surface can have. It is possible to
combine these nodes, as long as they are not too close together. With Alheydis Geiger, we
obtain the following preliminary result.

Theorem 5.2.13 ([25]). Of the 280 binodal cubic surfaces through 17 fixed general points,
214 of them come from tropical surfaces with separated nodes.
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2

Divisors

Theorems and constructions from classical algebraic geometry often carry over to tropical
geometry. In this chapter, we develop divisor theory on tropical curves. This will include a
tropical Jacobian, Riemann-Roch Theorem, Abel-Jacobi map, and more. That so much of
the algebraic theory holds in the tropical world is remarkable in its own right. Additionally,
this tropical divisor theory provides combinatorial insight into the classical theory. However,
this translation is not always seamless; subtle and interesting realizability issues can arise.

The original work in this chapter appears in the following places. The subsections “Trop-
ical Jacobians,” “Tropical Abel-Jacobi Map,” and “Tropical Schottky Problem” are based on
[22], which is joint work with with Barbara Bolognese and Lynn Chua. It was published in
the book Combinatorial Algebraic Geometry: Selected Papers from the 2016 Apprenticeship
Program. The section “Tropicalizing Divisors” is joint with Paul Helminck [26] and it will
be published in Advances in Geometry. The section “Tropicalizing the Symmetric Power”
is joint work with Martin Ulirsch [28] and has been submitted to Transactions of the AMS.

2.1 Divisors on Tropical Curves

In this section, we develop divisors on tropical curves, computing many examples throughout.

Tropical Riemann-Roch

Definition 2.1.1. Let Γ be a tropical curve or metric graph, and let G be a model for Γ.
A divisor D on G is a Z-linear combination∑

x∈V (G)

D(x)x.

A divisor D on Γ is a Z-linear combination∑
x∈Γ

D(x)x.
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The support Supp(D) of a divisor D on Γ is the set of x ∈ Γ for which D(x) 6= 0. The
divisor D on Γ is said to be supported on G if G is a model for Γ and D is supported on the
vertices of G. The divisor D is said to be effective if D(x) ≥ 0 for all x ∈ Γ.

Example 2.1.2 (Canonical Divisor). Given a metric graph Γ, its canonical divisor is

KΓ =
∑
p∈Γ

(valence(p)− 2) · p,

where valence(p) is the valence of p in any model G for Γ with p ∈ V (G).

Just as in algebraic geometry, in tropical geometry there is a notion of a principal divisor.
A tropical rational function is a continuous function from Γ to R which is piecewise linear.
For some tropical rational function f , let (f) be the divisor with degree nx at the vertex
x ∈ Γ, where nx is the sum of the outgoing slopes of f at x. Two divisors D,D′ are linearly
equivalent if there is a tropical rational function f such that D = D′ + (f). In [66], it is
shown that all tropical rational functions are sums of chip firing moves. This implies that
two divisors are linearly equivalent if and only if one can be attained from the other via chip
firing moves. Chip firing on graphs is a rich and extensively studied topic, see [49].

Given a divisor D on Γ, we denote by R(D) the set of all rational functions f such that
D + (f) is effective. Let

|D| = {D′ ≥ 0 | D′ ∼ D}.
This is called the complete linear system of D. The map from R(D)/~1 to |D| which sends f
to D + (f) is a homeomorphism.

Example 2.1.3. Consider the metric graph on the left in Figure 2.1. Its canonical divisor K
is the divisor v1 + v2, where v1 and v2 are the two points of valence 3. Then, |K| is displayed
on the right. The colored points on the right hand side correspond to the colored divisors
on the left hand side. Only the points in |K| along the blue line are realizable, see [99].

Figure 2.1: A graph and the complete linear system of its canonical divisor.

The Riemann-Roch Theorem for graphs and tropical curves is a celebrated result. The
graph case was first proved by [13] and this result was later extended to tropical curves
by [57] and [97]. This gives an analogue of the Riemann-Roch theorem for curves. Before
stating the theorem, we must define the rank or a divisor.
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Definition 2.1.4. Let D be a divisor of degree n on a tropical curve Γ. Then the rank of D,
denoted r(D), is the largest integer k such that any divisor D′ of degree k has the property
that D −D′ is equivalent to an effective divisor.

Remark 2.1.5. We remark here that the dimension of R(D) is not equal to the rank r(D).
The space R(D) is a polyhedral complex, but it is not of pure dimension and is often too
large, in the sense that it contains points corresponding to divisors on Γ which do not lift
to divisors on the curve X. For an example, see Example 2.1.3. This realizability issue is
studied extensively in [99].

Theorem 2.1.6 ([13, 57, 97]). Let D be a divisor on a tropical curve Γ. Then

r(D)−R(KΓ −D) = degD + 1− g,

where g is the first Betti number of Γ.

Tropical Jacobians

In this subsection we define the tropical Jacobian. Jacobians of curves are principally polar-
ized abelian varieties in a natural way; they are the most well known and extensively studied
among abelian varieties. Both algebraic curves and abelian varieties have extremely rich
geometries. Jacobians provide a link between such geometries, and they often reveal hidden
features of algebraic curves which cannot be uncovered otherwise. In order to associate a
tropical Jacobian to a complex algebraic curve A, one first constructs its classical Jacobian

J(X) := H0(X,ωX)∗/H1(X,Z),

where we denote by ωX the cotangent bundle of the curve. This complex torus admits a
natural principal polarization Θ, called the theta divisor, such that the pair (J(X),Θ) is a
principally polarized abelian variety. We can then obtain the tropical Jacobian by taking
the Berkovich skeleton of the classical Jacobian.

There is another way to compute the tropical Jacobian. Instead, one could first tropicalize
the curve X to obtain a tropical curve Γ, and then compute the Jacobian of Γ in a purely
combinatorial fashion. In this section, we will compute the tropical Jacobian in this way.

Baker-Rabinoff, and independently Viviani, proved that both paths give the same result
[16, 122]. However, the classical process hides more difficulties on the computational level
and proves much more challenging to carry out in practice. Methods have been implemented
in the Maple package algcurves for computing Jacobians numerically over C [52].

Given Γ, we describe a procedure to compute its tropical Jacobian via its period matrix
QΓ, following [29, 42, 97]. Fix an orientation of the edges of G. For any e ∈ E(G), denote
the source vertex by e+ and the target vertex by e−. Let A be either R or Z.
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Definition 2.1.7. The free A-module generated by the vertex set V (G) is called the module
of 0-chains with coefficients in A. This is denoted C0(G,A):

C0(G,A) =

 ∑
v∈V (G)

av | a ∈ A

 .

The free A-module generated by the edge set E(G) is called the module of 1-chains with
coefficients in A. This is denoted C1(G,A):

C1(G,A) =

 ∑
v∈V (G)

av | a ∈ A

 .

Observe that the modules C0(G,A) and C1(G,A) are each isomorphic to their duals
Hom(C0(G,A), A),Hom(C0(G,A), A) via the map which sends

∑
x axx to the function f ,

where f(x) = ax. The module C1(G,A) is equipped with the inner product〈 ∑
e∈E(G)

aee,
∑

e∈E(G)

bee

〉
=
∑

e∈E(G)

aebel(e) . (2.1)

Definition 2.1.8. The boundary map ∂ : C1(G,A)→ C0(G,A) acts linearly on 1-chains by
mapping an edge e to t(e)− s(e). A 1-cycle is an element of Ker(∂). The kernel of ∂ is the
first homology group H1(G,A) of G, whose rank is

g(G) = |E(G)| − |V (G)|+ 1.

Let |w| = ∑v∈V (G) w(v), and let g be the genus of Γ, defined as g(G) + |w|. Consider the

positive semidefinite form QΓ on H1(G,R) ⊕ R|w|, which vanishes on the second summand
R|w| and is defined on H1(G,R) by

QΓ

 ∑
e∈E(G)

αee

 =
∑

e∈E(G)

α2
el(e) .

Definition 2.1.9. Let ω1, . . . , ωg(G) be a basis of H1(G,Z). Then, we obtain an identification
of the lattice H1(G,R)⊕R|w| with Rg. Hence, we may express QΓ as a positive semidefinite
g × g matrix, called the period matrix of Γ. Choosing a different basis gives another matrix
related by an action of GLg(Z).

We now describe how to compute the period matrix. First, fix an arbitrary orientation of
the edges of G and pick a spanning tree T of G. Label the edges such that e1, . . . , eg(G) are
not in T , and eg(G)+1, . . . , em are in T , where m = |E(G)|. Then T ∪ {ei} for 1 ≤ i ≤ g(G)
contains a unique cycle ωi of G. The cycles ω1, . . . , ωg(G) form a cycle basis of G.
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We traverse each cycle ωi according to the direction specified by ei. We compute a row
vector bi of length m, representing the direction of edges of G in this traversal. For each
edge ej in E(G), let the j-th entry of bi be 1 if ej is in the correct orientation in the cycle,
−1 if it is in the wrong orientation, and 0 if it is not in the cycle. Let B be the g(G) ×m
matrix whose i-th row is bi. The matrix B has an interpretation in matroid theory as a
totally unimodular matrix representing the cographic matroid of G [103].

Suppose that all vertices have weight zero, such that g(G) = g. Let D be the m × m
diagonal matrix with entries l(e1), . . . , l(em). Then the period matrix is given by QΓ =
BDBT . If we label the columns of B by v1, . . . , vm, the period matrix equals

QΓ = l(e1)v1v
T
1 + · · ·+ l(em)vmv

T
m .

Thus the cone of all matrices that are period matrices of G, allowing the edge lengths to
vary, is the rational open polyhedral cone

σG = R>0〈v1v
T
1 , . . . , vmv

T
m〉 . (2.2)

If Γ has vertices of nonzero weight, the period matrix is given by the construction above
with g − g(G) additional rows and columns with zero entries.

Example 2.1.10. Consider the complete graph on 4 vertices in Figure 2.2.

2
e1

13e2 3
e6

7

e3

11
e4

5
e5

Figure 2.2: The metric graph and edge orientation used in Example 2.1.10.

We indicate in the figure an arbitrary choice of the edge orientations, and we choose the
spanning tree consisting of the edges T = {e2, e3, e4}. This corresponds to the cycle basis
ω1 = e1 + e3 + e2, ω2 = −e3 + e5 + e4, and ω3 = −e2− e4 + e6. Next, we compute the matrix

B =

 1 1 0 1 0 0
0 −1 1 0 1 0
−1 0 −1 0 0 1

 .

Let D be the 6× 6 diagonal matrix with entries 13, 7, 11, 2, 5, 3. The period matrix is then

QΓ = BDBT =

 22 −7 −13
−7 23 −11
−13 −11 27

 . (2.3)
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We now use period matrices to define and study tropical Jacobians of curves as principally
polarized tropical abelian varieties. Let S̃g≥0 be the set of g×g symmetric positive semidefinite
matrices with rational nullspace, meaning that their kernels have bases defined over Q. The
group GLg(Z) acts on S̃g≥0 by Q ·X = XTQX for all X ∈ GLg(Z), Q ∈ S̃g≥0.

A tropical torus of dimension g as a quotient X = Rg/Λ, where Λ is a lattice of rank g
in Rg. A polarization on X is given by a quadratic form Q on Rg. Following [29, 42], we call
the pair (Rg/Λ, Q) a principally polarized tropical abelian variety (pptav), when Q ∈ S̃g≥0.

Two pptavs are isomorphic if there is some X ∈ GLg(R) that maps one lattice to the
other, and acts on one quadratic form to give the other. We can choose a representative of
each isomorphism class in the form (Rg/Zg, Q), where Q is an element of the quotient of
S̃g≥0 by the action of GLg(Z). The points of this space are in bijection with the points of
the moduli space of principally polarized tropical abelian varieties, which we denote by Atrop

g .
We will describe the structure of Atrop

g in Section 2.1. The tropical Jacobian is our primary
example of a principally polarized tropical abelian variety.

Definition 2.1.11. The tropical Jacobian of a tropical curve Γ is (Rg/Zg, Q), where Q is
the period matrix of Γ.

Tropical Abel-Jacobi Map

The period matrix induces a Delaunay subdivision of Rg, which has an associated Voronoi
decomposition giving the tropical theta divisor of the tropical Jacobian. The tropical theta
divisor has an alternate description, given in Theorem 2.1.14, as the image of all degree d−1
effective divisors under the Abel-Jacobi map. We describe this in more detail below.

Given a matrix Q ∈ S̃g≥0, consider the map

lQ : Zg −→ Zg × R, x 7→ (x, xTQx) .

We obtain a regular subdivision of Rg by weighting the points of Zg by lQ as follows. Take
the convex hull of image of lQ in Rg × R ∼= Rg+1. By projecting down the lower faces via
the morphism Rg+1 −→ Rg which forgets the last coordinate, we obtain a periodic dicing of
the lattice Zg ⊂ Rg, called the Delaunay subdivision Del(Q) of Q. This is an infinite and
periodic analogue of the regular subdivision of a polytope induced by weights on the vertices.

Example 2.1.12. Consider the matrix

[
1 0
0 0

]
. The function lQ : Z2 → Z2 × R is given by

(x, y) 7→ (x, y, x2). The convex hull of the points in the image of lQ is pictured in Figure 2.3,
together with the Delaunay subdivision.

Given a Delaunay decomposition, one can consider the dual decomposition, called the
Voronoi decomposition. This is illustrated in Figure 2.4 for g = 2. The Voronoi decompo-
sition gives the tropical theta divisor associated to a pptav (Rg/Λ, Q), which is the tropical
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Figure 2.3: The weight function induced by the quadratic form in Example 2.1.12 on the
left, and the corresponding Delaunay subdivision on the right.

hypersurface in Rg defined by the theta function

Θ(x) = max
λ∈Λ

{
λTQx− 1

2
λTQλ

}
, x ∈ Rg .

Figure 2.4: Delaunay decompositions of R2 (solid lines) and their associated Voronoi decom-
positions (dotted lines).

It is possible to give an alternate description of the tropical theta divisor using Theorem
2.1.14, as we are about to explain. Let Γ = (G,w, l) be a tropical curve, and let p0 ∈ Γ be a
fixed basepoint. Let ω1, . . . , ωg be a basis of H1(G,Z). For any point p in Γ, let c(p) =

∑
i aiei

describe any path from p0 to p.

Definition 2.1.13. For any p ∈ Γ, let

µ(p) = (〈c(p), ω1〉, . . . , 〈c(p), ωg〉) ∈ Rg/Λ

where the inner products are as defined in Equation 2.1. By the identification of Rg/Λ with
Rg/Zg induced by the choice of cycle basis, µ(p) is a point of the tropical Jacobian. The
tropical Abel-Jacobi map µ : Div(Γ) → Jac(Γ) is obtained by extending µ as above linearly
to all divisors on Γ. This does not depend on the choice of path from p0 to p [12].



2. DIVISORS 37

Theorem 2.1.14 (Corollary 8.6, [97]). Let Wg−1 be the image of degree g − 1 effective
divisors under the tropical Abel-Jacobi map. The set Wg−1 is the tropical theta divisor up to
translation.

Example 2.1.15 (Example 2.1.10, Continued). Using the GAP package polyhedral, we
compute that the Delaunay subdivision of the quadratic form in Equation 2.3 is given by six
tetrahedra in the unit cube, all of which share the great diagonal as an edge [55]. We also
compute the Voronoi decomposition dual to this Delaunay subdivision, which gives a tiling
of R3 by permutohedra as illustrated in Figure 2.5. This is the tropical theta divisor, with
f -vector (6, 12, 7). In Figure 2.6, we illustrate the correspondence described by Theorem
2.1.14 between W2 and the tropical theta divisor.

Figure 2.5: The left figure shows the Delaunay subdivision by tetrahedra and a dual permu-
tohedron in grey. The right figure illustrates a tiling of R3 by permutohedra.

Break Divisors

Let Picd(Γ) be the set of divisor classes under rational equivalence of degree d on Γ.

Definition 2.1.16. A break divisor on Γ is a divisor which is supported on the closure of
the complement of a spanning tree in Γ.

Theorem 2.1.17 ([5]). Every degree g divisor on Γ is linearly equivalent to a unique break
divisor. Every degree g divisor supported on V (G) is equivalent to a unique break divisor
supported on V (G).

We have that Picd(Γ) ≈ J(G) via the Abel-Jacobi map which sends a break divisor
representative D in Picd(Γ) to µ(D).

Given any spanning tree T of G let ΣT =
∏

e6∈T ē be the set break divisors supported on

Γ\T . Any break divisor supported on Γ\V (G) uniquely determines a spanning tree T , so
for two distinct spanning trees T, T ′, we have that Σ0

T ∩Σ0
T ′ = ∅. Then the mapping sending

Picg(Γ) to J(Γ) maps Σ0
T to an open parallelotope. These parallelotopes give the canonical

cell decomposition of J(G).
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Figure 2.6: Each vertex of the permutohedron corresponds to a divisor supported on the
vertices of Γ. The square faces correspond to divisors supported on the interiors of edges
of Γ which do not meet in a vertex. Each hexagonal face corresponds to divisors which are
supported on edges of Γ which are adjacent to a fixed vertex. Then, the edges correspond
to keeping one point of the divisor fixed, and moving the other point along an edge of Γ.
The grey curve depicted above represents the embedding of Γ into its Jacobian under the
Abel-Jacobi map, which, under the identifications, is again K4.

Example 2.1.18. We now give an example of the canonical cell decomposition of J(G).
Let Γ be the metric graph in Figure 2.7, where e1, e3 each have length 2 and e2 has length
1. Let G be the model for Γ on the right, where each edge has length 1.

First, we will compute J(Γ). As before, we first compute the period matrix Q = BDBT :

Q =

(
1 −1 0
1 0 −1

)2 0 0
0 1 0
0 0 2

 1 1
−1 0
0 −1

 =

(
3 2
2 4

)
.

So,
J(Γ) = R2/〈(3, 2), (2, 4)〉 = R2/〈(4, 0), (−1, 2)〉,

Where we choose the second (equivalent) basis for H1(Γ,Z) to obtain Figure 2.8.
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Figure 2.7: The graph Γ and the model G for Example 2.1.18.

We can also find the image of Γ under the Abel-Jacobi map. If we fix the vertex p to be
the point halfway along e3, then for a point tei, for t ∈ [0, 1], we have

µ(te1) = (0, 1) + t(2, 2),

µ(te2) = (0, 1) + t(−1, 0),

µ(te3) = (0, 1) + t(0,−2).

Now, consider the model G for Γ. Let the basis for H1(G,Z) be the cycles as before:
{−23 + 24 − 34, 24 − 13 + 24 − 34}. We now compute the parallelotope for one tree in G,
and the rest of the cell decomposition follows. Let T be the tree given by T = {24, 23, 12}.
Fix the base point p for the Abel-Jacobi map to be v1. The edges not in the tree T are 12
and 34. Then a break divisor a12 + b34 in Σ0

T maps to

µ(a12 + b34) = a(0, 1) + (0,−1) + b(−1,−1).

Now we take the span of this region for a, b ∈ [0, 1]. When performing this calculation, one
must be careful to mind the orientation of the edge.

We obtain the cell decomposition of J(Γ) shown in Figure 2.8. The image of Γ under the
Abel-Jacobi map is represented by the thick black lines, and each vertex is labeled with the
corresponding number.

Tropical Schottky Problem

From the classical perspective, the association X 7→ (J(X),Θ), where J(X) is the Jacobian
of and algebraic curve X, gives the Torelli map

tg :Mg → Ag .
Here Mg denotes the moduli space of smooth genus g curves, while Ag denotes the

moduli space of g-dimensional abelian varieties with a principal polarization. For more on
moduli spaces, see Chapter 3. The content of Torelli’s theorem is precisely the injectivity of
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Figure 2.8: The cell decomposition for J(Γ) in Example 2.1.18.

the Torelli map, which in fact can be proved to be dominant for g = 2, 3. Its image, i.e. the
locus inside the moduli space of principally polarized abelian varieties, is called the Schottky
locus and its complete description required several decades of work by many. The injectivity
of the Torelli morphism implies, in particular, that we can always reconstruct an algebraic
curve from its principally polarized Jacobian. The characterization of the Schottky locus was
first worked out in genus 4 by Schottky himself and Jung (cf. [112]) via theta characteristics.
Many other approaches followed for higher genus: the work by Andreotti and Mayer ([6]),
Matsusaka and Ran [93, 107]) and Shiota ([115]) are worth mentioning. For extensive surveys
see e.g. [7, 61].

In this section, we discuss the tropical Schottky problem, following [22]. The process of
associating a period matrix to a metric graph can also be inverted. The tropical Torelli map
ttrop
g : M trop

g → Atrop
g sends a tropical curve of genus g to its tropical Jacobian, which is the

element of Atrop
g corresponding to its period matrix. The image of this map is called the

tropical Schottky locus, and these are the set of period matrices that arise as the tropical
Jacobian of a curve. Starting with a principally polarized tropical abelian variety whose
period matrix Q is known to lie in the tropical Schottky locus, we give a procedure to
compute a curve whose tropical Jacobian corresponds to Q.

We describe the structure of the moduli space Atrop
g in this section, using Voronoi reduc-
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tion theory. Given a Delaunay subdivision D, define the set of matrices that have D as their
Delaunay subdivision to be

σD = {Q ∈ S̃g≥0 | Del(Q) = D} . (2.4)

The secondary cone of D is the Euclidean closure σD of σD in R(g+1
2 ), and is a closed

rational polyhedral cone. There is an action of GLg(Z) on the set of secondary cones, induced
by its action on S̃g≥0.

Theorem 2.1.19 ([123]). The set of secondary cones forms an infinite polyhedral fan whose
support is S̃g≥0, known as the second Voronoi decomposition. There are only finitely many
GLg(Z)-orbits of this set of secondary cones.

By this theorem, we can choose Delaunay subdivisions D1, . . . , Dk of Rg, such that the
corresponding secondary cones are representatives for GLg(Z)-equivalence classes of sec-
ondary cones. The moduli space Atrop

g is a stacky fan whose cells correspond to these classes
[29, 42]. More precisely, for each Delaunay subdivision D, consider the stabilizer

Stab(σD) = {X ∈ GLg(Z) |σD ·X = σD} . (2.5)

Define the cell

C(D) = σD/ Stab(σD) (2.6)

as the quotient of the secondary cone by the stabilizer. Then we have

Atrop
g =

k⊔
i=1

C(Di)/ ∼, (2.7)

where we take the disjoint union of the cells C(D1), . . . , C(Dk) and quotient by the equiv-
alence relation ∼ induced by GLg(Z)-equivalence of matrices in S̃g≥0, which corresponds to
gluing the cones.

Example 2.1.20. In genus two, there are four Delaunay subdivisions D1, . . . , D4 as in Figure
2.9. Their secondary cones give representatives for GLg(Z)-equivalence classes of secondary
cones. The corresponding secondary cones are as follows.

σD1 =

{[
a+ c −c
−c b+ c

]
: a, b, c ∈ R

}
, (2.8)

σD2 =

{[
a 0
0 b

]
: a, b ∈ R

}
, (2.9)

σD3 =

{[
a 0
0 0

]
: a ∈ R

}
, (2.10)

σD4 =

{[
0 0
0 0

]}
. (2.11)
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Figure 2.9: Delaunay subdivisions for g = 2.

The tropical Schottky locus has the following characterization using matroid theory.
Given a graph G, we can define a cographic matroid M∗(G) (see [103] for an introduction
to matroid theory). The matroid M∗(G) is representable by a totally unimodular matrix,
constructed as the matrix B in Section 2.1. The cone σG defined in Equation 2.2 is a
secondary cone in S̃g≥0. The GLg(Z)-equivalence class of σG is independent of the choice of
totally unimodular matrix representing M∗(G). Hence we can associate to M∗(G) a unique
cell C(M∗(G)) of Atrop

g , corresponding to this equivalence class of secondary cones.
A matroid is simple if it has no loops and no parallel elements. We define the following

stacky subfan of Atrop
g corresponding to simple cographic matroids,

Acogr
g = {C(M) : M simple cographic matroid of rank ≤ g} . (2.12)

The image of the tropical Torelli map ttrop
g is Acogr

g [29, 42], and we call Acogr
g the tropical

Schottky locus. When g ≤ 3, Acogr
g = Atrop

g , hence every element of S̃g≥0 is a period matrix of
a tropical curve. But when g ≥ 4, this inclusion is proper. For example, Acogr

4 has 25 cells
while Atrop

4 has 61 cells, and Acogr
5 has 92 cells while Atrop

5 has 179433 cells, according to the
computations in [42].

2.2 Tropicalizing Divisors

In this section we specialize divisors on an algebraic curve X and obtain divisors on the
associated tropical curve Γ.

Given an algebraic curve X and a strongly semistsable model X for X, we can specialize
divisors on X to divisors on Γ or G. This is given by a map ρ : Div(X) → Div(Γ). Let
Div(X ) be the group of Cartier divisors on X and let Divk(X ) be the subgroup of Cartier
divisors with support on the special fiber Xk. Let {C1, ..., Cr} be the set of irreducible
components in Xk. Let G be the dual graph of X . For any vertex v ∈ G, we let Cv be the
associated irreducible component of Xk.

LetM(G) be the group of Z-valued functions on V (G). Recall that we may associate an
element f ∈M(G) to a divisor (f) on G by

(f) =
∑

v∈V (G)

∑
e=vw∈E(G)

(f(v)− f(w))(v).



2. DIVISORS 43

Any divisor in the image of this map is called a principal divisor :

Prin(G) := {(f) ∈ Div(G) | f ∈M(G)}.

We have that Prin(G) ⊂ Div0(G), the set of degree 0 divisors on G [12, Corollary 1].
We will now transport algebraic divisors in Div(X) to divisors on the graph G. To do

this, we will use the intersection pairing on X . This is a bilinear pairing

Div(X )×Divk(X )→ Z,

which we will denote (see [85, Chapter 9, Theorem 1.12]) by (D1 · D2) ∈ Z. This then gives
rise to the specialization homomorphism ρ : Div(X )→ Div(G) defined by

ρ(D) =
∑
v∈G

(D · Cv)(v), (2.13)

see [10, Section 2] and [71, Section 2.2.1].
For any D ∈ Div(X), the closure inside X defines a Cartier divisor which we will denote

by D. This gives a homomorphism Div(X)→ Div(X ). Composing it with the specialization
homomorphism, we obtain a homomorphism Div(X)→ Div(G) which we will again denote
by ρ. We then have the following lemma.

Lemma 2.2.1 ([26]). Let X be a strongly semistable model over R for a smooth, proper,
geometrically connected curve X. Let G be its intersection graph and let ρ : Div(X ) →
Div(G) be the specialization map from Equation 2.13. Then ρ(Prin(X)) ⊂ Prin(G).

Proof. For any f ∈ K(X)∗, let divη(f) be the induced divisor on X and let div(f) be the
induced divisor on X . Write D ∈ Prin(X)\{0} as D = divη(f) for some f ∈ K(X)∗. We
then have

div(f) = divη(f) + Vf ,

where Vf is the vertical divisor associated to f . By [85, Chapter 9, Theorem 1.12.c] we have
that ρ(div(f)) = 0. By [71, Lemma 3.3.1] we then have that ρ(Cv) ∈ Prin(G) for every
v ∈ V (G), so ρ(Vf ) ∈ Prin(G). This then gives ρ(divη(f)) ∈ Prin(G), as desired.

In other words, for every f ∈ K(X)∗, there is a g ∈ M(G) such that ρ(divη(f)) = (g).
We now consider this specialization homomorphism for K-rational points P ∈ X(K). By
[85, Chapter 9, Corollary 1.32], we find that ρ(P ) = (vΓ) for a unique irreducible component
Γ ⊂ Xs. Note that such a component need not exist for non-regular models.

Example 2.2.2. Let X := Proj(R[X, Y,W ]/〈XY −t2W 2〉). Let U := Spec(R[x, s]/〈xs−t2〉)
be the affine open of X given by dehomogenizing with respect to W . Let P = 〈x− t, s− t〉
be a K-rational point of U . The closure of P in X is then given by {P, P}, where P =
〈x − t, s − t, t〉. Note that P lies on both irreducible components of the special fiber. We
thus do not directly have an associated divisor on the intersection graph of X .
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The intersection graph G consists of two vertices {v1, v2} with an edge e of length two.
Taking a desingularization above this edge, we obtain a regular model X ′ with intersection
graph consisting of three vertices {v1, v

′, v2} and two edges {e1, e2}. Here v1 and v′ are
connected by e1, and v′ and v2 are connected by e2. The original edge e has been subdivided
into two edges {e1, e2} and the vertex v′ in this new intersection graph G′. The point P now
specializes to the vertex v′ in the middle. For explicit equations defining this model X ′, see
[85, Chapter 8, Example 3.53].

2.3 Tropicalizing the Symmetric Power

For the remainder of the chapter, we tropicalize the space of degree d effective divisors on a
curve. We now give an overview, summarizing the main results. The constructions, proofs,
and consequences come in the subsections that follow.

Let K be a non-Archimedean field with valuation ring R whose residue field k is alge-
braically closed and contained in K. Let X be a smooth projective curve over K of genus
g ≥ 1 and let d ≥ 0. The d-th symmetric power Xd of X is defined to be the quotient

Xd = Xd/Sd

of the d-fold product Xd = X × · · · × X by the action of the symmetric group Sd that
permutes the entries. The symmetric power Xd is again a smooth and projective algebraic
variety and functions as the fine moduli space of effective divisors of degree d on X (see [98,
Section 3] for details).

Let Γ = ΓX be the dual tropical curve of X, i.e. the minimal skeleton of Xan. As a set,
the d-th symmetric power Γd of Γ is defined to be the quotient

Γd = Γd/Sd

of the d-fold product by the Sd-action. We will see in Section 2.3 that, once we choose a
strictly semistable model (G, |.|) for Γ, the symmetric power Γd naturally carries the structure
of a colored polysimplicial complex and it naturally functions as a moduli space of effective
divisors of degree d on Γ.

Let X be a strictly semistable model of X over R. The special fiber of X is a strictly
semistable curve whose weighted dual graph (together with the edge lengths given by the
valuations of the deformation parameters at every node) provides us with a natural choice
of a model

(
G, |.|

)
of Γ. There is a natural tropicalization map

tropXd : Xan
d −→ Γd

given by pushing forward an effective Cartier divisor D on XL, for a non-Archimedean
extension L of K, to the dual tropical curve ΓXL = ΓX , which is essentially a version of
Baker’s specialization map for divisors in [11].
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On the other hand, using the compactification of the moduli space of effective divisors
overMg constructed in [99, Section 2], a special case of the moduli space of stable quotients
in [89], we find a natural strictly polystable model Xd of Xd over SpecR that has a natural
modular interpretation. Despite its suggestive notation, Xd is not the Sd-quotient of the
fibered product X ×SpecR · · · ×SpecR X but rather a resolution thereof with good moduli-
theoretic properties.

By [18], associated to the model Xd there is a strong deformation retraction

ρXd : Xan
d −→ Σ(Xd)

onto the non-Archimedean skeleton Σ(Xd) of Xan
d , which naturally carries the structure

of a colored polysimplicial complex. We refer the reader to the subsection “Skeletons of
Polystable Models” for a guide to this construction. The main result is Theorem 2.3.1.

Theorem 2.3.1 ([28]). Let X be a smooth and projective algebraic curve over K and let X
be a fixed strictly semistable model of X over the valuation ring R of K. Denote by Γ the
dual tropical curve of X. There is a natural isomorphism

µXd : Γd
∼−→ Σ(Xd)

of colored polysimplicial complexes that makes the following diagram commute:

Xan
d

Σ(Xd) Γd

ρXd

tropXd

µXd

∼

In other words, the symmetric power Γd of the skeleton Γ = ΓX ofXan is isomorphic to the
skeleton Σ(Xd) of the symmetric power Xan

d of Xan. This is a first example of a phenomenon
we will explore in depth in Chapter 3: that tropicalizations (skeletons) of classical moduli
spaces are often themselves moduli spaces of tropical objects. The main idea of our proof
is to carefully describe the combinatorial structure stratification of the polystable model of
Xd coming from [99] and to identify it with the discrete data of Γd (thought of as the space
Div+

d (Γ) of effective divisors on Γ).
A slightly different version of Theorem 2.3.1 has appeared in [114] en route to the proof

of a non-Archimedean Lefschetz hyperplane theorem for the locus of effective divisors in the
Picard group. In [114, Section 6] the author first identifies the non-Archimedean skeleton
of the d-fold product Xd with the d-fold product using Berkovich’s skeleton construction in
[18] and then shows that the deformation retraction is naturally Sn-invariant. This implies
that the skeleton of the quotient Xan

d = (Xd)an/Sn is equal to Γd as a set. We refer the
reader to [31] for more details on skeletons associated to products of degenerations.

The resulting polyhedral structure on the skeleton constructed in [114], however, is not
the one we introduce in the subsection “Colored Polysimplicial Complexes” below, since it
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would have to take into account self-gluings of the polyhedra (quite like a generalized cone
complex in [1] or a cone stack in [39]). We prefer our approach via the explicit model Xd,
since its modular interpretation simplifies the construction of the tropicalization map and the
combinatorial stratification of its special fiber explains where the a priori only intrinsically
defined polyhedral structure on Γd is coming from.

Symmetric powers of tropical curves have already appeared in [57, 66, 97], where they
form one of the key ingredients to understand the polyhedral structure of tropical linear
series. While the process of tropicalization on the level of divisor classes, e.g. as a tropical-
ization map of Picard groups, has been studied widely (e.g. in [11, 16]), the purpose here is
to provide non-Archimedean foundations for the tropicalization of symmetric powers.

In [99, Theorem 3], Möller, Ulirsch, and Werner prove that the skeleton of the moduli
space Divg,d of effective divisors over Mg is equal to the moduli space of effective tropical
divisors Divtropg,d over Mtrop

g . It is tempting to speculate that this result would imply our
Theorem 2.3.1. Unfortunately our current understanding of the functoriality of skeleton
constructions does not seem to allow us to formally deduce such a result. The main obstacle
to overcome here lies in the fact that the functor that associates to a K-analytic space its
underlying topological space does not preserve fibered products.

Here, we restrict ourselves to the case of a strictly semistable model X of X. Suppose
that X is only semistable, i.e. that we allow the components of the special fiber to not be
smooth and have self-intersection. Then we may still construct a polystable model Xd, which
may also not be strict anymore, and, by the results of [18], there still is a strong deformation
retraction map to its skeleton. We expect the analogue of Theorem 2.3.1 to be true; its
proof, however, would require us to introduce significantly more technical background to
describe self-gluings of polysimplicial complexes similar to what happens when moving from
cone complexes to generalized cone complexes in [1] or to cone spaces in [39]. Taking care of
these self-gluings is unavoidable when working universally over Mg as in [99, Theorem 3],
but for a fixed X, as in our situation, we may simply blow up the points of self-intersection
in a semistable model X of X in order to make it strictly semistable.

Colored Polysimplicial Complexes

We first set up the language of colored polysimplicial complexes so that we can speak about
the symmetric power of a tropical curve Γ.

An abstract n-simplex is the power set of a finite set S = {0, . . . , n}. An abstract
polysimplex ∆ is the cartesian product of a finite collection of simplices P(S1), . . . ,P(Sk).
A face of ∆ is a subset which is itself an abstract polysimplex. A morphism of abstract
polysimplices φ : ∆1 → ∆2 is a map such that for all faces F1 of ∆1 we have φ(F1) ⊆ F2

for some face F2 of ∆2. A morphism φ : ∆1 → ∆2 is a face morphism if it induces an
isomorphism onto a face of ∆2. Denote by Poly the category of polysimplices and by Polyf

the subcategory of polysimplices with face morphisms.
Let M ⊆ R≥0 ∪ {∞} be a submonoid. An M-colored polysimplex will be a polysimplex

P(S1)× · · · × P(Sk) together with a tuple a ∈Mk such that ai = 0 whenever Si = {0} and
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ai > 0 whenever |Si| > 1. A morphism of colored polysimplices

φ :
(
P(R1)× · · · × P(Rl), a

)
→
(
P(S1)× · · · × P(Sk), b

)
is a morphism of abstract polysimplices such that whenever |Ri| > 1 and φ(Ri) ⊂ Sj, then
ai = bj. We denote by cPoly the category of colored polysimplices and by cPolyf the
subcategory of colored polysimplices with face morphisms.

In the following Definition 2.3.2 we give a new perspective on the notion of a colored
polysimplicial complex, originally described by Berkovich in [18, Section 3 and 4].

Definition 2.3.2. A colored polysimplicial complex indexed by a poset (Ξ,�) is a functor

∆: (Ξ,�) −→ cPolyf

to the category cPolyf of polysimplices with face morphisms such that for every element
E ∈ Ξ, we have that every face of ∆(E) is the image of exactly one morphism ∆(E ′ ≺ E) :
∆(E ′)→ ∆(E).

We now discuss how to associate to a colored polysimplicial complex Σ a topological space
|Σ|, called its geometric realization. Let ~n = (n1, . . . , nk) ∈ Nk and let ~a = (a1, . . . , ak) ∈ R>0.
We define the standard (~n,~a)-polysimplex ∆(~n,~a) := ∆(n1, a1)× · · · ×∆(nk, ak) to be

∆(~n,~a) :=

{
(xij)1≤i≤k,0≤j≤ni ∈ Rn1+···+nk

∣∣∣∣∣
ni∑
j=0

xij = ai for all i

}
. (2.14)

For example, the standard ((1, 1), (1, 1))-polysimplex is the unit square. The ((1, 1), (2, 3))-
polysimplex is a rectangle with side lengths 2 and 3.

Given a polysimplicial complex Σ indexed by a poset Ξ, its geometric realization |Σ|
is obtained by gluing the disjoint union of the standard polysimplices associated to each
polysimplex in ∆(Ξ) along the images of the face morphisms. In other words, |Σ| is the col-
imit of the functor F which takes each element in Ξ to the associated standard polysimplex,
and takes each face morphism φαβ : ∆α → ∆β to the unique affine linear embedding taking
F (∆α) to the corresponding face of F (∆β).

Given a tropical curve Γ, we denote by Div+
d (Γ) the set of effective divisors of degree d

on Γ. Define the d-th symmetric product Γd of Γ to be the quotient of the d-fold product Γd

of Γ by the action of Sd which permutes the factors.

Lemma 2.3.3 ([28]). We have Div+
d (Γ) = Γd.

Proof. Let p ∈ Γd. Then there is a representative (p1, . . . , pd) ∈ Γd for p. Consider the map
φ : Γd → Div+

d (Γ), where

(p1, . . . , pd) 7→
d∑
i=1

pi.
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Then φ is well defined, because for any permutation σ ∈ Sd, we have
∑d

i=1 pi =
∑d

i=1 pσ(i).
The map φ is surjective, because given any effective divisor D of degree d, we may write it
in the form

∑d
i=1 pi. Then, we see that φ is injective because if p1 + · · ·+ pd = q1 + · · ·+ qd,

then there is a permutation σ ∈ Sd such that pi = qσ(i).

We now show that we can give Div+
d (Γ) the structure of a colored polysimplicial complex.

Fix a loop-free model (G, |.|) of Γ. We show that, associated to this data, there is a natural
polysimplical complex ∆(G, d) whose geometric realization is equal to Div+

d (Γ) = Γd.

Definition 2.3.4. A stable pair of degree d over G is a tuple (φ : G′ → G,D) consisting of a
finite subdivision φ : G′ → G together with and an effective divisor D ∈ Divd(G

′) such that
D(v) > 0 for all exceptional vertices of G′.

In our notation we typically suppress the reference to φ and only write (G′, D) instead
of (φ : G′ → G,D). Denote by Ξ(G) the set of stable pairs over G. It naturally carries the
structure of a poset: We have (G′1, D1) � (G′2, D2) if and only if there is a finite subdivision
φ12 : G′2 → G′1 such that φ1 ◦ φ12 = φ2 and φ12,∗D2 = D1. Consider the map

∆(G,d) : Ξ(G) −→ cPolyf

that associates to (G′, D) the colored polysimplex

∆(G,d)(G
′, D) := ∆(G′, D) := ∆

(
k1, |e1|

)
× · · · ×∆

(
kl, |el|

)
(2.15)

where e1, . . . , el are the edges of G that G′ is subdividing and ki denotes the number of
vertices in G′ that live above ei.

Proposition 2.3.5 ([28]). The map ∆(G,d) defines a polysimplicial complex whose geometric
realization is in natural bijection with Div+

d (Γ).

From now on we always implicitly fix a strictly semistable model (G, |.|) of Γ and, in a
slight abuse of notation, denote ∆(G, d) by Γd.

Proof of Proposition 2.3.5. An inequality (G′1, D1) � (G′2, D2) naturally induces the face
morphism ∆(G′1, D1) ↪→ ∆(G′2, D1) that is given by setting the edge lengths of those edges
in G′2 to zero that are contracted in G1. Conversely, a face of F ⊆ ∆(G′2, D2) is determined
by setting the length of certain edges of G′2 to zero. Let φ : G′2 → G′1 be the graph given by
contracting exactly those edges and set D1 = φ∗D2. Then there is a unique edge contraction
φ1 : G1 → G such that φ1 ◦φ12 = φ2 and the induced face morphism ∆(G′1, D1) ↪→ ∆(G2, D

′)
has image F . This shows that ∆(G,d) defines a colored polysimplicial complex.

Let D be an effective divisor of degree d on Γ. Since Γ is semistable, there is a unique
model (G′, D) of Γ that arises as a (possibly not unique) subdivision of G and such that for
all vertices v of G′ we have that either v ∈ V (G) or D(v) > 0. Then (G′, D) naturally defines
a point in the relative interior of ∆(G′, D). Conversely, given a point in the relative interior
of the geometric realization of ∆(G′, D), the geometric realization of (G′, d) is equal to Γ
and D naturally defines an effective divisor of degree d on Γ. Thus the geometric realization
of ∆(G,d) is in natural bijection with Div+

d (Γ).
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Example 2.3.6. Consider the graph G in Figure 2.10. The spaces G2 and G2 are displayed

Figure 2.10: The graph G for Example 2.3.6

in Figures 2.11 and 2.12 respectively. In Figure 2.12, G2 is displayed with the polysimplicial
complex structure described in the proof of Proposition 2.3.5.

Figure 2.11: The space G2 in Exam-
ple 2.3.6

Figure 2.12: The space G2 in Example 2.3.6

Example 2.3.7. Consider the metric graph S1, the unit circle. Then (S1)2 is the Möbius
band, as we see in Figure 2.13.

(a) (S1)2 (b) (S1)2 (c) Möbius band

Figure 2.13: We see (S1)2 is a Möbius strip through cutting and rearranging the pieces.

Example 2.3.8. Let G be the dumbell graph, or the chain of two loops. In Figure 2.14 we
give the poset Ξ(G). The polysimplicial complex ∆(G, 2) has 15 maximal cells, five of which
are triangles and 10 of which are squares. It has 25 edges and 10 vertices.
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Figure 2.14: The poset Ξ(G) for the dumbell graph G and d = 2.

Skeletons of Polystable Models

We now define polystable models of varieties and show how to take their Berkovich skeletons.
It will turn out that the skeletons of polystable models of varieties will naturally have the
structure of a colored polysimplicial complex. This may be viewed as a higher dimensional
analogue of the theory developed in Section 1.3. The strategy is the same here as it was in
the curve case: make a combinatorially tractable model, and then the Berkovich skeleton
will be the dual complex of the special fiber.

Definition 2.3.9. Let X be a smooth variety over K. A strictly polystable model of X is a
flat and separated scheme X over R, whose generic fiber is isomorphic to X and such that
for every point x in the special fiber of X there is an open neighborhood U of x in X as
well as an étale morphism γ : U → SpecA1 ⊗R · · · ⊗R Ar over R where Ai is of the form
R[t1, . . . , tn]/(t1 · · · tk − a) for a ∈ R.

Suppose that X is proper over K and that X is a proper polystable model of X. In
[18] Berkovich constructed a strong deformation retraction ρX : X an → Σ(X ) onto a closed
subset of X an that naturally carries the structure of a colored polysimplicial complex, the
non-Archimedean skeleton associated to X . In this section we shall recall the basic properties
of this construction. Our presentation is inspired by [64, Section 4] and [117].

Let X be a flat and separated model of X. Following [63, Section 4.9], we denote by X ◦
the analytic domain in Xan consisting of those points that naturally extend to the model X .

If X = SpecA is affine, this means we consider only those seminorms on A = A ⊗ K
that are induced by multiplicative seminorms |.| on A that are bounded, i.e. for which we
have |f |x ≤ 1 for all f ∈ A. Note that, if X is proper over R, then the valuative criterion
for properness implies X ◦ = Xan.
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Tropicalization of a stable standard model

Let n ≥ 0, k ≤ n, and a ∈ R. We refer to the affine R-scheme Z(n, k, a) = SpecA with

A = R[t1, . . . , tn]/(t1 · · · tk − a)

as a stable standard model. Consider the standard simplex (as in Equation 2.14)

∆(k, a) =
{
v ∈ Rk

≥0

∣∣v1 + . . . vk = val(a)
}
.

There is a natural continuous tropicalization map

tropn,k,a : Z(k, n, a)◦ −→ ∆(k, a)

given by
x 7−→

(
− log |t1|x, . . . ,− log |tk|x

)
.

This map is well-defined, since

− log |t1|x + . . .+ log |tk|x = − log |t1 · · · tki | = − log |a| = val(a) .

The skeleton of a stable standard model

The tropicalization map tropn,k,a has a natural section Jn,k,a : ∆(k, a)→ Z(n, k, a)◦ given by
sending v ∈ ∆(k, a) to the multiplicative seminorm given by∑

~l∈Nn
a~l
(
tl11 · · · tlnn

)
7−→ max

~l∈Nn

(
|a~l| · e−(l1v1+···+lkvk)

)
.

The section is well-defined, since

Jn,k,a(v)(t1 · · · tn) = e−(v1+···+vk) = e− val(a) = |a| .

The composition ρn,k,a = Jn,k,a ◦ tropn,k,a defines a retraction map

ρn,k,a : Z(n, k, a)◦ −→ Z(n, k, a)◦

onto a closed subset of Z(n, k, a)◦, the non-Archimedean skeleton Σ(n, k, a) of Z(n, k, a)◦.

Tropicalization of a polystable standard model

Write ~n = (n1, . . . , nr), ~k = (k1, . . . , kr) as well as ~a = (a1, . . . , ar) so that ki ≤ ni. A
polystable standard model is an affine R-scheme of the form

Z(~n,~k,~a) = Z(n1, k1, a1)×R · · · ×R Z(nr, kr, ar)
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where each Z(ni, ki, ai) = SpecAi with Ai = R[t
(i)
1 , . . . , t

(i)
ni ]/(t

(i)
1 · · · t(i)ki − ai) for ai ∈ R. The

colored polysimplex associated to Z(~n,~k,~a) is defined to be (as in Equation 2.14)

∆(~k,~a) =
{
v ∈ Rk1+···+kr

≥0

∣∣∣v(i)
1 + . . .+ v

(i)
ki

= val(ai) for all i = 1, . . . r
}
.

There is a natural continuous tropicalization map

trop~n,~k,~a : Z(~n,~k,~a)◦ −→ ∆(~k,~a)

given by
x 7−→

(
− log |t(i)1 |x, . . . ,− log |t(i)ki |x

)
i=1,...,r

.

It is well-defined, since

− log |t(i)1 |x + . . .+ log |t(i)ki |x = − log |t(i)1 · · · t(i)ki | = − log |ai| = val(ai) .

The skeleton of a polystable standard model

The tropicalization map has a natural section J~n,~k,~a : ∆(~k,~a)→ Z(~n,~k, a)◦. This is given by

associating to v ∈ ∆(~k, ~n) the bounded seminorm on A1 ⊗R · · · ⊗R Ar given by∑
l

al
(
f

(l)
1 ⊗ · · · ⊗ f (l)

r

)
7−→ max

l

(
|al| · Jn1,k1,a1(v(1))(f

(l)
1 ) · · · Jnr,kd,ar(v(r))(f (l)

r )
)

where
∑

l al
(
f

(l)
1 ⊗ · · · ⊗ f (l)

r

)
for fi ∈ Ai denotes a general element in A1 ⊗R · · · ⊗R Ar. The

composition ρ~n,~k,~a := J~n,~k,~a ◦ trop~n,~k,~a defines a retraction map

ρ~n,~k,~a : Z(~n,~k,~a)◦ −→ Z(~n,~k,~a)◦

whose image is a closed subset in Z(~n,~k,~a)◦, the non-Archimedean skeleton Σ(~n,~k,~a) of

Z(~n,~k,~a)◦.

Stratification of a polystable model

Given a strict polystable model X of X, the special fiber X0 admits a natural stratification
by locally closed subsets, defined inductively as follows: We first write X0 as a disjoint union

X0 =
n⊔
i=0

X (i)
0 .

Let X (0)
0 be the open locus of regular points of X0 and let X (1)

0 be the open locus of regular

points in X0 − X (0)
0 . In general, given X (i)

0 for i = 1, . . . , n, we define X (i+1)
0 to be the open

locus of regular points in
X0 −

(
X (0)

0 ∪ · · · ∪ X (i)
0

)
.

The subsets X (i)
0 are locally closed and smooth. We refer to the connected components of

X (i)
0 as the strata of X0.
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The skeleton of small open neighborhood

Let X be a strictly polystable model of X. For each stratum E, we set X0(E) to be the
union of all strata E ′ with E ⊆ E ′, i.e. if E is contained in the closure E ′ of E ′. An open
neighborhood U of a point x ∈ E is said to be small if the special fiber of U is contained in
X0(E). We refer to a chart γ : U → Z(~n,~k,~a) as in Definition 2.3.9 as small with respect
to a stratum E if U is a small open neighborhood of a point in E and the image of E is
contained in the closed stratum of Z(~n,~k,~a).

Let U be a small open neighborhood in X . In [18] it is shown that there is a retraction

ρU : U◦ → U◦ onto a closed subset Σ(U) of U◦ such that, whenever γ : U → Z(~n,~k,~a) is
small chart, the diagram

U U◦

Z(~n,~k,~a)◦ Z(~n,~k,~a)◦

ρU

γ◦ γ◦

ρ
~n,~k,~a

commutes and the restriction of γ◦ to Σ(U) induces a homeomorphism Σ(U)
∼−→ Σ(~n,~k,~a).

The polysimplicial complex of a strict polystable model

Let X be a smooth variety over K and let X be a strictly polystable model of X over the
valuation ring R. Denote by Ξ(X ) the set of all strata. It naturally carries a partial order
≺ that is given by E ≺ E ′ if and only E ′ ⊆ E, i.e. if E ′ is contained in the closure E of
E. Given two small charts γ : U → Z(~n,~k,~a) and γ′ : U ′ → Z(~n′, ~k′,~a′) around a stratum

E ∈ Ξ(X ), note that we have ~n = ~n′, ~k = ~k′, and val(ai) = val(a′i) for all i = 1, . . . , r.
Therefore we may define the colored polysimplex ∆(E) associated to a stratum E ∈ Ξ(X ) to
be (as in Equation 2.14)

∆(E) := ∆(~k,~a)

for a small chart γ : U → Z(~n,~k,~a) around E.

Proposition 2.3.10 ([28]). The association E 7→ ∆(E) defines a colored polysimplicial
complex ∆(X ) indexed by the poset Ξ(X ).

Proof. We show that there is a one-to-one correspondence between the faces of ∆(E) and

the strata E ′ ≺ E of X0. In fact, let γ : U → Z(~n,~k,~a) be a small chart around E. A face

of ∆(E) is given by equations v
(i)
j = 0. Denote by x

(i)
j the pullback of the corresponding t

(i)
j

in Ai. Then the corresponding stratum is the unique closed stratum of the open subset U
x

(i)
j

of U on which the x
(i)
j are invertible. Conversely, a stratum E ′ ≺ E as the unique closed

stratum of X (E ′) and U(E ′) is determined by a collection of x
(i)
j . This, in turn, determines

a face of ∆(E).
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The skeleton of a polystable model

Let X be a smooth variety over K and let X be a strictly polystable model of X over the
valuation ring R. In [18] Berkovich has shown that the retraction maps ρU on small open
subsets naturally descend to a retraction map ρX : X ◦ → X ◦ such that the following diagram
commutes.

U◦ U◦

X ◦ X ◦

ρU

ρX

⊆ ⊆

The image of ρX in X ◦ is the non-Archimedean skeleton Σ(X ) of X ◦. From this construction
we immediately obtain the following combinatorial characterization of Σ(X ).

Proposition 2.3.11 ([28]). The skeleton Σ(X ) is naturally homeomorphic to the geometric
realization of the colored polysimplicial complex ∆(X ).

In fact, the retraction map ρX is actually a strong deformation retraction onto Σ(X )
using the natural torus operation on a polystable standard model and formally lifting them
to X . Since this aspect of the construction will play no further role in the remainder of this
article, we refer the avid reader to [18] for details.

Skeletons of Symmetric Powers

In order to tropicalize Xd, we must first make a polystable model of Xd. Then, we will apply
the methods from the previous section to prove Theorem 2.3.1.

A polystable model of Xd

Let X → S be a scheme over k. A relative effective Cartier divisor D on X over S is a
closed subscheme of X that is flat over S for which the ideal sheaf I(D) is a line bundle.

Let g ≥ 2 and d ≥ 0. In [99, Section 2], the authors have introduced a smooth and
proper Deligne-Mumford stack Divg,d with (stack-theoretically) normal crossings boundary
that compactifies the d-th symmetric power of the universal curve Xg over Mg (is a special
instance of the moduli space of stable quotients, as explained in [89, Section 4]). Its objects
are pairs consisting of a proper and flat family π : X → S of semistable curves of genus g
over a scheme S together with a relative effective Cartier divisor D on X over S such that

• the support of D does not meet the nodes of Xs in every fiber Xs over s ∈ S; and

• the twisted canonical divisor KX +D is relatively ample.

Notice that, by Kleiman’s criterion for ampleness, the twisted canonical divisor KX + D is
relatively ample over S if and only if, for every point s of S, the support of Ds has non-empty
intersection with every exceptional component of X .
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There is a natural morphism Divg,d → Mg given by associating to (X → S,D) the
stabilization Xst → S of X → S. Notice that the restriction Divg,d of Divg to the locusMg

of smooth curves is nothing but the d-th symmetric power of the universal curve over Mg.
Let X be a smooth projective curve of genus g ≥ 1 over K and suppose that X is a

strictly semistable model of X over SpecR. Define Xd to be the category (fibered in sets
over SchR) whose objects are tuples (X ′,D) consisting of a semistable model X ′ → S of XS
and a relative effective Cartier divisor D on X ′S = X ′ ×R S such that for every point s ∈ S

• the fiber Ds does not meet the singularities of X ′s; and

• the support of D intersects every exceptional component of X ′s.

Proposition 2.3.12 ([28]). The functor Xd is representable by an R-scheme (also denoted
by Xd) that is a proper polystable model of Xd over R.

Proof. Suppose first that g ≥ 2. In this case, the datum of a strictly semistable model X
over R corresponds to a morphism SpecR → Mss

g → Mg, where Mss

g is the moduli stack
of semistable curves of genus g and the second arrow is the stabilization map. Observe that
Xd is the fibered product

Xd := SpecR×Mg
Divg,d .

Thus Xd is representable by a scheme that is flat and proper over R.
For a K-scheme S the set Xd(S) consists precisely of the relative effective Cartier divisors

of degree d on XS = X ×K S and, by [98, Theorem 3.13], the generic fiber of Xd is nothing
but the d-th symmetric power Xd of X. So the generic fiber of Xd is isomorphic Xd.

Consider the nodes of X given by local equations xiyi = ai for ai ∈ R (for i = 1, . . . , r).

Write the nodes in X ′ above xiyi = ai as x
(i)
j y

(i)
j = t

(i)
j for j = 1, . . . , ki and coordinates t

(i)
j

on Xd. In this case we have ai = t
(i)
1 · · · t(i)ki on Xd. Since the components of X0 do not have

self-intersection, these coordinates can be chosen on a Zariski open neighborhood U and we
may add further coordinates t

(i)
ki+1 . . . , t

(i)
ni (for i = 1, . . . , r) so that, possibly after shrinking

U , they define a small étale chart γ : U → Z(~n,~k,~a).
Suppose now that g = 1. If X has a section, we may construct Xd as the fibered product

SpecR×Mg,1
Divg,1,d

where Divg,n,d is a generalization of Divg,d to Mg,n, as introduced in [89]. The morphism
SpecR→Mg,1 is determined by a choice of a section that does not influence the construction
of Xd. The rest of the above proof goes through verbatim. If X does not have a section,
we may choose a finite extension K ′ of K such that XR′ does have a section. We apply the
above construction and show that it naturally descends to K.

We explicitly point out that, despite its suggestive notation, Xd is not the quotient of
X ×R · · · ×R X by the operation of Sd. While not being smooth over R, the R-scheme
Xd only admits at most toroidal singularities over R, since we are allowed to perform a
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weighted blow-up of the special fiber of X whenever the support of D is at risk of meeting
the singularities in Xs.

Stratification by dual graphs

Consider a point in the special fiber of Xd. It is given by a pair (X ′0, D) where X ′0 is a strictly
semistable curve together with a morphism X ′0 → X0 and D is an effective divisor on X ′0
whose support is contained in the non-singular locus of X ′0 and which has positive degree on
every exceptional component of X ′0.

We associate to (X ′0, D) a dual stable pair
(
G′,mdeg(D)

)
over G as follows: The graph

G′ is the weighted dual graph of X ′0. Its vertices v correspond to the components X ′v of X ′0
and it contains an edge e emanating from two vertices v and v′ for every node connecting the
two components X ′v and X ′v′ . It is endowed with a natural vertex weight h : V (G′) → Z≥0

given by h(v) = g(Xv), the genus of the component Xv. Finally the degree of the restriction
of D to every component Xv defines a divisor

mdeg(D) =
∑

v∈V (G′)

deg
(
D|Xv

)
· v

on G′ supported on the vertices of G′, the multidegree of D.
The graph G′ is naturally a subdivision of G, the dual graph of X0. The condition that

KX′0
+ D has non-empty intersection with every exceptional component of X ′0 over X0 is

equivalent to the condition that D(v) > 0 for every exceptional vertex v of G′ over G, i.e.
to the condition that (G′,mdeg(D)) is a stable pair over G.

Proposition 2.3.13 ([28]). The colored polysimplicial complex Γd is isomorphic to ∆(Xd).

Proof. The strata of the special fiber of Xd are precisely the locally closed subsets on which
the dual graphs are constant. In fact, the smooth locus X (0)

d,0 of Xd,0 is the exactly locus
of stable pairs (X ′0, D) for which X ′0 is isomorphic to X0, which translates into the dual

graph G′ of X ′0 being isomorphic to the dual graph G of X0. The different strata in X (0)
d,0 are

distinguished by the multidegree of D.
Similarly, for i = 0, . . . , d− 1 the regular locus of X (i+1)

d,0 of

Xd,0 −
(
X (0)
d,0 ∪ · · · ∪ X

(i)
d,0

)
corresponds exactly to the locus of stable pairs (X ′0, D) that contain i+1 exceptional compo-
nents. This translates into the condition that the dual graph contains exactly i+1 exceptional
vertices over G′. The different strata, again, are distinguished by the multidegree of D.

Moreover, notice that for every stable pair (G′, D) the locus E(G′,D) of points in Xd,0
whose dual pair is (G′, D) is non-empty. A stratum E(G′′,D) is in the closure of a stratum
E(G′,D′) if and only if there is a weighted edge contraction π : G′′ → G′ over G for which
π∗D′ = D. So there is an order-preserving one-to-one correspondence between the set Ξ(Xd)
of strata of Xd,0 and the set Ξ(G) of stable pairs (G′, D) over G.
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Finally, consider the nodes of X given by by local equations xiyi = ai for ai ∈ R (for

i = 1, . . . , r). Write the nodes in X ′ above xiyi = ai as x
(i)
j y

(i)
j = t

(i)
j for j = 1, . . . , ki and

coordinates t
(i)
j on Xd and recall that in this case we have ai = t

(i)
1 · · · t(i)ki on Xd. From

this description we see that the colored polysimplex (as in Equation 2.15) ∆(E(G′,D)) of the

stratum E(G′,D) is equal to ∆(~k,~a).
On the other hand, the ki are precisely the number of exceptional vertices over an edge ei

of G and the edge length |ei| of ei is equal to val(ai). So the colored polysimplex ∆(G,D′) =

∆
(
~k, val(~a)

)
of a stable pair (G′, D) is equal to ∆(~k,~a) = ∆(E(G′,D)). This identification

naturally commutes with the face morphisms induced by E(G′,D) ≺ E(G′′,D) and (G′′, D′)→
(G′, D) respectively and so we have found a canonical isomorphism between Γd and ∆(Xd).

The process of tropicalization

Let X be a smooth projective curve over K and suppose there is a fixed semistable model
X of X over R. By the semistable reduction theorem (Theorem 1.1.12), we can always find
X if we are willing to replace X by its base change to a finite extension of K.

Denote by Γ the dual tropical curve of X . We now define the tropicalization map

tropXd : Xan
d −→ Γd .

A point x in Xan
d can be represented by a morphism SpecL → Xd for a non-Archimedean

extension L of K. This, in turn, corresponds to an effective Cartier divisor D on XL. Since
Xd is proper over SpecR, there is a unique semistable model X ′ → X and a relative effective
Cartier divisor D in X ′ such that

• the generic fiber of D is equal to D,

• the support Supp(D0) in the special fiber does not meet the nodes of X ′0, and

• Supp(D0) ∩ E 6= ∅ for every exceptional component E of X ′0 over X0.

We may now define tropXd(x) to be the divisor that arises as the multidegree of D0 on Γ. It
is naturally supported on the model G′ of Γ given by the dual graph of X ′0.

A posteriori, Theorem 2.3.1 implies that the construction of tropXd does not depend on
any of the above choices and that the tropicalization map is invariant under base change.
In other words, given a non-Archimedean extension K ′ of K the dual tropical curve ΓXK′ is
naturally isometric to ΓX and the natural diagram commutes:

Xan
K′

(
ΓXK′

)
d

Xan Γd

tropXK′,d

'

tropXd
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The specialization map

Denote by DivK,d(X) the group of K-split divisors on X, which may be written
∑n

i=1 aipi
for points pi ∈ X(K). Write ρX : Xan → Γ the retraction of Xan to ΓX ' Γ, which can be
thought of as the skeleton of Xan. In [11], Baker constructs a specialization homomorphism

ρX,∗ : DivK,d(X) −→ Divd(Γ) .

It is defined by sending a K-split divisor D =
∑n

i=1 aipi on X to the following divisor on Γ:

ρX,∗(D) =
n∑
i=1

aiρX(pi).

Recall that, if Y is a scheme locally of finite type over K, then there is a natural injective
map i : Y (K) ↪→ Y an, whose image is dense if K is algebraically closed. On an affine patch
U = SpecA it is given by associating to a K-rational point the multiplicative seminorm

A −→ K
|.|K−−→ R≥0

on A. So, in particular, there is a natural injective map

i : Div+
K,d(X) ↪−→ Xan

d

whose image is dense in Xan
d if K is algebraically closed.

Proposition 2.3.14 ([28]). Given a K-split effective divisor D on X of degree d, we have

tropXd
(
i(D)

)
= ρX,∗(D) .

In other words, the natural diagram commutes.

Div+
K,d(X) Div+

d (Γ)

Xan
d Γd

ρX,∗

i '
tropXd

Proof of Proposition 2.3.14. Suppose first that K = K is algebraically closed. Let D =∑n
i=1 aipi be an effective K-split divisor on X. Since Xd is proper over R, we find a unique

semistable model X ′ over X as well as a relative effective Cartier divisor D on X ′ such that

• the generic fiber of D is equal to D,

• the support Supp(D0) in the special fiber does not meet the nodes of X ′0, and

• Supp(D0) ∩ E 6= ∅ for every exceptional component E of X ′0 over X0.
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By [15, Theorem 4.11] (also see [19, Theorem 4.3.1]), the semistable model X ′ gives rise
to a semistable vertex set V in Xan, i.e. a set of points v in Xan whose complement is a
collection of closed pointed discs and annuli. The vertices v are precisely the vertices in the
dual graph of X0 and the edges of the dual graph correspond to the annuli in Xan − V .

Let r : Xan → Xk be the reduction map. Then the pointed discs in Xan are given by
B(v) = r−1(Uv) − V where Uv is the open subset of a component in X ′0 given by removing
all of its nodes, and the annuli are given by B(e) = r−1(xe), where the xe are the nodes
of X ′0. The restriction of the retraction map ρX to a pointed disc B(v) shrinks all points
B(v) to the corresponding point v ∈ Γ and its restriction to an annulus B(e) is given by the
retraction of the annulus to its skeleton which is isometric to e.

So, if the point pi extends to a component X ′0,vi of X ′0 via D, its reduction is an element
of Uvi . Therefore pi is a point of B(vi) and thus ρX(pi) = vi. So, by linearity, we have:

ρX,∗(D) =
n∑
i=1

aivi =
∑

v∈V (G′)

deg
(
D|Xv

)
· v = mdegX ′0(D0) .

The general case, when K may not be algebraically closed, follows from the invariance
of tropXd and ρX under base change by a non-Archimedean extension K ′ of K.

Proof of Theorem 2.3.1

We conclude this section with the proof of Theorem 2.3.1.

Proof of Theorem 2.3.1. By Propositions 2.3.5 and 2.3.13, there is a natural isomorphism
µXd : Γd

∼−→ Σ(Xd). What remains to show is that the following diagram commutes.

Xan
d

Σ(Xd) Γd

ρXd

tropXd

µXd

∼

Consider the nodes of X given by by local equations xiyi = ai for ai ∈ R (for i = 1, . . . , r).

Write the nodes in X ′ above xiyi = ai as x
(i)
j y

(i)
j = t

(i)
j for j = 1, . . . , ki and coordinates t

(i)
j

on Xd. In this case we have ai = t
(i)
1 · · · t(i)ki on Xd. By the subsections “Tropicalization of

a polystable standard model,” “The skeleton of a polystable standard model,” and “The
skeleton of small open neighborhood,” the retraction to the skeleton is given by sending
x ∈ Xan

d to
(
− log |t(i)1 |x, . . . ,− log |t(i)ki |x

)r
i=1

in ∆(~k,~a). These are precisely the edge lengths
of the dual graph of X ′ that subdivides the edges of ΓX and this shows that the above
diagram commutes.
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Functoriality

A surprisingly useful consequence of Theorem 2.3.1 is that the continuity of ρXd implies the
continuity of the tropicalization tropXd . This allows us to deduce a collection of functoriality
results from the linearity of Baker’s specialization map in [11] and from the compatibility
of the process of tropicalization with the Abel-Jacobi map proved in [16, Theorem 1.3].
Moreover, the usual arguments from the proof of [56, Theorem 2.2.7] (also see [63, Proposition
3.5]) immediately imply Corollary 2.3.15.

Corollary 2.3.15 ([28]). If Y ⊆ Xd is connected, then the tropicalization tropXd(Y ) is
connected as well.

There are two classes of tautological maps associated to symmetric powers:

(i) For µ = (m1, . . . ,mn) ∈ Zn≥0 and δ = (d1, . . . , dn) ∈ Zn≥0 such that m1d1 + . . .+mndn =
d, we have the diagonal morphism

φµ,δ : Xd1 × · · · ×Xdn −→ Xd

(D1, . . . , Dn) 7−→ m1D1 + . . .mnDn .

(ii) For d ≥ 0 we have the Abel-Jacobi map

αd : Xd −→ Picd(X)

D 7−→ OX(D) .

In this section, we show that the process of tropicalization naturally commutes with both
classes of morphisms.

Diagonal morphisms

Let µ = (m1, . . . ,mn) ∈ Zn≥0 and δ = (d1, . . . , dn) ∈ Zn≥0 such that m1d1 + . . . + mndn = d.

Define the tropical diagonal map φtropµ,δ : Γd1 × · · · × Γdn → Γd by the association

(D1, . . . , Dn) 7−→ m1D1 + . . .+mnDn .

Proposition 2.3.16 ([28]). The tropical diagonal map is a morphism of colored polysim-
plicial complexes that makes the diagram commute.

Xan
d1
× · · · ×Xan

dn
Γd1 × · · · × Γdn

Xan
d Γd

tropXd1
×···×tropXdn

φanµ,δ φtropµ,δ

tropXd

Proof. The linearity of the specialization map implies the commutativity of
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Div+
K,d1

(X)× · · · ×Div+
K,dn

(X) Div+
d1

(Γ)× · · · ×Div+
dn

(Γ)

Div+
K,d(X) Div∗d(Γ) .

ρX,∗×···×ρX,∗

φµ,δ φtropµ,δ

ρX,∗

Suppose first that K = K is algebraically closed. Then the monoids Div+
K,d1

(X) ×
· · · ×Div+

K,dn
(X) and Div+

K,d(X) of effective divisors are dense in Xan
d1
× · · · ×Xan

dn
and Xan

d

respectively. Therefore the continuity of tropXd1
× · · · × tropXdn and tropXd (coming from

Theorem 2.3.1) together with Proposition 2.3.14 implies the claim.
The general case, when K may not be algebraically closed, follows from the compatibility

of the tropicalization map with base changes by non-Archimedean extensions K ′ of K.

Abel-Jacobi map

Denote by Rat(Γ) the abelian group of rational functions on Γ, i.e. the group of continuous
piecewise integer linear functions on Γ. There is a natural homomorphism

Div : Rat(Γ) −→ Div(Γ)

f 7−→
∑
p∈Γ

ordp(f) · p

where ordp(f) denotes the sum of all outgoing slopes at the point p. Its image is the subgroup
PDiv(Γ) of principal divisors in Div(Γ). One can verify that PDiv(Γ) is, in fact, a subgroup
of Div0(Γ). The Picard group Pic(Γ) is defined to be the quotient Div(Γ)/PDiv(Γ). Denote
the image of a divisor D on Γ in Pic(Γ) by [D].

Since PDiv(Γ) is actually a subgroup of Div0(Γ), the quotient respects degrees and Pic(Γ)
naturally decomposes into a disjoint union of union of Picd(Γ), each of which is naturally
a torsor over Pic0(Γ). By the tropical Abel-Jacobi Theorem [97, Theorem 6.2] and [12,
Theorem 3.4], the Picard group naturally carries the structure of a principally polarized
tropical abelian variety.

Let X be a smooth projective curve over K. In [16, Theorem 1.3], Baker and Rabinoff
show that the non-Archimedean skeleton Σ(Picd(X)) of Picd(X)an is naturally isomorphic
(as a principally polarized tropical abelian variety) to the Picard variety Picd(Γ) and that the
continuous retraction ρPicd(X) : Picd(X)an → Σ(Picd(X)) to the skeleton naturally commutes
with the tropical Abel-Jacobi map (see Definition 2.1.13) αq : X → Pic0(X) given by p 7→
[p− q] for a fixed point q of X. We expand on their result in the following Theorem 2.3.17.

Theorem 2.3.17 ([28]). For d ≥ 0, the tropical Abel-Jacobi map αtropd : Γd → Picd(Γ) given
by the association D 7→ [D] naturally makes the following diagram commute:
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Xan
d Γd

Picd(X)an Σ(Picd(X)) Picd(Γ)

αand

tropXd

αtropd

ρPicd(X) ∼

We remark that a version of Theorem 2.3.17 has also appeared in [114, Section 7]. We
include the proof here for completeness.

Proof of Theorem 2.3.17. Suppose first that K = K is algebraically closed. There is a
natural homomorphism

trop: Rat(X)∗ −→ Rat(Γ)

that is given by sending a non-zero rational function f ∈ Rat(X)∗ to the map x 7→
− log |f |x on Γ, thought of as the non-Archimedean skeleton of Xan. Since K is alge-
braically closed, we have Div(X) = DivK(X). By the slope formula [14, Theorem 5.14],
we have Div(trop(f)) = ρX,∗(Div(f)) where ρX,∗ is the specialization map ρX,∗ : Div(X) '
DivK(X)→ Div(Γ).Therefore the specialization map descends to a homomorphism

ρX,∗ : Picd(X) −→ Picd(Γ)

and this immediately implies that the following diagram commutes:

Div+
d (X) Div+

d (Γ)

Picd(X) Picd(Γ)

ρX,∗

αd αtropd

ρX,∗

(2.16)

In [16, Proposition 5.3], the authors show that the Picard group Picd(Γ) is naturally iso-
morphic (as a principally polarized tropical abelian variety) to the non-Archimedean skeleton
Σ(Picd(X)) of Picd(X)an such that the induced diagram commutes.

Picd(X) Picd(Γ)

Picd(X)an Σ(Picd(X))

ρX,∗

⊆ '
ρPicd(X)

In fact, Baker and Rabinoff only show this statement for Pic0(X), but since K is algebraically
closed, we may choose a point p ∈ X(K) and identify Picd(X) with Pic0(X).

SinceK is algebraically closed, both Div+
d (X) and Picd(X) are dense inXan

d and Picd(X)an.
Therefore, by Proposition 2.3.14 above, since the maps ρXd , ρPicd(X), and αd are all continu-
ous, the commutativity of diagram (2.16) implies that the following commutes.

Xan
d Γd

Picd(X)an Σ(Picd(X)) Picd(Γ)

αand

tropXd

αtropd

ρPicd(X) ∼
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The general case for arbitrary K, again follows from the invariance of the projection to
the skeleton under base change by non-Archimedean field extensions.

A Bieri-Groves-Theorem

Let Y ⊆ Xd be a closed subvariety. We define the tropicalization tropXd(Y ) of Y to be the
projection of Y an to Γd via tropXd , i.e. essentially via the specialization of effective divisors
from X to ΓX from [11]. By Theorem 2.3.1 this is nothing but the projection of Y an to the
skeleton of Xan

d via ρXd .
In this section we deduce the following Theorem 2.3.18 from the Bieri-Groves-Theorem

(see [21, Theorem A], [56, Theorem 2.2.3], and Theorem 1.2.15) for projections to the skeleton
associated to a polystable model, which for Xd can be stated as follows.

Theorem 2.3.18 ([28]). Let X be a smooth and proper variety over K and let X be a proper
polystable model of X. Suppose that Y is a closed subvariety of X (defined over K) that is
equidimensional of dimension δ. Then the tropicalization

tropX (Y ) := ρX (Y an) ⊆ Σ(X )

of Y (as a subspace of X) is a Λ-rational polyhedral complex in Σ(X ) of dimension ≤ δ. If
X has a deepest stratum E that is a point and tropX (Y ) contains a point in the interior of
∆(E), then the dimension of tropX (Y ) is equal to δ.

Let Gn
m = SpecK

[
t±1
1 , . . . , t±1

n

]
be a split algebraic torus over K. Recall e.g. from [63]

that there is a natural proper and continuous tropicalization map

tropGnm :
(
Gn
m

)an −→ Rn .

It is given by sending a point x ∈
(
Gn
m

)an
, which corresponds to a multiplicative seminorm |.|x

on K
[
t±1
1 , . . . , t±1

n

]
extending the absolute value on K, to the point

(
|t1|x, . . . , |tn|x

)
∈ Rn.

Using this map, the tropicalization of a subvariety Y ⊆ Gn
m may be defined to be the

projection of Y an ⊆
(
Gn
m

)an
to Rn given by

tropGnm(Y ) := tropGnm(Y an).

Lemma 2.3.19 ([28]). Let Z~n,~k,~a be a standard polystable model over R. Then the generic

fiber is the algebraic torus G|~n|m and the natural diagram commutes.

Z◦
~n,~k,~a

∆(~k,~a)

(
G|~n|m

)an R|~n|

trop
~n,~k,~a

⊆ ⊆
trop

G|~n|m
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Proof. Given a point x ∈ Z◦
~n,~k,~a

, we have:

trop~n,~k,~a(x) =
(
− log

∣∣t(1)
1

∣∣
x
, . . . ,− log

∣∣t(1)
k1

∣∣
x
, . . . ,− log

∣∣t(r)1

∣∣, . . . ,− log
∣∣t(r)kr ∣∣x) .

Let j = ki + 1, . . . , ni and i = 1, . . . , r. Since |.|x is multiplicative, we have∣∣(t(i)j )
∣∣
x
·
∣∣(t(i)j )−1

∣∣
x

=
∣∣1∣∣

x
= 1

and since it is bounded, i.e. |f | ≤ 1 for all f ∈ K[N|~n|], we have
∣∣t(i)j ∣∣x ≤ 1 as well as∣∣(t(i)j )−1

∣∣
x
≤ 1. This implies

∣∣t(i)j ∣∣x = 1. Therefore we have

tropG|~n|m
(x) =

(
− log

∣∣t(1)
1

∣∣
x
, . . . ,− log

∣∣t(1)
n1

∣∣
x
, . . . ,− log

∣∣t(r)1

∣∣
x
, . . . ,− log

∣∣t(r)nr ∣∣x)
=
(
− log

∣∣t(1)
1

∣∣, . . . ,− log
∣∣t(1)
k1

∣∣
x
, 0, . . . , 0,

− log
∣∣t(2)

1

∣∣
x
, . . . ,− log

∣∣t(2)
k2

∣∣
x
, 0, . . . , 0,

. . .

− log
∣∣t(r−1)

1

∣∣, . . . ,− log
∣∣t(r−1)
kr−1

∣∣
x
, 0, . . . , 0,

− log
∣∣t(r)1

∣∣, . . . ,− log
∣∣t(r)kr ∣∣x, 0, . . . , 0)

which is precisely the image of trop~n,~k,~a(x) under the embedding Rk1+...+kr ↪→ Rn1+...+nr .

The proof of Theorem 2.3.18 closely follows along the lines of the proof of [118, Theorem
1.1], the Bieri-Groves-Theorem for subspaces of log-regular varieties.

Proof of Theorem 2.3.18. We need to show that that tropU(Y ) = tropX (Y ) ∩ Σ(U) is a Λ-
rational polyhedral complex for a small open subset U around every stratum E of X0. We may
choose U so that there is a small chart γ : U → Z(~n,~k,~a). By the local description of ρU in

terms of the tropicalization map trop~n,~k,~a : Z(~n,~k,~a)◦ → ∆(~k,~a) in the subsection “Skeletons
of Polystable Models,” we may identify tropU(Y ) with the projection trop~n,~k,~a(γ

◦(Y an∩U◦))
and, by Lemma 2.3.19, with tropG|~n|m

(γ◦(Y an ∩ U◦)).
Since γ is étale, the image γ(Y ∩ U) is locally closed in G|~n|m . Denote by Y γ its closure

in G|~n|m . By a generalization of Draisma’s tropical lifting lemma [54, Lemma 4.4] (see [63,
Proposition 11.5] and [118, Lemma 3.10]), the tropicalization of a locally closed subset is
equal to the tropicalization of its closure and so we have

tropU(Y an) = trop(Y γ) ∩∆(~k,~a) .

The tropicalization tropU(Y an) is a Λ-rational polyhedral complex of dimension δ by
the classical Bieri-Groves-Theorem [21, Theorem A] and [56, Theorem 2.2.3]. Due to the

intersection with ∆(~k,~a), the tropicalization tropU(Y an) might have dimension ≤ δ. If E
is a point, then the cell ∆(E) will be |~n|-dimensional and, if tropU(Y an) has a point in the
interior of a cell, it will be part of an δ-dimensional cell of trop(Y γ) whose intersection with

∆(~k,~a) = ∆(E) is δ-dimensional, since tropG|~n|m
(Y γ) fulfills the balancing condition.
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A Realizable Riemann-Roch Theorem

We can now study the tropical geometry of linear series by directly tropicalizing them as
subvarieties of Xd. For example, Theorem 2.3.18 immediately implies the following realizable
Riemann-Roch Theorem.

Corollary 2.3.20 ([28]). Let X be a Mumford curve of genus g and let D be a divisor on
X of degree d such that both tropXd

∣∣D∣∣ and tropXd
∣∣KX −D

∣∣ contain a point in the interior
of a maximal cell of Γd. Then we have:

dim tropXd
∣∣D∣∣− dim tropXd

∣∣KX −D
∣∣ = d− g + 1 .

By [11], the dimension of tropXd
∣∣D∣∣ is not always equal to the rank of the specialization

of D to Γ. So, this realizable Riemann-Roch Theorem does not in general imply the well-
known intrinsic tropical Riemann-Roch Theorem from [13, 57, 3]. In the special case when
Γ is a generic chain of loops, however, the lifting results of [36] allow us to say more.

Let Γ be a chain of g loops, where each loop consists of two edges having lengths li and
mi (see Figure 2.15). Suppose that Γ is a generic, i.e. suppose that none of the ratios li/mi

is equal to the ratio of two positive integers whose sum is less than or equal to 2g − 2 (see
[48, Definition 4.1]). The results of [36] show that the algebraic Riemann-Roch-Theorem
implies the tropical Riemann-Roch-Theorem.

Figure 2.15: A chain of loops with edge lengths labeled.

Let D a divisor on Γ of degree d and rank r supported on Λ-rational points of Γ. Let X
be a Mumford curve whose dual tropical curve is Γ. By [36] there is a line bundle L of degree
d and rank r on X such that the specialization of L is equal to the divisor class [D]. The
construction in [36] is naturally compatible with residue duality and thus the specialization
of ωX ⊗ L−1 is equal to the class [KΓ −D] and the rank of ωX ⊗ L−1 is equal to the rank of
Kγ −D. Therefore we have

r(D)− r(KΓ −D) = dim
∣∣L∣∣− dim

∣∣ω ⊗ L−1
∣∣ = d− g + 1

and, in this situation, the algebraic Riemann-Roch Theorem implies its tropical counterpart.
If both tropXd |L| and tropXd |L⊗ωX | contain an interior point of a maximal cell of Γd, then
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we have r(D) = dim tropXd |L| as well as r(KΓ−D) = dim tropXd |ω⊗L−1| and the realizable
Riemann-Roch-Theorem from above is equivalent to the tropical Riemann-Roch-Theorem.
One may think of tropXd |L| as the realizability locus in the tropical linear system |D| and
the Baker-Norine rank is equal to the polyhedral dimension of tropXd

∣∣L∣∣.
Faithful Tropicalization of Polystable Skeletons

The classical approach to the process of tropicalization goes by choosing an embedding into a
suitable toric variety and then applying coordinate-wise valuations to the embedded variety.
For symmetric powers, however, Theorem 2.3.1 suggests that it might be more natural to
think of tropicalization as a projection to the non-Archimedean skeleton. The principle of
faithful tropicalization, as pioneered in [14] and further developed e.g. in [50, 64, 65], seeks
to realign these two perspectives.

Expanding on [64] we now prove a faithful tropicalization result for skeletons associated
to polystable models. This is a generalization of [64, Theorem 9.5] to the polystable case
(when no extra divisor at infinity is present).

Theorem 2.3.21 ([28]). Let X be a smooth and proper variety over K and let X be a proper
strictly polystable model of X over R. Then there is an open subset U ⊆ X as well as a
morphism f : U → Gn

m such that the induced tropicalization map

tropf : Uan fan−−→ Gn,an
m

trop−−→ Rn

is faithful, i.e. the restriction of trop ◦fan to Σ(X ) ⊆ Uan is a homeomorphism onto its
image in Rn and is unimodular on each cell of Σ(X ).

Proof. Fix a stratum E of X0 and choose a small chart γ : U → Z(~n,~k,~a) around E. Let

U(E) := UK be the generic fiber and let f(E) : UE → G|~n|m be the base change of γ to the
generic fiber. By Lemma 2.3.19 the tropicalization map

tropf(E)
: Uan

(E)

fan
(E)−−→ G|~n|,anm

trop−−→ R|~n|

naturally restricts to the projection to ∆(~n,~k,~a) on U◦ ⊆ Uan
(E). Therefore, by the subsection

“The skeleton of small open neighborhood,” the restriction to the skeleton Σ(U) ⊆ U◦ ⊆ Uan
(E)

is a unimodular homeomorphism onto its image in R|~n|.
In general, set U =

⋂
E U(E), where E is passing through all the strata of X0. We

take f = (f(E)) : U −→ Gn
m, where n =

∑
E |~ne| and f is given by f(x) =

(
f(E)(x)

)
E
∈

Gn
m. The above reasoning shows that the restriction to the skeleton Σ(X ) is a unimodular

homeomorphism on every polysimplex in Σ(X ).
We finish by showing that tropf is injective: Consider two points x, x′ ∈ Σ(X ) such that

tropf (x) = tropf (x
′). Then tropfE(x) = tropfE(x′) for all strata E of X0. Suppose that x is
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in the relative interior of ∆(E) and x′ is in the relative interior of ∆(E ′). By Lemma 2.3.19
and the subsection “The skeleton of small open neighborhood,” we then have

x = ρX (x) = ρX (x′) .

Since x is in the relative interior of ∆(E), the point x′ is in the relative interior of ∆(E) as
well, by the construction of Σ(X ) as a geometric realization of the polysimplicial complex
associated to X (see Proposition 2.3.11). In particular, we have E = E ′ and x = x′, since
the restriction of tropf(E)

to ∆(E) ⊆ Σ(X ) is injective.

Unfortunately the construction of the map f : U → Gn
m is by no means effective. In the

subsection “Effective faithful tropicalization via linear series” we speculate how the recent
work of Kawaguchi and Yamaki [78] that uses linear series to find effective faithful tropical-
izations of curves may be generalized to find effective faithful tropicalization of symmetric
powers.

Open Questions

Effective faithful tropicalization via linear series

Let L be a line bundle. For g ≥ 0 set

t(g) =


1 if g = 0

3 if g = 1

3g − 1 if g ≥ 2 .

In [78], Kawaguchi and Yamaki show that, if degL ≥ t(g), then there are sections
s0, . . . , sr ∈ H0(X,L) such that the associated map

X −→ Pr

x 7−→
(
s0(x), . . . , sr(x)

)
induces a tropicalization map

trop(s0,...,sr) : Xan −→ TPr

x 7−→
(
− log |s0|x, . . . ,− log |sr|x

)
that is faithful on the skeleton Γ of X, i.e. that restricts to a piecewise integer linear and
unimodular map on Γ.

Let L be an (d− 1)-ample line bundle on X. There is a natural map

Xd −→ Gr
(
d,H0(X,L)∗

)
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into the Grassmannian of d-dimensional quotients of H0(X,L) that is given by associating
to an effective divisor D on X the surjective restriction map

H0(X,L) � H0(X,L⊗OD) .

If L is d-ample, this map is an injection.
Choosing global sections s0, . . . , sr ∈ H0(X,L) we find a map

Xd −→ Gr(d, r)

that on the open locus X◦d (parametrizing reduced divisors on X) is given by sending a split

reduced effective divisor D =
∑d

i=1 pi to the linear space spanned by the pi. If we compose
this with the Plücker embedding, we obtain a map Xd → PN with N =

(
r
k

)
−1 such that the

vanishing of the Plücker coordinates precisely describes the locus of non-reduced divisors.
In other words, we have Xd ∩GN

m = X◦d .
Expanding on the work of Kawaguchi and Yamaki [78], we ask the following.

Question 2.3.22 ([28]). Suppose that L is a line bundle on X that is d-ample. Under which
conditions is there a basis s0, . . . , sr of H0(X,L) such that the induced tropicalization map

X◦,and ↪−→ Gr◦
(
d, r
)an

↪−→ GN,an
m

tropGNm−−−−→ RN

is faithful on the skeleton Σ(Xd) ' Γd?

One can think of the desired condition as a tropical analogue of d-ampleness.

de Jonquiéres divisors

We now discuss de Jonquiéres divisors. Let X be a smooth projective curve with genus g.
Consider a fixed complete linear series l = (L, V ) of degree d and dimension r. Then a de
Jonquiéres divisor of length N is a divisor a1D1 + · · · + akDk ∈ Xd contained in PV that
fulfills

∑k
i=1 deg(Di) = N . These are studied extensively in [120]. If µ1 = (a1, . . . , ak) and

µ2 = (d1, . . . , dk) are positive partitions such that
∑k

i=1 aidi = d, then we denote the set

of de Jonquiéres divisors of length N determined by µ1 and µ2 by DJr,dk,N(µ1, µ2, C, l). In

[120], the author proves that for general curves, if N − d + r ≥ 0, then DJr,dk,N(µ1, µ2, C, l)
has the expected dimension N − d + r. In particular, when N − d + r < 0, the variety
DJr,dk,N(µ1, µ2, C, l) is empty.

One may wonder whether this result remains true tropically. The following proposition
addresses the emptiness result and would imply its algebraic counterpart.

Proposition 2.3.23 ([28]). Let Γ be a generic chain of loops and K its canonical divisor,
so d = 2g − 2 and r = g − 1. If n is such that n + d − r < 0, then |K| does not contain a
divisor of the form d1p1 + · · · dnpn.
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Proof. The canonical divisor has degree 2g − 2 and rank g − 1. Therefore, in order for
n+ d− r < 0 to hold, we must have n < g − 1. The canonical divisor is supported on g − 1
vertices, and because of the genericity condition, any divisor equivalent to the canonical
divisor will have at least that many vertices in its support. Therefore, there is no divisor of
the form d1p1 + · · · dnpn when n < g − 1.

However, unlike in the classical case, the result does not hold for all divisors. We give
the following example.

Example 2.3.24. Consider the length 2 generic chain of loops, and let p be the middle
vertex. Let D = K + p. Then the rank of D is 1 (because there is a divisor p1 + p2, with
each point coming from a separate loop, such that D −D′ is not effective), and so if n = 1
then n− d+ 1 = −1 < 0. So, in the classical case we would expect there to be no divisor in
|D| of the form 3q for q ∈ Γ. However, in this case D = 3p.

Conclusion

In this chapter, we proved that the symmetric power, which is a moduli space for the set of
degree d effective divisors on a curve, tropicalizes to the symmetric power of the tropical-
ization of the curve. Since the symmetric power of a tropical curve is also a moduli space
for the degree d effective divisors on that tropical curve, this theorem provides an example
of the principle that the non-Archimedean skeleton of a classical moduli space is a tropical
moduli space. We will see many more examples of this in the next chapter.
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3

Moduli Spaces

In this chapter we tropicalize moduli spaces and develop tropical moduli spaces. These are
spaces whose points correspond to equivalence classes of some object of interest. Frequently,
moduli spaces will not be compact and so we lightly relax our restrictions on the types of
objects we are interested in order to compactify the space. Tropicalizations of algebraic
moduli spaces often give tropical moduli spaces. The boundary of the compactified moduli
space is stratified, and this is dual to the tropicalization of the moduli space.

The original work in this chapter appears in the section “Divisorial Motivic Zeta Func-
tions,” which is joint work with Martin Ulirsch [27]. It will be published in the Michigan
Mathematics Journal.

We begin with an overview of moduli spaces, following [37]. Abstractly, to make a moduli
problem, we need several ingredients:

1. A class P of geometric objects in some category C,

2. the notion of a family of objects in P , and

3. a notion of what it means for two objects in P to be equivalent.

From this, we can sometimes create a moduli space M, which is an object in the category
C such that there is a bijection between points of M and equivalence classes of objects
in P . We do this because the geometry of M will reflect the geometry of the objects it
parameterizes.

Definition 3.0.1. Let C be the category of topological spaces, let P be a class of objects in
C, and let B ∈ C. A family of objects in P over B is a topological space X together with a
continuous function π : X → B such that for all b ∈ B, we have π−1(b) ∈ P .

Example 3.0.2. Take the category of schemes over K, and let P be semistable curves.
Then a family X over B = Spec(R) is a semistable model for X = π−1((0)).

A family of objects over B will give a function fπ : B → M. This map is given by
sending b ∈ B to π−1(b) ∈ M. In order for this to work, we need that fπ is a morphism of
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C, that no two distinct families give the same function, and that all functions f : B → M
correspond to some family.

Definition 3.0.3. Two families π : X → B and π′ : X ′ → B are isomorphic if there exists
a map φ : X → X ′ such that for all x ∈ X, π′(φ(x)) = π(x).

Definition 3.0.4. A moduli functor M for equivalence classes of families of objects in P is
a functor M from schemes to sets sending:

1. a scheme B to the set of families over B, and

2. a map of schemes f : B → B′ to the map from families over B′ to families over B
given by sending π′ : X ′ → B′ to the pullback B ×B′ X ′ → B.

Definition 3.0.5. We say the moduli functor M is represented by the scheme X if M is
isomorphic to the functor of points of X. More concretely, there is a natural transformation

M→ Hom(−, X).

In this case, we call X a fine moduli space for M. A fine moduli space can fail to exist,
and often this is because the objects have nontrivial automorphisms.

Example 3.0.6 (M0,n). Consider the functor M0,n from schemes to sets, which sends a
scheme B to the set of tuples (π : X → B, σ1, . . . , σn : B → X) where:

1. the map π is flat and proper,

2. for all b ∈ B, we have that π−1(b) ∼= P1,

3. the composition π ◦ σi is the identity,

4. the image of σi is disjoint from the image of σj for i 6= j.

Any individual fiber π−1(b) is a copy of P1 with n distinguished marked points, given by the
images of σ1, . . . , σn inside π−1(b). When n ≤ 3, this functor is represented by a point.

Definition 3.0.7. Let X be a fine moduli space for M. Then there is a universal family
π : U → X, where the fiber π−1(x) is the object represented by x. This universal family is
M(X) ∼= Hom(X,X).

Example 3.0.8 (Universal family over M0,3). The universal family over M0,3 is pictured
in Figure 3.1. This marked P1 is the universal family for M0,3 because given a P1 with 3
marked points, there is an automorphism of P1 taking those three points to 0, 1, and ∞.

Example 3.0.9. (Universal family over M0,4) The moduli space M0,4 is represented by
P1\{0, 1,∞}. A universal family is given in Figure 3.2 by M0,4 × P1. The fourth section σ4

is given by the diagonal.
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Figure 3.1: The universal family over M0,3. Figure 3.2: The universal family over M0,4.

3.1 Pointed Rational Curves

In this section, we compactify and tropicalize M0,n. The space M0,n is a quasiprojective
variety, meaning that it is the intersection inside some projective space of a Zariski-open
and a Zariski-closed subset. So, it is not closed in the Zariski topology. However, it would
be useful to have compact moduli space so that we can take limits. To that end, we will
compactify M0,n. However, we would like to do this by adding some degenerate objects to
the space such that compactification itself is a moduli space and the compactification is not
too singular. This will ensure that our compactification is a meaningful one.

The degenerate objects we need are stable curves. We remind the reader of the definition.

Definition 3.1.1. A rational n-pointed stable curve (C, p1, . . . , pn) is a curve C with arith-
metic genus 0 whose only singularities are nodes, together with distinct nonsingular points
p1, . . . , pn on C. Additionally, we require that the only automorphism of (C, p1, . . . , pn) is
the identity. Concretely, this stability condition means that on each component of C, there
need to be at least 3 points that are either marked or singular.

Theorem 3.1.2 ([79]). There exists an irreducible, smooth, projective, fine moduli space
M0,n for n-pointed rational stable curves which compactifies M0,n. The universal family Un

is obtained from the universal family Un of M0,n via a finite sequence of blow-ups.

Example 3.1.3. Some examples of curves we have added to M0,n in order to make M0,n

are pictured in Figure 3.3.

Figure 3.3: Stable pointed curves.
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Boundary Strata

The boundary of M0,n is M0,n\M0,n and consists of all points giving nodal stable curves.

Example 3.1.4. The boundary of M0,4 consists of the three points in Figure 3.4.

Figure 3.4: Points in the boundary of M0,4.

Example 3.1.5. The boundary ofM0,5 consists of the 15 points with three irreducible com-
ponents and 10 copies of M0,4 parameterizing rational pointed curves with two irreducible
components. These are pictured in Figure 3.5. Combinatorially, they form a Petersen Graph
(see [88, Example 4.3.2]).

Figure 3.5: Combinatorial types of curves in the boundary of M0,5.

There is a natural stratification of the boundary, which carries a poset structure. In order
to understand this, we will look at the dual graph of the marked rational curve.

Definition 3.1.6. Given a rational, stable n-pointed curve (C, p1, . . . , pn), the dual graph is
defined in the following way. There is a vertex for every irreducible component of C, and
en edge for each node of C. Finally, we attach a labelled half-edge for each marked point at
the vertex corresponding to the component containing the marked point.

Example 3.1.7. In Figure 3.6 is an example of a nodal labelled curve and its dual graph.

Figure 3.6: A nodal labelled curve and its dual graph.
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A boundary stratum S is the set of all points in M0,n whose dual graph is a given graph
ΓS. The codimension of a boundary stratum S equals the number of nodes that any curve
parameterized by S has. Equivalently, this is the number of edges in ΓS. The poset structure
is given in the following way. We say that S1 ≺ S2 if ΓS2 is obtained from ΓS1 by contracting
edges. Geometrically, this means that S1 is in the closure of S2. Each stratum is naturally
isomorphic to a product of some copies of M0,j.

Tropicalization and Metric Trees

We now tropicalize M0,n. Observe that a point in M0,n may be viewed as a 2× n matrix[
a1 · · · an
b1 · · · bn

]
.

Two matrices define equivalent points inM0,n if one is obtained from the other by the action
of GL(2) or by column scaling. In general, two 2× n matrices define the same linear space
if one is obtained from the other by the action of GL(2). So, the tropicalization of M0,n

will be the tropicalization of the space of 2 dimensional linear subspaces of Kn modulo some
lineality space. Thus, in order to study the tropicalization of M0,n, we will need to study
the tropicalization of the Grassmannian.

Definition 3.1.8 ([94]). The Grassmannian G(r, n) is the family of r-dimensional subspaces
of Kn. It is a smooth projective variety of dimension r(n− r).

We realize this as a subvariety of P(nr)−1 in the following way. Elements of P(nr)−1 are rep-

resented by vectors p in K(nr) whose coordinates pI are indexed by subsets of I = {1, . . . , n},
with |I| = r. Then G(r, n) is defined by the prime ideal

Ir,n = 〈PI,J : I, J ⊂ [n], |I| = r − 1, |J | = r + 1〉,
whose generators are the quadratic Plücker relations

PI,J =
∑
j∈J

sgn(j; I, J) · pI∪jpJ\j.

We study G0(r, n) := G(r, n) ∩ (K∗)(
n
r)−1, where no Plücker coordinate vanishes.

Since we wish to understand M0,n, we must study the Grassmannian when r = 2. As
we will see, the tropicalization of the Grassmannian Gr(2, n) consists of phylogenetic trees.

Definition 3.1.9. A phylogenetic tree is a tree with n labelled leaves and no vertices of
degree 2. It is also equipped with edge lengths le for each edge e in the tree.

Definition 3.1.10. A tree distance is a vector d = (dij) ∈ R(n2) where dij is the distance
between leaves i and j in some phylogenetic tree. Then, this is the sum of the lengths le of
the edges contained in the unique path from leaf i to leaf j. When all edge lengths le are
non-negative, this is called a tree metric.
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Definition 3.1.11. Let ∆ denote the set of all tree distances in R(n2). This is called the
space of phylogenetic trees.

We will now tropicalize the Grassmannian.

Theorem 3.1.12 ([88, Theorem 4.3.5, Corollary 4.3.12]). The
(
n
4

)
Plücker relations are a

tropical basis (Definition 1.2.11) of I2n. The tropical Grassmannian trop(G0(r, n)) is the
support of a pure 2m − 4 dimensional fan with (2n − 5)!! maximal cones. Up to sign, the
tropical Grassmannian trop(G0(2, n)) coincides with the space of phylogenetic trees:

trop(G0(2, n)) = −∆.

Each cone corresponds to the collection of metrics on a fixed trivalent tree τ .

We note that trop(G0(r, n)) has lineality space L = span(
∑

I:i∈I eI | 1 ≤ i ≤ m) ⊂ R(mr ).
When r = 2, this lineality space corresponds to selecting the lengths of the leaf edges of the
tree. Given any tree, one may fix the lengths of the leaf edges freely.

An ultrametric is a metric d such that max(dij, dik, djk) is attained at least twice for all
i, j, k. This is equivalent to saying that the metric is a tree metric for a rooted tree, where
every leaf has the same distance to the root. This is given by trop(MKn), the tropical linear
space of the matroid of the complete graph. This is more or less immediate from observing
the max condition given above, and considering what the cycles are in Kn.

Lemma 3.1.13 ([88, Lemma 4.3.9]). Every tree distance is an ultrametric plus leaf-lengths,
meaning we have the decomposition

∆ = − trop(MKn) + L.

Now we return to the tropicalization ofM0,n. We can see thatM0,n = Gr(2, n)/(K∗)n−1

(as a GIT quotient) in the following way. Let[
a1 · · · an
b1 · · · bn

]
be a collection of points marking P1. This defines a point in Gr(2, n) via the Plücker em-
bedding. However, some points are equivalent. Let λ1 ∈ K∗. Since (a1 : b1) ∼ (λ1a1 : λ1b1),
we quotient out by the action of (K∗)n given by scaling each column. However, since

Gr(2, n) ⊂ P(n2)−1 is already quotiented by simultaneous scaling, we only need to quotient
by (K∗)n−1 = (K∗)n/(K∗).

The action of the torus (K∗)n−1 can be extended naturally to all of P(n2)−1. Then, the
tropicalization ofM0,n = Gr(2, n)/(K∗)n−1 is equal to the tropicalization of Gr(2, n) modulo
its lineality space. So, the tropicalization of M0,n is the space of metric trees with n leaves.

Example 3.1.14. The tropicalization ofM0,5 is pictured in Figure 3.7. The vertices corre-
spond to curves on the left of Figure 3.5 and the edges correspond to curves on the right.
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Figure 3.7: The tropicalization of M0,5.

In the next section, we will see that the tropicalization of M0,n, viewed now as the
non-Archimedean skeleton of M0,n, gives the space of metric trees with n leaves as well.

3.2 Other Tropical Moduli Spaces

In the previous section, we saw that the tropicalization of the moduli space of genus 0
marked algebraic curves coincides with the moduli space of genus 0 marked tropical curves.
Earlier, we saw that the tropicalization of the space of degree d divisors on a fixed algebraic
curve C coincides with the space of degree d divisors on the tropicalization of C. Both of
these examples illustrate a general phenomenon that the non-Archimedean skeleton of an
algebraic moduli space is typically also a tropical moduli space. In what follows, we give
more examples of this phenomenon. Other examples, which we do not outline below, include
spin curves [35], Jacobians [16], and rational and elliptic stable maps [109, 110].

Marked Algebraic Curves

In [1], the authors tropicalize the moduli space of curvesMg,n. For completeness, we give a
definition of the objects of interest here.

Definition 3.2.1. A stable n pointed curve (C, p1, . . . , pn) is a complete connected curve C
that has only nodes as singularities, together with an ordered collection p1, . . . , pn ∈ C of
distinct smooth points of C such that the n+ 1 tuple (C, p1, . . . , pn) has only finitely many
automorphisms. The coarse moduli space for stable n pointed curves of genus g is Mg,n.

On the tropical side, we could construct a moduli space for marked tropical curves. A
marked tropical curve is given by a tuple (G,w, l, L), where G is a graph, w is the weight
function assigning genera to the vertices of G, l is the length function on the edges of G,
and L is a set of labelled legs or infinite edges attached to the vertices of G. We will say
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that two marked tropical curves are isomorphic if one can be obtained from the other via
the following operations:

1. Graph automorphisms,

2. Contracting a leaf of weight 0 or with fewer than 2 legs, together with the edge con-
nected to it,

3. Removing a vertex of degree 2 and weight 0 with no legs, and replacing the correspond-
ing edges by one edge whose length is the sum of the old lengths, or

4. Removing an edge of length 0 and adding the weights of the corresponding vertices
and combining their legs.

In this way, every marked tropical curve has a minimal skeleton. This is a tropical curve
with no vertices of weight 0 and degree less than or equal to two, or edges of length zero.

Given a fixed tuple (G,w,L), or combinatorial type, the moduli space of tropical curves

of this type is given by R|E|≥0/Aut(Γ). The coordinates in R|E|≥0 give the edge lengths. The
boundary of these cones corresponds to curves with at least one edge of length 0. Then, we
glue the cones corresponding to curves of genus g and n legs along the boundaries of these

cones to form Mtrop

g,n . The moduli space Mtrop

g,n is a stacky fan. This is a fan together with
some identifications, as described above.

Example 3.2.2. The stacky fan Mtrop
2,0 is displayed in Figure 3.8.

Figure 3.8: The moduli space M trop
2 of genus 2 tropical curves.
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Let Man

g,n be the non-Archimedean analytification of Mg,n as in Section 1.3, and let

Σ(Mg,n) denote the non-Archimedean skeleton of Mg,n. Let ρ : Man

g,n → Σ(Mg,n) be the

retraction map. Let trop : Man

g,n → M
trop

g,n be the set-theoretic map descried as follows. A

point inMan

g,n is represented (after a possible field extension) by a stable n pointed curve C
of genus g over a valuation ring. Let Γ be the corresponding dual tropical curve. Then we
define trop(C) = Γ.

Theorem 3.2.3 ([1]). There is an isomorphism of generalized cone complexes between

Σ(Mg,n) and Mtrop

g,n such that the following diagram commutes:

Man

g,n Σ(Mg,n)

Mtrop

g,n

ρ

trop ∼

Weighted Stable Curves

In [69], Hassett introduces a moduli space of weighted stable curves. Let g be a non-
negative integer, and let A = (a1, . . . , an) be a vector of weights in Q ∩ [0, 1] such that
2g − 1 + a1 + · · · + an > 0. Then a weighted stable curve (C, p1, . . . , pn) is a nodal curve of
genus g such that a subset of the points pi may coincide only if the sum of their weights is
not greater than 1, and for every rational component of C, the number of singular points on
C plus the weights of points pi on C is greater than 2. Then, Hassett defines and constructs
moduli spaces M g,A.

In [119], Ulirsch constructs a tropical moduli space Mtrop

g,A parameterizing isomorphism
classes of tropical curves that are of stable type (g, A). For the complete definition, see [119].

There is a naive set-theoretic tropicalization map tropg,A : Man

g,A → M
trop

g,A sending a point

x ∈Man

g,A to (after possible field extension) the dual tropical curve of the curve corresponding
to x. This tropical curve will also be stable of type (g, A). We now give Ulirsch’s theorem
identifying the skeleton ofMg,A with the corresponding tropical moduli space. The genus 0
case of this was treated in [40].

Theorem 3.2.4 ([119]). There is an isomorphism of generalized cone complexes between

Σ(Mg,A) and Mtrop

g,A such that the following diagram commutes:

Man

g,A Σ(Mg,A)

Mtrop

g,A

ρ

trop ∼

Remark 3.2.5. This theorem specializes to Theorem 3.2.3 when A = (1, . . . , 1).
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Admissible Covers

In [38], the authors tropicalize the space of admissible covers.

Definition 3.2.6. An admissible cover π : D → C of degree d is a finite morphism of
pointed curves such that

1. the branch locus of π is contained in the union of marked points and nodes of C,

2. All inverse images of marked points in C are marked points in D,

3. The set of nodes of D is the preimage under π of the set of nodes of C, and

4. Over a node, we have locally that D is given by y1y2 = a, C is given by x1x2 = al, and
π is given by x1 = yl1, x2 = yl2 for some positive integer l ≤ d.

Fix a vector of partitions ~µ = (µ1, . . . , µr) of a non-negative integer d. Let p1, . . . , pr,
q1, . . . , qs be points on a smooth genus h curve C. Then the cover π : D → C is a Hurwitz
cover if π is unramified over the complement of pi and qj, and over the point pi it has
ramification profile µi and over qi it has simple ramification. Let Hg→h(~µ) be the space of
degree d Hurwitz covers [D → C] of smooth genus h curves C by genus g curves D with
ramification µi over smooth marked points pi of C, and simple ramification over smooth
marked points q1, . . . , qs. Let Hg→h(~µ) the space of admissible covers, which compactifies
Hg→h(~µ).

A Hurwitz cover of tropical curves is a harmonic map of tropical curves that satisfies the
local Riemann-Hurwitz condition at every point. Denote by Htrop

g→h(~µ) the space of admissible
covers of genus h tropical curves by genus g tropical curves with expansion factors along
infinite edges prescribed by ~µ. For details on how to construct this moduli space, see [38].

We now describe a tropicalization map from from the Berkovich analytification (see
Section 1.3) Han

g→h(~µ) to Htrop
g→h(~µ). A point [D → C] of Han

g→h(~µ) is represented by an
admissible cover over Spec(K), where K is a valued field extension of C. This map extends
uniquely to a family of curves over Spec(R) where R is a rank 1 valuation ring. Let [ΓD → ΓC ]
be the associated morphism of the dual tropical curves of the special fibers. The ramification
data of the admissible cover determines the expansion factors on the leaf edges. Thus we
have a map

trop : Han
g→h(~µ) → Htrop

g→h(~µ)

[D → C] 7→ [ΓD → ΓC ].

We are now ready to state the main result of [38].
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Theorem 3.2.7 ([38]). The tropicalization map trop : Han
g→h(~µ)→ Htrop

g→h(~µ) factors through

the retraction to the skeleton Σ(Han

g→h(~µ)):

Han
g→h(~µ) Htrop

g→h(~µ)

Mtrop

g,A

trop

ρ
tropΣ

The Space of Divisors

Denote by Divg,d the moduli space parameterizing pairs (X, D̃) consisting of a smooth alge-
braic curve X of genus g and an effective divisor D̃ on X of degree d. This is the symmetric
product of the universal curve over Mg. In [99, Theorem 3], the authors show that the
non-Archimedean skeleton of this space gives a tropical moduli space of divisors.

Let Divtrop
g,d denote the moduli space of pairs (Γ, D) consisting of a tropical curve Γ

together with an effective divisor of degree d on Γ.
There is a tropicalization map

trop : Divang,d → Divtrop
g,d

that is defined in the following way. A point in Divang,d is represented by a tuple (X, D̃)

consisting of a curve X over a non-Archimedean extension L of K and a divisor D̃ of
degree d. We then send this to the dual tropical curve Γ associated to X together with the
specialization of D̃ to Γ.

Theorem 3.2.8 ([99]). The tropicalization map trop : Divang,d → Divtrop
g,d has a continuous

section J that induces an isomorphism between Divtrop
g,d and the non-Archimedean skeleton

Σ(Divg,d) making the following diagram commute:

Divang,d Σ(Divg,d)

Divtrop
g,d

ρ

trop
J

3.3 Divisorial Motivic Zeta Functions

In this section, we construct a new moduli space, and we apply our understanding of its
boundary strata to define a divisorial motivic zeta function. A motivic zeta function can
be thought of as a generating function over the Grothendieck ring. Here, the coefficients in
the series are varieties of increasing size related to a variety of interest. The properties of
these functions, such as their rationality, are of great interest. These form an analogue of
the classical zeta function, which is the subject of the Weil conjectures.
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Definition 3.3.1. Let k be an algebraically closed field. The Grothendieck ring K0(Var /k)
of varieties over k is the free abelian group on the set of isomorphism classes of varieties
modulo the relations [X] =

[
X\Y

]
+ [Y ], where Y is a closed subvariety of X. It naturally

carries a product given by taking the product of varieties: [X] · [Y ] =
[
(X ×k Y )

]
.

For simplicity, we assume that k has characteristic zero. Otherwise, we must instead
work with K̃0(Var /k), which is the quotient of K0(Var /k) by the relations generated by
[X] − [Y ] whenever there is a radical surjective morphism X → Y of varieties over k; the

product in K̃0(Var /k) is given by the reduced product of algebraic varieties. We denote the
class of A1

k by L in K0(Var /k).
Let X be a quasiprojective variety over k. For d ≥ 1, the symmetric group Sd acts on Xd,

and the quotient by this action gives Xd, the d-th symmetric product of X. By convention,
we set X0 = Spec(k). Kapranov [76] defines the motivic zeta function of X with coefficients
in the Grothendieck ring:

Zmot

(
X; t

)
=
∑
d≥0

[
Xd

]
td ∈ 1 + t ·K0(Var /k)JtK.

This generalizes Weil’s zeta function for varieties over finite fields to the motivic setting.
When X is a smooth projective curve, Zmot(X, t) is rational (see e.g. [76] and [84]).

Here we propose a natural generalization Zdiv(X, ~p) (see Definition 3.3.5) of Kapranov’s
motivic zeta function for a stable curve X with n marked points ~p that takes into account
the behavior at the nodes and the marked points. The basic idea is to replace the symmetric
power Xd in the definition of Kapranov’s zeta function by the fiber over (X, ~p) in a quotient
of Hassett’s moduli space of weighted stable curves of type (1n, εd) (as in [69]). In the case
n = 0, this space functions as a natural desingularization of the moduli space of effective
divisors on X (see [99, Section 2]). When X is smooth and does not have marked points, our
coefficients equal the symmetric power, giving Zdiv(X, t) = Zmot(X, t). Our main result is the
following Theorem 3.3.2. In the subsections that follow, we give the necessary background
and prove this result.

Theorem 3.3.2 ([27]). Let (X, ~p) be a stable quasiprojective curve over k with n marked
points ~p. Then Zdiv(X, ~p; t) is rational over K0(Var /k). Moreover, if G = (E, V ) is the dual
graph of X, then

Zdiv

(
X, ~p; t

)
=

(
1− Lt

1− Lt− t+ t2

)|E|+n
(1− t)2|E|+n

∏
v∈V

Zmot

(
X̃v; t

)
,

where X̃v is the normalization of the component of X corresponding to the vertex v ∈ V .

In [17] Bejleri, Ranganathan, and Vakil define a motivic Hilbert zeta function ZHilb(X; t),
where the coefficients are given by Hilbert schemes of points on a variety X. Their zeta
function is sensitive to the singularities of X, while also agreeing with the usual motivic zeta
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function when X is smooth. They show that the motivic Hilbert zeta function of a reduced
curve is rational. In contrast to our divisorial zeta function, the motivic Hilbert zeta function
in [17] does not take into account marked points. Using [17, Lemma 2.1, Corollary 2.2, and
Proposition 6.1], one can calculate that, for a nodal quasiprojective curve X with dual graph
G = (V,E), we have

ZHilb

(
X; t

)
=
(
1− t+ Lt2

)|E| ·∏
v∈V

Zmot

(
X̃v; t

)
. (3.1)

It is instructive to compare our formula in Theorem 3.3.2 as well as formula (3.1) for the
Hilbert motivic zeta function with the formula for the usual Kapranov motivic zeta function
Zmot(X; t). Using [41, Chapter 7, Proposition 1.1.7] (which is also stated as Lemma 3.3.12
below) one may calculate that

Zmot

(
X; t

)
= (1− t)|E| ·

∏
v∈V

Zmot

(
X̃v; t

)
.

While Zmot

(
X; t

)
appears to be insensitive to the nodal singularities of X, both Zdiv

(
X; t

)
and ZHilb

(
X; t

)
see the nodes by adding extra components.

Kapranov’s motivic zeta function is known to be irrational for many surfaces. Let X
be a smooth projective connected surface. In [83] Larsen and Lunts prove that X is only
pointwise rational when X has Kodaira dimension −1 (over C) and in [82] they show (over
any field) that Zmot(X; t) is not pointwise rational when the Kodaira dimension of X is ≥ 2.

Effective Divisors on Pointed Stable Curves

Let k be an algebraically closed field of characteristic 0 and let g, n ≥ 0 with 2g− 2 +n > 0.

Definition 3.3.3. Define a category Divg,n,d fibered in groupoids over schemes, whose ob-
jects are tuples (π : X ′ → S, ~p′, D) consisting of the following data:

(i) π : X ′ → S is a flat and proper morphism of connected nodal curves;

(ii) ~p′ is an ordered collection of sections p′1, . . . , p
′
n : S → X that do not meet the nodes in

each fiber X ′s of π; and

(iii) D is a relative effective Cartier divisor of degree d on X ′ over S, whose support does
not intersect the nodes and sections in each fiber X ′s of X ′ over S.

We also require that the twisted canonical divisor

Kπ + εD + p′1 + . . .+ p′n

is π-relatively ample, where ε = 1
d
> 0.
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Denote byMg,1n,εd, the moduli space of weighted stable curves of genus g with n marked
points of weight one and d marked points of weight ε = 1

d
> 0 in the sense of [69]. There is

a natural operation of Sd on Mg,1n,εd that permutes the d marked points of weight ε. Then
Divg,n,d is naturally equivalent to the relative coarse moduli space of[

Mg,1n,εd/Sd
]

over Mg,n in the sense of [2, Theorem 3.1]. So, in particular, it is a smooth and proper
Deligne-Mumford stack with a projective coarse moduli space. There is a natural forgetful
morphism Divg,n,d →Mg,n and we write Divg,n,d for its restriction toMg,n. The complement
of Divg,n,d in Divg,n,d has (stack-theoretically) normal crossings.

Remark 3.3.4. For n = 0, the moduli space Divg,d was constructed in [99, Section 2]. It
is also equal to a special case of the moduli space of stable quotients, as defined in [89,
Section 4].

Let (X, ~p) = (X, p1, . . . , pn) be a stable marked curve of genus g given by a morphism
Spec(k)→Mg,n. The fiber over this point is given by

Div+
d

(
X, ~p

)
:= Divg,n,d×Mg,n

Spec(k).

This describes tuples (X ′, ~p′, D) consisting of

(i) a nodal curve X ′;

(ii) a collection of marked points ~p′ = (p′1, . . . , p
′
n) of X ′ such that p′1, . . . , p

′
n do not meet

the nodes of X ′ and the stabilization of (X ′, ~p′) is isomorphic to (X, ~p);

(iii) a relative effective Cartier divisor D of degree d on X ′ whose support does not intersect
the nodes or marked points of X ′.

We also require that the twisted canonical divisor

K + εD + p′1 + · · ·+ p′n

is ample, where ε = 1
d
> 0. If X is smooth and has no marked points, the space Div+

d (X)
gives effective divisors on X and is the d-th symmetric power Xd (see [98, Theorem 3.13]).

If X is quasiprojective, we choose a compactification X of X by smooth points and define
Div+

d (X, ~p) to be the open locus in Div+
d (X, ~p) where the support of D does not intersect

the preimage of the boundary X −X in X ′. This does not depend on the choice of X.
Now, we describe the strata of Div+

d (X, ~p) as in [28]. We associate to (X ′, ~p′, D) a dual
stable pair

(
G′,mdeg(D)

)
as follows: The graph G′ is the dual graph of (X ′, ~p′), where the

vertices v of G′ each correspond to a component X ′v of X ′. For a node between components
X ′v and X ′v′ of X, there is an edge between vertices v and v′ of G′. For a marked point in
a component Xv we add a leg at v. The restriction of D to each component X ′v defines a
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Figure 3.9: Let (X, p) be a smooth curve with genus g ≥ 1 and one marked point p. In
this case, Div+

2 (X, p) has four strata, corresponding to the pictured combinatorial types of
marked stable curves and divisors.

Figure 3.10: Let X be a curve with two smooth components each having genus larger than
one meeting in a node. In this case, Div+

2 (X) has seven strata, corresponding to the pictured
combinatorial types of stable curves and divisors.

divisor mdeg(D) =
∑

v deg(D|X′v) · v on G′. The graph G′ is a subdivision of G, the dual
graph of (X, ~p). The pair (G′, D) is a stable pair over G, meaning that the degree of D is at
least 1 on all exceptional vertices of G′. Denote by ∆(G, d) the collection of all stable pairs
of degree d over G.

One can generalize the results in [28, Section 3.2] to show that the strata of Div+
d (X, ~p)

are precisely the locally closed subsets on which the dual pairs are constant. Denote by
Div+

(G′,D)(X, ~p) the locus of points in Div+
d (X, ~p) whose dual pair is (G′, D).

Divisorial Motivic Zeta Function

Definition 3.3.5. Let (X, ~p) be a stable marked quasiprojective curve over k of genus g
with n marked points. The divisorial motivic zeta function of (X, ~p) is defined to be

Zdiv

(
X, ~p; t

)
=
∑
d≥0

[
Div+

d (X, ~p)
]
td ∈ 1 + t ·K0(Var /k)JtK.

We break up the classes
[

Div+
d (X, ~p)

]
along their strata using the following lemma.
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Lemma 3.3.6 ([41, Chapter 2, Lemma 1.3.3]). Let Y be a variety over k and suppose we
have a decomposition Y = Y1 t · · · t Yr where all Yi are locally closed subvarieties of Y .
Then: [

Y
]

=
[
Y1

]
+ · · ·+

[
Yr
]
.

Lemma 3.3.7 ([27]). Let (X, ~p) be a stable marked quasiprojective curve over k.

Zdiv

(
X, ~p; t

)
=
∑
d≥0

td
∑

∆(G,d)

[
Div(G′,D)(X, ~p)

]
,

where the second sum is over stable pairs (G′, D) of degree d over the dual graph G of (X, ~p).

Proof. This follows from the description of the strata of Div+
d (X, ~p) and Lemma 3.3.6.

Given a stable marked quasiprojective curve (X, ~p) and points q1, . . . , qm ∈ X, write(
X, ~p,−~q

)
:=
(
X\{q1, . . . , qm}, {p1, . . . , pn}\{q1, . . . , qm}

)
.

Given a connected component Xv of X, we denote the non-special locus of Xv by

X(0)
v :=

(
Xv,−~p,− Sing(Xv)

)
.

We now describe the class of Div+
(G′,D)(X, ~p) in the Grothendieck ring.

Lemma 3.3.8 ([27]). Let (X, ~p) be a stable marked quasiprojective curve, and let (G′, D) be
a stable pair such that the stabilization of G′ is equal to the dual graph G of X. Then:[

Div(G′,D)(X, ~p)
]

=
∏
v∈G

[
(X(0)

v )D(v)

] ∏
v′∈G′\G

[
GD(v′)−1

]
,

where G denotes the one-dimensional algebraic torus A1 − {0} over k.

Proof. A point in Div+
(G′,D)(X, ~p) gives a divisor of degree D(v) on X

(0)
v for each v ∈ G′.

On non-exceptional components, these are points in (X
(0)
v )D(v). On exceptional components,

these are points in GD(v′)−1.

We now prove a series of propositions which give us a way to iteratively relate the
divisorial motivic zeta function of a stable curve to the divisorial motivic zeta functions of
its components.

Proposition 3.3.9 ([27]). Let (X, ~p, q1, q2) be a stable quasiprojective curve with n + 2
marked points and let (X/q1∼q2 , ~p) be the curve with a nodal self-intersection obtained by
gluing q1 and q2. Then:

Zdiv

(
X, ~p, q1,−q2; t

)
= Zdiv

(
X/q1∼q2 , ~p; t

)
.
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Figure 3.11: Stable pair in Proposition 3.3.9 Figure 3.12: Stable pair in Proposition 3.3.10

Proof. Using Lemmas 3.3.7 and 3.3.8, we have that

Zdiv

(
X/q1∼q2 , ~p; t

)
=
∑
d≥0

td
d∑
j=0

[
Div+

j (X, ~p,−p,−q)
] ∑
α∈comp(d−j)

[
G
]
α

= Zdiv

(
X, ~p, q1,−q2; t

)
,

where we interpret j to be the degree of the divisor restricted to (X, ~p,−q1,−q2). The last
sum is taken over all ordered ways to write the integer d − j as a sum of positive integers,
and

[
G
]
α

:=
[
Gα1−1

]
· · ·
[
Gαl−1

]
. We see this because in both cases the strata are given by

stable pairs whose exceptional components emanate from the point q1 (see Figure 3.11).

Proposition 3.3.10 ([27]). Let (X, ~p, p) be a stable quasiprojective curve with n+1 marked
points and let (Y, ~q, q) be a stable quasiprojective curve with m+ 1 marked points. Denote
by X tp∼q Y the curve obtained by gluing X to Y along a node at the points p, q. Then:

Zdiv

(
X tp∼q Y, ~p, ~q; t

)
= Zdiv

(
X, ~p, p; t

)
· Zdiv

(
Y, ~q,−q; t

)
.

Proof. By Lemmas 3.3.7 and 3.3.8, we have that the divisorial zeta function is

Zdiv

(
X tp∼q Y, ~p, ~q; t

)
=
∑
d≥0

td
∑
r+l=d

[
Div+

r (Y, ~q,−q)
] l∑

lx=0

[
Div+

lx
(X, ~p,−p)

] ∑
α∈comp(l−lx)

[
G
]
α

 .

where we interpret r to be the degree of the divisor restricted to Y , l to be the degree of
the divisor restricted to X and the exceptional components, and lx to be the degree of the
divisor restricted to X (See Figure 3.12). We observe that this is in fact a product of series:(∑

d≥0

td
[

Div+
d (Y, ~q,−q)

])∑
d≥0

td
d∑

dx=0

[
Div+

dx
(X, ~p,−p)

] ∑
α∈ comp(d−dx)

[
G
]
α


On the left we have Zdiv

(
Y, ~q,−q; t

)
and on the right we have Zdiv

(
X, ~p, p; t

)
.
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Proposition 3.3.11 ([27]). Let X be a smooth quasiprojective curve and let p ∈ X be a
point. Then,

Zdiv

(
X,−p; t

)
= Zdiv(X; t) · (1− t).

First, we need the following lemma.

Lemma 3.3.12 ([41, Chapter 7, Proposition 1.1.7]). If X is a quasiprojective variety, and
Y ↪→ X is a closed subvariety with complement U , then[

Xn

]
=
∑
i+j=n

[
Yi
]
·
[
Uj
]
.

Proof of Proposition 3.3.11. In our case, we take Y = p and U = X(−p). Then,

[
Xn

]
=
∑
i+j=n

[
1
]
·
[
(X,−p)j

]
=

n∑
j=0

[
(X,−p)j

]
.

Since X is smooth, we have Xd = Div+
d (X). Applying the above equation, we find

Zdiv(X; t) =
∞∑
d=0

td
d∑
j=0

[
X(−p)j

]
= Zdiv(X,−p; t)(1 + t+ t2 + t3 + · · · ) =

Zdiv(X,−p; t)
1− t .

Proposition 3.3.13 ([27]). Denote by G be the one-dimensional algebraic torus A1 − {0}
over k and by L the class of A1 in the Grothendieck ring. Then:

Zdiv(G; t) = Zmot(G; t) =
1− t

1− Lt
.

Proof. By Lemma 3.3.12 applied to X = A1 and U = G, we find that
[
A1
d

]
=
∑d

i=0

[
Gi

]
.

Using the fact that (A1)d = Ad, and therefore
[
(A1)d

]
= Ld, we have:

Zdiv(G; t) =
∑
d≥0

td
[
Gd

]
=
∑
d≥0

td

(
Ld −

d−1∑
i=0

[
Gi

])
=
∑
d≥0

tdLd −
∑
d≥0

td
d−1∑
i=0

[
Gi

]
.

After re-indexing, we find:

Zdiv(G; t) =
1

1− Lt
− t
∑
d≥0

td
d∑
i=0

[
Gi

]
=

1

1− Lt
− t · Zdiv(G; t) · (1 + t+ t2 + · · · ) =

1

1− Lt
− t · Zdiv(G; t)

1− t .

Solving for Zdiv(G, t), we find that Zdiv(G, t) = 1−t
1−Lt , as claimed. The equality Zdiv(G; t) =

Zmot(G; t) holds, since G is a smooth curve without marked points.
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Proposition 3.3.14 ([27]). Let (X, ~p, q) be a quasiprojective stable marked curve. Then,

Zdiv

(
X, ~p, q; t

)
= Zdiv

(
X, ~p,−q; t

)
· 1− Lt

1− Lt− t+ t2
.

Proof. We have

Zdiv

(
X, ~p, q; t

)
=
∑
d≥0

td
d∑
j=0

[
Div+

d−j(X, ~p,−q)
] ∑
α∈comp(j)

[
G
]
α

=

(∑
d≥0

[
Div+

d (X, ~p,−q)
]
td

)1 +
∑
d≥1

td
∑

α∈comp(d)

[
G
]
α

 ,

where we think of j as the degree of the divisor restricted to exceptional components. We
evaluate the right term in this product. Re-organizing by the length of the composition,

1 +
∑
d≥1

td
∑

α∈comp(d)

[
G
]
α

= 1 +
∑
k≥1

∑
d≥k

td
∑

α∈comp(d)
|α|=k

[
G
]
α

= 1 +
∑
k≥1

(
t · Zdiv(G; t)

)k
=

1

1− t · Zdiv(G, t)
.

Applying Proposition 3.3.13 and simplifying, we obtain the result.

We are now ready to prove Theorem 3.3.2 from the introduction.

Proof of Theorem 3.3.2. Let (X, ~p) be a pointed stable curve over k with dual graph G. We
use Propositions 3.3.9 and 3.3.10 to break up X into its components. Each node in X yields
a new marked point and a new hole. By Proposition 3.3.14, exchanging the |E|+ n marked
points for a holes leads to factors of

1− Lt
1− Lt− t+ t2

.

Stitching the 2|E|+ n holes leads to factors of 1− t by Proposition 3.3.11. So we obtain

Zdiv(X, ~p; t) =

(
1− Lt

1− Lt− t+ t2

)|E|+n
(1− t)2|E|+n

∏
v∈V

Zdiv

(
X̃v, t

)
.

Finally, we use that the motivic zeta function is equal to the divisorial zeta function for each
X̃v because X̃v is smooth and does not have marked points.
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Conclusion

In this chapter, we studied many instances of tropical and classical moduli spaces. The
tropicalization of a classical moduli space typically has cells corresponding to the boundary
strata in the compactification. Points in these cells represent tropical objects which are
dual to the classical object represented by points the corresponding stratum. Using this
description of the boundary strata for a particular moduli space, we defined a divisorial
motivic zeta function for marked stable curves, and proved that it is rational.
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4

Skeletons

Given a curve X, we have seen how to associate to X its abstract tropicalization, which
is the dual tropical curve Γ of the special fiber of a semistable model of X. In practice,
finding the abstract tropicalization of a general curve is difficult and there is no known
algorithm to do this [45, Remark 3]. In low genus, and for special types of curves, methods
for computing abstract tropicalizations exist. In this chapter, we describe and compare the
existing methods for computing abstract tropicalizations of curves in low genus. Then, we
compute abstract tropicalizations of hyperelliptic and superelliptic curves algorithmically.

The original work in this chapter appears in the following places. The section “Hyper-
elliptic Curves” and the subsection “Existence of Faithful Tropicalizations” are based on
[22], which is joint work with with Barbara Bolognese and Lynn Chua. It was published in
the book Combinatorial Algebraic Geometry: Selected Papers from the 2016 Apprenticeship
Program. The section “Superelliptic Curves” is joint work with Paul Helminck [26] and it
will be published in Advances in Geometry.

We now highlight some of the difficulties of finding abstract tropicalizations of curves,
offering the following example as motivation for why this is a difficult problem.

Example 4.0.1. ([116, Problem 9 on Abelian Combinatorics]) We begin with a curve in P2,
given by the zero locus of

f(x, y, z) = 41x4 + 1530x3y + 3508x3z + 1424x2y2 + 2490x2yz

− 2274x2z2 + 470xy3 + 680xy2z − 930xyz2 + 772xz3

+ 535y4 − 350y3z − 1960y2z2 − 3090yz3 − 2047z4,

defined over Q2. We first compute its embedded tropicalization. The induced regular subdi-
vision of the Newton polygon will be trivial, since the 2-adic valuation of the coefficients on
the x4, y4, z4 terms is each 0. Therefore, we can detect no information about the structure
of the abstract tropicalization from this embedded tropicalization.

On the other hand, if we apply a change of coordinates

x =
1

12
X +

1

2
Y − 1

12
Z, y =

1

2
X − 1

2
Y, z = − 5

12
X − 1

12
Z,
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we obtain

0 = −256X3Y − 2X2Y 2 − 256XY 3 − 8X2Y Z − 8XY 2Z −XY Z2 − 2XZ3 − 2Y Z3.

We may then calculate the regular subdivision of the Newton polygon in Polymake 3.0 [58],
weighted by the 2-adic valuations of the coefficients.

The embedded tropicalization and corresponding metric graph, with edge lengths, are
depicted in Figure 4.1. Since all vertices are trivalent, all edges have multiplicity 1, and
dim(H1(trop(X),R)) = 3, by Theorem 1.3.29 we conclude that this is the abstract tropical-
ization of the curve.

Figure 4.1: The Newton polygon from Example 4.0.1 together with its unimodular triangu-
lation on the upper left, the embedded tropicalization on the upper right, and the metric
graph at the bottom.

So, given an embedding of a curve, the corresponding embedded tropicalization may
contain partial or no information about the structure of the abstract tropicalization. Much
work has been done on the problem of computing abstract tropicalizations of curves. In
what follows, we describe the known results in this active area of research.
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4.1 Genus One

Let X be a genus one curve over K, meaning that it is an elliptic curve. The curve X can
be embedded in P2 so that it is the zero locus of a single ternary cubic polynomial

f(x, y, z) = c300x
3 + c210x

2y + · · ·+ c012yz
2 + c003z

3

whose discriminant does not vanish. Assume that the residue field of K has characteristic
not equal to 2 or 3. There are two types of genus 1 tropical curves: the point of weight 1
and the cycle of length l. In this section we describe several methods for determining the
tropical curve associated to X given an equation defining X. One method will compute the
tropical curve by studying maps from X to P1. Another method will compute the tropical
curve from the j-invariant of X. Finally, one method will compute a good embedding of the
curve such that the embedded tropicalization contains the abstract tropicalization.

Covers of Trees with Four Leaves

Every elliptic curve has an embedding with its defining equation in Weierstrass normal form

g(x, y, z) = y2z − x3 − axz2 − bz3

for some a, b ∈ K. Tropicalizing curves with this embedding never yields a cycle in the
tropicalization. In fact, the tropicalization can only ever be a tree as in Figure 4.2. So, we
cannot use this embedding to distinguish what type of abstract tropicalization the curve has.

Figure 4.2: Tropicalizations of elliptic curves in normal form.

Consider the map X → P1 given by sending (x : y : z) 7→ (x : z). This map will be
ramified at the roots r1, r2, r3 of x3 − ax − b and ∞. Up to automorphism of P1, the four
ramification points give a point [

r1 r2 r3 0
0 0 0 1

]
∈ Gr(2, 4).
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Then, the valuation of the corresponding Plücker vector gives a metric on a tree T with 4
leaves as in Section 3.1. The metric graph Γ, the abstract tropicalization of X, double-covers
T . If T has no interior edge, then Γ is a point of weight 1. If T has an interior edge of length
l, then Γ is a cycle of length 2l.

The j-Invariant

Elliptic curves are distinguished by their j-invariants. The j-invariant can be written explic-
itly in terms of the coefficients of f and is an element of the ground field K. The j-invariant
also can be used to determine the tropical curve completely.

Theorem 4.1.1 ([77]). Let X be an elliptic curve over K. If the j-invariant of X has
non-negative valuation, then the abstract tropicalization of X is a vertex with weight one.
Otherwise, it is a cycle with length minus the valuation of the j-invariant.

Faithful Tropicalization

In [46], Chan and Sturmfels improve upon this result by providing an explicit embedding so
that when the curve is tropicalized, it is in honeycomb form as in Figure 4.3.

Figure 4.3: Tropicalization of an elliptic curve in honeycomb form.

Theorem 4.1.2 ([46]). Every elliptic curve with valK(j) < 0 has an embedding such that
the embedded tropicalization is a honeycomb (see Figure 4.3).

The honeycomb reveals that the curve has genus one, and it remembers the valuation of
j. Indeed, the lattice length of the cycle equals − val(j).

4.2 Genus Two

Let X be a curve of genus 2. There are now seven possibilities for the abstract tropicalization
Γ of X, shown in Figure 4.4.
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(a) (b) (c) (d) (e) (f) (g)

Figure 4.4: The seven types of genus two tropical curves.

Given a genus 2 curve X, we wish to compute which of these seven types the abstract
tropicalization Γ is, and what its edge lengths are. We now describe three methods for doing
this. These are analogous to the genus one case, but each will pose new complications. One
method will study maps of the curve to P1. Another method will use invariants associated
to the curve to compute the abstract tropicalization. The last method will find a good
embedding of the curve to carry out the embedded tropicalization, so that the skeleton Γ
can be detected from the embedded tropicalization.

Covers of Trees with Six Leaves

Every genus two curve is hyperelliptic, meaning that there is a two-to-one map from X → P1.
In [111], the authors give a method for tropicalizing genus 2 curves using this map. The
main idea is that the map X → P1 tropicalizes to a map Γ→ T , where T is the tree obtained
by studying the tropicalization of P1 marked at the ramification points of the double cover.
Here is the statement of their result.

Theorem 4.2.1 ([111]). There is a commutative diagram

M0,6 Mtrop
0,6

M2 Mtrop
2

The map we wish to understand is the bottom one. We may study this map by instead
studying the top horizontal map and the right vertical map, which we understand well.

The map M0,6 → M2 sends six marked points on P1 to the genus 2 curve obtained
from the hyperelliptic cover of P1 with the 6 marked ramification points. All genus 2 curves
arise in this way, by specifying 6 points in P1. The curve X is then the double cover of P1

branched at the 6 points. Every genus 2 curve can be written in the form

y2 = f(x).

for a polynomial f of degree 5 or 6. With this embedding, the cover to P1 is given by
(x, y) 7→ x, and the marked points are precisely the roots of f , plus possibly the point at
infinity depending upon if f is degree 5.
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The space Mtrop
0,6 is the space of trees with 6 taxa as in Section 3.1. Combinatorially, it

agrees with the tropical Grassmannian trop(Gr(2, 6)) modulo its lineality space. So, Mtrop
0,6

has a tropical basis (Definition 1.2.11) given by the Plücker relations for Gr(2, 6). It is a
fan in TP14 with 25 rays, 105 two dimensional cones, and 105 three dimensional cones. The
dimension is the number of interior edges in the corresponding tree. The map

M0,6 →Mtrop
0,6

can now be described as follows. Denote the 6 points in P1 by (ai : bi). Then, take the
valuations of all 2× 2 minors of the matrix[

a1 a2 · · · a6

b1 b2 · · · b6

]
.

This describes a point in P14, denoted

∆ = (p12 : p13 : · · · : p56).

This point gives a tree metric on a tree with 6 taxa by taking d(i, j) = −2pij + (n, · · · , n)
for a suitable constant n. From this tree metric, we may reconstruct the tree T using the
Neighbor Joining Algorithm [104].

The map
Mtrop

0,6 →Mtrop
2

is a morphism of generalized cone complexes, and can be described as follows. Given a point
in Mtrop

0,6 , compute the tree associated to it including the interior edge lengths. This tree is
one of the seven types in Figure 4.5. Then, the map is described by sending the tree to the
corresponding tropical curve in Figure 4.4.

(a) (b) (c) (d) (e) (f) (g)

Figure 4.5: The seven types of trees with six leaves

For example, the caterpillar tree, Figure 4.5g, maps to the dumbell graph, Figure 4.4g. It
remains to define the lengths of the edges in the corresponding tropical curve. If an interior
edge in the tree has length l and is mapped to two-to-one by the corresponding edges in the
tropical curve, then each edge in the preimage receives length l. Otherwise, the edge in the
tropical curve receives length l/2. So, in the case of the dumbell, if all interior edges of the
tree have length l, then the two loops of the dumbell obtain length 2l, and the edge joining
them obtains length l/2.

This method for finding the tropical curve takes advantage of the fact that all genus
two curves are hyperelliptic. This allows us to look at the space of trees on six taxa by
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mapping valuations of the differences of the roots into the tropical Grassmannian. Then, the
difficult task is to find the correct scaling factors for the edge lengths in the tropical curve. In
Sections 4.4 and 4.5, we will extend this method to all hyperelliptic and superelliptic curves.

Example 4.2.2. Suppose exactly two roots of the polynomial f coincide in the residue field.
Call these two points a5, a6, and set a = v(a5−a6) > 0. This gives a point inMtrop

0,6 the form

(0, . . . , 0, a) = (p1,2, p1,3, . . . , p5,6).

This corresponds to the tree metric

(n, . . . , n, n− 2a) = (d1,2, d1,3, . . . , d5,6).

So the tree is the type pictured in Figure 4.5b, with an interior edge length of a. This
corresponds to the metric graph in Figure 4.4b. The length of the corresponding loop in
the tropical curve is twice the length of the interior edge of the tree. So, the abstract
tropicalization is a loop with length 2a and a vertex of weight 1.

Example 4.2.3. Consider the polynomial

y2 = (x− 1)(x− 2)(x− 3)(x− 6)(x− 7)(x− 8),

with the 5-adic valuation. In Mtrop
0,6 we have the point

(0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0) = (p1,2, p1,3, . . . , p5,6).

So that a possible tree metric is

(4, 4, 2, 4, 4, 4, 4, 2, 4, 4, 4, 2, 4, 4, 4) = (d1,2, d1,3, . . . , d5,6).

This is a metric for the snowflake tree in Figure 4.5f with edge length 1 on each interior edge.
So, the abstract tropicalization is given by the graph in Figure 4.4f with edges of length 2.

Igusa Invariants

As we saw with elliptic curves, the valuation of the j-invariant determines the semistable
reduction type of the curve. Therefore, it is natural to wonder whether or not there are
other invariants which play a similar role for higher genus. In [70], Helminck completely
determines the semistable reduction type of a genus two curve using the Igusa invariants
{J2, J4, J6, J8, J10} and {I2, I4, I6, I8, I12}, first defined by Igusa in [72], as follows. Since X
is hyperelliptic we have that X is given by an equation of the form y2 = f(x) where f has
degree 5 or 6. The exact values of the invariants can then be written down in terms of the
roots x1, . . . , x6 of the polynomial f . For instance,

J2 =
1

8

∑
fifteen

(x1 − x2)2(x3 − x4)2(x5 − x6)2,

where the sum is over all 15 ways of grouping 6 objects into pairs.
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Definition 4.2.4. The tropical Igusa invariants are the valuations of Ji and Ii.

Using the tropical Igusa invariants, Helminck’s theorem can determine the abstract trop-
icalization of X. The full theorem statement including all formulas may be found in [70].
Helminck also determines lengths of the edges in the tropical curve Γ.

Theorem 4.2.5 ([70]). Let X be a curve of genus 2 over K. Then the edge lengths and
reduction type of the abstract tropicalization Γ of X can be completely described in terms of
the tropical Igusa invariants.

Example 4.2.6. Suppose exactly two roots of the polynomial f coincide in the residue field.
Call these two points a5, a6. Then the tropical Igusa invariants are

(0, 0, 0, 0, 2a, 0, 0, 0, 0, 0),

where a = v(a5 − a6) > 0. This tells us that the abstract tropicalization is a single loop of
length 2a and a vertex of weight 1, as in Figure 4.4b.

Example 4.2.7. Consider the polynomial

y2 = (x− 1)(x− 2)(x− 3)(x− 6)(x− 7)(x− 8),

with the 5-adic valuation. Its tropical Igusa invariants are

(0, 2, 2, 2, 6, 0, 0, 2, 2, 2).

From this, we may compute that the abstract tropicalization is the graph in Figure 4.4f with
edges of length 2.

Tropical Modifications

Given the hyperelliptic equation y2 = f(x) defining a genus two curve, the embedded trop-
icalization is always a tree [51]. So, outside of the cases in Figures 4.4a and 4.4c, this
embedded tropicalization will never be faithful. In [51], Cueto and Markwig give a method
for re-embedding the curve in a simple way into three dimensions so that the corresponding
embedded tropicalization is faithful. Their method is called tropical modification. Through-
out this section we use the max convention.

Theorem 4.2.8 ([51]). Tropical modifications can be used to explicitly re-embed the curve
y2 = u

∏6
i=1(x− ri) into three dimensions so that the embedded tropicalization is faithful.

We now give an overview of the method of tropical modifications and give an example.

Definition 4.2.9. Fix a tropical polynomial F : Rn → T = R ∪ {∞}. The graph of F is a
rational polyhedral complex which is pure of dimension n. If F is not linear, the bend locus
has codimension 1. At each cell σ in the bend locus, attach a new cell σ′ spanned by σ and
−en+1. The result is called the tropical modification of Rn along F .



4. SKELETONS 98

Example 4.2.10. The tropical line in the plane is the tropical modification of R1 along
F = max(0, x).

Let X be a curve in the plane defined by a polynomial g(x, y) ∈ K[x±1, y±1], and let
f(x, y) ∈ K[x±1, y±1]. Then the tropicalization of I = 〈g, z − f〉 ⊂ K[x±1, y±1, z±z] is a
tropical curve in the modification of R2 along the tropical polynomial trop(f). For special
choices of f , this re-embedding can reveal hidden structure in the tropical curve.

In [51] it is shown that we may use a modification along a tropical polynomial of the
form max(y, A+ x,B + 2x) for A,B ∈ R to repair tropical curves coming from hyperelliptic
embeddings. It turns out that the tropical modification is completely determined by the
tropical plane curves in each coordinate direction.

Proposition 4.2.11 ([51]). Given a curve X ⊂ (K∗)2 defined by g(x, y) and a polynomial
f(x, y) = y − ax − bx2, the tropicalization of V (g, z − f) is completely determined by
trop(V (g)), trop(V (〈g, z − f〉 ∩K[x±1, z±1])), and trop(V (〈g, z − f〉 ∩K[y±1, z±1])).

Example 4.2.12. Consider the genus 2 curve X over the Puiseaux series C{{t}} defined
by the hyperelliptic equation

g = y2 − x(x− (t14 + t16)2)(x− (5 + t9)2)(x− (3 + t8)2)(x+ (1 + t5)2).

Set f as above to be

f = y − (5 + t9)(3 + t8)(1 + t5)x+ (1 + t5)x2.

We will compute the tropical plane curve of the modification of trop(X) along trop(f)
projected in the x-z direction. First, we compute the principal ideal

〈g, z − f〉 ∩K[x±1, z±1].

This ideal is generated by the equation

(t32 + 2t30 + t28 + t18 + t16 + 10t9 + 6t8 + 34)x4

+ x2(t66 + 2t64 + t62 − t60 + 3t58 + 10t57 + 9t56 + 18t55 + 5t54 + 4t53 − 16t51 + 2t50

+ 38t49 + 28t48 + 110t47 + 30t46 + 48t45 − 16t44 − 24t43 − 54t42 + 68t41 + 76t40

+ 160t39 + 254t38 + 12t37 + 144t36 − 136t35 − 68t33 + 191t32 + 382t30 + 191t28 + (−2t5 − 2)z)

+ (−t50 − 3t48 − 3t46 − t44 + t42 − 10t41 − 4t40 − 20t39 − 11t38 − 8t37 − 6t36 + 4t35 − t34

+ 2t33 − 33t32 − 66t30 − 32t28 − 2t27 − 5t26 − 10t25 + 2t23 − 4t22 + 2t21 + 4t19 − 12t18

− 62t17 − 24t16 + 8t14 − 8t13 + 4t10 − 86t9 − 154t8 + 8t5 − 221)x3

+ x(t76 + 2t74 + t72 + 2t71 + 4t69 + 6t68 + 12t67 + 13t66 + 20t65 + 8t64

+ 22t63 + 21t62 + 24t61 + 49t60 + 72t59 + 69t58 + 130t57 + 71t56 + 98t55 + 151t54

+ 96t53 + 240t52 + 208t51 + 279t50 + 290t49 + 343t48 + 210t47 + 389t46 + 360t45

+ 385t44 + 600t43 + 405t42 + 390t41 + 600t40 + 180t39 + 525t38 + 540t37 + 150t36 + 900t35

+ 450t33 + 225t32 + 450t30 + 225t28 + (2t22 + 2t17 + 6t14 + 10t13 + 6t9 + 10t8 + 30t5 + 30)z)

− x5 + z2.
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Its tropicalization, pictured in Figure 4.6 is the tropical variety of the tropical polynomial

max(5x, 4x, 3x, 2x+ z,−28 + 2x, x+ z,−28 + x, 2z).

Figure 4.6: The tropicalization of the curve in Example 4.2.12

The vertices of the triangle in Figure 4.6 are (0, 0), (−14,−28), and (−28,−28). So,
the cycle has length 56. By [51], this is a faithful tropicalization, and so the abstract
tropicalization of X is a cycle of length 56 with a vertex of weight 1.

As in Example 4.2.2, we could compute the abstract tropicalization using trees to verify
this computation. Using this method, we find that the tree is the one pictured in Figure
4.5b. Its interior edge has length 28, so it is double-covered by a cycle of length 56 with a
vertex of weight 1.

4.3 Higher Genus

We now summarize the work that has been done in higher genus on faithful tropicalizations
and computing skeletons of curves. First, we discuss existence of faithful tropicalizations in
general, and then we focus on faithful tropicalizations of plane curves.

Existence of Faithful Tropicalizations

It was proved in [14] that faithful tropicalizations of curves exist. The proof, however, is not
algorithmic.
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Theorem 4.3.1 ([14, Theorem 5.20]). Let Γ be any finite subgraph of Xan. Then there
exists a closed immersion of X into a toric variety such that the corresponding embedded
tropicalization faithfully represents Γ.

On the other hand, we know from [1, Theorem 1.2.1] that given any metric graph Γ
there is an algebraic curve that tropicalizes to Γ. In [47], the authors give a method for
producing curves over C((t1/l)) together with an embedding in a toric variety such that
the corresponding tropicalization is faithful. We now describe their method. They start
by defining a suitable nodal curve whose dual graph is a model for Γ, and use deformation
theory to show that the nodal curve can be lifted to a proper, flat, semistable curve over R
with the nodal curve as its special fiber, which tropicalizes to Γ.

Suppose that (G,w) is a stable weighted graph such that:

1. For each vertex v ∈ V (G), the weight w(v) is of the form

w(v) =

(
d(v)− 1

2

)
(4.1)

for some integer d(v).

2. For every pair of vertices v, w ∈ V (G), we have

|E(v, w)| ≤ d(v)d(w), (4.2)

where |E(v, w)| denotes the number of edges between v and w.

We now describe a procedure for finding a nodal curve over C whose dual graph is G.
The original idea for this procedure is due to Kollár, cf. [80].

1. Label the vertices as {v1, ..., vn} = V (G). For each i = 1, ..., n, take a general smooth
plane curve Ci of degree di = d(vi).

2. We have now a reducible plane curve C, whose irreducible components are the curves
Ci of degree di (and hence, by the genus degree formula, of genus w(vi)). Any two
components Ci and Cj will intersect in didj points, by Bézout’s formula. We choose
any kij = didj − |E(vi, vj)| of those, and set r =

∑
i,j kij.

3. Take the blow up of P2 at all the points chosen for each i and j, which we will label
by p1, ..., pr:

X = Blp1,...,prP2, (4.3)

and consider the proper transform C̃ of C in X.

4. The curve is inside P2 × P1. Embed X in P2+3−1 = P4 via the Segre embedding, and
take the image of C̃. This will now be a projective curve with components of the
correct genera (as the genus is a birational invariant), and any two components will
intersect precisely at the correct number of points. Hence its dual graph will be G.
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Figure 4.7: The weighted graph in Example 4.3.2.

Example 4.3.2. Consider the graph in Figure 4.7. It has two components of genus zero
and two components of genus one, which we can realize as a pair of lines (respectively, of
cubics) in general position in P2. The two lines will intersect in a point, the two cubics in
nine points and each cubic will intersect each line in three points. The corresponding curve
arrangement is as shown in Figure 4.8.

Figure 4.8: Arrangement of curves in P2.

We need to blow up eight of the nine intersection points between the two cubics, since
they correspond to edges between the components of genus one in the graph. Moreover,
the two components of genus zero do not share an edge, hence the unique intersection point
between the two lines must be blown up, as well as the three intersection points of a chosen
cubic with a line, two out of the three intersection points with the remaining line, and one
of the three intersection points of the first cubic with the second line. In Figure 4.8, these
points are marked in red. The result will be a curve in P2 × P1 ↪→ P4, whose components
will have the correct genera and will intersect at the correct number of points, and whose
equations can be explicitly computed.

Remark 4.3.3. The theory shows that in principle we may find a smooth curve over K
with a prescribed metric graph as its tropicalization. For certain types of graphs, more work
has been done in this direction [47].

Plane Quartics

Classically, every smooth projective curve of genus 3 is either hyperelliptic or a plane quartic.
Is this true in the tropical setting?
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(a) (b) (c) (d) (e)

Figure 4.9: The types of trivalent genus 3 tropical curves.

The curves pictured in Figure 4.9 are trivalent, which means that they have the maximum
number of edges for a genus 3 graph. So, in Mtrop

3 , these correspond to cones of maximal
dimension. In [30], the authors show that not every genus 3 metric graph arises as the
tropicalization of a plane curve.

Theorem 4.3.4 ([30, Theorem 5.1]). Of the five types of trivalent genus 3 metric graphs
pictured in Figure 4.9, only 4 can be realized as the tropicalization of a smooth quartic curve.
In particular, the curve in Figure 4.9e cannot be realized. For the other curves, there are
explicit restrictions on the edge lengths which make them realizable.

However, another tropical version of the classical statement that every smooth projective
curve of genus 3 is either hyperelliptic or a plane quartic can be made. In [67], the authors
prove the following result.

Theorem 4.3.5 ([67, Theorem 1.1]). Any maximal tropical curve of genus 3 which is not
the tropicalization of a hyperelliptic curve can be embedded as a faithfully tropicalized quartic
in a linear modification of the tropical plane.

The proof of this result is constructive. For a given genus 3 tropical curve Γ, they
construct a map from Γ to R2, as well as linear modifications. These give an embedding of
Γ into the modified plane as a faithfully tropicalized quartic.

4.4 Hyperelliptic Curves

Let X be a nonsingular hyperelliptic curve of genus g over K, an algebraically closed field
which is complete with respect to a nontrivial, non-archimedean valuation v. Our goal is to
find Γ, the abstract tropicalization of X.

We denote by Mg,n the moduli space of genus g curves with n marked points. The
space M0,2g+2 maps surjectively onto the hyperelliptic locus inside Mg by identifying each
hyperelliptic curve of genus g with a double cover of P1 ramified at 2g + 2 marked points.
When the characteristic of K is not 2, the normal form for the equation of a hyperelliptic
curve is y2 = f(x), where f(x) has degree 2g + 2, and the roots of f are distinct. The roots
of f are precisely the ramification points of the double cover X → P1.
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The space Mtrop
0,2g+2, the tropicalization of M0,2g+2, parametrizes phylogenetic trees with

2g + 2 leaves. So, Mtrop
0,2g+2 is a 2g − 1 dimensional fan inside TP(2g+2

2 )−1 (cf. [88, Section

2.5]). The space Mtrop
0,2g+2 can be computed as a tropical subvariety of TP(2g+2

2 )−1, since it
has a tropical basis (Definition 1.2.11) given by the Plücker relations for Gr(2, K2g+2), see
Section 3.1. Each cone corresponds to a combinatorial type of tree (see Figure 4.10), and
the dimension of each cone corresponds to the number of interior edges in the tree.

To find the tropicalization of the hyperelliptic curve X, we must compute the correspond-
ing point inMtrop

0,2g+2, as a tree on 2g+ 2 leaves, and then compute a tropical curve inMtrop
g .

Figure 4.10 gives this correspondence in the case g = 3.

Figure 4.10: The poset of unlabeled trees with 8 leaves, and tropicalizations of hyperelliptic
curves of genus 3. Both are ordered by the relation of contracting an edge.

The tropical curves that appear in this section will also be hyperelliptic.

Definition 4.4.1. [44, Theorem 1.3] Let Γ be a tropical curve, and let G be its canonical
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loopless model. We say that Γ is hyperelliptic if there exists a nondegenerate harmonic
morphism of degree 2 from G to a tree.

Not every hyperelliptic tropical curve is the tropicalization of a hyperelliptic curve.

Theorem 4.4.2 ([4, Corollary 4.15]). Let Γ be a tropical curve of genus g ≥ 2. Then there
is a smooth proper hyperelliptic curve X over K of genus g having Γ as its minimal skeleton
if and only if Γ is hyperelliptic and for every p ∈ Γ the number of bridge edges adjacent to p
is at most 2w(p) + 2.

We now give a procedure for taking a tree with 2g + 2 infinite leaves and obtaining a
metric graph which is an admissible cover of the tree.

Lemma 4.4.3 ([22]). Every tree T with 2g + 2 infinite leaves has an admissible cover φ by
a unique hyperelliptic metric graph Γ of genus g, and φ is harmonic of degree 2.

Proof. Let T be a tree with 2g + 2 infinite leaves. If all infinite leaves are deleted, then a
finite tree T ′ remains. Let v1, . . . , vk be the vertices of T ′, ordered such that the distance
from vi to vk is greater than or equal to the distance from vj to vk, for i < j.

We construct Γ iteratively by building the preimage of each vertex vi, asserting along the
way that the local Riemann-Hurwitz condition (Equation 1.5) holds. This gives an algorithm
for finding Γ. We begin with v1, which has a positive number n1 of leaf edges in T . Since φ
has degree 2, it is locally of degree 1 or 2 at every vertex of Γ. Since the preimage of each
infinite leaf is an infinite leaf, we attach n1 infinite leaves at the preimage φ−1(v1) in Γ.

At any vertex in Γ with infinite leaves, φ has local degree 2, hence we will attach to Γ
an infinite leaf e such that l(φ(e))/l(e) = 2. Then, there is a unique vertex in the preimage
φ−1(v1). Otherwise, there would need to be another edge in the preimage of each leaf, so the
degree of the morphism would be greater than 2.

Let e1 be the edge connecting v1 to some other vi. There are two possibilities:

1. The preimage of e1 is two edges in Γ, each with length l(e1). The local Riemann-
Hurwitz equation reads

2− 2w(φ−1(v1)) = 2(2− 0)− (n1 + 0 + 0).

This is only possible if n1 is even, and φ−1(v1) has weight (n1 − 2)/2.

2. The preimage of e1 is one edge in Γ, with length l(e1)/2. The local Riemann-Hurwitz
equation reads

2− 2w(φ−1(v1)) = 2(2− 0)− (n1 + 1).

This is only possible if n1 is odd, and φ−1(v1) has weight (n1 − 1)/2.

Now, we proceed to the other vertices. As long as the order of the vertices is respected, at
each vertex vi there will be at most one edge ei whose preimage in Γ we do not know. Then,
what happens at vi can be completely determined by studying the local Riemann-Hurwitz
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data. For i > 1, let ni be the number of infinite leaves at vi plus the number of edges e ∈ T
such that e = {vi, vj}, j < i, and φ−1(e) is a bridge in Γ. If ni > 0, then either 1 or 2 holds.
However, it is possible that ni = 0, in which case we have a third possibility:

3. If ni = 0, let v′i ∈ φ−1(vi). The local Riemann-Hurwitz equation reads:

2− 2w(v′i) = dvi(2− 0)− (0).

We have dvi = 1 and w(v′i) = 0, which implies that there are two vertices in φ−1(vi).

Finally, we glue the pieces of Γ as specified by T , and contract the leaf edges on Γ. The fact
that Γ has genus g is a consequence of the local Riemann-Hurwitz condition.

We remark that this process did not require the fact that the tree had an odd number
of leaves. Indeed, if one repeats this procedure for such a tree, a hyperelliptic metric graph
will be obtained. However, this graph is not the tropicalization of a hyperelliptic curve.

Example 4.4.4. In Figure 4.11, we have a tree with vertices labelled v1, . . . , v7. Beginning
with v1, we observe that n1 = 2, which means that the edge from v1 to v3 has two edges in
its preimage. The same is true for v2. Moving on to v3, we see that n3 = 0, which means
that v3 has two points in Γ which map to it. We can connect the edges from φ−1(v1) and
φ−1(v2) to the two points in φ−1(v3). Since φ−1(v3) has two points, the edge from v3 to v4

corresponds to two edges in Γ, so n4 = 2, which means that the edge from v4 to v5 also
splits. Next, n5 = 1, which means that the edge from v5 to v6 corresponds to a bridge in Γ.
Then, n6 = 4, which means that the edge v6 to v7 splits, and the vertex mapping to v6 has
genus 1. Lastly, since n7 = 2, the point mapping to v7 has genus 0. All edges depicted in the
image have the same length as the corresponding edges in the tree, except for the bridge,
which has length equal to half the length of the corresponding edge in the tree.

The following theorem shows that the tropical curve constructed in the proof of Lemma 4.4.3
is actually the tropicalization of a hyperelliptic curve.

Theorem 4.4.5 ([22]). Let g ≥ 1 be an integer. Let X be a hyperelliptic curve of genus g
over K, given by taking the double cover of P1 ramified at 2g + 2 points p1, . . . , p2g+2. If T
is the tree which corresponds to the tropicalization of P1 with the marked points p1, . . . , p2g+2

described above, and Γ is the unique hyperelliptic tropical curve which admits an admissible
cover to T , then Γ is the abstract tropicalization of X.

Proof. This follows from [38], Remark 20 and Theorem 4. Indeed, the hyperelliptic locus
of Mg can be understood as the space Hg→0,2((2), . . . , (2)) of admissible covers with 2g + 2
ramification points of order 2. Its tropicalization is constructed and studied in [38]. The
space H

an

g→0,2((2), . . . , (2)) is the Berkovich analytification of Hg→0,2((2), . . . , (2)), and thus a
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Figure 4.11: The tree T with 12 infinite leaves from Example 4.4.4 and the hyperelliptic
tropical curve Γ of genus 5 which admissibly covers T by φ.

point X is represented by an admissible cover over Spec(K) with 2g + 2 ramification points
of order 2. By Theorem 4 in [38], the following diagram commutes.

H
an

g→0,2((2), . . . , (2))

srcan

''

bran

vv
trop

��

Man

0,2g+2

trop

��

Man

g

trop

��

H
trop

g→0,2((2), . . . , (2))

srctrop

''

brtrop

vv

Mtrop

0,2g+2 Mtrop

g

The morphisms src take a cover to its source curve, marked at the entire inverse image
of the branch locus, and the morphisms br take a cover to its base curve, marked at its
branch points. We start with an element X of H

an

g→0,2((2), . . . , (2)), and we wish to find

trop(srcan(X)) ∈ Mg
trop

. The unicity in Lemma 4.4.3 enables us to find an inverse for
brtrop. Then T = trop(bran(X)), and so by commutativity of the diagram, trop(srcan(X)) =
srctrop((brtrop)−1(T )) = Γ.

4.5 Superelliptic Curves

We now develop an algorithm for tropicalizing superelliptic curves. This will require much
more work than in the hyperelliptic case, because trees T do not have unique metric graphs
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covering them. New techniques will be required in order to determine the correct graph.
Let K be a field of characteristic 0 that is complete with respect to a non-Archimedean

discrete valuation. Let R be the valuation ring of K with maximal ideal m, let k := R/m
be the residue field, and let t be a uniformizer for K. A superelliptic curve over K is a curve
X which admits a Galois covering φ : X → P1 such that the Galois group is cyclic of order
n. We assume the characteristic of the residue field k is relatively prime to n. Assuming
K contains n distinct primitive n-th roots of unity, Kummer theory [101, Proposition 3.2]
tells us the covering comes as yn = f(x), where f(x) is some rational function in K(x).
This normal form allows us to directly relate ramification data of the corresponding covering
(x, y) 7→ x to the rational function f . We can in fact assume f(x) is a polynomial by the
following transformation. For f(x) of the form f(x) = g(x)/h(x), we multiply both sides of
yn = f(x) by h(x)n and make a change of coordinates ỹ = h(x) · y to obtain the integral
equation (ỹ)n = g(x)h(x)n−1.

In this section we will study tropical superelliptic covers and give an algorithm for com-
puting abstract tropicalizations of superelliptic curves. We will also study realizability of
tropical superelliptic covers, and perform a computational study of the moduli space of
tropical superelliptic curves.

Tropical Superelliptic Curves

Let Γ be a metric graph with model G. We now define what it means for Γ to be superelliptic.

Definition 4.5.1. An automorphism of Γ is a harmonic morphism θ : Γ → Γ of degree 1.
Given a subgroup H of Aut(Γ), the quotient graph Γ/H has a model G/H whose vertices
are the H-orbits of V (G) and whose edges are the H-orbits of edges defined by vertices
lying in distinct H-orbits. If θ(e) is an edge in G/H, then l(θ(e)) = l(e) · | Stab(e)|. The
quotient map is a nondegenerate harmonic morphism. For any subgroup H of Aut(Σ), we
call a nondegenerate harmonic morphism Γ→ Γ/H a Galois covering of metric graphs if it
satisfies the local Riemann-Hurwitz conditions at every v. The group H is the Galois group
of the covering.

Definition 4.5.2. A nondegenerate harmonic morphism θ : Γ→ T is a superelliptic covering
of metric graphs if θ is a Galois covering of metric graphs with Galois group H := Z/nZ and
the target T is a tree.

Later, when we present the algorithm for tropicalizing superelliptic curves, we will make
use of the following lemma for computing slopes of rational functions on graphs.

Lemma 4.5.3 ([26]). Let T be a tree, v0 a vertex in T , and let ψ : Γ → R be a rational
function with principal divisor (ψ) on T . For a point P ∈ T , let σP (ψ) be the sum of the
slopes of ψ in all outgoing directions at P . If e is deleted from T , let Te denote the connected
component of T not containing v0. Then the magnitude of the slope of the rational function
ψ along e is equal to

∑
x∈Te(ψ)(x).
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Proof. Let x and y be the vertices of e and suppose first x 6= v0 is a leaf. Let ψe be the
slope of ψ along the edge e. Then, (ψ)(x) = −σx(ψ)(x) = ψe. Now, we proceed by induction
on the number of edges in the tree T . Suppose y is on the path from x to v0. We have
(ψ)(x) = −∑e3x ψe′ . Isolating ψe, we find

−ψe = (ψ)(x) +
∑

e′ 6=e,e′3x
ψe′ .

Using the inductive assumption, we can solve for the ψe′ and arrive at the result.

Galois Covers of Semistable Models

In this section, we show disjointly branched morphisms of semistable models yield Galois
coverings of metric graphs. Furthermore, we discuss inertia groups and prove they are pre-
served on reduction to the special fiber (Proposition 4.5.11), allowing us to relate ramification
degrees on a two dimensional scheme (that is, C, a model for C) to those on a one dimen-
sional scheme (a component in the special fiber Cs). We use this equality in the subsection
“Tropicalization Algorithm” to reconstruct the Berkovich skeleton for superelliptic covers.

Disjointly branched morphisms and inertia groups

Let φ : C → D be a finite morphism of smooth, projective, geometrically connected curves
over K. We say φ is Galois if the corresponding morphism on function fields K(D)→ K(C)
is Galois. That is, it is normal and separable. Let C be a model for C and D be a model
for D. A finite morphism of models for φ is a finite morphism C → D such that the base
change to Spec(K) gives φ : C → D.

Definition 4.5.4. Let φ : C → D be a finite, Galois morphism of curves over K with Galois
group G. Let φC : C → D be a finite morphism of models for φ. We say φC is disjointly
branched if the following hold:

1. The closure of the branch locus in D consists of disjoint, smooth sections over Spec(R).

2. The induced morphism OD,φ(y) → OC,y is étale for every y a generic point of an irre-
ducible component in the special fiber of C.

3. D is strongly semistable, meaning that D is semistable and that the components in
the special fiber are all smooth.

A theorem by Liu and Lorenzini [87, Theorem 2.3] says if φC is disjointly branched then C
is actually also semistable and [71, Proposition 3.1] shows C is also strongly semistable.

We now study the action of the Galois group G on Σ(C), the intersection graph of C.
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Theorem 4.5.5 ([71, Lemma 4 and Theorem 3.1]). Let φC : C → D be a disjointly branched
morphism of models for a finite Galois morphism φ : C → D of curves, with Galois group G.
There is a natural action of G on Σ(C) and the induced morphism of graphs Σ(C) → Σ(D)
coincides with the quotient map Σ(C)→ Σ(C)/G.

This is a statement about graphs. We give the result for metric graphs in the subsection
“Tropicalizing Galois Covers.”

We now define inertia groups and decomposition groups for a finite group G acting on
a scheme X. For any point x of X, we define the decomposition group Dx,X to be {σ ∈
G : σ(x) = x}, the stabilizer of x. Every element σ ∈ Dx,X naturally acts on OX,x and the
residue field k(x). We define the inertia group Ix,X of x to be the elements of Dx reducing
to the identity on k(x). In other words, σ ∈ Ix,X if and only if for every z ∈ OX,x, we have
σz ≡ z mod mx, where mx is the unique maximal ideal of OX,x. When context is clear, we
omit the X in Ix,X and Dx,X .

Suppose we have a normal integral scheme Y with function field K(Y ) and a finite Galois
extension L of K(Y ) with Galois group G = Gal(L/K(Y )). We take the normalization X
of Y in L (which we now write as K(X)) to obtain a morphism of normal integral schemes
X → Y . In fact, we have Y := X/G (See [71, Proposition 3.5]). Locally, we have the
following lemma.

Lemma 4.5.6 ([26]). Let A be a normal domain with fraction field K, let L be a Galois
extension of K, let G := Gal(L/K) be the Galois group, and let B be the integral closure of
A in L. If q ∈ Spec(B) is a prime lying over p ⊂ A, then k(q)/k(p) is an algebraic normal
extension and the following sequence is exact:

1→ Iq → Dq → Aut(k(q)/k(p))→ 1.

Proof. The group Iq is the kernel of the surjective morphism described there.

In our case, the extension of residue fields is always Galois; our assumption that the
degree of the Galois extension is relatively prime to the characteristic of the residue field
implies separability.

We now show inertia groups directly measure and control ramification. This is the content
of Proposition 4.5.10 which we will use to relate inertia groups on C to inertia groups on the
special fiber. Let us study the inertia group Iq and the invariant ring BIq a bit closer. We
have that BIq is normal and finite over A because B is normal and finite over A. Furthermore,
there is only one prime lying above q ∩BIq .

Lemma 4.5.7 ([26]). Let j : BIq → B be the natural inclusion map and let j∗ : Spec(B)→
Spec(BIq) be the corresponding map on the spectra. Then (j∗)−1(j∗(q)) = {q}.

Proof. The morphism j∗ coincides with the quotient map Spec(B) → Spec(B)/Iq (See [60,
Exposé V, Proposition 1.1, Page 88]). This means any other prime mapping to q∩BIq is of
the form σ(q) for some σ in Iq. But for those σ, we have σ(q) = q.
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Lemma 4.5.8 ([26]). Let B ⊃ BIq be as before, and let k(q)sep be the separable closure of
k(q ∩ A) in k(q). Then (k(q))sep = k(q ∩BIq).

Proof. Consider the Galois extension L ⊃ LIq with Galois group Iq. We find Iq = Dq and
so the automorphism group Aut(k(q)/k(q ∩BIq)) is trivial by Lemma 4.5.6. This auto-
morphism group is isomorphic to the Galois group of the separable closure of k(q ∩ BIq)
in k(q). By Galois theory, k(q ∩ BIq) is separably closed inside k(q). By [60, Proposition
2.2, page 92], the extension BIq ⊃ A is étale at q ∩ BIq , so the residue field extension
k(q ∩ BIq) ⊃ k(q ∩ A) is separable and the fact that étale morphisms are stable under base
change. Thus k(q∩BIq) ⊆ (k(q))sep, and every element of k(q) that is separable over k(q∩A)
is also separable over the field k(q∩BIq). We thus find (k(q))sep = k(q∩BIq), as desired.

Corollary 4.5.9 ([26]). Suppose char(k(q)) - |G|. Then k(q) = k(q ∩BIq).

We study inertia groups because they measure ramification, as in the next proposition.

Proposition 4.5.10 ([26]). Let A be a normal domain with fraction field K and L a Galois
extension of K. Let G := Gal(L/K) and B the integral closure of A in L. Let q be any
prime ideal in B.

1. Consider the subring B ⊃ BIq ⊃ A = BG. Then BIq ⊃ A is étale at q ∩BIq .

2. More generally, consider any subgroup H of G. Then BH ⊃ A is étale at q ∩ BH if
and only if H ⊇ Iq.

Proof. The fact that if H ⊇ Iq, then BH ⊃ A is étale at q∩BH is [60, Proposition 2.2., page
92]. Taking H = Iq also proves the first statement. So let us prove that H ⊇ Iq if BH ⊃ A
is étale at q∩BH . Since BH ⊃ A is finite étale, the base change BH ·BIq is finite étale over
BIq . Let qI := q ∩ BIq , and LIq := Quot(BIq). Since BIq · BH is étale over qI , it is also flat
there by definition. This implies that the BIq module BIq · BH is locally free of some finite
rank m. This rank m in fact has to be equal to [LIq · LH : LIq ]. Taking the base change to
the residue field k(qI), we find the k(qI)-algebra S := (BIq ·BH)⊗ k(q) is étale of dimension
m over k(qI). It is a product of separable field extensions of k(qI), and it is local by Lemma
4.5.7. Since the residue field is separable over k(qI), it must be the same as k(qI) by Lemma
4.5.8, so m = 1. We thus have LH ⊆ LIq · LH = LIq and, and so H ⊇ Iq.

For any subfield K ⊆ K ′ ⊆ L, we can write K ′ = LH for some subgroup H of G by
Galois theory. By Proposition 4.5.10, BH ⊇ BG = A is ramified at some point x′ if and only
if the inertia group Ix of some point x lying above is not contained in H. In other words, we
can describe ramification in terms of Galois theory. This criterion is very useful in relating
different inertia groups Ix and Iy for points x and y in Spec(B). For instance, if BIx ⊃ A is
étale at the image of y in BIx , and BIy is étale at the image of x in BIy , then Iy = Ix.

We make two further assumptions on the morphism φC : C → D of models over Spec(R).
We assume the ramification points of φ : C → D are rational over K. We assume the residue
field k is large enough so that for every intersection point x ∈ C, we have Dx = Ix.



4. SKELETONS 111

Let us find out what these decomposition and inertia groups are for a disjointly branched
morphism φC : C → D of models.

1. Let x ∈ C be an intersection point on the special fiber. By our second assumption,
Dx = Ix. Since the action of G is transitive on the edges lying above φC(x), there are
|G|/|Ix| edges lying above φC(x).

2. Let x be the generic point of an irreducible component Γx in the special fiber Cs. Let
y and Γy be their respective images in Ds. By our second assumption for disjointly
branched morphisms, the inertia group Ix is trivial. Thus, the decomposition group
can be identified with the automorphisms of the function field k(x) of the component
Γx fixing the function field k(y) of the component Γy, by Lemma 4.5.6. This implies
Γx/Dx = Γy as curves over the residue field, since morphisms of smooth curves are
determined by their corresponding inclusions of function fields. We have Γx and Γy are
smooth, since C and D are strongly semistable.

3. Let x ∈ C be a generic ramification point. Then |Ix| is just the usual ramification
degree. This follows from the fact that x is totally ramified in the extension L ⊃ LIx ,
which has degree |Ix|. Let us study an example where the decomposition group Dx for a
generic branch point is bigger than Ix. Take the Galois covering (x, y) 7→ x for the curve
C defined by y4 = x2 · (x+ 2) over Q(i). This is Galois with Galois group G = Z/4Z,
where the action on fields comes from multiplication by i on y and the identity on x.
Let us find the normalization of the algebra A := Q(i)[x, y]/(y4 − x2 · (x+ 2)). The
integral element z = y2/x satisfies z2 = x+ 2. The maximal ideal m = 〈x, y, z2 − 2〉 is
then locally principal with generator y, as we can write

z2 − 2 = x =
y2

z

in the localization of A′ := A[z]/(z2 − x − 2) at m. Since A was already normal at
the other primes (by the Jacobi criterion for instance), A′ is the normalization. Here
we use that a domain is normal if and only if it is normal at all its localizations. The
Galois group Z/4Z fixes m, so Dm = G. By inspecting the action on the residue field,
we have |Im| = 2. Indeed, the automorphism defined by σ(y) = iy sends z to −z, which
is nontrivial on the residue field. In this case the decomposition group is strictly larger
than the inertia group. If we consider the curve over the field Q(i)(

√
2), the situation

changes. The above equations still define the normalization, but m = (x, y, z2 − 2) is
no longer maximal. There are now two maximal ideals lying above m0 = (x), namely
m± = (x, y, z ±

√
2). We have |Im±| = |Dm±| = 2. For disjointly branched morphisms,

we assume extensions of this form have already been made.

Comparing inertia groups

Consider a disjointly branched morphism φC : C → D. Let Γ ⊂ Cs be any irreducible
component in the special fiber. There is a Galois morphism of smooth curves φΓ : Γ → Γ′
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where Γ′ is an irreducible component in the special fiber Ds. This uses the condition on the
characteristic of k. To see this, one can use [71, Section 3.2.1] or Lemma 4.5.6 and Corollary
4.5.9. The morphism φΓ is induced by the Galois morphism of function fields k(Γ)→ k(Γ′),
which is obtained from the map of discrete valuation rings OD,yΓ

→ OC,yΓ′
. Here yΓ and yΓ′

are the generic points of the irreducible components Γ and Γ′.
We recall the definition of the natural reduction maps associated to C and D. Let us

describe this map rC for C. Let C0 be the set of closed points of the generic fiber C of C.
For every closed point x, we can consider its closure {x} inside C. This closure is then an
irreducible scheme, finite over Spec(R). Since R is Henselian, {x} is local, giving a unique
closed point. We let rC(x) be this closed point. We now also extend this map to intersection
points for convenience. Let x ∈ C be an intersection point. We define rC(x) to be x ∩ Cs,
just as we did with closed points on the generic fiber. In other words, we consider this
intersection point as a point on the special fiber.

Proposition 4.5.11 ([26]). Let x ∈ C be a generic ramification point or an intersection
point of a disjointly branched morphism φC : C → D. Let Γ be any component in the special
fiber Cs containing rC(x). Then

Ix,C = IrC(x),Γ

where the second inertia group is an inertia group of the Galois covering Γ → Γ′ on the
special fiber.

Proof. We first let x ∈ Cs be any closed point in the special fiber and y the generic point of
Γ. We then have a natural injection Dx,C → Dy,C. For x smooth this follows directly from
the fact that y is the unique generic point under x. For x an intersection point, this follows
from [71, Proposition 3.8.]. By Lemma 4.5.6, Dy,C can be identified with the Galois group
of the function field extension k(Γ) ⊃ k(Γ′). The image of Dx,C in this Galois group is then
in fact equal to DrC(x),Γ. We thus see Dx,C = DrC(x),Γ for any closed point x in the special
fiber. By our assumption on the residue field, these decomposition groups are equal to their
respective inertia groups and we have Ix,C = IrC(x),Γ.

Using this identification, the case where x is an intersection point immediately follows.
We are thus left with the case of a generic ramification point x of the morphism φ : C → D.
Let z := rC(x). For any subgroup H of G, we let zH be the image of z under the natural
map C → C/H. We show Ix,C = Iz,C. By our earlier considerations, we then see Ix,C = Iz,Γ.

If σ ∈ Ix,C, then σ ∈ Dx,C. Then σ must fix z as well, because otherwise there would be
at least two points in the closure of x lying above the special fiber. So σ ∈ Dz,C. But by our
earlier assumption on the residue field k, we have Dz,C = Iz,C. This yields Ix,C ⊆ Iz,C.

For the other inclusion, we use the following criterion. Let H be a subgroup of G. Let xH
be the image of x in C/H. The induced map C/H → D is étale at xH if and only if H ⊇ Ix.
This is a consequence of the second part of Proposition 4.5.10 in the subsection “Disjointly
branched morphisms and inertia groups”.

We now only need to show C/Ix → D is unramified at zIx . Suppose it is ramified at zIx .
Then zG is a branch point of the covering C/Ix → D. Since φC is disjointly branched, zG
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is in the smooth part of the special fiber. This implies D is regular at zG. We use purity
of the branch locus on some open subset U of D containing zG to conclude there must be
a generic branch point P such that zG is in the closure of P . Indeed, purity of the branch
locus tells us a point of codimension 1 has to be in the branch locus and this cannot be a
vertical divisor by our second assumption for disjointly branched morphisms. We must have
P = xG because the branch locus is disjoint. This contradicts the fact that the morphism
C/Ix → D is unramified above xG (it is the largest extension with this property), so we
conclude C/Ix → D is unramified at zIx . In other words, we have Iz,C = Ix,C, as desired.

We use Proposition 4.5.11 in the tropicalization algorithm to relate the inertia groups
on the two-dimensional scheme C to inertia groups on the special fiber. This allows us to
calculate inertia groups without calculating any normalizations. This in turn tells us how
many edges and vertices there are in the pre-image of any edge e or vertex v in the dual
graph of the special fiber of D.

Tropicalizing Galois Covers

We now study the transition from algebraic Galois coverings (as in the Subsection “Disjointly
branched morphisms and inertia groups”) to Galois coverings of metric graphs (as in the
subsection “Tropical Superelliptic Curves”). To do this, we modify our graphs to reflect
the geometry further by assigning lengths to the edges, adding weights to the vertices to
account for genera, and adding leaves to account for the ramification coming from generic
ramification points.

Consider the quotient map of graphs Σ(C) → Σ(D) coming from a disjointly branched
morphism. We must add infinite leaves to the graphs Σ(C) and Σ(D). We first perform a
base change to make all the ramification points rational over K. Consider the morphism of
smooth curves φ : C → D. Let P ∈ C(K) be a ramification point and let Q = φ(P ) ∈ D(K)
be the corresponding branch point. The points P and Q reduce to exactly one component
on C and D respectively. We add a leaf EP to the vertex VP that P reduces to and a leaf
EQ to the vertex VQ that Q reduces to. Doing this for every ramification point gives two
loopless models Σ̃(C) and Σ̃(D). There is a natural map between the two, which is induced
by the map Σ(C) → Σ(D) and sends leaves EP to EQ. The integer l′(EQ)/l(EP ) we assign
to these edges is |IP |. There is a natural action of G on this loopless model, given as follows.
On Σ(C), this is the usual action. For leaves EP , we define an action by σ(EP ) = Eσ(P ).
This in accordance with the algebraic data, since σ(P ) reduces to σ(VP ).

Lemma 4.5.12 ([26]). For every edge e ∈ Σ̃(C) corresponding to a point x ∈ C, we have
l′(e′)/l(e) = |Ix|.

Proof. For edges corresponding to generic ramification points, this is by definition. For
edges corresponding to intersection points, this follows from [86, Chapter 10, Proposition
3.48, Page 526].
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Proposition 4.5.13 ([26]). The natural quotient map Σ(C) → Σ(D) = Σ(C)/G yields a
Galois covering of metric graphs Σ̃(C)→ Σ̃(D).

Proof. By construction every edge e in Σ̃(C) corresponds to either a generic (geometric)
ramification point or an intersection point. To every point x ∈ C, we apply the Orbit-
Stabilizer Theorem from group theory to obtain |G| = |DP | ·#{σ(P ) : σ ∈ G}. For generic
ramification points and intersection points, we have IP = DP , by our assumptions in the
Subsection “Disjointly branched morphisms and inertia groups”. Then the degree is just |G|
everywhere, so in particular it is independent of the edge e.

We now have to check the local Riemann-Hurwitz conditions at every vertex v mapping
to a vertex w. By Lemma 4.5.12, the quantities l′(e′)/l(e) are just the ramification indices of
the generic points reducing to v and the indices of the edges. But these indices correspond
with the indices on the special fiber by Proposition 4.5.11. Furthermore, the ramification
points of the morphism on the special fiber Γ → Γ′ (corresponding to v 7→ w) all arise
from either the closure of a generic ramification point (using purity of the branch locus as
before) or as an intersection point of C. These are all accounted for, so the Riemann-Hurwitz
conditions must be satisfied. This proves the proposition.

Tropicalization Algorithm

Let K be a field with valuation and uniformizer t. In this section, we provide the algorithm
producing the Berkovich skeleton for a superelliptic curve C. To do this, we first give
a semistable model D separating the branch locus over R. We use Proposition 4.5.11 to
reduce all the calculations to one dimensional schemes.

A separating semistable model

We describe a semistable model D of P1 separating the branch locus B of φ : C → P1. We
start with the model D0 := ProjR[X, Y ] where R[x, y] has the usual grading. The reader
can think of this as being obtained from gluing together the rings R[x] and R[1/x]. We now
have a canonical reduction map rD0 , which takes a closed point P ∈ P1

K and sends it to the
unique point in the closure of P lying over the special fiber (D0)s = P1

k as in [86, Section
10.1.3, Page 467]. Informally, this map is given as reducing modulo the maximal ideal of R.
This reduction map depends on the choice of the model D0.

We now use this reduction map on the branch points B to obtain a collection of points
in the special fiber. We group together all points having the same reduction under this
reduction map. This provides a subdivision of B into subsets Bi. We consider the subsets
with |Bi| > 1. For these subsets with their corresponding reduced points pi we now blow-up
the model D0 in the points pi. This gives a new model D1. On this new model D1, we
again have a canonical reduction map rD1 and similarly consider the image of every subset
Bi under this reduction map to obtain a new subdivision Bi,j. For every two points P1 and
P2 in B, we have they are in the same Bi,j if and only if their reductions in D1 are the same.
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This gives a new set of points pi,j (the reduction of the points in Bi,j) in the special fiber
of D1. We consider the points pi,j such that |Bi,j| > 1. Blowing up these points pi,j gives a
new model D2.

This process terminates: at some point all the Bi0,i1,...,ik have cardinality 1, since the
coordinates of the points on the special fiber of the blow-up are exactly the coefficients of
the t-adic expansions of those points. The t-adic expansions of distinct Pi and Pj are different
after a certain height k, giving different coordinates on the corresponding blow-up. The last
semistable model Dk before the process above terminates is our separating semistable model.
We simply call this model D.

Ramification indices for superelliptic coverings

Let C → P1 be a superelliptic covering of degree n given by (x, y) 7→ x for the curve C
defined by yn = f(x), where we can assume f(x) is a polynomial in K[x]. For every α a root
of f(x), we can consider the valuation vα corresponding to x− α in the function field K(x).
Then, α is in the branch locus if and only if n - vα(f(x)). Indeed, the Newton polygon of
yn− f(x) with respect to this valuation has slope −vα(f(x))/n, which is integral if and only
if n|vα(f(x)). Here, the Newton polygon of a polynomial g ∈ K[y] for some valued field K
is the lower convex hull of the points (i, v(gi)) ∈ R2. The gi satisfy g =

∑n
i=0 giy

i.
We now consider the canonical model D constructed in the previous subsection. We do

not need to write the equations for this model, and we may instead work with the intersection
graph, which is the tropical separating tree of these points minus the leaves at the end. For
this canonical model D, we take the corresponding disjointly branched morphism C → D
obtained by normalization after a finite extension. That is, we take a finite extension of K
to eliminate the ramification on the components of the special fiber of D and then we take
the normalization C of D inside the function field K(C) of C. By [87, Theorem 2.3] and
[71, Proposition 3.1.], the morphism φC : C → D is then disjointly branched, as defined in
Definition 4.5.4. We use this disjointly branched morphism φC throughout this section.

Proposition 4.5.14 ([26]). Let P ∈ P1(K) be a (generic) branch point of the superelliptic
covering φ : C → P1 given by the equation yn = f(x) with a corresponding superelliptic
morphism of metric graphs φΣ : CΣ → T induced from the morphism of semistable models
C → D. Let cP := vP (f(x)), where vP is the valuation associated to P in the function field
K(x). For any point x ∈ C, we let Ix be the inertia group of x, as defined in the subsection
“Galois Covers of Semistable Models.”

1. Let Q be any point in the preimage of P , and let Q̃ := rC(Q). Then

|IQ| = n/ gcd(cP , n) = |IQ̃|.

2. Let ψ be a rational function on T satisfying ∆(ψ) = ρ(div(f)). Let ψe be the slope of
ψ along the edge e of T . Let e′ be any edge lying above e. Then,

|Ie′ | = n/ gcd(ψe, n).
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In other words, there are gcd(ψe, n) edges lying above e.

3. Let gv be the number of vertices in Σ lying above v ∈ T . Then

gv =
n

lcm(|IQ|)
= gcd(n/|IQ|),

where the least common multiple and greatest common divisor are taken over all rami-
fication points Q reducing to components Γv′ for any vertex v′ lying above v and edges
adjacent to v′.

Proof.

1. Consider the polynomial yn − f(x) ∈ K(x)[y]. The point P gives a natural valuation
of the function field K(x). The Newton polygon of yn − f(x) with respect to this
valuation is a single line with slope −cP/n. This means there are n roots with valuation
−cP/n. We clear the denominator and the numerator and obtain n/ gcd(cP , n) in the
denominator. This denominator is exactly the ramification index for the extension of
discrete valuation rings corresponding to Q and P , which proves the desired result.
The second equality is Proposition 4.5.11.

We remark that a simpler proof (which does not use Proposition 4.5.11) is possible here.
One may calculate the order of the inertia group IQ̃ directly using [71, Proposition 5.1.]
and then conclude that it equals |IQ|.

2. For the second statement, pick any vertex v with corresponding irreducible component
Γ containing the edge e. We consider the Γ-modified form of f , defined as follows. The
component Γ has a generic point y with discrete valuation ring OD,z, valuation vΓ, and
uniformizer t. We set k := vΓ(f) and define the Γ-modified form to be the element

fΓ :=
f

tk
.

The corresponding morphism of components is described by (y′)n−fΓ, where y′ =
y

tk/n
.

On the special fiber, the intersection point corresponds to a smooth point of Γ. By
the Poincaré-Lelong formula, as presented in [71, Corollary 5.1], the valuation of fΓ

at this smooth point is exactly the slope of the function ψ on e. As in the previous
statement, the ramification index on the special fiber is n/ gcd(ψe, n). By Proposition
4.5.11, this is the order of the inertia group at e′, as desired.

3. For the third statement, we consider as before the algebra

OD,z[y]/〈yn − fΓ〉.

The number of irreducible factors of yn − fΓ is the number of vertices lying above Γ.
By considering the prime decomposition of n, we have n = lcm(|IQ|) · (gcd(n/|IQ|)).
Then, n/|IQ| = gcd(n, vα(fΓ)).
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We have fΓ = h
r

for some h ∈ OD,y. There must be distinct roots αi and αj of h
such that the valuations of h at x− αi and x− αj are coprime. Otherwise, this would
contradict the fact that r is the greatest common divisor of all the valuations. We have
the factorization

yn − fΓ =
r∏
i=1

(yc − (ζr)i · h)

for some primitive r-th root of unity ζr. We claim the factors yc − (ζr)i · h are irre-
ducible. Indeed, there are two roots of h such that their valuations have no common
factor. Any further factorization of h would contradict this fact. We thus conclude
there are exactly r factors of yn − fΓ. This implies the statement of the proposition.

The algorithm

We now give an algorithm producing the Berkovich skeleton of a curve C defined by an
equation yn = f(x) for some n ≥ 2 and f(x) ∈ K(x). This algorithm generalizes the
algorithm for finding the Berkovich skeleton of hyperelliptic curves as seen in Section 4.4.
We take as input to the algorithm a polynomial f(x) ∈ K[x], which we may do because for
f(x) of the form f(x) = g(x)/h(x), we may multiply both sides of yn = f(x) by h(x)n and
make a change of coordinates ỹ = h(x) ·y to obtain the integral equation (ỹ)n = g(x)h(x)n−1.

Algorithm 4.5.15 (Tropicalization Algorithm, [26]).

Input : A curve C defined by the equation yn = f(x) =
∏r

i=1(x− αi).
Output : The Berkovich skeleton CΣ of C.

1. Compute the tree T . This is the abstract tropicalization of P1 together with the marked
ramification points Q1, . . . , Qs. This is done in the following way (See [88, Section 4.3]).

a) Let M be the 2× s matrix whose columns are the branch points Q1, . . . , Qs. Let
mij be the (i, j)-th minor of this matrix.

b) Let dij = N − 2v(mij), where v is the valuation on K and N is an integer such
that dij ≥ 0.

c) The number dij is the distance between leaf i and leaf j in the tree T . These
distances uniquely specify the tree T , and one can use the Neighbor Joining
Algorithm [104, Algorithm 2.41] to reconstruct the tree T from these distances.

2. Compute the slopes ψe along each edge of T . The divisor ρ(div(f)) is a principal divisor
on T , so there exists a rational function ψ on T with ∆(ψ) = ρ(div(f)) (as defined in
[10, Page 4]). One can compute ρ(div(f)) by observing where the zeros and poles of f
specialize. Use this to compute the slopes ψe of ψ along edges e of T using Lemma 4.5.3.
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3. Compute the intersection graph of Cs.

a) Edges. The number of preimages of each edge is gcd(ψe, n) by Proposition 4.5.14.2.

b) Vertices. The number of preimages of each vertex v is gcd((n/(ψe))|e 3 v) by
Proposition 4.5.14.3.

4. Determine the edge lengths and vertex weights to find CΣ.

a) Edges. If an edge e in T has length l(e), then the length of each of its preimages

in CΣ is l(e)·gcd(ψe,n)
n

, by Proposition 4.5.14 and [86, Chapter 10, Proposition 3.48,
Page 526]. Remove any infinite leaf edges.

b) Vertices. The weight on each vertex v is determined by the local Riemann-Hurwitz
formula. The degree d at v can be determined from the edge lengths. The weight
of v is determined by

2w(v)− 2 = −2 · d+
∑
e3v

(
n

gcd(n, ψe)
− 1

)
.

Remark 4.5.16. For the input of this algorithm, we assume the function f has already
been factored. Using the Newton-Puiseux Method [124], one can make a finite expansion
for the roots. Since we are only interested in the valuations of the root differences, a finite
expansion is sufficient. An explicit upper bound for the needed height of this expansion is
given by v(∆(f)), where ∆(f) is the discriminant of f . Typically, this method is offered
as a proof that the field of Puiseux series is algebraically closed, but it can also be used to
actually find the roots of univariate polynomials over the Puiseux series. This method has
been implemented in Maple[9, algcurves] and Magma [24].

Theorem 4.5.17 (Tropicalization Algorithm, [26]). The Tropicalization Algorithm 4.5.15
terminates and is correct.

Proof. The tree T created in the algorithm is the tree obtained from the canonical semistable
model in the subsection “A separating semistable model” with the leaves attached. The
formulas for the number of preimages of the edges and the vertices are given by Proposition
4.5.14, parts 2 and 3 respectively. There is only one graph up to a labeling of the vertices
satisfying the covering data found in the algorithm. We thus obtain the intersection graph
of the semistable model C. Contracting any leaf edges yields the Berkovich skeleton.

Example 4.5.18. We compute the abstract tropicalization of the curve defined by

y3 = x2(x− t)(x− 1)2(x− 1− t)(x− 2)2(x− 2− t).

1. The matrix M is

M =

[
0 t 1 1 + t 2 2 + t
1 1 1 1 1 1

]
,
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and so the vector m (organized lexicographically) is

m = (−t, −1, −1−t, −2, −2−t, t−1, −1, t−2, −2, −t, −1, −1−t,−1+t, −1, −t).

Taking N = 2, we have m = (0, 2, 2, 2, 2, 2, 2, 2, 2, 0, 2, 2, 2, 2, 0). Therefore,
the tree is as displayed in Figure 4.12.

2. We have div(f) = 2(0) + (t) + 2(1) + (t+ 1) + 2(2) + (2 + t)− 9(∞). Then, ρ(div(f)) =
3v12 + 3v34 + 3v56 − 9v, and φe12 = φe34 = φe56 = 3. On all leaf edges φe is 1 or 2.

3. Each of the edges e12, e34, e56 has 3 preimages, and all leaves have 1 preimage. We
can contract these in the tropical curve, so we do not draw them in the graph, but
we mention them here because they are necessary for bookkeeping the ramification
in the formulas. The middle vertex v has 3 preimages, and the other vertices have 1
preimage. So, the graph is K3,3.

4. The lengths of all interior edges in the tree T were 1. These lengths are preserved in
K3,3 because all edges were unramified. The weights on all vertices are 0. For example,

w(v12) = −3 + 1 + (3(3/3− 1) + 2(3/1)− 1)/2 = 0.

So, the abstract tropicalization of our curve is the metric graph in Figure 4.13. Each
vertex is labeled with its image in the tree T .

Figure 4.12: The tree T in Example
4.5.18.

Figure 4.13: Tropicalization of the
curve in Example 4.5.18.

Example 4.5.19. In [100] the author shows there is a unique Shimura-Teichmüller curve of
genus three, X3, defined by the equation y4 = x(x−1)(x− t), and there is a unique Shimura-
Teichmüller curve of genus four, X4, defined by the equation y6 = x(x − 1)(x − t). In [62,
Section 2], the authors compute the period matrix of X4. We now use the Tropicalization
Algorithm to compute their Berkovich skeletons.

1. The ramification points are 0, 1, t, and ∞. The corresponding tree is in Figure 4.14,
where the interior edge has length 1. We call the interior vertices v1 and v2.
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2. The divisor of f := x(x − 1)(x + t) is div(f) = (0) + (t) + (−1) − 3(∞). The divisor
specializes to ρ(div(f)) = 2v0 − 2v1. The corresponding rational function φ has slope
2 on the only edge in the tree.

3. We have gcd(φe, n) = 2 in both cases. Therefore, the edge has 2 preimages. Both
vertices on the tree have leaves, so both v0 and v1 each have one preimage each in the
graphs X3,Σ and X4,Σ.

4. The length of the interior edge in the tree is 1, so in X3 there are two edges of length
1/2 and in X4 there are two edges of length 1/3. For the genera of the vertices, we
apply the Riemann-Hurwitz formula to obtain the complete picture of the graphs; X3,Σ

is in Figure 4.15 and X4,Σ is in Figure 4.16.

Figure 4.14: Tree for the Shimura-
Teichmüller curves.

Figure 4.15: Tropical genus 3
Shimura-Teichmüller curve.

Figure 4.16: Tropical genus 4
Shimura-Teichmüller curve.

Realizability

We now show that every superelliptic cover of prime degree of metric graphs comes from an
algebraic superelliptic cover. A similar result was proved for degree d admissible coverings
in [38]: for every degree d admissible covering of metric graphs CΣ → T , there exists an
algebraic covering C → P1 tropicalizing to CΣ → T . We note however the covering obtained
by this theorem is not necessarily Galois. Unlike in [38], our approach is constructive; the
proof of our result presents a method for finding the defining equation of a curve C.

We first recall the set up: given a superelliptic covering of curves C → P1, we obtain
a superelliptic covering of metric graphs Γ → T by computing the tree T and the divisor
ρ(div(f)) =

∑
aiPi on T . The main difficulty in reversing this process is finding ai which

give the graph Γ. We show inductively there are enough ways of assigning values to the
ai such that the desired tropicalization is obtained. We denote this collection of rational
functions by

Sψ = {φ : the covering associated to the divisor (φ) is ψ}.
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There is a natural faithful action of the group F∗p on this set, given by multiplication. We
would like to prove |Sψ| > 0. By faithfulness, we immediately have at least p− 1 solutions.
The number of branch points of the covering ψ is denoted by Rψ. To show there exists an
algebraic covering tropicalizing to the given covering, we construct Rψ points in P1, labeled

Pi, which tropicalize to T , and a divisor
∑Rψ

i=1 aiPi inducing the desired covering. We already
know the vertices which the points Pi reduce to; they are the leaves in the tree T . We write
v(Pi) for these vertices. Any choice of ai ∈ Z gives a divisor

ρ(div(f)) :=

Rψ∑
i=1

aiv(Pi)

on the tree T . For the remainder of the section, we fix a target vertex v0 with at least two
branch points. For any edge e in T , consider the connected component Te of T\{e} not
containing v0 as in Lemma 4.5.3. The slope of a rational function giving this divisor along
an edge e is now given by the formula in Lemma 4.5.3:∑

x∈Te
(ψ)(x) =

∑
Pi∈Te

ai.

Definition 4.5.20. Let se be the number of Pi reducing to the connected component Te.
The total Laplacian on the component Te is a function ∆e(ψ) : (Fp)se → Fp, sending (ai) 7→∑

Pi∈Te ai. We consider these as elements of Fp because we are only interested in the value
of the slopes and the exponents mod p.

This definition allows us to view the formula for the slope of the Laplacian on e as a
function of the ai laying on the connected component Te. The covering ψ must satisfy the
total Laplacian equations{

∆e(ψ)(ai) = 0 if p edges map to e,
∆e(ψ)(ai) ∈ F∗p if only 1 edge maps to e.

We adopt the following notation for the rest of this section.

1. We write ∆e(ψ) ≡ 1 if there exist ai such that ∆e(ψ) ∈ (Fp)∗.

2. Similarly, we write ∆e(ψ) ≡ 0 if there exist ai such that ∆e(ψ) = 0.

3. Given a set of edges E := {ei}, we write ∆E(ψ) ≡ δei for δei ∈ {0, 1} if there exist ai
such that all conditions ∆ei(ψ) ≡ δei are met simultaneously for this set of {ai}.

4. Given an edge e with connected component Te and numbers δei ∈ {0, 1} for ei ∈ Te,
we write ∆Te(ψ) = c for a c ∈ Fp if there exist ai such that ∆ej(ψ) ≡ δej for every ej
in Te and such that ∆e(ψ) = c.

So, the covering ψ : Γ→ T gives us a set of {δei} with δei ∈ {0, 1}: for every unramified edge
ei we obtain ∆ei(ψ) ≡ δei = 0 and for every ramified edge ei we obtain ∆ei(ψ) ≡ δei = 1.
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Lemma 4.5.21 ([26]). Let Γ → T be a superelliptic covering of metric graphs. For every
ei ∈ Te, let δei ∈ {0, 1} be given by the covering, as above.

1. If e is ramified, then ∆Te(ψ) = c for any c ∈ F∗p.

2. If e is unramified, then ∆Te(ψ) = 0.

Proof. We prove the lemma by induction on |E(Te)|. The inductive hypothesis is

In: For every e such that |E(Te)| ≤ n, we have ∆Te(ψ) = 0 if e is unramified and
∆Te(ψ) = c for every c ∈ F∗p if e is ramified.

For n = 0, Te consists of a single vertex v. If e is ramified, there exists at least one branch
point P . If it is the only branch point, then ∆e(ψ) = v(P ), which can be any c ∈ F∗p. If
there exists another branch point Q, then any value c can be attained by a combination
aP + bQ for some a and b. If e is unramified, there exist at least two branch points at v.
The valuations can be chosen to satisfy ∆e(ψ) = 0 as required.

Now suppose the statement is true for n. Let e be any edge such that |E(Te)| = n + 1.
Let v be the vertex in Te connected to e. Then for every other edge connecting to v, we have
|E(Tei)| ≤ n, so by the induction hypothesis we know the statement is true for Tei . Suppose
e is ramified. Then v is branched over at least one other point, which can be a global branch
point or an edge. If it is the only branch point, we are done because ∆Te(ψ) is equal to the
valuation of this branch point. This valuation is equal to the slope along the branched edge
(which we can control by the induction hypothesis) or the valuation of the global branch
point reducing to it. If there is another branch point we can use its valuation to adjust the
value of ∆Te(ψ). This can attain any value c ∈ F∗p. Suppose e is unramified. The argument
is similar to the previous case. There are at least two branch points reducing to v, which
can be edges or global branch points. In both cases we have complete control over them
(as in the ramified case) and we can solve ∆Te(ψ) = 0. By induction, we now conclude the
statement holds for any n.

We apply Lemma 4.5.21 to the edge connected to v0 to obtain an assignment for all ai.

Corollary 4.5.22 ([26]). Given any superelliptic covering Γ → T with covering data δi for
every edge, we have ∆E(ψ) ≡ δi for E = E(T ).

Theorem 4.5.23 ([26]). Let p be a prime number. A covering φ : Γ → T is a superel-
liptic covering of degree p of weighted metric graphs if and only if there exists an algebraic
superelliptic covering φ : X → P1 of degree p tropicalizing to it.

Proof. Suppose we have a superelliptic admissible covering of graphs φ : Γ → T of degree
p. We present a procedure for constructing a polynomial f such that the covering from the
curve yp = f(x) defined by (x, y) 7→ x tropicalizes to φ : Γ→ T .
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1. On each vertex vi ∈ T , use the local Riemann-Hurwitz condition to determine the
number of leaves r(vi) needed on each vertex.

2. Each vertex vi ∈ T corresponds to points Pi,1, . . . , Pi,r(vi) ∈ P1(K), each corresponding

to the leaves attached at vi. The equation for f is f(x) =
∏

vi∈T
∏r(vi)

j=1 (x− Pi,j)aij .

3. Find the aij as follows. Select a target vertex v0 with at least two leaves. For every edge
in the graph, we solve the corresponding total Laplacian equation with respect to v0.
The fact that there is a solution follows from Corollary 4.5.22. Pick a solution to these
equations. Consider the branch points Pv0,1, ..., Pv0,s reducing to v0. The valuations at
these points satisfy

s∑
i=1

av0,i =
∑

P not reducing to v0

−aP ,

Picking av0,i satisfying this equation concludes the algorithm for finding the aij.

4. To obtain the desired points Pi, we view these trees as describing t-adic expansions of
elements in K. To be explicit, let S be a set of representatives for the residue field
k. Let v0 be an endpoint of T , and let v1 be the vertex connected to v0. For every
leaf e (with end vertex not equal to v0) attached to v1, construct a point Pe = cet,
with the ce ∈ S distinct. This might require a finite extension of the residue field
k, which corresponds to a finite (unramified) extension of K. For every nonleaf ei,
take an element ci ∈ S that is not equal to the ce. For such an edge ei, consider
the connecting vertex v1,i. For every leaf e attached to v1,i, find distinct ci,e ∈ S and
construct Pe = cit+ci,et

2. For every nonleaf ei,j connected to v1,i, repeat the procedure
and construct elements ci,j ∈ S distinct from the ci,e, where e is a leaf. We do one more
step of the inductive procedure. Let v1,i,j be the other vertex connected to ei,j. For
every leaf e attached to v1,i,j, find distinct ci,j,e and construct Pe = cit+ ci,jt

2 + ci,j,et
3.

At some point, we reach vertices that only have leaves as neighboring edges. At this
point, we stop the procedure and find a set of points {Pe}. The tree corresponding
to this set of points is T . On the algebraic side, we take the canonical semistable D
corresponding to this set (see the subsection “A separating semistable model”). Its
intersection graph is T minus the leaves.

The other direction is obtained by combining [71, Theorem 3.1] and [86, Chapter 10, Propo-
sition 3.48, Page 526] for the edge lengths.

A natural question following from this is whether the same result holds for non-prime
integers n. We conjecture that this is indeed the case and that a similar proof could be used.

Moduli space

The moduli spaceMtrop
g of weighted metric graphs of genus g was defined in [29], and has the

structure of a (3g−3)-dimensional stacky fan. The cones in M trop
g of dimension d correspond
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to combinatorial types, which are pairs consisting of a graph H with d edges and a weight
function w on its vertices. A constrained type is a triple (H,w, r), where r is an equivalence
relation on the edges of H. In a metric graph Σ corresponding to the constrained type
(H,w, r), the equivalence relation r requires that edges in the same equivalence class have
the same length. One can contract edges of a constrained type to arrive at a new constrained
type. Contraction is discussed in [44, Section 4.1] and depicted in Figure 4.17.

Definition 4.5.24. The moduli space of tropical superelliptic curves Strop
g,n is the set of

weighted metric graphs of genus g which have a degree n superelliptic covering to a tree.
We will see below in Proposition 4.5.25 that it has the structure of a stacky polyhedral fan.
Let Sptrop

g,n ⊂ Strop
g,n denote the image under tropicalization of superelliptic curves defined by

equations of the form yn = f(x) with distinct roots.

By Theorem 4.5, when n is prime we have Strop
g,n ⊂ Mtrop

g is equal to the image under
tropicalization of the locus of superelliptic curves inside Mg, the moduli space of genus g
curves. We comment Sptrop

g,n ( Strop
g,n when n > 2. See Figure 4.17 for the combinatorial types

of weighted metric graphs corresponding to cones inside Strop
4,3 and Sptrop

4,3 .

Figure 4.17: Weighted metric graphs corresponding to maximal cones in Strop
4,3 and Sptrop

4,3

(shown in purple).

Proposition 4.5.25 ([26]). The locus Strop
g,n of weighted metric graphs of genus g which have

a degree n superelliptic covering to a tree has the structure of a stacky polyhedral fan.
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Proof. In [44, Section 4.1], Chan proves that given a collection S of constrained types which
are closed under contraction, the space MS they define is a stacky fan with cells in correspon-
dence with the constrained types. We can obtain a constrained type from a combinatorial
type of genus g graph with a degree n superelliptic covering to a tree by making the relation
r to equate any edges which have the same image under the covering map. Let (H,w, r) be
such a type, admitting a degree n superelliptic covering θ to the tree T which gives the rela-
tion r. If (H ′, w′, r′) is a contraction of (H,w, r) along the equivalence class of edges [e], and
T ′ is the contraction of T along the edge θ([e]), one can see using the local Riemann-Hurwitz
equations (H ′, w′, r′) admits a degree n superelliptic covering to the tree T ′.

Using the Riemann-Hurwitz equation, we compute the genus of a graph in the case when
p is prime and the map has r ramification points. Let g(p, r) := (p− 1)(r/2− 1).

Theorem 4.5.26 ([26]). Let r ≥ 4 be an integer number of ramification points. Given two
odd primes p and p′, the stacky polyhedral fan Strop

g(p,r),p is the same as Strop
g(p′,r),p′.

Proof. Define a new stacky polyhedral fan Ts(r) for r ≥ 4 whose cones correspond to pairs
(T, s), where T is a tree on r leaves and s is any subset of the edges of T which we call a
signature. Each cone has dimension equal to the number of interior edges of T . We glue
the cone (T, s) to the cone (T ′, s′) when (T ′, s′) is a pair in which an edge e ∈ T has been
contracted, and s′ = s\{e}.

Given a tree T with r leaves and m interior edges, one can compute all superelliptic graphs
with a degree p map to T in the following way. A choice of signature on T corresponds to
deciding which interior edges have p preimages or 1 preimage in a superelliptic graph mapping
to T . This yields 2m signatures, but some signatures do not yield admissible covers. On
each interior vertex v, compute the weight using the local Riemann-Hurwitz equation. If the
vertex has no leaves and all edges adjacent to it have multiple preimages, then the vertex
has p preimages and weight 0. Otherwise w(v) = (p− 1)(rv − 2)/2, where rv is the number
of leaves at v plus the number of ramified edges. The graph is superelliptic if and only if this
number is a positive integer for all vertices of the tree. Since p is odd, this is always be an
integer. Then, we need that at each vertex, rv ≥ 2. Any signature on a tree satisfying this
yields a superelliptic graph. So, graphs admitting a degree p superelliptic cover of T are in
bijection with good choices of signatures on T . The space Strop

g(p,r),p naturally sits inside Ts(r);

each cone corresponding to a superelliptic curve Γ→ T is mapped to the cone (T, s) where
T is the tree corresponding to that curve and s is the set of ramified edges in the covering.
Whether or not a signature is admissible does not depend on p, so for any odd primes p and
p′, the images Strop

g(p,r),p ⊂ Ts(r) and Strop
g(p′,r),p′ ⊂ Ts(r) are the same.

Theorem 4.5.27 ([26]). For primes p ≤ 17 and number of ramification points r ≤ 14, the
number of maximal cones in Strop

g(p,r),p and Sptrop
g(p,r),p is given in Table 4.1.

Proof. This was done by direct computation in Mathematica, as we describe below. We
restrict to the case of prime n = p to simplify the computation. First, we precompute all
trivalent trees on r leaves.
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For the computations for Strop
g(p,r),p, we create all graphs arising from assigning on each

interior edge of the tree which ones are ramified and which are unramified (this gives 2r−3

possibilities). We check which of the resulting graphs have an assignment of non-negative
integer weights on the vertices satisfying the local Riemann-Hurwitz condition. Then, we
remove the isomorphic duplicates. For fourteen leaves, this took 2.6 days to compute.

For the computations on Sptrop
g(p,r),p, the possible metric graphs arising from a fixed tree

T depend only on the choice of where ∞ specializes. This is because the metric graph
is determined by the divisor of f , and in the case with distinct roots, this is completely
determined by where ∞ specializes on T . So, we make all possible choices and compute
the resulting metric graphs. Then, we remove the isomorphic duplicates. The computations
with twenty leaves took 16 hours each to compute.

r Strop
g,2 Strop

g,p>2 Sptrop
g,3 Sptrop

g,5 Sptrop
g,7 Sptrop

g,11 Sptrop
g,13 Sptrop

g,17

4 1 2 1 1 1 1 1 1
5 0 2 2 1 1 1 1 1
6 2 7 2 0 2 2 2 2
7 0 11 0 5 2 2 2 2
8 4 34 11 7 0 4 4 4
9 0 80 6 12 17 6 6 6
10 11 242 0 11 22 11 11 11
11 0 682 92 0 40 18 18 18
12 37 2146 37 160 70 0 37 37
13 0 6624 0 227 132 273 66 66
14 135 21447 916 457 135 342 0 135
15 0 - 265 265 0 679 1248 265
16 552 - 0 0 3167 1173 1535 552
17 0 - 10069 8011 4323 2374 3098 1132
18 2410 - 2410 12029 8913 4687 5359 0
19 0 - 0 24979 16398 9859 10996 29729
20 11020 - 117746 11020 34511 20542 21833 35651

Table 4.1: The number of maximal cones in Sptrop
g(p,r),p and Strop

g(p,r),p.

Conclusion

In this chapter, we algorithmically computed non-Archimedean skeletons, or abstract tropi-
calizations, of hyperelliptic and superelliptic curves. There is still much work to be done in
computing skeletons of more general curves. The ideas used in the proofs of these algorithms
could lead to computations of skeletons for other types of curves.
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5

Enumeration

Tropical geometry has seen great success in enumerative geometry, which counts the number
of varieties of a particular type satisfying chosen conditions. For example, the Gromov-
Witten invariants of the plane count the complex algebraic curves of a given degree and
genus passing through a given number of points. It is a breakthrough result of Mikhalkin
that this question can be rephrased tropically, and that the counts agree [96].
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Remark 2.38 (N trop(�, g) as intersection number)

There is an intersection theory for N trop(�, g) developped in [Rau08], based on [AR10].
Among other results, the author shows that N trop(�, 0) can be written as intersection product
on M0,n(R2,�) [Rau08, 3.9 & 3.10]. The extended study can be found in [MR09].

Remark 2.39 (Multiplicities coincide)

The Correspondence Theorem 2.2 proves for � = d and only primitive ends that the multiplicity
mult(trop(V )) there coincides with the combinatorial multiplicity mult(C, h) [Mik05, theorem
1]. This means that the number of n-marked plane projective curves of genus g and degree d
tropicalizing to h(�) of a given parametrized tropical curve (C, h) can be computed with help
of the embedded graph h(�)!

For the general Correspondence Theorem stated as follows we need an even more restricted
version of points in general position than version (v2).

Definition 2.40 (Simple n-marked parametrized tropical curve)

[Mik05, definition 4.2]. An n-marked parametrized tropical curve (C, h) is called simple if

• � is 3-valent,

• there are at most two elements in h�1(y) for any y 2 R2,

• a, b 2 � with a 6= b and h(a) = h(b) are not vertices of �.

Definition 2.41 (Restricted general position of point configurations)

Best presentation is [Mar06, definition 5.33]. In the setting of 2.31 a collection ! = (P1, . . . , Pn)
of n points in R2 is called in restricted special position if it is in special position (v2) and in
addition ev�1(!) contains only simple curves.

Theorem 2.42 (Mikhalkin’s Correspondence Theorem (version 2))
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� can then also be seen as collection of primitive ends in R2 as in 2.34. Then it holds
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!0 there are exactly mult(C, h) complex curves passing through !.
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Figure 5.1: The nodal tropical plane cubic curves through 8 points (max convention). The
first curve is counted with multiplicity 4. Images from [113].

This correspondence principle ([96], Theorem 5.1.8) allows us to instead count the number
of tropical plane curves of a given degree and genus passing through points in a specific
configuration called Mikhalkin position, together with their multiplicities. For plane curves,
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it is much simpler to perform the tropical count because singularities of tropical plane curves
are well understood. Moreover, combinatorial tools like floor diagrams [32, 33] and the lattice
path algorithm [96] have been developed in order to facilitate these counts. For example,
there are 12 irreducible nodal plane curves of degree 3 through 8 points (Figure 5.1).

The efficacy of tropical geometry in curve counting led to initial steps towards counting
higher dimensional varieties using tropical methods. In [91], the authors determine the
combinatorial types of nodes that a one-nodal tropical surface can have. In [90], the authors
give a correspondence theorem for singular tropical surfaces, and develop a three-dimensional
version of the lattice path algorithm enumerating singular tropical surfaces passing through
points in Mikhalkin position in R3. In [92] the authors extend the concept of floor diagrams
to floor plans for surfaces. In this chapter, we develop counting techniques for tropical
surfaces. Using these techniques, we count tropical binodal cubic surfaces.

The original material in this chapter appears in the section “Counting Surfaces in Space,”
and is joint work with Alheydis Geiger [25] and will be published in Le Matematiche.

5.1 Counting Curves in the Plane

Throughout this section we follow [73].

Gromov-Witten Invariants

We begin with two examples of Gromov-Witten invariants before defining them.

Example 5.1.1 (N(d, 0)). Let d be a non-negative integer. Given a generic choice of d(d+3)
2

points in P2, how many curves of degree d pass through the points?
The collection of degree d curves in P2

C can be parameterized by the coefficients of their
defining equation

ad00x
d + · · ·+ a00dz

d.

This gives a projective space of dimension d(d+3)
2

in the aijk parameterizing the collection
of curves of degree d in P2

C. Given a point p in P2, the collection of all curves of degree

d passing through p is a hyperplane in P
d(d+3)

2 . Therefore, asking for the curves that pass

through d(d+3)
2

points just gives a single point in P
d(d+3)

2 . So, there is only one such curve.

Example 5.1.2 (N(d, 1)). Given a generic choice of d(d+3)
2
− 1 points in P2, how many 1-

nodal curves of degree d pass through the points? Let D ⊂ P
d(d+3)

2 denote the hypersurface
of singular curves. This degree 3(d−1)2 variety is called the discriminant. The smooth locus
of D consists of points whose only singularity is a node.

Our selection of d(d+3)
2
− 1 points gives a line in P

d(d+3)
2 of curves passing through those

points. So, wherever this line intersects D we obtain a nodal curve of degree d passing
through the d(d+3)

2
− 1 points. This will consist of finitely many points, and their number

will be the degree of D.
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We may generalize Examples 5.1.1 and 5.1.2 with the following question.

Question 5.1.3. Let δ be an integer satisfying 0 ≤ δ ≤ (m−1)(m−2)
2

. How many δ-nodal

degree m curves in P2
C are there passing through a generic choice of m(m+3)

2
− δ points?

Definition 5.1.4. Let N(d, δ) be answer to Question 5.1.3. Let N irr(d, δ) count the irre-
ducible such curves. The numbers N irr(d, δ) are the Gromov-Witten invariants of the plane.

Let δmax = (m−1)(m−2)
2

. The number N irr(d, δmax) is the number of rational degree m
curves passing through a generic collection of 3m − 1 points in P2. Kontsevich gave a
recursive formula for the numbers N irr(d, δmax) [81]. A recursive formula for arbitrary δ was
given by Caporaso and Harris [34].

Mikhalkin Correspondence Principle

Mikhalkin proposed a new formula for N(d, δ) [96, 95]. His strategy was to reformulate
the counting problem in to a problem about counting tropical curves, by showing that each
tropical curve can be counted with a multiplicity so that the tropical and algebraic counts
agree. Let ∆d ⊂ R2 be conv((0, 0), (d, 0), (0, d)).

Definition 5.1.5. Let T be a tropical curve of degree d, and let ∆T
d be the corresponding

dual subdivision of ∆d. Then T (or ∆T
d ) is called simple if the dual subdivision ∆T

d satisfies
the following criteria:

1. Every polygon in ∆T
d is either a triangle or a parallelogram, and

2. Any lattice point in the boundary of ∆d is a vertex of ∆T
d .

Remark 5.1.6. If T is simple, it has a unique representation as the union of irreducible
tropical curves.

Definition 5.1.7. The rank of T is

|{vertices of ∆T
d }| − |{parallelograms of ∆T

d }| − 1

The multiplicity µ(T ) = µ(∆T
d ) is ∏

triangles ∆∈∆T
d

area(∆)

where the area is normalized so that area(∆1) = 1.

Let r be a positive integer, and let U be a generic collection of r points in R2. Let C(U)
be the set of simple tropical curves of degree d and rank r passing through all points of U .
Let Cirr(U) be the irreducible such curves.
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Theorem 5.1.8 ([96]). Let 0 ≤ δ ≤ (d−1)(d−2)
2

. Let U be a generic set of r = d(d+3)
2
− δ

points in R2. Then we have the following equalities:

N(d, δ) =
∑

T∈C(U)

µ(T )

N irr(d, δ) =
∑

T∈Cirr(U)

µ(T ).

Lattice path algorithm

Mikhalkin gives a combinatorial algorithm to calculate the number of tropical curves in
question in a simple way. Fix a linear function λ : R2 → R, such that λ is injective on the
lattice points of ∆d. Let p be the vertex of ∆d where λ achieves its minimum, and let q be
the vertex of ∆d where λ achieves its maximum. Then p and q divide the boundary of ∆d

into two parts, which we call ∂∆+
d and ∂∆−d .

Definition 5.1.9. Let l be a natural number. A path γ : [0, l]→ ∆d is λ-admissible if

1. We have λ(0) = p, λ(l) = q,

2. the composition λ ◦ γ is injective,

3. for any integer 0 ≤ i ≤ l − 1, we have that γ(i) is an integer and γ([i, i + 1]) is a line
segment.

In this case, l is called the length of γ, and the integer points of γ(i) for 0 ≤ i ≤ l are called
the vertices of γ.

A λ-admissible path γ divides ∆d into two parts:

1. The region bounded by γ and ∂∆+
d , denoted by ∆+

d (γ), and

2. the region bounded by γ and ∂∆−d , denoted by ∆−d (γ).

Definition 5.1.10. If it exists, let j be the smallest positive integer such that 1 ≤ j ≤ l− 1
and such that γ(j) is the vertex of ∆+

d (j) with angle less than π. A compression of ∆+
d (γ)

is ∆+
d (γ′), where γ′ is either

1. the path defined by

γ′(i) =

{
γ(i) i < j

γ(i+ 1) i ≥ j,

2. or the path defined by

γ′(i) =

{
γ(i) i 6= j

γ(j − 1) + γ(j + 1)− γ(j) i = j.
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Definition 5.1.11. A sequence of compressions starting with ∆+
d (γ) and ending with a path

whose image coincides with ∂∆+
d defines a subdivision of ∆+

d (γ) called a compressing.

Remark 5.1.12. A compression and a compressing subdivision of ∆−d (γ) are defined anal-
ogously.

Definition 5.1.13. A pair (S+(γ), S−(γ)) where S± is a compressing subdivision of ∆±d (γ)
produces a subdivision of ∆d, which is called γ-consistent. Denote by Nλ(γ) the collection
of γ-consistent subdivisions of ∆d.

Theorem 5.1.14 ([95, 96]). Let 0 ≤ δ ≤ (m−1)(m−2)
2

be an integer. There exists a generic set

U of r = m(m+3)
2
− δ points in R2 such that the map associating a simple tropical curve T of

degree m and rank r to the dual subdivision ∆T
d of ∆d establishes a one-to-one correspondence

between the set C(U) and the disjoint union⊔
γ

Nλ(γ),

where γ runs over all λ-admissible paths in ∆d of length r.

Example 5.1.15. Consider 1-nodal tropical cubic curves passing through 8 points. Let
λ(i, j) = i−εj for ε sufficiently small. Then δ = 1 and r = 8. The corresponding subdivisions
are pictured in Figure 5.2, where the lattice paths are pictured in green.

Figure 5.2: The dual subdivisions of the nodal tropical plane cubic curves through 8 points.
The first curve is counted with multiplicity 4. This gives a total of 12 curves.
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5.2 Counting Surfaces in Space

We can rephrase questions like the one posed in Question 5.1.3 in higher dimensions. Ex-
plicitly, what is the number of k-nodal degree d surfaces passing through

(
d+3

3

)
−1−k points

in P3? For the answer, see Theorem 5.2.11. In this section we count nodal surfaces in three
space using tropical methods.

In order to do this, we must understand singular tropical hypersurfaces and how to con-
struct them using a higher dimensional analogue of the lattice path algorithm. Some progress
has been made towards counting nodal surfaces in three space using tropical methods. A
surface with δ nodes as its only singularities is called δ-nodal. The tropicalization of a δ-
nodal surface is called a δ-nodal tropical surface. A binodal tropical surfaces is therefore
the tropicalization of a binodal surface. We say a δ-nodal surface is real if the polynomial
defining the surface is real and the surface has real singularities.

Given a generic choice of points in P3
K , the δ-nodal cubic surfaces passing through the

points will tropicalize to tropical surfaces passing through the tropicalizations of the points.
However, an arbitrary choice of points might lead to the tropicalizations of the points not
being distinct, or not being tropically generic. Furthermore, these surfaces would be difficult
to characterize in general.

Luckily, we can choose points in Mikhalkin position (see Definition 5.2.1). This is a
configuration of points in generic position such that their tropicalizations are tropically
generic. Additionally, tropical surfaces passing through such points have a very nice form,
and the combinatorics of the dual subdivision is well understood.

In what follows, we present preliminary techniques for counting surfaces tropically, and
apply these techniques to give a partial count of binodal cubic surfaces.

Tropical Floor Plans

In this section, we give an overview of the current technology for counting surfaces using
tropical geometry. Let K = ∪m≥1C{t1/m} and KR = ∪m≥1R{t1/m}.

We now give the definition of points in Mikhalkin position. This will provide the choice
of tropical points that the surfaces we count will pass through. The reason for this particular
choice of points is that tropical surfaces passing through these points will have a particular
structure. We can take advantage of this structure to easily list the surfaces.

Definition 5.2.1 ([90, Section 3.1]). Let ω = (p1, ..., pn) be a configuration of n points in
P3
K or P3

KR
. Let qi ∈ R3 be the tropicalization of pi for i = 1, . . . , n. We say ω is in Mikhalkin

position if the qi are distributed with growing distances along a line {λ·(1, η, η2)|λ ∈ R} ⊂ R3,
where 0 < η � 1, and the pi are generic.

This is possible by [96, Theorem 1]. From now on all tropical surfaces are assumed to
satisfy point conditions from points in Mikhalkin position.

We now summarize the recipe for constructing δ-nodal tropical cubic surfaces through
n points in Mikhalkin position. Given a singular tropical surface S passing through ω =
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(p1, ..., pn) in Mikhalkin position, each point pi is contained in the relative interior of its own
2-cell of S [90, Remark 3.1]. Therefore, we can encode the positions of these points by their
dual edges in the Newton subdivision. Marking these edges in the subdivision leads to a
path through n + 1 of the lattice points in the Newton polytope ∆ (see Figure 5.3b). The
path will miss δ lattice points in ∆. Due to our special configuration, this path is always
connected for cubics [90, Section 3.4]. Moreover, satisfying point conditions in Mikhalkin
position implies that the surface is floor decomposed [20].

Definition 5.2.2. A subdivision of ∆ = conv((0, 0, 0), (d, 0, 0), (0, d, 0), (0, 0, d)) is floor
decomposed if the subdivision is a union of the subdivided polytopes:

conv{(0, 0, 0), (0, d, 0), (0, 0, d), (1, 0, 0), (1, d− 1, 0), (1, 0, d− 1)},
conv{(1, 0, 0), (1, d− 1, 0), (1, 0, d− 1), (2, 0, 0), (2, d− 2, 0), (2, 0, d− 2)},
...

conv{(d− 1, 0, 0), (d− 1, 1, 0), (d− 1, 0, 1), (3, 0, 0)}.

These are the slices, see Figure 5.3a.

The edges dual to the 2-cells containing the points in Mikhalkin position give rise to
a path. This path leads through the triangular faces of the boundary of the slices of ∆
and connects each of them by one step, see Figure 5.3b, [90, Section 3.2]. By looking at the
triangle faces of the slices independently, we obtain subdivisions of polytopes dual to tropical
curves of degrees 1 up to d. These are the floors of our floor plans (see Definition 5.2.6).

(a) Floor decomposed dual subdivision of a
cubic surface

(b) The lattice path through the points of ∆
corresponding to a smooth tropical cubic sur-
face

Figure 5.3: Subdivision and lattice path to a smooth tropical cubic surface through points
in Mikhalkin position.

For tropical surfaces passing through points in Mikhalkin position this process is re-
versible. We start with a lattice path through n points in ∆ that proceeds through the slices
in the prescribed way. From this path we reconstruct the floors of the surface. Then, we
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extend this to a floor-decomposed subdivision of ∆ by the smooth extension algorithm [90,
Lemma 3.4], thus giving a tropical surface passing through points in Mikhalkin position.

Tropicalizations of singularities leave a mark in the dual subdivision [91]. By [91] a
tropical surface is one-nodal if it contains one of the 5 circuits shown in Figure 5.4. A
circuit is a set of affinely dependent lattice points such that each proper subset is affinely
independent. We now give a proposition that will be used for counting cubic surfaces.

Proposition 5.2.3 ([25]). In the tropicalization of a nodal cubic surface passing through
points in Mikhalkin position only the circuits A, D and E can occur in the dual subdivision
(see Figure 5.4).

Proof. Since the Newton polytope to a cubic surface does not contain interior lattice points,
circuit B is eliminated. The point conditions induce a lattice path in the dual subdivision,
which eliminates the possibility of interior points in a triangle, so circuit C cannot occur.

(a) Circuit A (b) Circuit B (c) Circuit C (d) Circuit D (e) Circuit E

Figure 5.4: Circuits in the dual subdivision inducing nodes in the surface.

The lower dimensional circuits have to satisfy some additional conditions so that their
dual cell in the tropical surface contains a node. Circuit A is a pentatope, which is full
dimensional. Its dual cell is a vertex and this vertex is the node. To encode a singularity,
circuit D must be part of a bipyramid (see Figure 5.5c). The node is the midpoint of the edge
dual to the parallelogram. Circuit E must have at least three neighboring points in special
positions, forming at least two tetrahedra with the edge (see Figure 5.5e). The weighted
barycenter of the 2-cell dual to the edge of length two is the node, where the weight is given
by the choice of the three neighbors. We now introduce the definition of a node germ, which
is a feature of a tropical curve appearing in a floor plan giving rise to one of these circuits
in the subdivision dual to the tropical surface.

(a) Circuit A (b) Circuit D (c) Bipyramid (d) Circuit E
(e) Weight two
configuration

Figure 5.5: Circuits in the dual subdivision.
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Definition 5.2.4 ([92], Definition 5.1). Let C be a plane tropical curve. A node germ of C
is one of the following:

1. a vertex dual to a parallelogram,

2. a horizontal or diagonal end of weight two,

3. a right or left string (see below).

If the lower right (resp. left) vertex of the Newton polytope has no point conditions on
the two adjacent ends, we can prolong the adjacent bounded edge in direction (1, 0) (resp.
(−1,−1)) and still pass through the points. The union of the two ends is called a right (resp.
left) string. See Figures 5.6a and 5.6b.

(a) Left string (b) Right string

Figure 5.6: Right and left strings.

Definition 5.2.5. A tropical surface has separated nodes if the nodes arise from polytopes
of the form in Figure 5.5a, 5.5c or 5.5e. Any such two complexes might intersect in a
unimodular face.

In [92] tropical floor plans are introduced to count surfaces satisfying point conditions,
similar to the concept of floor diagrams used to count tropical curves. Their definition of
tropical floor plans requires node germs to be separated by a smooth floor. This neglects
surfaces where the nodes are still separated but closer together.

Definition 5.2.6 ([92], Definition 5.2). Let Qi be the projection of qi along the x-axis. A
δ-nodal floor plan F of degree d is a tuple (Cd, . . . , C1) of plane tropical curves Ci of degree
i together with a choice of indices d ≥ iδ ≥ · · · ≥ i1 ≥ 1, such that ij+1 > ij + 1 for all j,
satisfying:

1. The curve Ci passes through the following points (where we set i0 = 0 and i+ δ + 1 =
d+ 1):

if iν > i > iν−1 : Q∑d
k=i+1 (k+2

2 )−δ+ν , ..., Q
∑d
k=i (

k+2
2 )−2−δ+ν

if i = iν : Q∑d
k=i+1 (k+2

2 )−δ+ν+1, ..., Q∑d
k=i (

k+2
2 )−2−δ+ν .
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2. The plane curves Cij have a node germ for each j = 1, . . . , δ.

3. If the node germ of Cij is a left string, then its horizontal end aligns with a horizontal
bounded edge of Cij+1.

4. If the node germ of Cij is a right string, then its diagonal end aligns either with a
diagonal bounded edge of Cij−1 or with a vertex of Cij−1 which is not adjacent to a
diagonal edge.

5. If iδ = d, then the node germ of Cd is either a right string or a diagonal end of weight
two.

6. If i1 = 1, then the node germ of C1 is a left string.

The information contained in a floor plan defines a unique tropical binodal cubic surface
[92, Proposition 5.9].

Remark 5.2.7. This definition only allows node germs in floors that are separated by a
smooth floor. To count all surfaces with separated singularities, we have to allow node
germs in adjacent or the same floors and hence we need to extend this definition to the new
cases, that cannot occur in the original setting.

As soon as adjacent floors can contain node germs, a new alignment option for the left
string is possible: analogous to the second alignment option for the right string, a left string
in Ci can also align with a vertex of Ci+1 not adjacent to a horizontal edge.

(a) Left string aligning with a
horizontal bounded edge

(b) Right string aligning with
a diagonal bounded edge

(c) Parallelogram in subdivi-
sion dual to floor

Figure 5.7: Node germs giving a circuit of type D.

We now describe how the node germs from Definition 5.2.4 together with the alignment
conditions described in Definition 5.2.6 produce one of the circuits from Figure 5.5 inside
the dual subdivision.

Figure 5.7 shows all node germs which lead to a parallelogram in the subdivision of the
Newton polytope. If the node germ in a curve is dual to a parallelogram we have a picture
as in Figure 5.7c. The right vertex of the floor of higher degree and the left vertex of the
floor of lower degree form a bipyramid over the parallelogram as in Figure 5.5c. Figure 5.7a
depicts the alignment of the horizontal end of the left string with a bounded horizontal edge
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of a curve of higher degree. In the floor plan, this translates to the dual vertical edges in
the subdivisions forming a parallelogram. Since the string passes through the two vertices
bounding the horizontal edge it aligns with, the dual polytope is a bipyramid over the
parallelogram. The two top vertices of the pyramids are the vertices forming triangles with
the vertical bounded edge in the dual subdivision to the floor of higher degree. Analogously,
a right string aligning with a diagonal bounded edge (see Figure 5.7b) produces a bipyramid
in the dual subdivision.

Figure 5.8a shows the alignment of a left string with a vertex not adjacent to a horizontal
edge. The 5-valent vertex in this figure is dual to a type A circuit, as in Figure 5.5a. The
occurring cases in our count are due to node germs in the conic and lead not to a pentatope
as in Figure 5.5a, but to different complexes considered in the subsection “Dual Complexes
of Unseparated Nodes.”

Figures 5.8b and 5.8c show the node germs coming from an undivided edge of length two
in the subdivision, as shown in Figure 5.5d. The node is contained in the dual 2-cell of the
length two edge. Every intersection point of the weight two diagonal (resp. horizontal) end
with the lower (resp. higher) degree curve of the floor plan can be selected to lift the node
[90]. In the dual subdivision this corresponds to choosing three neighboring vertices which
could form the polyhedral complex shown in Figure 5.5e. With our chosen point condition
the neighboring vertex in the dual subdivision of the floor containing the undivided edge is
always one of the three neighboring vertices. If the length two edge is diagonal (resp. vertical)
the other two vertices form a vertical (resp. diagonal) length one edge in the boundary of
the subdivision dual to the lower (resp. higher) degree curve of the floor plan.

(a) Intersection dual to a pen-
tatope

(b) Horizontal end of weight
two

(c) Diagonal end of weight
two

Figure 5.8: Node germs leading to circuits of type A and type E.

The complex lifting multiplicity of the node germs in the floors can be determined com-
binatorially using [90]. Here, we only list the multiplicities for node germs which can occur
in a degree 3 surface.

Definition 5.2.8 (Definition 5.4, [92]). Let F be a δ-nodal floor plan of degree d. For each
node germ C∗ij in Cij , we define the following local complex multiplicity multC(C∗ij):

1. If C∗ij is dual to a parallelogram, then multC(C∗ij) = 2.

2. If C∗ij is a horizontal end of weight two, then multC(C∗ij) = 2(ij + 1).
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3. If C∗ij is a diagonal end of weight two, then multC(C∗ij) = 2(ij − 1).

4. If C∗ij is a left string, then multC(C∗ij) = 2.

5. If C∗ij is a right string whose diagonal end aligns with a diagonal bounded edge, then
multC(C∗ij) = 2.

6. If C∗ij is a right string whose diagonal end aligns with a vertex not adjacent to a diagonal
edge, then multC(C∗ij) = 1.

The multiplicity of a δ-nodal floor plan is multC(F ) =
∏d

j=1 multC(C∗ij).

To determine the real multiplicity, we have to fix the signs of the coordinates of the
points in ω, as they determine the existence of real solutions of the initial equations in [90].
The dependence on the signs of the coordinates of the points is shown by including s in
the notation multR,s for the real multiplicity. Here we only consider points where every
coordinate is positive. In the following definition, we only list the multiplicities for node
germs which can occur in a degree 3 surface.

Definition 5.2.9 ([92], Definition 5.10). For a node germ C∗ij in Cij , we define the local real
multiplicity multR,s(C

∗
ij

):

1. If C∗ij is dual to a parallelogram, it depends on the position of the parallelogram in the
Newton subdivision:

• if the vertices are (k, 0), (k, 1), (k − 1, l) and (k − 1, l + 1), then

multR,s(C
∗
ij

) =

{
2

0
if (

3

2
ij + 1 + k + l)(ij − 1) ≡

{
1

0
modulo 2.

• if the vertices are (k, 3 − ij − k), (k, 3 − ij − k − 1), (k + 1, l) and (k + 1, l + 1),
then

multR,s(C
∗
ij

) =

{
2

0
if

1

2
· (ij + 2 + 2l)(ij − 1) ≡

{
1

0
modulo 2.

2. If C∗ij is a diagonal edge of weight two, multR,s(C
∗
ij

) = 2(ij − 1).

3. If C∗ij is a left string, then it depends on the position of the dual of the horizontal
bounded edge of Cij+1 with which it aligns. Assume it has the vertices (k, l) and
(k, l + 1). Then

multR,s(C
∗
ij

) =

{
2

0
if ij − k ≡

{
0

1
modulo 2.
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4. If C∗ij is a right string whose diagonal end aligns with a vertex not adjacent to a diagonal
edge, then multR,s(C

∗
ij

) = 1.

A tropical δ-nodal surface S of degree d given by a δ-nodal floor plan F has at least
multR,s(F ) =

∏δ
j=1 multR,s(C

∗
ij

) real lifts with all positive coordinates satisfying the point
conditions [92, Proposition 5.12]. Several cases are left out of the above definition because the
number of real solutions is hard to control. We address this in the subsection “Undetermined
Real Multiplicities.” This is why we can only give a lower bound of real binodal cubic surfaces
where the tropicalization contains separated nodes.

We now count surfaces from the floor plans defined in [92, Definition 5.2], which have
node germs in the linear and cubic floors. Since we adhere exactly to Definition 5.2.6 the
nodes will always be separated.

Proposition 5.2.10 ([25]). There are 20 cubic surfaces containing two nodes such that there
is one node germ in the cubic floor and one in the linear floor. Of these binodal surfaces at
least 16 are real.

Proof. By Definition 5.2.6 a floor plan consists of a cubic curve C3, a conic C2, and a line C1,
where the tropical curves C3 and C1 contain node germs. Recall that the notation C∗i stands
for the node germ in Ci. By Definition 5.2.6 (6) the node germ of C1 is a left string as in
Figure 5.10a, which always aligns with the horizontal bounded edge in C2, so multC(C∗1) = 2.
The node germs in C3 possible by Definition 5.2.6 (5) are depicted in Figures 5.9b-5.9d and
each one gives a different floor plan.

(5.9b) There is a right string in the cubic floor. In the smooth conic, there is no
vertex which is not adjacent to a diagonal edge. So, the right string of the
cubic must align with the diagonal bounded edge. This gives multC(F ) =
multC(C∗3) · multC(C∗1) = 2 · 2 = 4. In this case, multR,s(F ) is undetermined,
see the subsection “Undetermined Real Multiplicities.”

(5.9c,
5.9d)

The cubic has a weight two diagonal end. We have 2 ·multC(F ) = 2 ·multC(C∗3) ·
multC(C∗1) = 2 · (2(3 − 1) · 2) = 16. By Definition 5.2.9 (3) the real multiplicity
of the left string depends on coordinates of the dual of the edge it aligns with:
(1, 0) and (1, 1). This gives 2 · multR,s(F ) = 2 · multR,s(C

∗
3) · multR,s(C

∗
1) =

2 · (2(3− 1) · 2) = 16.

A Tropical Count of Binodal Cubic Surfaces

We now compute tropical counts of binodal cubic surfaces over C and R. The space P19

parameterizes cubic surfaces by the coefficients of their defining polynomial. The singular
cubic surfaces form a hypersurface of degree 32 called the discriminant in P19. The surfaces
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(a) (b) (c) (d)

Figure 5.9: The triangulation dual to a smooth cubic floor and the three possible subdivisions
dual to a tropical cubic curve with one node germ.

(a) Left string in C1
(b) A triangulation dual to a
smooth conic

Figure 5.10: The triangulations dual to linear and conic curves appearing as part of the floor
plans to Proposition 5.2.10.

passing through a particular point in P3 are a hyperplane in P19. So, through 18 generic
points there are 32 nodal surfaces. The reducible singular locus of the discriminant is the
union of the two codimension 2 varieties in P19 given by cuspidal cubic surfaces and binodal
cubic surfaces.

In [121, Section 7.1] Vainsencher gives formulas for the number of k-nodal degree m
surfaces in a k-dimensional family in P3. That is, for k = 2 and m = 3 he determines
the degree of the variety parameterizing 2-nodal cubics. For k = 2 nodes, there are 2(m −
2)(4m3−8m2 +8m−25)(m−1)2 such surfaces. Setting m = 3, we have the following count.

Theorem 5.2.11 ([121, Section 7.1]). There are 280 binodal complex cubic surfaces passing
through 17 general points.

In our setting, we ask:

Question 5.2.12 (Question 10 [108]). Can the number 280 of binodal cubic surfaces through
17 general points be derived tropically?

For points in Mikhalkin position, as introduced in Definition 5.2.1, tropical methods
are useful because the dual subdivisions of the Newton polytope are very structured. This
allows us to study only 39 subdivisions of ∆ = Conv{(0, 0, 0), (3, 0, 0), (0, 3, 0), (0, 0, 3)},
the Newton polytope of a cubic surface. This is minuscule compared to the 344,843,867
unimodular triangulations of this polytope [74, 75].
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If we count with multiplicities all tropical binodal cubic surfaces through our points, we
will recover the true count. We study tropical surfaces with separated nodes, in the sense that
the topological closures of the cells in the tropical surface containing the nodes have empty
intersection. To count them, we list the dual subdivisions of candidate binodal tropical cubic
surfaces and count their multiplicities.

Theorem 5.2.13 ([25]). There are 39 tropical binodal cubic surfaces through 17 points in
Mikhalkin position (see Definition 5.2.1) containing separated nodes. They give rise to 214
complex binodal cubic surfaces through 17 points.

Proof. We distinguish five cases based on which floors (see Definition 5.2.6) of the tropical
cubic surface contain the nodes and count with complex multiplicities (see Definition 5.2.8).

214 = 20︸︷︷︸
Proposition 5.2.10

+ 24︸︷︷︸
Proposition 5.2.18

+ 90︸︷︷︸
Proposition 5.2.19

+ 72︸︷︷︸
Proposition 5.2.22

+ 8︸︷︷︸
Proposition 5.2.23

.

Theorem 5.2.14 ([25]). There exists a point configuration ω of 17 real points in P3 all with
positive coordinates, such that there are at least 58 real binodal cubic surfaces through ω.

Proof. We count the floor plans in Theorem 5.2.13 with real multiplicities. Since the real
multiplicities are difficult to determine in some cases, the propositions only give us lower
bounds. We obtain that there are at least 58 real binodal cubic surfaces passing through ω.

58 = 16︸︷︷︸
Proposition 5.2.10

+ 4︸︷︷︸
Proposition 5.2.18

+ 34︸︷︷︸
Proposition 5.2.19

+ 4︸︷︷︸
Proposition 5.2.22

+ 0︸︷︷︸
Proposition 5.2.23

.

As we conduct the counts in Theorems 5.2.13 and 5.2.14, we encounter cases with unsep-
arated nodes. Here, the two node germs (see Definition 5.2.4) are close together, and so the
cells that would normally contain the nodes interact and their topological closures intersect.
Thus, the node germs interfere with the conditions on producing nodes [90]. These cases
account for the 66 surfaces missing from our count. Their dual subdivisions contain unclas-
sified polytopes, which we list in the subsection “Dual Complexes of Unseparated Nodes.”

Nodes in adjacent floors

We now extend Definition 5.2.6 to cases where node germs are in adjacent floors of the floor
plan. Then, we check that the resulting nodes are separated.

Lemma 5.2.15 ([25]). If a floor plan of a degree d surface in P3 contains a diagonal or
horizontal end of weight two and a second node germ leading to a bipyramid in the subdivision,
such that the bipyramid does not contain the weight two end, the nodes are separated.
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Proof. The bipyramid and the weight two end share at maximum one vertex. The neighbor-
ing points of the weight two end can be part of the bipyramid. This causes no obstructions
to the conditions in [90] for the existence of a binodal surface tropicalizing to this.

Lemma 5.2.16 ([25]). If a floor plan of a degree d surface in P3 has separated nodes, C2

cannot have a right string.

Proof. By Definition 5.2.6 (4) a right string in C2 would have to align with a diagonal
bounded edge of C1 or with a vertex of C1 not adjacent to a diagonal edge. Since C1 is a
tropical line, both cases can never occur.

We now give the lemma used to eliminate cases with polyhedral complexes in the New-
ton subdivision that cannot accommodate two nodes. We use obstructions arising from
dimensional arguments, which are independent of the choice of generic points.

Lemma 5.2.17 ([25]). Let Γ ⊂ Z3 be finite, and let BΓ be the variety of binodal hypersurfaces
with defining polynomial having support Γ. If the dimension of BΓ is less than |Γ| − 3, then
any tropical surface whose dual subdivision consists of unimodular tetrahedra away from
Conv(Γ) is not the tropicalization of a complex binodal cubic surface.

Proof. If a binodal cubic surface had such a triangulation and satisfied our point conditions,
then we could obtain from it a binodal surface with support Γ satisfying |Γ| − 3 point
conditions. However, if the dimension of BΓ is less than |Γ| − 3 we do not expect any such
surfaces to satisfy |Γ| − 3 generic point conditions.

Typically the dimension of BΓ is the expected dimension |Γ| − 3. For some special point
configurations Γ the dimension is less than this, and these are the cases we want to eliminate.

To apply the lemma, suppose conv(Γ) is a subcomplex of the subdivision of ∆. If apart
from conv(Γ) the subdivision of ∆ only contains unimodular simplices, cutting ∆ down to
conv(Γ) corresponds to removing the lattice points of ∆\conv(Γ), loosing one point condition
each. Thus, if conv(Γ) cannot accommodate 2 nodes, neither can ∆.

Proposition 5.2.18 ([25]). There are 24 cubic surfaces containing two nodes such that the
tropical cubic has two separated nodes and the corresponding node germs are contained in
the conic and linear floors. Of these, at least 4 are real.

Proof. Here a floor plan consists of a smooth cubic curve C3 (see Figure 5.9a), a conic C2

and a line C1, both with a node germ. The node germ of C1 is by Definition 5.2.6 (6) a left
string, see Figure 5.10a. For C2 all possibilities from Definition 5.2.4 are depicted in Figure
5.11. We examine all choices for the floor plan F and check whether the nodes are separated.
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(5.11a)-
(5.11c)

By Definition 5.2.6 (3) the left string in C1 must align with the horizontal bounded
edge of C2, which is dual to a face of the parallelogram in the subdivision. We
obtain a prism polytope between the two floors, and by completion of the subdi-
vision, we get two pyramids sitting over those two rectangle faces of the prism,
that are not on the boundary of the Newton polytope. This complex may hold
two nodes, see see the subsection “Dual Complexes of Unseparated Nodes.”

(5.11d) By Definition 5.2.6 (3), the left string of C1 aligns with the horizontal bounded
edge of C2, giving a bipyramid in the subdivision, with top vertices the neighbors
to the dual of the bounded diagonal edge in C2. The length two edge dual to
the horizontal end of weight two is surrounded by tetrahedra that only intersect
the bipyramid in a unimodular face. So, the nodes are separated and we count
their multiplicities: multC(F ) = multC(C∗1) · multC(C∗2) = 2 · 2(2 + 1) = 12. In
this case, multR,s(F ) is undetermined, see the subsection “Undetermined Real
Multiplicities.”

(5.11e) The left string in C1 must align with the vertex in C2 not adjacent to a horizontal
edge, but this vertex is dual to the area two triangle in the subdivision. The
resulting volume two pentatope contains the neighbors of the length two edge.
This configuration is eliminated using Lemma 5.2.17.

(5.11f) The left strings in C1 and C2 lead to two bipyramids in the subdivision. For each
of the 3 alignment possibilities of the left string in C2, the resulting bipyramids are
disjoint and the nodes separate. We get 3 ·multC(F ) = 3 ·multC(C∗1) ·multC(C∗2) =
3 · (2 · 2) = 12. By Definition 5.2.9 (3) we need to consider the positions of the
dual edges the left strings align with in order to compute the real multiplicities.
The left string in C1 aligns with the edge given by the vertices (1, 0), (1, 1) in the
conic floor, it has multR,s(C

∗
1) = 2. For the conic, two of the three choices have x-

coordinate k = 1 in the cubic floor, so multR,s(C
∗
2) = 0. The last alignment is dual

to x-coordinate k = 2, so we have multR,s(C
∗
2) = 2. We obtain multR,s(F ) = 4.

(a) (b) (c) (d) (e) (f)

Figure 5.11: The possible subdivisions dual to a tropical conic curve with one node germ
appearing as part of a floor plan of a nodal cubic surface.
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Proposition 5.2.19 ([25]). There are 90 cubic surfaces containing two nodes such that the
tropical binodal cubic has separated nodes and the node germs are contained in the cubic and
conic floors. Of these, at least 34 are real.

Proof. A floor plan consists of a cubic C3 with a node germ (Figures 5.9b-5.9d), a conic C2

with a node germ (Figure 5.11), and a smooth line C1. There are 18 combinations.

(5.9b, 5.11a-
5.11b)

The cubic contains a right string, which must align with a diagonal
bounded edge by Definition 5.2.6 (4). The resulting subdivision contains
a triangular prism with two pyramids. This complex may contain two
nodes, see see the subsection “Dual Complexes of Unseparated Nodes.”

(5.9b, 5.11c) The right string in the cubic must align with the vertex of the conic dual
to the square in the subdivision, giving rise to the polytopes shown in
the subsection “Dual Complexes of Unseparated Nodes.”

(5.9b, 5.11d) The right string in the cubic aligns with the vertex dual to the left trian-
gle in the conic containing the weight two edge. The resulting complex
is in the subsection “Dual Complexes of Unseparated Nodes.”

(5.9b, 5.11e) The subdivision has a bipyramid and a weight two configuration only
overlapping in vertices, so the nodes are separated. We have multC(F ) =
multC(C∗3) · multC(C∗2) = 2 · 2(2 − 1) = 4. In this case, multR,s(F ) is
undetermined, see the subsection “Undetermined Real Multiplicities.”

(5.9b, 5.11f) The left string in C2 has to align with a horizontal bounded edge of
C3 by Definition 5.2.6 (4). There are 3 possibilities. If it aligns with
the bounded edge adjacent to the right string in the cubic, we obtain a
prism with two pyramids as in (5.9b, 5.11a). See the subsection “Dual
Complexes of Unseparated Nodes.” If it aligns with either of the other
two horizontal bounded edges, we obtain two bipyramids in the dual
subdivision. Because the diagonal bounded edge of C2 is part of the
left sting aligning with a horizontal bounded end not adjacent to the
right string of C3, we cannot align the right string with the diagonal
edge, such that the end of the right string contains the whole horizontal
bounded edge of C2. Instead the end meets the bounded edge somewhere
in the middle and passes only through one vertex. Therefore, in the
subdivision the second pyramid over the alignment parallelogram must
have its vertex in C3 instead of in the C2, see Figure 5.12. In total, we get
two bipyramids that only share an edge, so the node germs are separated.
We have 2 ·multC(F ) = 2 ·multC(C∗3) ·multC(C∗2) = 2 ·(2 ·2) = 8. In these
two cases, the edge the string aligns with has x-coordinate k = 1 in the
cubic floor and thus by Definition 5.2.9 they both give multR,s(F ) = 0.
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(5.9c, 5.11a-
5.11b)

We obtain a bipyramid only overlapping with the configuration of the
weight two end in vertices or edges. So the nodes are separated and
2 ·multC(F ) = 2 ·multC(C∗3) ·multC(C∗2) = 2(2(3 − 1) · 2) = 2 · 8. The
parallelogram has vertices as in the first case of Definition 5.2.9 (1) with
k = 1, l = 1 and ij = 2, so multR,s(F ) = 0.

(5.9c, 5.11c) As in (5.9c, 5.11a) we have multC(F ) = 8. For the real multiplicity we
need the vertices of the parallelogram. They are as in the first case of
Definition 5.2.9 (1) with k = 1, l = 0 and ij = 2, so multR,s(C

∗
2) = 2.

The weight 2 end in C3 has multR,s(C
∗
3) = 4, so multR,s(F ) = 8.

(5.9c-5.9d,
5.11d)

This subdivision contains a tetrahedron which is the convex hull of both
weight two ends. We need a choice of the neighboring points of the
two weight two edges. By their special position to each other, it only
remains to add the two vertices neighboring the edges in the respective
subdivisions dual to their floors. Whether it can contain 2 nodes is unde-
termined, see the subsection “Dual Complexes of Unseparated Nodes.”

(5.9c-5.9d,
5.11e)

The nodes are separated, since the weight two ends with any choice
of their neighboring points intersect in one vertex. So 2 · multC(F ) =
2·multC(C∗3)·multC(C∗2) = 2·(2(3−1)·2(2−1)) = 2·8 and 2·multR,s(F ) =
2 ·multR,s(C

∗
3) ·multR,s(C

∗
2) = 2 · (2(3− 1) · 2(2− 1)) = 2 · 8.

(5.9c, 5.11f) There are two possibilities to align the left string in C2 with a horizontal
bounded edge in C3. If we select the left edge, we have a bipyramid,
which does not contain the weight two end. By Lemma 5.2.15 the nodes
are separate. However, we need to adjust the multiplicity formula from
Definition 5.2.8 (3) to this case, because due to the alignment of the
left string we obtain one intersection point less of the diagonal end of
weight two with C2. So instead of 3 − 1 = 2 intersection points to
chose from when lifting the node we have 3 − 2 = 1. Thus, we obtain
multC(F ) = multC(C∗3) ·multC(C∗2) = 2(3−2) ·2 = 4. Since the left edge
has x-coordinate k = 1, we obtain multR,s(F ) = 0. If we select the right
edge, then the bipyramid contains the weight two end. See the subsection
“Dual Complexes of Unseparated Nodes.” As the cubic floor contains
a vertex of C3 not adjacent to a horizontal edge, it is also possible to
align the left string with this. In the dual subdivision this gives rise
to a pentatope spanned by the triangle dual to the vertex in C3 and
the vertical edge in the conic floor dual to the horizontal end of the left
string, see Figure 5.5a. The nodes dual to the length two edge and the
pentatope are separated. By [90] we have multC(C∗2) = multR,s(C

∗
2) = 1.
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Figure 5.12: The two bipyramids for one alignment of (5.9b, 5.11f). The gray (resp. black)
dots are the lattice points of the dual polytope to C3 (resp. C2). The shared edge of the
bipyramids is marked blue and red.

We count: multC(F ) = multC(C∗3) · multC(C∗2) = 2(3 − 2) · 1 = 2 and
multR,s(F ) = multR,s(C

∗
3) ·multR,s(C

∗
2) = 2(3− 2) · 1 = 2.

(5.9d, 5.11a-
5.11b)

We obtain a bipyramid overlapping with the weight two configuration
in one or two vertices, so the nodes are separated and 2 · multC(F ) =
2 · multC(C∗3) · multC(C∗2) = 2(2(3 − 1) · 2(2 − 1)) = 2 · 8. With the
parallelogram as in (5.9c, 5.11a): multR,s(F ) = 0.

(5.9d, 5.11c) This follows (5.9d, 5.11a), and we have multC(F ) = 8. The real multi-
plicity follows (5.9c, 5.11c), and we have multR,s(F ) = 8.

(5.9d, 5.11f) For each of the two choices for the alignment of the left string of the conic
with a horizontal bounded edge of the cubic, we obtain a bipyramid which
may share two vertices with the neighbors of the edge of weight two. As
in (5.9c, 5.11f) we need to adjust the multiplicity formula for the weight
two end to multC(C∗3) = 2(3 − 2) = 2. We have 2 · multC(F ) = 2 · 4.
For both alignments the dual edges have x-coordinate k = 1 in the cubic
floor, giving multR,s(F ) = 0. As C3 also contains a vertex not adjacent
to a horizontal edge, this opens a third alignment possibility. However,
this vertex is adjacent to the weight two, so the nodes are not separated.
The polytope can be seen in Figure 5.16.



5. ENUMERATION 147

Nodes in the same floor

We now examine cases where both node germs are in the same floor of the floor plan. By
Lemma 5.2.16 we cannot have a right string in the conic part of the floor plan, if the nodes are
separated. A few more cases, depicted in Figure 5.13, can be eliminated with the following
Lemma 5.2.20.

Lemma 5.2.20 ([25]). The ways of omitting 2 points in the floor path in the conic floor
shown in Figure 5.13 do not give separated nodes.

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 5.13: Conics through 3 points eliminated by Lemma 5.2.20.

Proof. If the conic in a floor plan has two node germs, it passes only through 3 points of the
point configuration. In order to fix our cubic surface, every point we omit in the lattice path
of the conic floor needs to compensate for the omitted point condition on our cubic surface.

A vertical weight two end does allow our conic to be fixed by fewer points. But our point
configuration ensures the end has no interaction with the other floors and thus cannot give
rise to a node-encoding circuit as in Figure 5.5. So, combined with a classical node germ
this does not encode two separated nodes, dealing with 5.13a, 5.13b, 5.13c and 5.13d.

If the top vertex of the Newton polytope of C2 is omitted in the floor path, we always
obtain an upwards string. If the upwards string is to be pulled vertically upwards, it can
never be aligned with any part of the other floors, thus not fixing the curve, eliminating
5.13h, 5.13j and 5.13l.

If the direction to pull the upwards string has some slope, as in 5.13e and 5.13f, or in
the 2-dimensional strings in 5.13i and 5.13k, we still cannot align with any bounded edges
of the other cubic, since we are above the line through the points due to our chosen point
configuration. In 5.13g on the other hand we can align the vertical end of the string, but
since we have two degrees of freedom this does not fix the curve, as we can still move the
first vertical end.
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Remark 5.2.21. The last issue in the proof of Lemma 5.2.20 can be fixed, if we allow
alignments with ends. These however do not give rise to separated nodes [90]. Therefore
the cases 5.13a, 5.13e, 5.13f, 5.13g, 5.13i and 5.13k require further investigation, see the
subsection “Dual Complexes of Unseparated Nodes.” In this light the non-existence of right
strings in the conic floor needs to be investigated.

Proposition 5.2.22 ([25]). There are 72 cubic surfaces containing two nodes, such that
the tropical binodal conic has separated nodes and the corresponding node germs are both
contained in the conic floor. Of these, at least 4 are real.

Proof. See Figure 5.14.

(5.14a) Since the end of the left string, which aligns with a bounded horizontal edge
of the conic, is of weight two, we obtain a bipyramid over a trapezoid. We get
two different complexes depending upon the alignment, see the subsection “Dual
Complexes of Unseparated Nodes.”

(5.14b) We have a string with two degrees of freedom, because we can pull on both
horizontal ends and vary their distance. Hence, we can align them both with
the horizontal bounded edges of the cubic. There are three ways to do this.
In the dual subdivisions this gives rise to two bipyramids. In all three cases
they intersect maximally in two 2-dimensional unimodular faces, and thus are
separated. Since the bipyramids arise not from classical node germs, we check
their multiplicities via the underlying circuit. By [90, Lemma 4.8] we obtain
multiplicity 2 for each, and thus 3 ·multC(F ) = 3 ·multC(C∗2) = 3 · 2 · 2 = 12. We
get multR,s(F ) = 0, since one end has to align with a bounded edge in C3 with
dual edge of x-coordinate k = 1.

(5.14c-
5.14d)

The conic floor has a left string and a parallelogram. This gives two bipyramids
in the subdivision which, depending on the choice of alignment for the left string,
have a maximal intersection of an edge. We obtain 2 · (3 · multC(F )) = 2 · 12.
The vertex positions of the parallelogram give multR,s(F ) = 0 as in Proposition
5.2.18 (5.11a).

(5.14e) As in (5.14c), we obtain 3 ·multC(F ) = 12. The formulas for real multiplicities in
Definition 5.2.9 do not match this case, see the subsection “Undetermined Real
Multiplicities.”

(5.14f) The bipyramids arising from the different alignment options only intersect with
the neighboring points of the weight two end in one vertex, so 3 ·multC(F ) = 12.
Only the alignment with the horizontal bounded edge of C3 dual to the vertical
edge of x-coordinate k = 2 has non-zero real multiplicity, giving multR,s(F ) = 4.
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(5.14g) The two sets of neighboring points to the two weight two ends intersect in one
vertex. So the nodes are separated and multC(F ) = 6 · 2 = 12, while multR,s(F )
is undetermined, see the subsection “Undetermined Real Multiplicities.”

(a) (b) (c) (d) (e) (f) (g)

Figure 5.14: Dual subdivisions of conics with two node germs.

Proposition 5.2.23 ([25]). There are 8 cubic surfaces containing two nodes, such that the
tropical binodal cubic surface has separated nodes and the corresponding node germs are both
contained in the cubic floor.

So far the number of real surfaces is undetermined.

Proof. Only two types of node germs may occur in C3, see Figure 5.15.

(5.15a) Since the weight two end is not contained in the bipyramid the two nodes are
separated by Lemma 5.2.15, giving multC(F ) = 2 · 4 = 8. In this case, multR,s(F )
is undetermined, see the subsection “Undetermined Real Multiplicities.”

(5.15b) The classical alignment condition of the right string with diagonal end of weight
two can not be satisfied, since the direction vector of the variable edge has a too
high slope. Due to the point conditions the diagonal end of weight two and the
diagonal bounded edge of the conic curve never meet.

(5.15c) Here we have a two-dimensional string. By the same argument as in (5.15b) we
cannot align the middle diagonal end with the diagonal bounded edge of the conic.
Aligning the right string with the diagonal bounded edge of the conic does not
fixate our floor plan, since we can still move the middle diagonal end of the cubic.

(5.15d) We have three tetrahedra in the subdivision with the weight three edge. This could
contain two nodes, see the subsection “Dual Complexes of Unseparated Nodes.”

In (5.15b), (5.15c) alignments with ends are an option, see the subsection “Dual Com-
plexes of Unseparated Nodes.”
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(a) (b) (c) (d)

Figure 5.15: Cubics with two node germs.

Undetermined Real Multiplicities

In the previous sections, we encountered cases in which the real multiplicity was undefined.
This happens when C∗ij is a horizontal edge of weight two ((5.11d) and (5.14g)), and C∗ij is a
right string whose diagonal end aligns with a diagonal bounded edge ((5.9b), (5.9b, 5.11e),
(5.14e), and (5.15a)). There might be real lifts satisfying the point conditions coming from
floor plans containing these node germs, but the number of real solutions is hard to control.
An investigation of these cases is beyond the scope of this paper, so we leave Theorem 5.2.14
as a lower bound under these assumptions.

We may compute the real multiplicity of (5.14e), as well as of right strings aligning with
diagonal bounded edges as follows. Shift the parallelogram to a special position used to
prove [90, Lemma 4.8]. The equations of the proof of [90, Lemma 4.8] applied to our exact
example then need to be checked for the existence of real solutions.

Dual Complexes of Unseparated Nodes

In previous sections, we encountered cases where two distinct node germs did not give rise to
separated nodes. The dual complexes arising from these cases are shown in Figure 5.16. We
also encountered the floors which do not give separated nodes in Figure 5.13 and in the proof
of Proposition 5.2.23. By new alignment conditions, they might encode unseparated nodes,
see Remark 5.2.21. Alignment with ends is not allowed for separated nodes, because circuit D
(Figure 5.5b) is then contained in the boundary of the Newton polytope and cannot encode a
single node [90]. However, with one point condition less than for one-nodal surfaces, we can
obtain strings with one degree of freedom more and this makes not only the alignment of two
ends possible, but additionally the alignment of the vertices the ends are adjacent to. This
leads to a triangular prism shape in the subdivision, which has at least one parallelogram
shaped face in the interior of the Newton polytope. At this time, we do not yet know whether
any of these cases can contain two nodes or with what multiplicity they should be counted
with, but in total they ought to give the 66 missing surfaces from our count.
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(5.11a-5.11c), (5.9b, 5.11a), (5.9b, 5.11b),
(5.9b, 5.11f)

(5.9b, 5.11d)
(5.9c, 5.11d), (5.9d,
5.11d)

(5.9b, 5.11c) (5.9c, 5.11f) (5.9d,5.11f)

(5.14a) (5.14a) (5.15d)

Figure 5.16: Complexes whose duals could have two nodes.

Conclusion

In this chapter we developed techniques for counting tropical surfaces in three dimensional
space. Using these techniques, we counted tropical binodal cubic surfaces with separated
tropical nodes. In order to provide a full count of tropical binodal cubic surfaces, polytopes
which can accommodate two nodes must be classified. Extending these tools to multi-nodal
tropical surfaces will be a challenging topic of future research.
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[100] Martin Möller. “Shimura and Teichmüller curves”. In: J. Mod. Dyn. 5.1 (2011), pp. 1–
32.

[101] Jürgen Neukirch. Algebraic Number Theory. Grundlehren der mathematischen Wis-
senschaften. Springer Berlin Heidelberg, 1999.

[102] Johannes Nicaise. Non-Archimedean geometry. 2017.

[103] James Oxley. Matroid theory. Second. Vol. 21. Oxford Graduate Texts in Mathemat-
ics. Oxford University Press, Oxford, 2011, pp. xiv+684.

[104] Lior Pachter and Bernd Sturmfels. Algebraic Statistics for Computational Biology.
New York, NY, USA: Cambridge University Press, 2005.

[105] Sam Payne. “Analytification is the limit of all tropicalizations”. In: Mathematical
Research Letters 16.3 (2009), pp. 543–556.

[106] Sam Payne. “Topology of nonarchimedean analytic spaces and relations to complex
algebraic geometry”. In: Bull. Amer. Math. Soc. (N.S.) 52.2 (2015), pp. 223–247.

[107] Ziv Ran. “On subvarieties of abelian varieties”. In: Inventiones mathematicae 62.3
(1980), pp. 459–479.

[108] Kristian Ranestad and Bernd Sturmfels. “Twenty-Seven Questions about the Cubic
Surface”. In: arXiv:1912.07347 (2019).

[109] Dhruv Ranganathan. “Skeletons of stable maps I: rational curves in toric varieties”.
In: J. Lond. Math. Soc. (2) 95.3 (2017), pp. 804–832.

[110] Dhruv Ranganathan, Keli Santos-Parker, and Jonathan Wise. “Moduli of stable maps
in genus one and logarithmic geometry II”. In: arXiv:1709.00490 (Sept. 2017).

[111] Qingchun Ren, Steven V. Sam, and Bernd Sturmfels. “Tropicalization of classical
moduli spaces”. In: Math. Comput. Sci. 8.2 (2014), pp. 119–145.



BIBLIOGRAPHY 159

[112] Friedrich Schottky and Heinrich Jung. “Neue Sätze über Symmetralfunktionen und
die Abelschen Funktionen der Riemannschen Theorie”. In: S.-B. Preuss. Akad. Wiss.,
Berlin, 1909, pp. 282–297.

[113] Franziska Schroeter. “The enumeration of real tropical curves”. PhD thesis. Univer-
sität des Saarlandes, 2013.

[114] Tif Shen. “A Lefschetz Hyperplane Theorem for non-Archimedean Jacobians”. In:
arXiv:1610.02417 (Oct. 2016).

[115] Takahiro Shiota. “Characterization of Jacobian varieties in terms of soliton equa-
tions”. In: Inventiones mathematicae 83.2 (1986), pp. 333–382.

[116] Bernd Sturmfels. “Fitness, Apprenticeship, and Polynomials”. In: Combinatorial Al-
gebraic Geometry: Selected Papers From the 2016 Apprenticeship Program. Ed. by
Gregory G. Smith and Bernd Sturmfels. New York, NY: Springer New York, 2017,
pp. 1–19.
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