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Abstract
A classifier may be limited by its conditional misclassification rates more than
its overall misclassification rate. In the case that one or more of the conditional
misclassification rates are high, a neutral zone may be introduced to decrease
and possibly balance the misclassification rates. In this paper, a neutral zone is
incorporated into a three-class classifier with its region determined by control-
ling conditional misclassification rates. The neutral zone classifier is illustrated
with a text mining application that classifies written comments associated with
student evaluations of teaching.
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1 INTRODUCTION

Classification of observations into groups is an objective
for many applications. For example, patients might be clas-
sified as diseased or not or loan applications might be
classified as high risk or not. While classification problems
often involve only two categories, any number of classes
may be of interest. A common procedure for classification
is to obtain the probabilities that an observation belongs to
each of the possible classes, and then assign it to the class
with the largest probability. A drawback of hard classifica-
tion boundaries is the forced classification of ambiguous
observations into a specific class. Forcing a definitive clas-
sification decision when the probabilities of each class are
very close to each other can lead to misclassifications that
have undesirable consequences. Consider for example, the
consequence of declaring an ambiguous patient as dis-
eased when they are not or, perhaps more catastrophically,
declaring a patient as not diseased when they are.

If a particular classifier has a high misclassification
rate, a practitioner might try alternative classifiers or

try to find new features that improve the separation of
the classes. Unfortunately, there will be situations where
neither of these approaches works. Introducing a “neu-
tral zone” between the classification boundaries is an
alternative where a definitive classification decision for
ambiguous cases is delayed. When an observation has class
probabilities that lead to ambiguity about which of the
classes is likely, it will be assigned a label of “neutral.” A
practitioner may subsequently engage in follow-up inves-
tigations of observations labeled as neutral before making
a final classification decision. Labeling the observation as
neutral accurately reflects what is known about it and the
follow-up investigation provides an opportunity to prevent
a misclassification. While follow-up will reduce the mis-
classification rate, the work involved does add cost to the
overall decision. The tradeoff between reduced misclassi-
fications and the cost of follow-up depends on the conse-
quences of making misclassifications, which in healthcare
applications for example, are typically severe.

Incorporating neutral zones into classification prob-
lems has been explored in the literature. A neutral zone
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based upon the cost of misclassifications has been devel-
oped for both two classes [1, 2] and three classes [3].
Recognizing the difficulty of ascertaining costs of mis-
classification, and the comparatively straightforward
interpretation of conditional misclassification rates, a
neutral zone for two classes that controls the false posi-
tive and false negative rates was developed in [4, 5]. The
methodological contribution of this paper is the develop-
ment of a first-of-its-kind neutral zone for a three-class
classifier that does not make explicit assumptions of the
class-conditional distributions while controlling each of
the six conditional misclassification rates and, conse-
quently, reduces the overall misclassification rate. The
rest of the paper is outlined as follows. Section 2 presents
the motivating application for the development of a
three-class neutral zone classifier. In Section 3, we present
the formulation of the classifier. Section 4 returns to our
motivating application and shows successful implemen-
tation of the classifier. Finally, Section 5 offers a summary
of the work presented in this paper.

2 MOTIVATING APPLICATION

The motivating application for this work is an objec-
tive to classify written comments associated with student
evaluations of teaching as reflecting positive, negative,
or ambiguous feelings about a student’s overall experi-
ence in the class. The data we use are comments writ-
ten by undergraduate students for teaching evaluations
at the University of California, Santa Cruz (UCSC) and
the University of California, Riverside (UCR). Student
evaluations are an important factor when evaluating the
effectiveness of instructors. These evaluations consist of
both Likert scale questions as well as open-ended ques-
tions where the student may leave comments in their own
words.

Issues with ratings and potential biases of the Likert-
scale questions have been actively researched [6–10]. The
frequency of specific words in written evaluations of med-
ical students has been examined for gender and ethnicity
bias [11]. Whereas numerical evaluations from instructor
reviews are presented in summary form, written com-
ments are typically presented verbatim in the order in
which they were recorded. There may be hundreds of
evaluations from a single course. The reviewer of the com-
ments is left on their own to extract the overall message
of the comments. In the worst cases, the comments may
be glossed over or selectively chosen to support a pre-
conceived narrative. If the comments can be classified as
positive, negative, or other they could be sorted to assist the
reviewer in getting a more representative understanding

of the comments. Reviewers wanting to read all comments
could do so more systematically with the sorted ordering.

The labels we use for the comments are defined as fol-
lows. A positive comment has the overall interpretation
that the instructor is doing a good job and the student
would recommend this instructor to other students. A neg-
ative comment conveys that the instructor is not doing
a good job and the student would not recommend this
instructor to other students. Comments that are mixed
with both positive and negative remarks or that provide no
evaluation of the instructor are labeled as other.

Our data set comprises 104,143 comments from eval-
uations conducted at UCSC and 34,749 comments from
evaluations at UCR. The courses where these comments
originated were medium to large enrollment undergradu-
ate classes in both STEM and non-STEM fields and were
taught between fall 2018 and summer 2021. To obtain the
true label for each comment, a team of three undergrad-
uate students was employed and trained how to identify
each type of comment, and the label was determined
via majority rules voting. In cases where there was no
majority, a graduate student researcher made the final
determination of the true label. The comments from
UCSC (UCR) resulted in approximately 63% (66%) positive
comments, 13% (15%) negative comments, and 24% (19%)
other comments.

After obtaining the true labels, C, multiple options
for a text classifier were explored including a naïve Bayes
classifier [12] and classifiers based on sentiment analy-
sis [13, 14]. We found that a multinomial logistic regression
classifier [15] with features extracted via the Word2Vec
[16–19] algorithm was the most effective choice for our
application. Details for the Word2Vec feature extraction
will be explained further in Section 4. Letting p0, p1, and
p2 denote the predicted probabilities of the classes nega-
tive, positive, and other, respectively, the standard logistic
regression classifier would be defined as

̂C =
⎧
⎪
⎨
⎪
⎩

Negative p0 > p1 and p0 > p2

Positive p1 > p0 and p1 > p2

Other p2 > p0 and p2 > p1

The results from such a classifier applied to the UCSC
and UCR data (fit on training data and applied to an inde-
pendent test set of data) are presented in Table 1 and
Table 2, respectively. The overall misclassification rates
are about 20%, and it can be seen that there is an imbal-
ance in the conditional misclassification rates. The goal
for this application is to incorporate a neutral zone into
the classifier that improves the balance of the conditional
misclassification rates and lowers the overall misclassifi-
cation rate.
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562 FRIEL et al.

T A B L E 1 Class-conditional classification rates for a standard
logistic regression classifier of comments from student evaluations
of teaching at UCSC.

Predicted label
Conditional
misclassificationTrue

label Positive Negative Other Rate

Positive 0.921 0.021 0.058 0.079

Negative 0.232 0.515 0.253 0.485

Other 0.277 0.127 0.596 0.404

Note: Overall misclassification rate: 0.212.

T A B L E 2 Class-conditional classification rates for a standard
logistic regression classifier of comments from student evaluations
of teaching at UCR.

Predicted label
Conditional
misclassificationTrue

label Positive Negative Other Rate

Positive 0.927 0.026 0.047 0.073

Negative 0.201 0.602 0.197 0.398

Other 0.401 0.218 0.381 0.619

Note: Overall misclassification rate: 0.224.

3 NEUTRAL ZONE CLASSIFIERS

Our starting point assumes that we have the probabili-
ties an observation belongs to each of three classes. While
our application utilizes a multinomial logistic regression
model for this purpose, these probabilities can be obtained
in a variety of other ways including via a neural network
classifier, a classification tree, or a Bayes classifier. Tradi-
tionally, an observation would be assigned to the class with
the largest probability. A drawback of this approach is the
adherence to a hard boundary when the probabilities for
each class are close. Incorporation of a neutral zone creates
regions for the probabilities such that observations that fall
into these regions are classified as neutral due to the lack of
convincing evidence for a definitive classification. Obser-
vations classified as neutral are left for further investiga-
tion through follow-up. We next explore the alternatives
for constructing the neutral zone boundaries.

3.1 Symmetric neutral zones

Yu et al. [3] developed a minimum cost neutral zone classi-
fier for three classes where a neutral zone region between
classes is uniformly created by a single constant, L. The
experimenter determines L based on the cost of misclassi-
fication. We can take this approach, but instead choose L to
achieve desired conditional misclassification rates. Letting

N denote the label for the neutral zone, the symmetric
neutral zone classifier is defined as

̂C =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

0 p0 > p1 + L and p0 > p2 + L
1 p1 > p0 + L and p1 > p2 + L
2
N

p2 > p0 + L and p1 > p1 + L
otherwise

(1)

If L ∈ [0, 1] starts at zero and is increased toward one,
the conditional misclassification rates go to zero. There-
fore, if we find the first L such that P(̂C = i|C = 𝑗) ≤ αij for
i, 𝑗 = 0, 1, 2, and i ≠ 𝑗, then there always will be a solution.
The optimal L is the smallest L such that each conditional
misclassification rate is less than or equal to its target size.
Figure 1A sketches the general shape of the symmetric
neutral zone classifier using L = 0.3 for illustrative pur-
poses. While this symmetric approach allows a uniform
upper bound on the conditional misclassification rates, it
generally will not substantially improve an imbalance of
the conditional misclassification rates.

3.2 Asymmetric neutral zones

Rather than using a single L to define neutral zone regions,
an alternative is to separately choose an L for each pairwise
decision boundary. The asymmetric neutral zone classifier
is defined as

̂C =

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

0 p0 > p1 + L01 and p1 > p2 or p0 > p2 + L02 and p2 > p1

1 p1 > p0 + L10 and p0 > p2 or p1 > p2 + L12 and p2 > p0

2

N

p2 > p0 + L20 and p0 > p1 or p2 > p1 + L21 and p1 > p0

otherwise

(2)

where Lij ∈ [0, 1] represents the margin when deciding on
class i over class 𝑗. Each Lij enters the classification rule
when class 𝑗 is the second-most likely category after class
i. Figure 1B sketches the general shape of the asymmetric
neutral zone classifier using the six values of Lij shown for
illustrative purposes.

It is of interest to note that the geometrical area of the
neutral zone as a proportion of the entire classification
region is

∑
i
∑

j
Lij

12

(
2 − Lij

)
∕(1∕2) for i, 𝑗 = 0, 1, 2 and i ≠ 𝑗.

This proportion is 0.51 for the symmetric neutral zone in
Figure 1A and 0.42 for the asymmetric neutral zone in
Figure 1B. While this area may be used to roughly com-
pare the size of alternative neutral zone classifiers, it differs
from the proportion of observations that fall within the
neutral zone due to the fact that the latter depends on the
underlying class-conditional distributions of the features.
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Class 1

Class 2 Class 0

Neutral Zone

F I G U R E 1 Symmetric (A) and Asymmetric (B) neutral zone classifiers. Dotted lines represent the boundaries of the no neutral zone
classifier.

3.3 Controlling conditional
misclassification rates

Conditional misclassification rates of the proposed neutral
zone classifier can be controlled by selecting Lij such that
P(̂C = i|C = 𝑗) ≤ αij. For each i, the pair of Lij’s are found
jointly since a single Lij affects only two of the six con-
ditional misclassification rates. For example, (L01,L02) are
found from the equations P(̂C = 0|C = 1) ≤ α01 and P(̂C =
0|C = 2) ≤ α02 and similarly for (L10,L12) and (L20,L21). If
αij = α, for all i, 𝑗, and some constant α, better balance
of the conditional misclassification rates will be achieved.
The optimal set of Lij are those that give conditional
misclassification rates closest to the target rates without
exceeding them. Both the symmetric and the asymmetric
neutral zones will either give the same predicted class as
the traditional classifier or change the predicted class to
neutral. Thus, no new misclassifications are introduced by
using the neutral zone classifier.

3.4 Grid search

A straightforward approach to finding the Lij is to use a grid
search as follows. First, the p0, p1, and p2 probabilities are
obtained for all the observations in the training data set.
As explained in the previous section, we find the Lij two at
a time. Consider the case of finding L01 and L02. For each
(L01,L02) on a unit grid, use the predicted classes for the
training data to estimate P(̂C = 0|C = 1) and P(̂C = 0|C =
2). Then choose the (L01,L02) that gives the conditional
misclassification rates closest to, while less than, α01 and

α02. Perform this same search similarly to find (L10,L12)
and (L20,L21) to obtain the set of six optimal Lij.

3.5 Feature space representation

In some situations, the classifier in Equation (2) can be
inverted to display the decision boundaries in the feature
space. We illustrate this in a Bayes classification setting
with two dimensions. Let πi represent the prior class proba-
bilities. Suppose the features in each class follow the prob-
ability density function fi(x). Then pi = πifi(x)∕

∑2
𝑗=0π𝑗 f𝑗(x)

are the posterior class probabilities. These probabilities are
used in ̂C from Equation (2) to obtain the predicted classes.
Letting A0,A1,A2, and AN denote the regions in the feature
space that correspond to the predicted labels 0, 1, 2, and N,
respectively, we have

A0 ={x∶ p0 > p1 + L01, p1 > p2}
∪ {x∶ p0 > p2 + L02, p2 > p1}

A1 ={x∶ p1 > p0 + L10, p0 > p2}
∪ {x∶ p1 > p2 + L12, p2 > p0}

A2 ={x∶ p2 > p0 + L20, p0 > p1}
∪ {x∶ p2 > p1 + L21, p1 > p0}

AN = A0 ∪ A1 ∪ A2

The six conditional misclassification probabilities are
calculated as

P(̂C = i|C = 𝑗) =
∫Ai

f
𝑗
(x)dx, i, 𝑗 ∈ {0, 1, 2}, i ≠ 𝑗
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F I G U R E 2 Neutral zone in the posterior and feature space for X ∼ N
(
𝜇i, 𝛴i

)
where 𝜇0 = (1, 1), 𝜇1 = (3, 3), 𝜇2 = (5, 5), 𝛴0 = I2,

𝛴1 = 2 × I2, 𝛴2 = 3 × I2, and 𝜋i = 1∕3 for i = 0, 1, 2. The Lij are found to give conditional misclassification probabilities less than or equal to
0.1. The dotted lines show the no neutral zone classifier boundaries.

In addition, the conditional neutral zone rates are
given by

P(̂C = N|C = 𝑗) =
∫AN

f
𝑗
(x)dx, 𝑗 ∈ {0, 1, 2}

Numerical integration techniques can be used in con-
junction with the grid search explained in Section 3.4 to
estimate the conditional misclassification rates and deter-
mine the Lij.

When the fi(x) are bivariate normal, the regions A0, A1,
A2, and AN can be graphed in the feature space. This is
demonstrated in Figure 2 and it can be seen how the neu-
tral zone forms around the areas of ambiguity between the
distributions in the feature space. The spherical bound-
aries in Figure 2 are a consequence of unequal, but diago-
nal, covariance matrices.

4 EXAMPLE APPLICATION

4.1 Word2Vec

We return to our motivating application from Section 2.
When working with text data, we first need to trans-
form the text into numeric values. As was mentioned
in Section 2, we found feature extraction based upon

Word2Vec to be the most effective for our purposes. The
main purpose of Word2Vec is to try to predict words that
are written together. Word2Vec is a mapping based on a
neural network and was originally proposed with a choice
of two algorithms: continuous bag-of-words (CBOW) and
skip-gram. We focus on the former, where the algorithm
attempts to predict a “center” word based on given “con-
text” words. A step in the CBOW algorithm, displayed
visually in Figure 3, which is central to our application, is
the mapping of words to numerical features.

The CBOW algorithm is trained by moving through
each word in each comment, treating them as a center
word, w. The context words are determined in a win-
dow around w. The window size is inputted by the user.
The input layer of the neural network consists of one-hot
vectors b1, b2, … , bc representing the context words. The
one-hot vectors have length d, where d is the number of
words in the entire corpus of comments, and are zero
everywhere except for a one at the position of the word in a
dictionary formed from the corpus. These input vectors are
used to extract rows from a to-be-determined d ×m matrix,
W , where m is inputted by the user. An element-wise sum
on the extracted rows creates the latent vector uw. Then
matrix multiplication is performed with uw and another
to-be-determined matrix U. The result is a vector, v, which
is inputted to a softmax function that uses a normalization
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pvUuwW

b1
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bc

sum
matrix 

mul�plica�on

d x m 1 x m m x d 1 x d

Input Projec�on Output

1 x d

so�max

1 x d

F I G U R E 3 Map of the CBOW algorithm used in Word2Vec.

transformation to create a vector, p, of length d that con-
sists of the probability that each word is the center word.
This vector of probabilities is used with the one-hot vector
of the true center word to compute loss. The cumulative
loss is an aggregation of the loss from performing this pro-
cess with each word as the center word. The fitting process
solves for W and U which minimize the aggregated loss.

There are several hyperparameters that may be
adjusted in Word2Vec. These include the window size
(number of words to consider around the center word),
the number of features (length of the latent vector), and
an occurrence threshold (number of times a word must
occur to be considered one of the d words). We have used
the default values of 5, 50, and 5, respectively, which are
recommended in the R package word2vec [19].

In our application, we do not need to predict words
given context words. Instead, we are interested in the
matrix of word embeddings, W , from within the projection
layer of Word2Vec. With the fitted W , we have a matrix
where each row represents a word in our corpus and the
columns represent numerical features. For each word in a
comment, we extract the corresponding rows of W to get
a matrix of features for the comment. After normalizing
the vector of column sums to account for the length of the
comment, we obtain a numeric vector of length m that can
be used as the features in a multinomial logistic classifier.
In the following sections, we use five-fold cross-validation
to evaluate the accuracy of the multinomial logistic regres-
sion classifier. Each training set is used to fit the Word2Vec
model, fit the multinomial logistic regression model, and
find the Lij’s.

4.2 UCSC data

First, we analyze 104,143 comments from instructor eval-
uations at the University of California, Santa Cruz. Recall

that the comments labeled as negative, positive, and other
have been defined as Class 0, Class 1, and Class 2, respec-
tively. The results of a largest-probability classifier using
multinomial logistic regression were presented earlier in
Table 1. In this section, we incorporate the asymmetric
neutral zone to mitigate adverse consequences of misclas-
sified comments and both lower and balance the con-
ditional misclassification rates. We choose to implement
the asymmetric neutral zone for our application since
the imbalance of the conditional misclassification rates
shown in Tables 1 and 2 is quite pronounced. We set each
αij = α = 0.1 as our target conditional misclassification
rates.

Table 3 displays the five-fold cross-validation estimates
of the conditional misclassification rates of the asymmet-
ric neutral zone classifier for the UCSC data. In two cases
the conditional misclassification rates are much lower
than the target. As seen in Table 1, these two conditional
misclassification rates were lower than the target before
incorporating a neutral zone, which explains why the cor-
responding Lij’s are zero. The other four conditional mis-
classification rates are approximately equal, showcasing
the ability of the asymmetric neutral zone to achieve bet-
ter balance in the conditional misclassification rates than
without its use. The overall misclassification rate of the
classifier is about 10% compared to about 20% that was
seen in Section 2 when the neutral zone was not employed.
The improved accuracy is the result of approximately 20%
of the comments getting classified as neutral because they
are too ambiguous to be confidently assigned to any of the
classes.

Figure 4 displays the asymmetric neutral zone classi-
fier in the posterior space, fitted with an 80–20 train-test
split of the data. The points plotted in this figure are
the 20,828 observations from test set. The area of this
neutral zone as a proportion of the classification region
is 0.35.
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566 FRIEL et al.

T A B L E 3 Asymmetric neutral zone classifier applied to classification of comments from student evaluations of teaching at UCSC.

Predicted labelTrue
label Positive Negative Other Neutral

Conditional
misclassification rate

Positive 0.763 0.017 0.045 0.174 0.063

Negative 0.100 0.459 0.097 0.344 0.196

Other 0.100 0.100 0.470 0.330 0.200

Note: Overall misclassification rate: 0.114. Overall neutral rate: 0.234.

F I G U R E 4 Asymmetric neutral zone applied to a test set of
comments from UCSC. Neutral zone is indicated by the transparent
points. Dotted lines show the no neutral zone boundaries.

4.3 UCR

Next, we incorporate neutral zones into the multinomial
logistic classifier from the 34,739 comments from Univer-
sity of California, Riverside. We apply the same target of
0.1 for the conditional misclassification rates. The results
from the implementation of the asymmetric neutral zone
are displayed in Table 4. All conditional misclassification
rates have been lowered appropriately to be less than or
equal to the target value. As with the UCSC data, there are
two instances in Table 2 where the conditional misclassi-
fication rate is much lower than the target because these
two rates were lower than the target before the neutral
zone was implemented. The other four conditional mis-
classification rates are approximately equal. The overall
misclassification rate is lowered to about 10% from about
20% in Table 2 with approximately 30% of the observations
being classified as neutral. Notice that while the condi-
tional misclassification rates are roughly comparable for

the two campuses, the set of Lij’s needed to achieve that are
different. The UCR data leads to slightly more comments
being labeled as neutral.

Figure 5 displays the asymmetric neutral zone classi-
fier in the posterior space with an 80–20 train-test split of
the data, with the test set observations as an overlay. The
area of this neutral zone as a proportion of the classifica-
tion region is 0.30.

While the fitted classifiers from the two campuses are
similar, some difference between the two campuses might
have been anticipated. Consider, for example, how the
prompts for the written comments. At UCR a single, broad
question is used asking the student to “comment on how
the instructor’s teaching helped your learning of the mate-
rial in this course.” On the other hand, UCSC used multi-
ple and more targeted questions to prompt comments from
students. As different universities tend to have unique cul-
tures, it is recommended that each university that desires
use our approach for labeling student comments written
for instructor evaluations fit the neutral zone classifier to
their own training data. R code is provided in the supple-
mentary material to create the asymmetric neutral zone
classifier from any set of training data.

5 SUMMARY

In this paper, we have developed two alternative neutral
zone classifiers for the three-class setting which recog-
nize and respond to the difficulty of classifying ambigu-
ous observations and by doing so are able to lower the
overall misclassification rate and improve the balance of
the conditional misclassification rates. This is achieved
by labeling ambiguous observations as neutral, giving
follow-up investigation the chance to resolve the ambigu-
ity. For most applications we would recommend use of
the asymmetric neutral zone. The three-class neutral zone
classifiers are the first classifiers to control the six condi-
tional misclassification rates and require no assumptions
about the class-conditional distributions. The classifiers
may be employed in any three-class scenario where the
probabilities for each class are obtained from any of a
variety of methods that create them.
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T A B L E 4 Asymmetric neutral zone classifier applied to classification of comments from student evaluations of teaching at UCR.

Predicted labelTrue
label Positive Negative Other Neutral

Conditional
misclassification rate

Positive 0.734 0.015 0.036 0.215 0.051

Negative 0.078 0.396 0.100 0.427 0.178

Other 0.098 0.103 0.281 0.518 0.201

Note: Overall misclassification rate: 0.098. Overall neutral rate: 0.303.

F I G U R E 5 Asymmetric neutral zone applied to a test set of
comments from UCR. Neutral zone is indicated by the transparent
points. Dotted lines show the no neutral zone boundaries.

This work was motivated by student comments written
for instructor evaluations. We have shown how Word2Vec
and multinomial logistic regression may be combined to
analyze text data with three classes. The neutral zone clas-
sifier in this setting assists a reviewer in the reading of
many comments by providing at a glance the frequency
of comments that are classified as positive, negative, or
other. The predicted labels also allow the comments to
be grouped so that they can be presented to reviewers in
sorted order, which aids the selection of a representative
sample of the comments for full reading.
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