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Abstract 

It has been known that the fivebrane of type IIA theory can be used to 

give an exact low energy description of N = 2 supersymmetric gauge theories 

in four dimensions. We follow the recent M theory description by Witten 

and show that it can be used to study theories with N = 1 supersymmetry. 

The N = 2 supersymmetry can be broken to N = 1 by turning on a mass 

for the adjoint chiral superfield in the N = 2 vector multiplet. We construct 

the configuration of the fivebrane for both finite and infinite values of the 

adjoint mass. The fivebrane describes strong coupling dynamics of N = 1 

theory with SU(Nc) gauge group and Nf quarks. For Nc > Nf , we show how 

the brane configuration encodes the information of the Affieck-Dine-Seiberg 

superpotential. For Nc :::; Nj, we study the deformation space of the brane 

configuration and compare it with the moduli space of the N = 1 theory. We 

find agreement with field theory results, including the quantum deformation 

of the moduli space at Nc = Nf . We also prove the type II s-rule in M theory 

and find new non-renormalization theor~ms for N = 1 superpotentials. 



1 Introduction 

In the past few years, we have learnt much about non-perturbative dynamics of super­

symmetric gauge theories and string theories. In particular, the D(irichlet )-brane [1] has 

provided an arena to exchange results of gauge theories and string theories and to advance 

our knowledge of both. This approach is very profitable since the gauge coupling constant 

and the string coupling constant are in general different. Therefore perturbative results 

in one theory can be translated into non-perturbative statements in the other theory. For 

example, if we compactify the type II string on a singular Calabi-Yau three-fold and turn 

off the gravity, we obtain an N = 2 gauge theory in four dimensions. In this case, the 

coupling constant of the gauge theory is some geometric modulus of the three-fold, totally 

independent of the string coupling constant [2-4]. Thus strong coupling dynamics of the 

gauge theory can be translated into facts about the geometry of the three-fold. 

One can also obtain gauge theories in four dimensions by considering webs of NS 5-

branes and D4-branes in a flat space in the type IIA string theory!. A typical configuration 

consists of two parallel NS 5-branes and several D4-branes suspended between them. If 

world-volumes of the 5 and 4 branes share four flat dimensions, we obtain N = 2 gauge 

theory in four dimensions with SU(Nc) gauge group, where Nc is the number of the D4-

branes. We can add N j pairs of quark chiral multiplets in the fundamental representation 

of SU(Nc) by attaching Nj semi-infinite D4:-branes to one of the NS 5-branes. 

In this construction, the distances between the Nc D4-branes suspended between the 

NS 5-branes correspond to the vacuum expectation values (vevs) of the adjoint scalar field 

in the vector multiplet and therefore parametrize the Coulomb branch of the model. If 

we turn on a mass of this adjoint field, the N = 2 supersymmetry is broken to N = l. 

This corresponds to changing the relative orientation of the two NS 5-branes while leaving 

their common four dimensions intact [7]. If the NS 5-branes are not parallel, the position 

of the D4-branes is fixed in order to minimize their world-volume. Thus the Coulomb 

branch is lifted. In the limit when the relative angle of the two NS 5-branes becomes 7r /2, 

the adjoint mass becomes infinite and we obtain the N = 1 gauge theory with SU(Nc) 
gauge group with N j quarks. This is the configuration studied in [8,9]. 

Recently Witten showed that one can give an exact low energy description of the N = 2 

theory by reinterpreting the brane configuration from the point of view of M theory [10]. 

It is known that both D4-branes and NS 5-branes of the type IIA theory come from the 

IThis is the T-dual of the configuration first introduced in [5] to study aspects of N = 4 gauge 

theories in three dimensions. Configurations of intersecting branes have also been used in order to count 

the microscopic degrees of freedom of black holes with various amounts of supersymmetry [6]. 
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fivebranes of M theory, wrapped or unwrapped respectively on the eleventh dimensional 

circle with radius R. Thus the web of the D4-branes and the NS 5-branes in the above 

may be considered as a R --+ 0 limit of a smooth configuration of a single fivebrane in 

M theory. The N = 2 supersymmetry in four dimensions requires that the world-volume 

of the fivebrane is R 1,3 x ~ and that ~ is holomorphically embedded in R3 x Sl part of 

the eleven dimensions [11] 2. Witten has shown that, by imposing appropriate boundary 

conditions, the configuration of ~ is uniquely determined as 

Nf 

t
2 

- CNc(v, Uk)t + A~;Nf II (v + mi) = 0 (1.1 ) 
i=l 

where (v, t) are holomorphic coordinates on R3 x SI, CNc ( v, Uk) is a polynomial of v of 

degree Nc with coefficients which depend on the moduli Uk, and mi (i = 1, ... , Nj ) are 

masses of the quarks. 

In the M theory description, the coupling constant of the type IIA string is given by 

g; rv (Rj i ll )3 where ill is the eleven-dimensional Planck scale, while the four-dimensional 

gauge coupling constant scales as g;auge rv Rj Lbrane where Lbrane is a characteristic size of 

the brane such as the distance between the NS 5-branes in the type IIA picture. Therefore 

we can take the limit, R, Lbrane » ill --+ 0, while keeping the gauge coupling constant 

finite. Since the eleven-dimensional supergravity gives the low energy description of M 

theory, in this scaling limit, the configuration (1.1) should capture the strong coupling 

dynamics of the four-dimensional gauge theory. In fact, it turns out that ~ given by (1.1) 

is the same as the Riemann surface that appears in the exact solution to the N = 2 gauge 

theory [14-18]. 

Here we would like to make some historical remark. It has been pointed out earlier 

In [4] that the Seiberg-Witten curve is geometrically realized as a configuration of the 

5-brane. They considered the NS 5-brane in the type IIA string theory rather than the 

fivebrane of M theory. However, at least in the case where there is N = 2 supersymmetry 

in four dimensions, these two are essentially the same object. 

The purpose of this paper is to study the N = 1 gauge theory, which is obtained by 

turning on the adjoint mass in the N = 2 theory, using the fivebrane. We identify the 

fivebrane configuration for non-zero value of the adjoint mass. As we mentioned before, 

the adjoint mass lifts the Coulomb branch of the N = 2 theory except at the roots of the 

Higgs branches. Correspondingly we find that in order to rotate the fivebrane we have 

to tune its moduli Uk to completely degenerate the curve ~ and make it bi-rationally 

2 Pour-dimensional abelian theory obtained from a fivebrane on R I ,3 x E was studied in [12]. A related 

observation was also made in [13]. 
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equivalent to cpt. We then show that there is a unique way to rotate the fivebrane and 

determine how it is embedded in the eleven dimensions. 

In the N = 1 theory, a superpotential is non-perturbatively generated for Nc > Nf [19] 

and there are no supersymmetric vacua. If we add quark masses and/or a perturbation 

quartic in the quark chiral superfields that corresponds to the adjoint mass in the N = 2 

theory, the theory has vacua characterized by the vevs of QiQ~, where Q:, Qi are the 

squark fields (i = 1, ... , Nj, a = 1, ... , Nc). In the type IIA picture, these vevs are related 

to locations of the semi-infinite D4-brane. We compute locations of the corresponding 

branches of the M theory fivebrane and show that they are in complete agreement with 

the values of QiQ~ obtained by field theory method, as functions of the quark and the 

adjoint masses. 

When Nc :S Nf , there is an additional moduli space associated with the configuration 

of the fivebrane that corresponds to a complete Higgsing of the gauge group. We study 

the structure of the moduli space and compare it with that for the N = 1 theory. We 

also use the fivebrane to obtain non-renormalization theorems that have not been proven 

in the standard field theory method. 

This paper is organized as follows: 

Section 2 is devoted to field theory analysis. We study the moduli space of vacua of 

the N = 1 theory which is obtained from the N = 2 theory by adding a mass term 

to the adjoint chiral multiplet. In particular we calculate the minima of the N = 1 

superpotential which, for Nc > Nj, consists of the Affieck-Dine-Seiberg superpotential, 

a quartic perturbation in the quark chiral sup'erfields and a quark mass term. We prove 

a non-renormalization theorem of such a superpotential and show that its minima are 

precisely as expected if we start with the N = 2 theory and add a mass to the adjoint 

field. We perform similar analysis when N f = Nc and when Nf 2: Nc + 1, where in the 

latter case we make use of the magnetic dual theory. 

In section 3, we develop techniques to study the moduli space of vacua using the fivebrane 

of M theory. In particular we show in detail how the Higgs branches of the N = 2 theory 

are described in this language. 

In section 4, we show how to rotate the fivebrane to break the N = 2 supersymmetry to 

N = 1 and present the resulting configuration explicitly for non-zero value of the adjoint 

mass. We find that the configuration encodes strong coupling dynamics of the N = 1 

theory. Specifically, we read vevs of the mesons parametrizing the Higgs branches from 

the brane configuration and show that they are in complete agreement with the field 

theory results of section 2. 
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In section 5, we take the limit where the mass of the adjoint is infinite. In the case of 

Ne :::; Nj , we study the deformation space of the brane configuration and compare it with 

the moduli space of vacua of the N = 1 theory. Again we find a complete agreement with 

the field theory results. 

In Section 6 we further study the moduli space of vacua of the N = 1 theory. We find how 

the baryons are realized in the M theory fivebrane and find again a complete agreement 

with the field theory results of section 2. In this section we also prove the s-rule of [5]. 

In section 7 we comment on the Kahler potential in the M theory framework. 

We note that the method of intersecting branes in IIA and lIB string theories and in 

some cases their M theory description have been applied to the study of supersymmetric 

field theories in various dimensions in [22-36] 

2 Field Theory Analysis 

In this section we analyse in field theory framework the moduli space of vacua obtained 

by breaking N = 2 to N = 1 by adding a mass term to the adjoint chiral multiplet. 

2.1 N = 2 Moduli Space of Vacua 

We consider N = 2 supersymmetric gauge theory with SU(Ne) gauge group and Nj 

quark hypermultiplets in the fundamental representation. In terms of N = 1 superfields 

the vector multiplet consists of a field strength chiral multiplet Wa and a scalar chiral 

multiplet ~ both in the adjoint representation of the gauge group. A quark hypermultiplet 

consists of a chiral multiplet Q in the Ne and Q in the Ne representation of the gauge 

group; The N = 2 superpotential takes the form 

(2.1) 

where a, b = 1, ... , Ne; i,j = 1, ... , N j and the quark mass matrix m = diag[mI, ... , mN,]. 

The R-symmetry group is SU(2)R x U(l)R. The bosons in the vector multiplet are 

singlets under SU(2)R while the fermions in the vector multiplet form a doublet. The 

fermions in the hypermultiplet are singlets under SU(2)R while the scalars in the hyper­

multiplet form a doublet. The theory is asymptotically free for Nj < 2Ne • The instanton 

factor is proportional to A2N
c-

N, where A is the dynamically generated scale. The U(l)R 

symmetry is anomalous and is broken to Z2Nc -N,. 
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The moduli space of vacua includes the Coulomb and Higgs branches. The Coulomb 

branch is Nc - 1 complex dimensional and is parametrized by the gauge invariant order 

parameters 

k = 2, ... ,Nc, (2.2) 

where ¢> is the scalar field in the vector multiplet. Generically along the Coulomb branch 

the gauge group is broken to U(l)Nc-l. The Coulomb branch structure is corrected by one 

loop and by instantons. The quantum Coulomb branch parametrizes a family of genus 

Nc - 1 hyperelliptic curves whose period matrix Tij is the low energy gauge coupling 

[14-18]. 

Two types of Higgs branches are distinguished [38]: The baryonic branch and the non­

baryonic branches. There is a single baryonic branch for Nf 2:: Nc , where generically the 

gauge group is completely broken. Its complex dimension is 2Nf Nc - 2(N; -1). The non­

baryonic branches are classified by an integer r such that 1 :$ r :$ min{[Nf /2], Nc - 2}. 

The r-th non-baryonic branch has complex dimension 2r(Nf - r). The baryonic branch 

emanates from a point in the Coulomb branch while the non-baryonic branches emanates 

from submanifolds in the Coulomb branch (of dimension Nc - r - 1 for the r-th non­

baryonic branch) and constitute mixed branches. The Higgs branches are determined 

classically, however where they intersect with each other and with the Coulomb branch is . 

modified quantum mechanically. 

2.2 Breaking N = 2 to N = 1 

The N = 2 supersymmetry is broken to N = 1 by turning on a bare mass 11 for the 

adjoint chiral multiplet <P 

'(2.3) 

When the mass for the adjoint chiral multiplet is small we can still use the low energy 

description of [14], and it turns out that the structure of the moduli space of vacua is 

modified as follows. Most of the Coulomb branch is lifted besides a discrete set of points. 

2Nc - Nf points related to each other by the action of Z2Nc-Nt and which correspond to 

to points in the moduli space of vacua where all the a cycles of the hyper-elliptic curve 

vanish remain. The root of the baryonic branch as well as the baryonic branch itself 

remain. The non baryonic branches remain but instead of being mixed branches they 

emanate from points. More precisely, the r-th non-baryonic branch that emanated from 

a submanifold of dimension Nc - r - 1 in the Coulomb branch is now emanating from 

2Nc - Nf points related to each other by Z2Nc -Nt with the exception of r = Nf /2 case 
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(Nf even) where the Z2 subgroup is unbroken and the Z2Nc-Nf orbit consists of Nc- Nf /2 

points. 

When the mass f-l for the adjoint chiral multiplet is increased beyond AN=2, the renor­

malization group flow below the scale f-l is the same as in N = 1 Supersymmetric QCD 

(SQCD) with the dynamical scale AN=l given by 

(2.4) 

If f-l is much larger than AN =l but finite, we can first integrate out the heavy field cP in 

(2.3), obtaining a superpotential which is quartic in the quark chiral superfields and is 

proportional to 1/ f-l: 

(2.5) 

where M = QQ. In other words, we may consider the system below the energy scale 

f-l as the N = 1 SQCD with the tree level superpotential ..1 Wand the dynamical scale 

A N=l given by (2.4). As we send the mass f-l to infinity keeping A N=l finite, the potential 

..1 W disappears and the system becomes equivalent to N = 1 SQCD whose low energy 

properties depend on the flavor N f . The structure of the moduli space of vacua should 

match for finite values of f-l with the one that we get by starting with N = 2 and adding 

mass for the adjoint chiral multiplet. This will be checked in the following. 

Pure Yang-Mills Theory Nf = 0 

For N = 1 SU(Nc) Yang-Mills theory, there are Nc massive vacua where the discrete 

Z2Nc R-symmetry is spontaneously broken to Z2, as the computation of the Witten index 

[37] shows. They correspond to Nc curves in the N = 2 theory with all the a cycles 

vanishing. These curves are related by the action of the discrete Z2Nc R-symmetry group, 

which is consistent with the structure of the N = 1 vacua. 

In N = 1 SQCD with the the number of flavor in this region, a superpotential is 

dynamically generated [19]: for Nf = Nc - 1 it is the effect of instantons, and for the 

other cases it is due to a strong gauge dynamics. It takes the form 

_ (A3NC-N,)1/(NC-Nf) 

WADS = (Nc - Nf ) :e;lM ' (2.6) 

and thus there is no supersymmetric vacuum. 
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For large but finite /-t, at the scale far below /-t but much larger than AN=l, the quartic 

term is very small and can be considered as a perturbation to the ordinary N = 1 system. 

Therefore the superpotential (2.6) is generated in this case as well. Thus, we expect that 

the effective superpotential is just the sum 

( 

3NC-Nf ) l/(Nc-Nf ) 
AN-1 1 ( 2 1 2) 

Weff = (Nc - Nf ) de~ M + 2/-t Tr(M) - Nc (TrM) . (2.7) 

In fact, this is an exact superpotential which is valid for any non-zero value of /-t. This 

follows from the following holomorphy argument [39]. The superpotential must be an 

analytic function around the decoupling limit 1/ /-t = 0 and therefore can be expanded 

with respect to 1/ /-t where the first two terms are fixed to be (2.7). Thus, a term that can 

be generated takes the form 

(2.8) 

where a is a non-negative integer and M{3 is some combination of the meson matrix of 

order f3 which is invariant under the flavor group SU(Nf ). We require, 2: 0 for the 

existence of the weak coupling limit AN=l -+ O. We recall that /-t, M, and A 3Nc-N f carries 

the following U(I)R x U(I)A charge where U(I)R is the anomaly free combination of the 

U(I) R-symmetry group, while U(I)A is the axial flavor symmetry which is anomalously 

broken. 
A3Nc-Nf 

N=l M /-t 

U(I)R 0 2Nf - Nc 
Nf 

2 N r 2Nc 
Nf 

(2.9) 

U(I)A 2Nf 2 4 

The charges of /-t are determined so that the perturbation term J d20.:1W is invariant, 

and the U(I)A charge of the instanton factor A~;Nf reflects the axial anomaly. The 

perturbation term by (2.8) must be invariant under U(I)R x U(I)A with this assignment 

of the charges, and this requires Nf ( -a + f3 - 1) = Nc( -20' + {3) and -20' + f3 = -Nf" 

and thus in particular 

1 - a = (Nc - Nf h· (2.10) 

Since we are considering the case Nf < Nc , this together with, 2: 0 requires a = 0" = 
1/ (Nc - N f) or a = 1, , = O. The former corresponds to the Affieck-Dine-Seiberg potential 

(2.6), and the latter corresponds to the tree level term .:1 W. In this way, we have seen 

that the superpotential (2.7) is exact. 

The moduli space of vacua is the variety of extrema of this superpotential. 

determine this. Extrematizing (2.7) we have 

( 

3NC-Nf ) l/(Nc-Nf ) 

M2 - ~(TrM)M = /-t AN=l 
Nc det M 

7 
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Let us perform a similarity transformation M -+ M' = gMg-l in (2.11) such that MI+j,i = 

O,j > 0 and define mi := Mii . It is not possible for more than two of the elements mi 

to be of different value. In order to see this suppose that there are three different values 

mi, mj, mk. Equation (2.11) for the diagonal elements 

1 Nf (A3NC-Nf) 1/(Nc -Nf ) 
2 ('"') N=1 mi - -N L.J ml mi = J1 n . ' 

c 1=1 1 m~ 
(2.12) 

implies upon subtracting the equations for any two of mi, mj, mk, that 

(2.13) 

in contradiction with the assumption that they are all of different values. 

In fact M can be diagonalized. In order to see that assume that this is not the case. 

Then M can be brought to the Jordan form. In this case we will get from off diagonal 

entries in (2.11) 

(2.14) 

If we assume that there exists another diagonal entry value m2 #- ml we will also get 

equation of the form 
1 

ml + m2 - Nc TrM = 0 , (2.15) 

in contradiction with (2.14). The Jordan form implies that all the diagonal entries must 

be the same and therefore (2.14) yields 2ml = mINd N c, which cannot be satisfied since 

Nj < Nc • We are led to a contradiction and thus M can be diagonalized. 

Since there are no more than two possible values for the diagonal entries we find 

two types of solutions to (2.12). In the first type all the diagonal entries are equal 

ml = ... = mN
f 

= m where 

m = (N,~' NJ :';,-:::11 pAN~2 , (2.16) 

and we used the RG matching relation (2.4). This solution corresponds in the N = 2 

picture to the case when all the a cycles degenerate, and will be denoted the r = 0 case. 

In the second type there are two different entries on the diagonal. They can be made 

to take the form ml = ... = mr = m(1) #- m r+l = ... = mNf = m(2)' The equation 

determining m(l) and m(2) are 

( r ) (Nj - r) 
1 - Nc m(1) + 1 - Nc m(2) = 0, (2.17) 

(2.18) 
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and the solution is 

m(2) = (2.19) 

where m(I) is given by (2.17). 

To summarize: The solutions (2.19) are classified by an integer r that take values in 

the range 0 ~ r ~ [Nj /2]. The moduli space consists of the orbits of the complexified 

flavor group G L( Nt, C) through such diagonal solutions. Since the diagonal solution 

for r is invariant under the subgroup GL(r, C) x GL(Nj - r, C), the moduli space is the 

homogeneous space GL(Nj, C)/(GL(r, C) x GL(Nj-r, C)) which has complex dimension 

2r(Nj - r). This dimension agrees with.what we expect from the N = 2 discussion where 

r is the parameters that characterizes the non-baryonic branches. As we see from the 

solution (2.19), for each r < Nj /2 there are 2Nc - Nj solutions related by the action 

of Z2Nc-Nf , as expected. For r = Nj /2 (Nj even), however, since m(l) = -m(2), the 

two solutions related by the Z2 subgroup (sign change) are related by conjugation by 

an element of GL(Nf,C), and thus are in the same orbit. So there are only Nc - Nj /2 
families, which is also expected. 

In the limit J.l -+ 00 keeping AN=1 finite, all these solutions diverge since (J.lAN=2)2Nc-Nf = 

·J.lNc-Nf A~;Nf. This is consistent with the fact that there is no supersymmetric vacua 

for the N = 1 SQCD in this region of the flavor. 

Inclusion of Bare Mass 

Let us consider the case where the quark mass term I:(mf k/jiQj is turned on. The 

effective superpotential is given by 

WeD = WADS + LlW + Tr(mfM) , (2.20) 

where WADS and LlW are given by (2.6) and (2.5). Again, this is an exact superpotential 

as can be seen from the analyticity at m f = 1/ J-L = 0 and charge conservation where m f 

carries U(l)R x U(l)A charge (2Nc/Nf, -2). 

Extrematizing WeD, we obtain the moduli space of vacua. Here we present the result 

in the case where the mass matrix is proportional to the identity matrix (mf kj = mfOi,j. 

In this case, as in the previous discussion, M is diagonalizable,1 and there are at most two 

kinds of eigenvalues. Thus, it is again classified by r = 0,1, ... , [Nf /2]. The equations 

IFor some special value of mf a Jordan block of size two is allowed. 
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determining the two (or one in the case r = 0) eigenvalues ml = ... = mr = m(1) and 

mr+l = ... = mNf = m(2) are in this case 

(2.21) 

(2.22) 

Note that there are 2Nc - Nj solutions for each r, but they are not related anymore by the 

discrete R-symmetry group Z2Ne-Nf which is explicitly broken by the quark mass term. 

Lets us consider the limit p -+ 00 keeping AN=l finite where the system becomes the 

N = 1 SQCD with massive quarks. Since (pAN =2)2Ne-Nf = pNe-Nf A~;Nf, m(1) or m(2) 

must diverge in the limit. Because a vacuum must have a finite vev for M = QQ, only 

the solutions with r = 0 and m(2) finite remain as supersymmetric vacua. In this case, 

m(l) diverges as m(1) '" -pmj as follo~s from the first equation (2.21). Then, inserting 

this to the second equation, we see that Mj = m(2)o; where 

(2.23) 

in the limit p -+ 00. Thus, we have Nc vacua. This is consistent with the interpretation 

of the low energy physics as the pure N = 1 Yang-Mills theory. 

In N = 1 SQCD with this number of flavors, the classical moduli space of vacua 

is modified quantum mechanically. It is parametrized by the meson M = QQ and the 

baryons B = QNe , B = QNe satisfying the constraint [20] 

- 2N detM - BB = AN~l . (2.24) 

As in the case N j < N c , for large finite p, at the scale far below p and much larger 

than AN=l, the quartic term (2.5) is very small and can be considered as a perturbation 

to the ordinary N = 1 system. We expect that the effective superpotential is 

(2.25) 

where we introduced a Lagrange multiplier X to impose the constraint (2.24). In this 

case the holomorphy and global symmetries are not powerful enough to ensure that (2.25) 

is the exact superpotential. In section 4, we will see by brane analysis that this is indeed 

the case. 
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Extrematizing WeD we get equation (2.24) from the derivative with respect to X, 

XB=O, XB=O, (2.26) 

from the derivative with respect to B, Band 

1 
M2 - Nc (TrM)M = -pX det M , (2.27) 

from the derivative with respect to M. 

Consider the last equation. Similar analysis as the one done in the N f < Nc case 

shows that M can be diagonalized and can have at most two different eigenvalues, which 

as before we denote by ml = ... = mr = m(1) =I- mr+l = ... = mNf = m(2). There are two 

cases to consider X = 0 and X =I- O. When X = 0 then, for BB = 0 we get using (2.24) 

that the solution to (2.27) is given by 

(2.28) 

while for BB =I- 0 we have m(1) = m(2) = m related to BB by 

(2.29) 

When X =I- 0 the equation determining m(1) and m(2) are 

(2.30) 

(2.31 ) 

and solution to (2.31) is given by 

mIl) - (-It<-' (N,r_ I N<-') J< "AN =, 

m(,) ( -I)' (N, r- rr) J< "AN =, (2.32) 

and B = B = 0 by (2.26). 

As in the Nf < Nc case, the solutions (2.32) correspond to the r-th non-baryonic 

branch of complex dimension r. As we see from the solution (2.32), for each r there 

are Nc solutions related by the action of ZNc' The solution (2.29) correponds to a new 

branch which did not exist in the Nf < Nc region. This is the a complex dimension 
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one submanifold of the baryonic branch whose complex dimension is two. This branch 

correponds to a complete Higgsing of the gauge group. 

In the limit J-L -+ 00 keeping A~=l finite, all these solutions remain with J-LAN =2 = A~=l 

and they define submanifolds of the N; + 1 complex dimensional Higgs branch of N = 1 

SQCD. 

In this case the classical space of vacua of N = 1 SQCD is not modified quantum 

mechanically. It is parametrized by the mesons and baryons which are related by a 

classical constraint. However, it is useful in this case to use the dual magnetic description 

based on the gauge group SU(Nj - Nc ) with Nj flavors of quarks q, ij and gauge invariant 

fields M with the superpotential [21] 

(2.33) 

The scale ,X relates the scale AN=l of the electric theory and the scale AN=lof the magnetic 

theory by 

(2.34) 

and is used in order to relate the electric and magnetic gauge invariant operators. The 

dimension two (at the UV fixed point) meson M in the electric description is related to 

the dimension one singlets Mmag in the electric description by M = ,XMmag. Similarly, 

the baryons of the electric theory B, B are related to the baryons of the magnetic theory 

Bmag , Bmag constructed from the dual quarks by B = C Bmag , B = C Bmag with C = 

(-( _,X)Nc-Nt A~;Nt) 1/2. Equation (2.33) is written in terms of the electric meson and 

the scale of the electric theory. 

Consider the effective superpotential 

(2.35) 

As in the case N f = Nc we do not have a field theory proof that the superpotential (2.35) 

is exact. The brane picture in section 6 suggests that it is. Let us set the vev of the 

magnetic quarks to zero. This corresponds to setting the vev of the baryon operator B, B 
to zero and studying the non-baryonic branches. The superpotential that we get in this 

case is identical to the one analysed in the region Nf < Nc • Therefore, its extrema are 

precisely those given by equations (2.16), .(2.17), (2.18) and (2.19). 
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Consider now the case where the vev of the magnetic quarks in (2.35) is different than 

zero. We will not study the complete moduli space of vacua obtained as the extrema 

of (2.35) and restrict ourselves to those solutions which will be needed in section 6 for 

comparison with the M theory fivebrane. We start with NJ = Nc + 1. In this case W mag 

does not contain a fractional power of det M and it is straightforward to see that 

M = diag[O, m, ... , m], Bmag = (b, 0, ... ,0), 

is a solution to the extrema of (2.35) when 

m Nc bb m 

A3Nc-Nf - T = -J1 
N=l 

B:nag = (b, 0, ... , 0) , 

In terms of the gauge invariant operators of the electric theory (2.37) reads 

Nc B-B _ mA3Nc-Nf m -, - - N=l . 
J1 

(2.36) 

(2.3,7) 

(2.38) 

Consider next the region NJ > Nc + 1, and the following generalization of (2.36) 

Nf-Nc Nc 

M = diagn,m,.~.,ml, (2.39) 

where we recall that the 'magnetic quarks q, ij are NJ x (NJ - Nc ) and (NJ - Nc ) x NJ 

matrices respectively. 

In order to find the extrema of (2.35) we have to specify how to take a limit to approach 

the region det M = O. In fact, there is an ambiguity in defining the limit. One way to take 
21rik 

the limit is to set Mkk = ce - Nr
Nc

, k = 1, ... , NJ - N c , and take c to zero. Extrematizing 

(2.35) we obtain 

m 

J1 
k = 1, ... , NJ - Nc . (2.40) 

Taking the product of equations (2.40) and using the gauge gauge invariant operators of 

the electric theory, this becomes 

(2.41 ) 

If we approach det M = 0 in a different direction, we obtain a different relation between 

m and BB. As we see later, there is no ambiguity ofthis type in the fivebrane description. 

In fact, the fivebrane chooses this particular way to take the limit. We will discuss more 

on this issue in section 6. 
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We close this section with several comments. The baryonic branch which is the 

branch that includes non zero vev for the baryon operator B, B has a complex di­

mension 2Nf N c - 2(N; - 1) for finite p, and we explored only part of it. In the 

limit p ~ 00 keeping AN=1 finite, the solutions (2.16), (2.17) and (2.19) vanish since 

(pAN=2)2Nc-Nf = pNc-Nf A~;Nf. This is consistent with the fact that on the moduli 

space of vacua of N = 1 SQCD with N f ? Nc +1, det M = 0 when BB = o. The solutions 

(2.38) and (2.41) in this limit describe part of the moduli space of vacua of N = 1 SQCD 

where BB =I- o. In the limit p ~ 00 extra N; - 1 complex degrees of freedom become 

massless and the Higgs branch of the theory is 2Nc N f - (N; - 1) complex dimensional 

with the baryonic and non-baryonic branches being submanifolds of it. 

3 N = 2 Higgs Branch via M Theory Fivebranes 

In this section we analyse the moduli space of vacua of N = 2 SQCD by using five­

branes in M theory. In particular, we study how the Higgs branch of the system is 

geometrically realized in this picture. This provides the starting point for the studies 

presented in the following sections. 

Let us first review the description of the Higgs branch in the type IIA picture. Con­

sider the brane configuration· of [10] that preserves eight supercharges in type IIA string 

theory on a fiat space-time with time XO and space coordinates Xl, ... , x
9

. The brane con­

figuration depicted in figure 1 consists of two NS5-branes with worldvolume coordinates 

XO, Xl, x 2 , x 3 , X4, ·x5 , Nc D4-branes suspended between them with worldvolume coordinates 

xO,Xt,X2,x3,XS and N f D6-branes with worldvolume coordinates XO,XI,X2,x3,X7,X8,x9. 

Since the D4-brane is finite in the X S direction, the low energy effective theory on the web 

of branes is the four-dimensional N = 2 supersymmetric gauge theory on its world volume 

coordinates xO, xl, X2, x 3 . The theory has SU(Nc ) gauge group and Nf hypermultiplets 

in the fundamental representation of the gauge group. 

Figure 1 depicts the Coulomb branch of the theory. To go to the Higgs branch, we 

break the D4-branes on the D6-branes and have them suspended between the D6-branes. 

Motion of the D4-branes along the D6-branes describe the Higgs branch. The location 

of a D4-brane between two D6-branes is parametrized by two complex parameters, the 

x 
7

, x
8

, x
9 coordinates together with the gauge field component As in the X

S coordinate. 

Let us count the dimensions the baryonic and non-baryonic branches in this type IIA 

picture. 

The r-th non-baryonic branch, as depicted in figure 2, corresponds to (Nc - r) D4-
. . 
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~ 
Nf 

Figure 1: The Type IIA Picture of N = 2 Supersymmetric SU(Ne) Gauge Theory with 

Nf Flavors (Coulomb Branch) 

branes suspended between the two NS 5-branes and r D4-branes broken on the D6-branes. 

Since the s-rule [5] does not allow more than one D4-brane to be suspended between 

a NS 5-brane and a D6-brane, r cannot be greater than [Nf /2]. Since the Coulomb 

branch in the brane picture correponds to D4-branes moving along the two NS 5-branes, 

the r-th non-baryonic branch shares (Ne - r - 1) complex dimensions with the Coulomb 

branch, corresponding to gauge group SU(Ne - r). The complex dimension of the non­

baryonic branch in the Higgs direction is determined by counting the' number of the 

D4-branes suspended between the D6-branes. Taking into account the s-rule, we obtain 

the dimension to be 

2((Nf - 1) + (Nf -. 3) + ... + (Nf - 2r + 1)) = 2r(Nf - r) , (3.1) 

in agreement with the field theory results . 

. The baryonic branch corresponds to complete Higgsing as in figure 3. In this case 

counting the number of D4-brane pieces between two D6-branes yields a complex dimen­

sion 2Nf /lie - 2N; for the baryonic branch. This is not the correct dimension. Compared 

to the field theory result, we are missing 2 complex moduli. We will show how the M 

theory fivebrane description accounts for these missing moduli. 

The brane configuration can be reinterpreted in M theory as a configuration of a 
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Figure 2: The r-th Non-Baryonic Branch in the Type IIA Picture 

single fivebrane with world volume R4 x ~ where ~ is some genus (Nc - 1) curve (Riemann 

surface). It was shown in [10] that ~ is nothing but the Seiberg-Witten curve [14] that 

determines the structure of the Coulomb branch of the N = 2 theory. The information on 

the meromorphic one-form (the Seiberg-Witten form) on ~ is carried by the embedding 

of ~ in the space-time. 

We follow the notation of [10] and set v = X4 + ix5
, 8 = (x6 + ix 10

)/ R, t = exp( -8) 

where x lO is the eleventh coordinate of M theory which is compactified on a circle of radius 

R. The curve ~ is given by an algebraic equation in (v, t) space. Specifically, for N = 2 

SU(Nc) gauge theory with N j flavors, it is given by 

Nt 
t 2 

- CNe(V,Uk)t + A~;Nt II(v + mi) = 0 , (3.2) 
i=l 

where CNe is a degree Nc polynomial in v, CNe = v Ne + .. " with coefficients that depends 

on the moduli Uk, and mi (i " 1, ... , N j ) are the quark masses. 

3.1 The D6-Branes 

To describe the Higgs branch of the theory, it is useful to introduce the D6-branes 

III the system, as we have seen in the Type IIA set-up. In M theory, the D6-branes 

are Kaluza-Klein Monopoles described by a Taub-NUT space [40]. One of the complex 

structure of this Taub-NUT space is the same as one of the complex structure of the ALE 
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Figure 3: The Baryonic Branch in the Type IIA Picture 

space of the An-I-type: 

i=I 

(3.3) 

The D6-branes are located at x = y = 0, v = -mi. In this framework, the Riemann 

surface ~ is defined as a curve in this surface given by 

(3.4) 

It is easy to see that this description is the same as (3.2) under the identification y = t. 

The Type IIA brane configuration is invariant under the rotations in the X4, x 5 and 

x 7 ,x8,x9 directions, which denote U(1)4,5 and SU(2)r,8,9 if the order parameters are also 

rotated appropriately. These are interpreted as the classical U(l) and SU(2) R-symmetry 

groups of the four-dimensional theory on the brane world volume. In the M theory con­

figuration, SU(2)r,8,9 is preserved but U(1)4,5 is broken. We can preserve the discrete 

subgroup Z4Nc - 2Nf 1 of U (1 )4,5 if we modify the U (1 )4,5 action so that the variables x and 

y have charge 2Nc . The full U(l) symmetry is restored if we assign the instanton charge 

(4Nc - 2Nj ) to the factor A~;-Nf, reflecting the axial anomaly of the U( 1 )R. We list 

here the modified U (1 )4,5 charges. 

(3.5) 

1 Since t.he Z2 subgroup acts t.rivially on t.he space-t.ime coordinat.es and on t.he order parameters, we 

oft.en call this a discret.e Z2Nc -N/ R-symmetry. 
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When some mi coincide, corresponding D6-branes are located at the same position in 

the X4, X5 directions, but they can be separated in the X6 direction [5]. When n of the 

bare masses are the same, the surface (3.3) develops the An - l singularity. The separation 

of the D6-branes in the x6 direction corresponds to the resolution of this singularity [10]. 
This resolution makes it possible to identify the Higgs branch of the N = 2 theory on the 

fivebrane worldvolume. We now digress to give a brief description of the resolution of the 

An - l singularity (see [41] for more detailed discussion). 

Resolution of An - l Singularity 

The complex surface 

(3.6) 

embedded in the x-y-v space has a singularity at the origin. The resolution of this means 

a smooth complex surface that is mapped onto this singular surface in such a way that 

the map is an isomorphism except at the inverse image of the singular point. This is 

explicitly given as follows. 

The resolved surface is covered by n complex planes U1 , U2 , U3 , .•• , Un with coordinates 

(YI = y, xt), (Y2, X2), ... , (Yn, Xn = y) which are mapped to the singular An- l surface by 

Ui ') (Yi, Xi) >----> 1 
Y = YfX~-1 
X = y?t-ix~+l-i 

z z (3.7) 

The planes Ui are glued together by XiYi+1 = 1 and YiXi = Yi+IXi+l. The map onto 

the singular An - l surface is isomorphic except at the inverse image of the singular point 

x = Y = v = o. The inverse image consists of n - 1 Cp1s C}, C2 , ••• , Cn - l where Ci is 

the locus of Yi = 0 in Ui and Xi+! = 0 in Ui+ l , and is coordinatized by Xi and Yi+l that 

are related by XiYi+1 = 1. Ci and Cj do not intersect unless j = i ± 1, and Ci - l and Ci 

intersect transversely at Yi = Xi = o. 

x 

C i_1 c i dn_1 

• • • • •• ~ Xn_1Yn 

Y 

Figure 4: Resolution of An-l Singularity 
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In what follows in this section, we turn off the bare mass: mi = 0 for any i. We 

separate the D6-branes in the x 6 direction and the eleven-dimensional space-time is then 

given by R7 times the resolved ANrI surface. In this case, the fivebrane is still described 

by the same equation (3.4) where x, y, v are now considered as the functions (3.7) with 

n = N f . The position of the D6-branes are interpreted as the N f intersection points of 

the rational curves GI , G2, .. . , GN, - I . 

3.2 The Higgs Branch 

In Type IIA picture, the Higgs branch is described by D4-branes suspended between 

D6-branes where they can move in th~ x 7, x8, x 9 directions. Likewise, in the present 

context, the transition to the Higgs branch occurs when the fivebrane intersects with the 

D6-branes. This is possible only when the image (3.4) in the x-y-v space of the curve 

passes through the singular point x = y = v = o. Thus, we must have GNc(v = 0) = 0, or 

in other words GNc(v) factorizes as 

(3.8) 

where r > o. 
Now, we describe how this curve looks like in the resolved ANrl surface. We first 

consider the case in which the coefficients U2, ... , UNc-r are generic. In particular UNc-r =I 
o. 

It is convenient to look at the curve by separating it to two pieces; one is near, the other 

is away from the singularity x = y = v = o. A way from the singular point x = y = v = 0, 

we can consider the curve as embedded in the original x-y-v space because there is no 

distinction from the resolved surface in this region. As can be seen by looking at the two 

equations (3.3)-(3.4), v never vanishes in this region of the curve. Thus, we can safely 

divide the coordinates x and y by some power of v. If 2r ~ n they can be divided by vr
, 

while they can be divided by v[Nt/2j if 2r > N f . Then, we see that this piece of the curve 

is equivalent with the generic curve for the SU(Nc-r) gauge theory with (Nf -2r) flavors 

and thus has genus (Nc - r -1) for 2r ~ Nj, while it is some special genus (Nc - [N f /2]-1) 
curve of the SU(Nc - [Nf /2]) gauge theory with (Nf - 2[Nf /2]) flavors if 2r > Nf . 

Near x = y = v = 0, however, we must recall that we are actually considering the 

resolved ANrl surface. Thus, we must describe the curve in the Nf patches as described 

above. Before doing this, it is useful to remark that the higher order terms vr+1
, vr+2, ... 

are negligible near v = 0 compared to vr
. Thus, nothing essential is lost if we replace the 

defining equation y + x '= v r ( UNc-r + ... ) = 0 by y + x = v r . On the i-th patch Ui, the 
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equation looks as 

(3.9) 

If N j 2: 2r, one of the three terms is of lowest order both in Yi and Xi: For 1 :S i :S r, 

the lowest order term is the first term on the LHS, for r + 1 :S i :S N j - r, it is the term 

on the RHS, and for N j - r + 1 :S i :S Nj it is the second term on the LHS. Thus, the 

equation factorizes as 

i = 1, ... , r 

i = r + 1, ... , N j - r 

i = Nj - r + 1, ... ,Nj 

(3.10) 

We see that the curve consists of several components. One component, which we call C, 

is the zero of the last factor of the above equations. This extends to the one in the region 

away from X = Y = v = 0 which we have already considered. The other components are 

the rational curves C1, ... ,CNr1 . Recall that Ci is defined by Yi = 0 in Ui and Xi+1 = 0 

in Ui+1 • In general, these have multiplicities. As is evident from the above factorized 

form, the component Ci has multiplicity I!i where I!i = i for i = 1, ... , r; I!i = r for 

i = r + 1, ... ,Nj - r; and I!i = Nj - i for N j - r + 1, ... ,Nj -1. Note that the component 

C intersects with Cr and CNrr as we can see by looking at the equation at i = r, r + 1 

and i = N j - r, Nj - r + 1. The curve is depicted in figure 5 . 

~ ... ... ~ 

Figure 5: Non-baryonic Branch Root in M Theory 

If 2r > N j, the structure of degeneration of the curve is the same a~ the case r 

[Nj /2]. Recalling the behavior away from x = Y = v = 0, we conclude that the cases 

2r > N j can be considered as some special cases of r = [Nj /2]. 
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As noted in [10], once the curve degenerates and Cpl components are generated, they 

can move in the x 7 , x 8 , x 9 directions. This motion together with the integration of the 

chiral two-forms on such Cpl'S parametrize the Higgs branch of the four-dimensional 

theory. Since the Cpl components are fi x Gi , i = 1, ... , Nf - 1, the quaternionic 

dimension of the r-th Higgs branch is 

Nf-l r-l 

L: fi = 2 L: i + (Nf - 2r + 1) x r = r(Nf - r). (3.11) 
i=l i=l 

In view of the fact that there are (Ne - r -1) parameters to deform the infinite component 

G in the x-y-v direction, we can identify this as the r-th non-baryonic branch emanating 

from an (Ne - r -1 )-dimensional subvariety of the Coulomb branch, as introduced in [38]. 

If we look at figure 5, it is evident how to identify the corresponding configuration 

in the Type IIA picture. The Cpl components fi x Gi correspond to the fi D4-branes 

stretched between the i-th and i + I-th D6-branes. That these are the only allowed 

configurations of D4-branes gives a proof of the s-rule, conjectured in [5], which forbids 

more than one D4-brane to be stretched between a NS 5-brane and a D6-brane. Further 

discussion on the s-rule will be given in sections 5 and 6. 

The Baryonic Branch 

For the case Nf 2: Ne , in addition to the non-baryonic branches, there is a baryonic 

branch in which the gauge group is completely Higgsed [38]. It has quaternionic dimension 

NfNe - (N; - 1) and it emanates from a point in the Coulomb branch. Here we look at 

the curve at the baryonic branch root, and see how the transition to the baryonic branch 

is possible. 

One of the basic property of the baryonic branch root is that it is invariant under 

the discrete R-symmetry group ZZNc-Nf . This requires all the color Casimirs Uk to be 

vanishing1 . In this case CNe( v) = vNc + vNrNc . Thus, it is one of the non-baryonic 

branch root with r* = Nf - Ne (Note that N{ - 2r* = 2Ne - Nf 2: 0). The equation 

y + x = v Nc + vNf - Nc then factorizes as 

(3.12) 

Namely, the infinite curve C factorizes into two rational curves - CL and CR correspond­

. ing to y = vNc and y = vNrNc respectively. 

1 According to the convention of [38] where eNc (v) = n~~l (v - ¢a), the root of the baryonic branch 
is at ¢ = (0, ... , O,W, ... ,w2Nc- N ,) where w = e27ri /(2Nc-N,). 
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Figure 6: The Baryonic Branch Root in M Theory 

The dimension of the baryonic branch is greater than that of the r *-th non-baryonic 

branch by 1 (in quaternionic dimension). The former is NfNe - (N; -1) while the latter 

is r*(Nf - r*)'= NfNe - N;. This difference corresponds to the missing dimension of the 

baryonic branch in the type IIA picture. How can we account for this difference? We 

note that the two curves CL and CR intersects at (2Ne - Nf ) points. This follows from 

the defining equations y = v Nc and y = vNrNc and the fact that they never intersect 

near x = y = v = 0. On the other hand, the infinite curve C at the generic point of the 

r *-th non-baryonic branch root has genus Ne - r * - 1 = 2Ne - Nf - 1. This means that, 

. as the curve approaches the baryonic branch root, it degenerates at (2Ne - Nf ) points 

and factorizes into two rational curves. Thus the curve C at the baryonic branch root 

(or equivalently the union of CL and CR) describes the abelian gauge theory with gauge 

group U(1)2Nc-Nrl = n;Nc-Nr1 U(1k There are (2Ne - Nf ) massless electrons with 

charge (-1,0, ... ,0), (1, -1,0, ... ,0), ... , (0, ... ,1, -1), and (0, ... ,0,1) coming from 

the degeneration points on the curve (the charges can be read off from the intersection 

relations of the vanishing cycles). It is easy to see that such a theory has one-dimensional 

Higgs branch. In this way, we have identified the missing +1 of the dimension from the 

M theory point of view. 

4 Rotating the Brane Configuration 

By adding a mass term to the adjoint chiral multiplet in the N = 2 vector multiplet, the 

N = 2 supersymmetry is broken to N = 1. In this section, we study the corresponding 

configuration of fivebrane in M theory. In the Type IIA picture, this corresponds to 
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changing the relative orientation of the NS 5-branes. 

8,9 

4,5 
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~~~~'=i'~'~~"~='~~'~~~ ~ r , , , , , , , , , , 
l_' L-'-' , 'D6 , , , , ,-, , , ~ , , , , 

Figure 7: Rotating the Left NS 5-brane 

Since one of the 5-branes is going to be extended in the (x8 , x9 ) directions also, there 

is only N = 1 supersymmetry left on R 1,3. To describe the corresponding configuration 

of the M theory fivebrane, let us introduce a complex coordinate 

(4.1) 

Before breaking the N = 2 supersymmetry, the fivebrane is located at w = O. We then 

rotate the left NS 5-brane toward the w direction while keeping the right NS 5-brane intact. 

Since the two NS 5-branes correspond to the two asymptotic regions with v -r 00 where 

t = y '" v Nc and x '" v Nc respectively where the latter is equivalent to t '" A~;N, vN,-Nc, 

the rotation means that we impose the boundary condition as 

w -r IlV 

w -r 0 
(4.2) 

A2Nc-N, N-N asv-roo t", v' c , N=2 

We can identify 11 as the mass of the adjoint chiral multiplet by using the R-symmetries. 

Recall that the N = 2 configuration is invariant under the rotation groups U (1 )4,5 and 

SU(2h,8,9 corresponding to the R-symmetry of the field theory on the brane worldvolume, 

where the action of U(1)4,5 is modified as (3.5). After the rotation, SU(2h,8,9 is broken to 

U(1)8,9 if the parameter 11 in (4.2) is assigned the U(1)4,5 x U(1)8,9 charge (-2,2). Since 

this is the same as the R-charges of the mass of the adjoint field and since there is no 

other parameter charged with respect to U(1)8,9, the two quantities should be identified. 
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We list below the charges of the coordinates and parameters. 

U(1ks U(1)8,9 
v 2 0 

w 0 2 

y=i 2Nc 0 (4.3) 

x 2Nc 0 

J-l -2 2 
A2Nc- N f 

N=2 4Nc - 2Nj 0 

As a preliminary remark, recall that in general the curve consists of several components 

at the Higgs branch root. To rotate the curve in such a case, we pick the component, 

called C, that extends to infinity in the v direction and rotate that component. If the 

curve is not at the Higgs branch root, the curve to be rotated is ~ itself, but we denote it 

as C also in this case. At the baryonic branch root, the component C further factorizes 

into two rational curves CL and CR. In this case, the rotation is actually much easier 

than the other cases, but we shall give a separate discussion in view of its importance in 

a later section. 

We should not expect to be able to rotate the brane configuration (3.2) for arbitrary 

values of Uk'S. It is obvious from the field theory point of view since the adjoint mass lifts 

the Coulomb branch of the N = 2 theory and Uk'S are drawn to roots of Higgs branches. 

It is also clear from the classical brane picture. If the D4-branes suspended between 

the NS 5-branes are apart, the two NS 5-branes have to remain parallel (If we force the 

NS 5-branes to changer their relative orientations, the D4-branes get twisted and the 

supersymmetry is completely broken). In the M theory picture, it is possible to rotate ~ 

brane only when all the handles of the curve C degenerate and C can be considered as a 

single cylinder with some points pair-wisely attached. This can be seen by the following 

argument. 

Suppose a curve C is rotatable. First, we note that the projection of the rotated 

curve C on the i-v plane remains the same as (3.2). This follows from the conservation 

of the U(1)g,9 symmetry. When J-l is small, w on C can be expressed as a function of v 

and i. Thus the projection of C on i-v plane can still be described by some equation of 

(i, v). To see that this equation is the same as (3.2), we note that J-l is the only parameter 

that carries the U(1)g,9 charge. Therefore we cannot deform the equation (3.2) without 

breaking the U(1)8,9 symmetry. This means that the rotated curve C can be considere,d 

as the graph of the "function" w of the original curve C. In order to clarify the property 

of this function w, we compactify the curve C. We note that both of the two asymptotic 
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regions - v -1- 00, t rv vNe and v -1- 00, t rv vNf-Nee) - are well parametrized by the 

coordinate v. Thus, we can compactify the curve by attaching the two points at infinity 

l/v = 0, obtaining a compact Riemann surface C. The asymptotic condition (4.2) is 

equivalent to saying that w is a meromorphic function of C which has only a simple pole 

at one point (one of the points at infinity). Such a function exists only when the curve C 

is equivalent with CPl. 

w .. 

Figure 8: Rotated Curve as a Graph of w 

This completes the proof that the rotatable curve C should be completely degenerate 

(i.e. all the a-cycles vanish). The proof based on the asymptotic condition (4.2) also shows 

that the rotated curve C is a cylinder which is globally parametrized by the coordinate w. 

The two points at infinity of the curve correspond to w = ° and w = 00. 

Thus, we can express t and v in terms of w by rational functions: 

v = P(w), t = Q(w). ( 4.4) 

Since v and t never diverge except at the infinity w = 0,00, these rational functions are 

polynomials of w up to a factor of some power of w: P(w) = .wap(w), Q(w) = wbq(w) 

1 We put AN =2 = 1 for a while for simplicity. 
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where a and b are some (possibly negative) integers and p(w) and q(w) are polynomials 

of w which we may assume non-vanishing at w = O. Near one of the points at infinity 

w = 00, v and t behave as v f"V /-l-lW and t f"V vNc by (4.2). Thus, the rational functions 

are of the form P(w) = wa(w1- a + .. ')//-l and Q(w) = /-l-Ncwb(wNc-b + ... ). Let us look 

at the other infinity w = 0 and consider the cylinder to be compactified at this point. A 

neighborhood of this point is well parametrized by l/v which takes zero at w = O. Recall 

that w is the global coordinate of the cylinder and hence extends to the global coordinate 

of the compactified cylinder. Namely, l/v and ware two good coordinates that vanish at 

the same point. Thus they must be linearly related w f"V const/v in the limit w ~ O. The 

function P( w) then is of the form 
2 . 

W +... (w - w+)(w - w_) 
P(w) = = . 

/-lW /-lW 
(4.5) 

Since t '" vN,-Nc and w '" const/v as w ~ 0, we obtain b = Nc - Nt and thus, Q(w) = 

/-l-NcWNc-Nf (wNf + ... ). For Nt > 0, by the equation yx = vNf defining the space-time, 

t = 0 (i.e. y = 0) implies v = O. Therefore the zeros of the polynomial W Nf + ... coincide 

with the zeros w+ and w_ of P(w). This way, we have determined the form of Q(w) also: 

(4.6) 

for some r = 0,1,"" [Nt /2]. We have put the bound r :::; [Nt/2] because the reflection 

r f-7 Nt - r is compensated by the exchange w+ H w_. 

For r > 0, both of v and t get small near w = w± and behave as t '" vr and t f"V vN,-r. 

This is the property of the curve at the r-th baryonic branch root, as can be seen by looking 

at the relation (3.2) of v and t near t = v = 0 which is approximately t 2 - vrt + vNf = O. 

To see this in another way, we note that the component C at the r-th non-baryonic branch 

root intersects with the exceptional curve x = y = v = 0 at two points near which y = t 
and v behave as t '" v r and t '" vN,-r. Thus, we conclude that the r > 0 curve given 

by (4.5) and (4.6) is the rotation of the component C at one of the r-th non-baryonic 

branch roots. For r = 0, there is a point (w = w+) at which v = 0 but t =j:. O. In this case 

the function CNc(v) does not vanish at v = 0, which means that the curve does not pass 

through the D6-branes in x = y -- v = O. This is possible only if the curve is not at a 

Higgs branch root. 

The values w± are determined by the condition that v = P( w) and t = Q( w) with 

(4.5)-(4.6) satisfy identically the relation t + VNf /t = CNc(v) = VrCNc_r(v). This reads as 

W2Nc-Nf(W _ w_)N,-2r + /-l2Nc-Nf(w _ w+)Nf -2r = (w _ w+)Nc-r(w _ w_)Nc-r 

+U2(/-lW)2(W - w+)Nc-2-r(w - w_)Nc-2-r + '" + UNc_r(/-lW)Nc- r 
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up to the factor (w - w+ y (w - w_ Y / (/-lW )Nc. The matching of the subleading and the 

lowest order terms in powers of w requires (recovering AN=2) 

(1 - ~J W+ + (1 - N ~~ r) w_ = 0, (4.7) 

(4.8) 

and these determine W+ and w_ up to a Z2Nc-Nt phase rotation. Matching of other terms 

determines the coefficients U2, . .. ,UNc-r, and these are uniquely expressed in terms of w± 

so that the Z2Nc-Nt action on w± leads to the natural action on Ui. Note that in the case 

r = NJ/2 (NJ even), the action of the Z2 subgroup is identified with the exchange of w+ 

and w_ which does nothing on the rotated curve. 

Remark on the r = r* case: If NJ ~ Nc , there is a subtlety concerning the case in 

which r is r* = NJ - Nc. For this value of r, the equation (4.7) implies w+ = O. That 

is, the curve is given by v = (w - w_) / /-l, t = (w - w_ )Nc / /-lNc and one of the asymptotic 

region v -+ 00, t '" vNt - Nc is absent. This means that such a curve cannot be realized 

as the curve of the form (3.2). Thus, we must exclude this case from the list of rotated 

curves. Actually, this is one of the component of the rotated curve at the baryonic branch 

which we now describe. 

The Baryonic Branch 

The rotation of the curve at the baryonic branch root is straightforward. The com­

ponent C at the baryonic branch factorizes into two pieces - CL described by t = v Nc , 

W = 0 and CR described by t = vN,-Nc , W = O. The rotation can be done just by replacing 

w = 0 for CL by w = /-lV. The curve is explicitly given by 

(4.9) 

Summary 

To summarize, we have identified all possible curves that can be rotated. The curve 

at the baryonic branch can be rotated, and the result is given by (4.9). Some curves 

at the non-baryonic branch roots and some curves away from the Higgs branch roots 

are also rotatable. The result of the rotation of these curves is given by the equations 

(r = 0,1, ... , [NJ /2], r =I- r*) 

v 

t 

(w -w+)(w - w_) 

/-lw 

/-l-NcWNc-Nt(w - w+r(w _ w_)N,-r , 
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where w± are determined by (4.7) and (4.8). For each r < Nj /2, r =F r*, there are 

. (2Nc - Nj ) solutions related by the Z2Nc-Nt action, while for r = Nj /2 (Nj even) there 

are (Nc - N j /2) solutions. Before the rotation, the curve for r > 0, r =F r * is at the r-th 

non-baryonic branch root, while the curve for r = 0 is not at a Higgs branch root. 

We can perform the similar analysis in the case in which the quark mass term mj Ei {iQi 

is turned on. For generic values of m j, there· is no baryonic branch and the curve C never 

factorizes. We only have to repeat the same procedure for the unfactorized curves by re­

placing v by v+mj, and the result is a slight modification of (4.10)-(4.11) with (4.7)-(4.8). 

That is to replace (4.10) and (4.7) by 

(w - w+)(w - w_) 
v+mj = , 

J-lW 
( 4.12) 

(4.13) 

For every r = 0,1, ... , [Nj /2], there are 2Nc - Nj solutions. 2 

Comparison with Field Theory 

The fivebrane configuration we found here encodes various information on the moduli 

space of vacua of the N = 1 gauge theory. Let us compare it with the results of the 

field theory analysis in section 2. Here we will restrict our attention to the regions of the 

moduli space where the vev of the baryon fields B, B vanish, and postpone the discussion 

of non zero vev for B B to section 6. We will find that the brane provides us with an exact 

description of the moduli space of vacua. 

Interpretation of w± 

Let us discuss the meaning ofthe values of w±. In the Type IIA set-up in which all the 

D6-branes are sent to the infinity x 6 = +00, there are N j semi-infinite D4-branes ending 

on the right NS 5-brane from the right. The fact that t = v = 0 at w = w± means that 

w = w± are the asymptotic position in the w = x 8 + ix9 direction of these semi-infinite 

D4-branes. Moreover, the order of zero in (4.11) says that r of the Nf D4-branes are at 

w = w+ in the limit x 6 --7 +00 and the remaining Nj - r are at w = w_. 

A U(Nj) symmetry is associated with these semi-infinite D4-branes. From the point 

of view of the four-dimensional field theory on the D4-branes which are finite in the x 6 

2For special values of mI, there are r such that w+ or w_ vanishes. These presumably correspond to 

the vacua with meson matrix having Jordan blocks which is mentioned in a footnote in section 2. 
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direction, this appears as the global symmetry. When the D4-branes are separated I from 

each other, the global symmetry is broken. If the separation is in the v = X4 + ixs 

direction, it is interpreted as the explicit breaking due to the bare-mass (mf)i of the 

quarks, since these are the only parameters charged under U(lks that can break the 

U(Nf ) flavor symmetry. If the separation is in the w direction, it must be interpreted as 

due to a quantity with U(1)s,9 charge 2 that can break the U(Nf ) flavor symmetry. The 

only such quantity is the meson vev MJ = (jiQj. Thus, we interpret the position in the 

w direction of the semi-infinite D4-branes as the eigenvalues of the meson matrix MJ. 

This interpretation can be verified as follows. First, the fact that there are at most two 

values w± for the asymptotic w position of the N f D4-branes is consistent with the field 

theory result that there are at most two eigenvalues m(1) and m(2) of the meson matrix. 

Moreover, for each degeneracy type r, the positions w+ and w_ of degeneracy rand Nf - r 

agree with the eigenvalues m(l) and m(2) of degeneracy rand N f -·r respectively, up to 

an overall phase that depends only on Nc • 

Let us compare these two quantities in more detail. 

Consider first the massless case. The extrema of the exact superpotential (2.7) were 

found to satisfy equations (2.17) and (2.18) and solved by (2.19). The solution for r = 0 

in (2.16) is a special case of (2.19). The equations defining w± (4.7) and (4.8) are identical 

to (2.17) and (2.18) up to an overall phase factor, thus we have 

( 4.14) 

Given the interpretation of w± as the eigenvalues of the meson matrix, we see that the 

fivebrane in M theory describes correctly the moduli space of vacua on the N = 1 gauge 

theory which is obtained in field theory as the extrema of (2.7), including the dynami­

cal generation of the Affleck-Dine-Seiberg superpotential and the non-renormalization of 

(2.7). 

Consider next the massive case. The extrema of the exact superpotential (2.20) satisfy 

equations (2.21) and (2.22). The equations defining w± (4.13) and (4.8) are, as in the 

massless case, identical to (2.21) and (2.22) up to an overall phase factor and w± are 

related to m(1), m(2) by (4.14). We see that also in the massive case the fivebrane in M 

theory describes correctly the exact moduli space of vacua on the N = 1 gauge theory. 
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The extrema of the superpotential (2.25) were found to satisfy equations (2.30) and 

(2.31) and solved by (2.32). The equations defining w± (4.7) and (4.8) are identical to 

(2.30) and (2.31) up to an overall phase factor and w± are related to m(1),m(2) by (4.14). 

In this case we do not have a field theory proof that the superpotential (2.25) is exact. 

Since we expect the M theory fivebrane to describe the exact moduli space of vacua, this 

result may be regarded as an evidence for the non-renormalization theorem of (2.25). In 

the limit J1 -+ 00, the low energy theory becomes N = 1 SQCD with Nj = Nc• In this 

case the moduli space of vac'ua is modified quantum mechanically and the singularity at 

the origin is resolved. Indeed the brane captures this phenomenon as we shall see below. 

In section 2 we used the magnetic description in order to find the vacua. 

The extrema of the superpotential (2.35) satisfy equations (2.17) and (2.18), which 

are also the equations defining w± (4.7) and (4.8), again up to an overall phase factor. 

w± are related to m(1),.m(2) by (4.14) as in the previous cases. In this case we also do not 

have a field theory proof that the superpotential (2.35) is exact. Our result here using 

the M theory fivebrane suggests that it is. 

To summarize: With the interpretation of w± as the eigenvalues of the meson matrix, 

what we showed that the fivebrane in M theory describes the exact moduli space of vacua 

and captures the quantum phenomena such as the dynamical generation of the Affieck­

Dine-Seiberg superpotential for Nj < Nc and the quantum modification to the classical 

moduli space of vacua when Nf = Nc . Moreover it provided us with non renormalization 

theorems for superpotentials which have not been proven by field theory method. 

5 The J-l --+ 00 Limit: N = 1 SQCD 

In the last section, we have found the configuration of the five-brane for finite value 

of the adjoint mass J1. In this section, we take the J1 -+ 00 limit of this configuration and 

compare it with the known result of the N = 1 supersymmetric field theory. 

Recall that we have been considering rotation of the left NS 5-brane which corresponds 

to the asymptotic region t '" vNc , V -+ 00. After rotation, this region behaves as w -+ 00, 

v '" J1- 1
W, and 

(5.1) 

Since the Nc D4-branes end on the left NS 5-brane also in the right angle limit, we expect 

the relationt '" w Nc to hold in the limit J1 -+ 00 as well. For this, it is evident from (5.1) 
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Figure 9: The J.l -+ 00 Limit of Type IIA Configuration 

that we must rescale t by a factor J.lNc and introduce the rescaled variable 

(5.2) 

Since the space-time is asymptotically a flat cylinder with flat coordinate x 6 + ix lO = 
Rlog(l/t), this rescaling simply corresponds to the shift of the origin in the x6

,X
lO direc­

tions. Moreover, the rescaling fits nicely with the symmetry property and the renormal­

ization group flow of the corresponding four-dimensional physics as we now see. 

Recall that we are considering the eleven-dimensional space-time to be a flat R7 times 

the Taub-NUT space described by (3.3) where y is identified with t. Using the rescaled 

variable (5.2) or equivalently fj = J.lNcy , the space-time is described by 

Nf 

fj x = J.lNc A~;Nf II (v + mi) . (5.3) 
i=l 

This expression has a smooth limit as J.l -+ 00 provided the constant AN=l given by 

(5.4) 

is kept finite. It may appear that this choice of limit is ambiguous because we could 

rescale the coordinate x also. However, this is not allowed since the fivebrane behaves 

near the other infinity w -+ 0 as x '" vNc , V -+ 00, and this should also be preserved in 

the J.l -+ 00 limit. The relation (5.4) is the same as the renormalization group matching 

condition of the corresponding four-dimensional field theory. This space-time together 

with the fivebrane in it which we are going to describe is invariant under the rotation 

groups U(1)4,5 and U(1)8,9 where the charges of the new parameters and coordinates are 
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given by 

U(1)4,5 U(1)8,9 

V 2 0 

w 0 2 

fj=t 0 2Nc (5.5) 
x 2Nc 0 

/\.3Ne-Nt 
N=1 2Nc - 2Nj 2Nc 

J-l -2 2 

In particular, the charges of the factor /\.~;Nf means that the groups U(1)4,5 and U(1)8,9 

are broken to their discrete s?bgroups Z2Ne- 2Nt and Z2l've respectively. This dictates 

precisely the anomaly of the corresponding U(l) R-symmetry groups. 

5.1 SU(Nc) without'Matter 

In this case, the curve describing the N = 2 Coulomb branch is given by 

(5.6) 

There are Nc points on the Coulomb branch where the curve is completely degenerate, 

and these points are related to each other by the unbroken discrete Z4Ne subgroup of 
2~ 2~ 

U(1k5 acting as v ~ ve2Ne , t -+ -t which has the effect /\'h=2 -+ /\'h=2eNe on the curve. 

At one of these points, the curve takes the form, 

(5.7) 

and its rotation is given by 

/\.2 -1 + -1 
V J-l N=2 W J-l W 

t (5.8) 

Before taking the J-l ~ 00 limit, we rescale t as t = J-lNet (5.2). The equations (5.7) and 

(5.8) can then be rewritten as 

v 

w 

vw 

where following (5.4) 

A~=J-1INe + J-l-l':[1INe, 

piNe 

A3 + -1 2 N=1 J-l W, 
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This curve has a smooth 11 --t 00 limit if we send AN=2 --t 0 at the same time so that AN=l 

remains finite. Dropping the terms multiplied by 11-1
, the curve in this limit becomes 

v 

w 

vw 

A3 [-lINe 
N=l , 

pINe , (5.11) 

(5.12) 

We note that A N=l characterizes the size of the five-brane configuration (5.12). The Z2Ne 

subgroups of U(1)4,5 and U(1)8,9 has the same effect 

(5.13) 

on the curve. The Nc curves, or fivebranes, are related by this discrete Z2Ne symmetry 

group which is spontaneously broken to Z2. This is what we have observed in the four­

dimensional N = 1 super-Yang-Mills theory. 

5.2 SU(Nc) with Nj Massless Matter 

5.2.1 Non-Baryonic Branches 

In terms of the rescaled variables, the equations describing the rotated brane at the root 

of the r-th non-baryonic branch (r = 0,1, ... , [NJlNc]; r i- N j - Nc ) are 

-Ne'72t rc ( ) t-+ A 3Ne- Nt Nt - 0 11 - v Ne-r v, Uk N=l v -. 

where w± are determined by (4.7) and (4.8). In particular, w±are of the form 

(5.14) 

(5.15) 

(5.16) 

(5.17) 

where c± are non-zero numerical constants depending on Nc , N j and r. We recall that 

A N =2 and A N =l are related by (5.4) and we send A N =2 to zero so that A N =l is kept finite. 

Since the order parameters Uk are powers of AN =2 and are independent of 11, they vanish 

in the 11 --t 00 limit, which means that vrCNc _r ( v) --t v Ne . Thus, the equation (5.14) has 

the smooth limit described by 

(5.18) 
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How the other two equations (5.15) and (5.16) behave in this limit depends on the behavior 

of w± '" fLAN=2. Since 

(5.19) 

we should distinguish the three cases, Nj < Ne, Nj = Ne and Nj > Ne. 

When N j < Ne, fLAN=2 diverges in the limit fL -+ 00. This means that the curve 

defined by (5.14), (5.15) and (5.16) becomes infinitely elongated along the x 6 direction. 

Thus the fL -+ 00 limit of the brane configuration does not provide a field theory in four 

dimensions. This is consistent with the field theory result that there is no supersymmetric 

vacua for the correspo~ding N = 1 theory. 

When N j > Ne , fLAN=2 vanishes for fL -+ 00. In this limit, the equations (5.14)-(5.16) 

becomes 

vNct A3Nc-Nj Nj 
N=l v 

t - w Nc 

vw - 0 (5.20) 

It may appear that only t = w Nc and v = 0 is allowed since the second equation seems 

to imply that w = 0 means t = O. However, the double limit w -+ 0, fL -+ 00 of the 

equation (5.15) is subtle. As we will see later, t =1= 0, w = 0 is allowed. Thus, the correct 

interpretation of these equations is that the curve splits into two components in this limit: 

(5.21 ) 

The component CL corresponds to the NSf 5-brane and the D4-branes attached to i~, 

while the component CR corresponds to the NS 5-brane and the attached D4-branes. It 

is interesting to note that all the non-baryonic branch roots have the same limit. 

To be more precise, there are other components corresponding to D4-branes stretched 

between the D6-branes. These are rational curves located at the exceptional divisor 

x = y = v = o. In addition to the ones which are present already before rotation (i.e. 

N = 2 limit fL = 0), there are also rational curves which appear only in the fL -+ 00 limit. 

We will describe how they appear shortly. It turns out that all the non-baryonic branch 

roots have the same limit as well even if we take these rational curves into account. 

When N j = Ne , f.lAN =l is equal to AJv=l. In the limit fL -+ 00 the equations (5.14)­

(5.16) becomes 

t A2Nc 
N=l 
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vw o (5.22) 

As in the case of NJ > Nc , the correct interpretation of these is that the curve splits into 

two components. 

C L - W - C+ N =1 W - C_ N =1 , 

{ 
t- - ( A2 )r( A2 )Nc-r 

V = 0, 
(5.23) 

Unlike the case ofNJ > Nc, the final configuration ofthe curve depends on r, i.e. different 

non-baryonic branch roots go to different limits. As in the NJ > Nc case, there are other 

finite components. As we will see, those which appear only in the J.L --r 00 limit are located 

at w = w±. 

5.2.2 Baryonic Branch 

The baryonic branch exists for NJ ~ Nc . Before the right angle limit, the rotated curve 

is given by (4.9). In terms of the rescaled variables, it is written as 

(5.24) 

In the limit J.L --r 00, these become 

(5.25) 

For NJ > Nc, the baryonic branch root has the same limit as the non-baryonic roots 

given by (5.21). Thus in this case, all the roots of the Higgs branches converge to the 

sarriecurve. On the other hand, for NJ = Nc , (5.25) are different from (5.23) for the 

non-baryonic branches. This reflects the fact that the quantum moduli space for the 

N = 1 theory with NJ = Nc is different from the classical one while the moduli space for 

NJ > Nc does not receive quantum corrections. This point will be discussed further in 

the next section. 

5.3 SU(Nc) with Massive Matter 

If N f < Nc and the quarks are massless, the J.L --r 00 limit of the theory has no 

supersymmetric vacua as we have just seen by brane analysis and also in Section 2 from 

the point of view of field theory. 
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However we can stabilize the vacuum by adding quark mass term which breaks U(1k5 

but preserves U(1)8,9. From the field theory analysis, we have seen that the non-baryonic 

branch with only r = 0 survives in this case. So let us examine how it looks like from the 

point of view of the brane configuration. 

If all the quarks have the same mass m f, the curve for finite f..L is 

In the limit f..L ~ 00, 

(w ~ w+)(w - w_) 

f..Lw 
wNc-Nt(w _ w_)Nt. 

Therefore the curve in this limit becomes 

v 

t 

(5.26) 

(5.27) 

(5.28) 

where t = f..LNct as before. The limit f..L ~ 00 has been taken so that AN=l given in (5.4) 

remains finite. Note that there are Nc solutions related to each other by the action of the 

discrete Z2Nc subgroup of U(1)8,9. 

It is interesting to see how this configuration reduces to that for N j = 0 in the limit 

mj ~ 00. If we define 

(5.29) 

the curve (5.28) can be written as 

v· -

t (5.30) 

If we keep AN=l finite while we send m j ~ 00, the space-time in this limit is just the flat 

cylinder given by 
- A-3Nc yx = N=l, (5.31) 
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and the fivebrane (5.30) reduces to the pure Yang-Mills result (5.12). Once again, (5.29) 

is exactly the renormalization matching condition for the corresponding situation in the 

field theory. 

On the other hand, the limit mj ~ 0 of (5.28) gives an infinitely elongated curve (the 

branch at w = (A~;Nf /m7c-Nf )I/Nc goes to the infinity). This corresponds to the fact 

that there is no supersymmetric vacuum for the SU(Nc) theory with massless N j ( < Nc) 

flavors. 

5.4 Generation of Rational Curves in the J.L ~ 00 Limit 

In the subsection 5.2.1, we mentioned that extra rational curves appear in the J.L ~ 00 

limit. We will show this in this subsection. In the Type IIA picture, this corresponds 

to breaking the D4-branes attached to the NSf 5-brane at the D6-branes, which becomes 

possible only in the right angle limit because of the s-rule. The appearance of such extra 

rational curves means a generation of extra flat directions of the J.L = 00 theory. This will 

be important in the next section. We consider only the case N j 2: Nc• 

We recall that for finite angle rotation J.L < 00 the projection of the fivebrane in the 

Taub-NUT space (i.e. forgetting the XO,I,2,3,7,8,9 direction) remains the same as the starting 

point J.L = 0, provided we fix the N = 2 scale AN =2. In terms of the rescaled variable it is 

given by 

(5.32) 

where + ... are certain lower order terms in v. Here we stress that this equation describes 

the whole curve (projected onto the Taub-NUT space) including the rational curve com­

ponents as well as the infinite component ( s). The coefficients of the lower order terms 

+ ... in v are given by positive powers of AN =2, and hence are of negative powers of J.L if 

AN=1 is fixed. Thus, the J.L ~ 00 limit of the projection of the curve onto the Taub-NUT 

space is given by 

(5.33) 

In principle, this could be different from the projection of the J.L ~ 00 curve because some 

components can go away to infinity in the w direction. Later, we show that this does not 

happen in the case N j 2: Nc we are considering and indeed the w values of any rational 

curve components are at finite values of w. As we will see, the w values are actually zero 

except for the N j = Nc curves describing the non-baryonic branch root. 

We first show how the projected curve (5.33) look like in the Taub-NUT space. Recall 

that the Taub-NUT space we are considering is the resolved AN,-l surface. It is covered 
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by N j patches with coordinates (YI, xd, ... , (YN" XN,) which are projected to the fj-x-v 

space bye) 
fj = YfX~-1 

Nri N,+l-i 
x = Yi Xi (5.34) 

in which we have put AN=1 = 1 for simplicity. The equation (5.33) looks in the i-th patch 

as 

(5.35) 

In the first N j - Nc patches (i = 1, ... , N j - Nc) the RHS is of lower order both in Yi 

and Xi than the LHS, while the LHS is of lower order than RHS in the remaining patches 

(i = Nj - Nc + 1, ... , N j ). Recall that the equations Yi = Xi+l = 0 define a rational curve 

Ci . Thus, the curve includes as its components the rational curve Ci with multiplicity Nc 

for 1 :S i :S Nj - Nc and N j - i for Nj - Nc + 1 :S i :S Nj - 1. Namely, the multiplicities 

of C I , ... , CN,-l are 

Nc, Nc, . .. , Nc, Nc - 1, ... ,2,1. (5.36) , ' ... 
N,-Nc 

In addition to these rational curve components, there are two components of infinite 

volumes - the curve described 'by xi"c = 0 (i.e. Yl-axis with multiplicity Nc ) in the first 
patch and the curve described by y[",-Nc-i xf,-Nc-i+1 = 1. As we will see, the actual 

curve projected to xi"c = 0 is an Nc-fold cover CL extending in the w direction, while the 

curve CR projected to the latter is at w = o. If N j > Nc , the projection of CR intersects 

with the rational curve CN,-Nc. In summary, the projected curve (5.33) is depicted in 

figure 10. 

Note that the number of rational or infinite curve components have increased from 

any of the N = 2 Higgs branch root. This means that the infinite component of the finite 

f.1 curve degenerates in the f.1 -+ 00 limit and has turned into a union of rational curve 

components and infinite component(s). We now exhibit this explicitly, proving that (5.33) 

is indeed the projection of the f.1 -+ 00 curve. 

Baryonic Branch Root 

We recall that the curve of the baryonic branch root consists of N j Nc - N; rational 

curve components and two infinite components CL and CR. The components other than 

1 We can obtain this from (3.7) in which we have put AN=2 = 1 for simplicity: We first recover AN=2 

in (3.7) just by replacing the expression for y by y = A~;N/ y:x~-I. Then, by definition 11 = J-LNcy = 
A3N

c-
N / i i-I bt·· (534) N=1 Yixi 0 .ammg . . 
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L ...,lft, 

Figure 10: The Pr.ojecti.on (5.33) in the Taub-NUT Space 

CL will stay the same after r.otati.on as well as in the JI -+ 00 limit. S.o we .only have 

to c.onsider the JI -+ 00 limit .of CL . The component CL at finite JI given by (5.24) is 

described in the i-th patch by 

i-I Nc-i+l 
JI W , 

-i i-Nc 
Xi - JI W • 

(5.37) 

(5.38) 

Let us see this in the limit JI -+ 00. If i > Nc , the first equation Yiwi-Nc-l = JI i - l can 

!lever be satisfied for finite Yi or w, and thus the curve disappears from this patch. So 

let us consider the case i ~ Nc • For Xi to be finite Xi rv 1, w must scale as JIiWNc-i rv 1. 

Then, Yi = JI-IW/Xi rv JI-IW behaves as yfC- i 
rv JI-(Nc-i)wNc-:-i 

rv JI-Nc . This means 

that f.or every finite Xi, there are Nc - i values of Yi approaching to iero. Thus, we see 

that the limit includes the c.omp.onent Ci ~ith multiplicity Nc - i. If we repeat the same 

thing by interchanging Xi and Yi, we see that the limit includes the c.omponent Ci - l with 

multiplicity Nc - i + 1. The l.ocation of these components are at w = 0 because of the 

scaling relations - JIiWNc-i rv 1 for C i . In the first patch, there is another component C L 

in which w is arbitrary: 

(5.39) 

In summary, the curve C L degenerates in the JI -+00 limit and consists of an infi­

nit~ component C L and rational curves C l , C 2 , • .• ,CNc-1 of multiplicity Nc - 1, Nc -

2, ... , 1. Together with the c.omponents C I , C 2 , . .• , CNf-1 and C R with multiplicity 

1,2, ... , r* - 1, r*, ... , r*, r* - 1, ... ,2,1 and 1 respectively (recall that r* = N j - Nc ) 
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which we have been omitted for a while, the total J-t -+ 00 curve consists of the components 

CL , C I , C2,···, Cr., Cr.+h ... , CNr2 , CNri and CR with the multiplicities 1, Ne, Ne,···, Ne, Ne-

1, ... ,2,1 and 1 respectively. This is depicted in figure 11 and figure 12. 

NS' 

---
· L''''lA' 

-{;' 
/Nc 1 

... ~ 

Figure 11: The J-t -+ 00 Limit of the Baryonic Branch Root (Nj > N e ) 

1 

Figure 12: The J-t -+ 00 Limit of the 'Baryonic Branch Root (Nj = Ne ) 

Non-Baryonic Branch Roots 

N j = Ne 

Lets us look at the J-t finite rotated curve of the r-th non-baryonic branch root of the 

N j = Ne case where r . 1, ... ,[Ne/2]. The infinite component C is described in the i-th 

patch by 

Yi 

x-• 

i-I i-I ( )r-i+I ( )N,-r-i+I p W W - w+ w - w_ 

p-iw-i(w _ w+)i-r(w _ w_)i-(N,-r). 
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Recall that for Nf = Nc case, w+ and w_ have non-zero distinct limits as f-l --+ 00. There 

are three ways to scale w in order to make Yi and Xi finite in the limit f-l --+ 00: 

(i) w --+ ° keeping f-lW finite. 
(ii) w --+ w+ keeping f-li-~(w·- w+y-i+~ finite (€ = 0,1). 

(iii) w --+ w_ keeping f-li-~( w - w_ )Nrr-i+~ finite (€ . 0,1). 

The scaling of type (i) is possible for every i, and the corresponding limit is an infinite 

curve OR given by YfX~-l = 1, w = 0. The scaling of type (ii) is possible only for i ::; r. 

For € = 0, Xi is finite and Yi goes to zero as yr-i 
f"V f-l- r , while for € = 1, Yi is finite and Xi 

goes to zero as Xi- i+ l 
f"V f-l-r. Thus, from the type (ii) limit, we obtain the components 

C1, C2 , ••• , Or-l at w = w+ with multiplicity (r -1), (r - 2), ... , 1 respectively. The scaling 

of type (iii) is possible only for i ::; N f - r. By the similar argument as in type (ii), one 

can see that we obtain the components 0 1 , O2, ... , CNrr- l at w = .w_ with multiplicity 

(Nf - r - 1), (Nf - r - 2), ... , 1 respectively. In the first patch i = 1, there is another 

component CL given by Yl = (w - w+y(w - w_)N,-r, Xl = ° which is infinite and 

parametrized by w. Together with the components which already exist before taking the 

limit, the f-l --+ 00 curve consists of the components depicted in figure 13. 

~s 
NS' 

)--
Figure 13: The f-l --+ 00 Limit of the Non-Baryonic Branch Root in the Nf = Nc case 

Finally, we consider the f-l --+ 00 limit of the r-th non-baryonic branch root, where 

r = 0,1, ... , [Nf j2]' r =f. r* = N f - Nc. 

In this case, both w+ and w_ vanishes in the limit f-l --+ 00. More precisely, they scale 

as w± f"V f-l-!3 where (3 = (Nf - Nc)j(2Nc - N j ). There are three ways to scale w, keeping 
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Yi and Xi to be finite in the limit: 

(i) w "'" p-OI where a < (3. 

(ii) w "'" p-OI where a > (3. 

(iii) w "'" w+ + p-o where 8> (3. 

(iv) w "'" w~ + p-o where 8 > (3. 

The type (ii) limit yields an infinite curve CR given by yfrNc
-

i X~f-Nc-i+l = 1. The type 

(i) limit yields components Ci=I, ... ,Nc-1 with the multiplicity of Ci being (Nc - i). The 

type (iii) limit yields components Ci=r+l, ... ,r.-l with multiplicity (i - r) if r < r*, while 

it yields components Ci=r.+l, ... ,r-l with multiplicity (r - i) if r > r *. The type (iv) limit 

yields components Ci=r.+I, ... ,N,-r-1 with multiplicity (Nj - r - i). These components are 

all at w = O. In the. first patch, there is another component CL given by YI = w Nc , Xl = O. 

Together with the components which already exist before the rotation, the p -r 00 

limit of the curve for the r-th non-baryonic branch root is the same as the limit of the 

curve for the baryonic branch root which is depicted in figure 11. 

6 More on the N = 1 Moduli Space of Vacua 

In this section we will discuss the moduli space of vacua of the N = 1 theories for 

finite as well as infinite adjoint mass p including the baryonic degrees of freedom. 

6.1 M theory Proof of the s-Rule 

We have seen in the previous sections that for finite adjoint mass the moduli space of 

vacua consists of non-baryonic branches parametrized by an integer r and having complex 

dimension 2r(Nj - r) and a baryonic branch of complex dimension 2NcN j - 2(N; - 1) 

which exists when N j >. Nc • In the limit p -r 00 these different branches become 

submanifolds of the Higgs branch of N = 1 SQCD. The complex dimension of the Higgs 

branch of N = 1 SQCD is 2Nc N j - (N; -1) which means that in the limit p -r 00 extra 

N; - 1 degrees of freedom become massless. We will start by showing how this can be 

seen in the M theory fivebrane picture. 

As in previous cases we have to describe the curve in the resolved ANf - 1 surface. This 

is depicted in figure 14. The left component CL of the curve describing the NS' 5-brane 

is given by 

v = 0, (6.1 ) 
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Nc Nc Nc Nc (Nc • 1) ••• 2 

Figure 14: M-Theory Description of the Higgs Branch 

while the right component CR of the curve describing the NS 5-brane is given by 

w=o. (6.2) 

Possible deformations of the left component (6.1) are 

-t Nc + . Nc- 1 + + = W SlW ... SNc ' v = O. (6.3) 

It is not possible to deform the right component (6.2). This follows from the invariance 

under the action of U(1)4,5 and U(1)8,9 where the charges are given in (5.5). Since there is 

no order parameter carrying only U (1 k5 charges this symmetry cannot be broken and the 

equation (6.2) is fixed, while the vev of the meson field can break the U(1)8,9 symmetry 

and corresponds to the deformation (6.3). The fact that there are no allowed deformations 

of (6.2) can also be deduced in the case N j 2: 1 by the following argument. Suppose that 

we try to deform it by adding other monomials in v. This implies that there will be 

non-zero values of v for which 't = O. Recall, however, that the ('t, v) coordinates are of 

the Taub-NUT space 

(6.4) 

which excludes 't = 0 for non-zero values of v. Therefore deformations of (6.2) are not 

allowed. This in fact provides a proof of the s-rule. 

To see that this indeed corresponds to the s-rule, let us compare IIA and M theory 

brane configurations. The Higgs branch of N = 1 SQCD is depicted in figure 15. For 

comparison with the M theory description of the Higgs branch it is useful to move the 

right NS 5-brane in figure 15 and pass Nc D6-branes. The configuration that we end with 

is plotted in figure 16. 
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4,5 

(7),8,9 . 

NS 

NS' 

/ / / / / / / 
/---' / / / / / 

/ /--/ /--/ / / 

/ / / / / _/_/ 
/--..., / L--./ L--./ / 

~~ // / / ) Nc 
~ / / / / / 

/ / /--/ / / / 

L_/ 1--/--/ / /D6 
/ / / / ~/ / 

r---7 / / / / ------­Nf 

Figure 15: Type IIA Description of the Higgs Branch 

The Cpl components in figure 14 correspond to the D4-branes suspended between 

the D6-branes in the IIA picture of figure 16. The Nc complex moduli associated with 

the Nc D4-branes suspended between the NS' 5-brane and the D6-brane to its left are 

seen in the M theory fivebrane framework as deformations of the left part of the curve 

in figure 14 which is the part of the curve describing the NS' 5-brane. The existence 

of allowed deformations of the left part of the curve in figure 14 that describes the NS' 

5-brane and the non-existence of allowed deformations of the right part of the curve in 

figure 14 that describes the NS 5-brane is from IIA viewpoint the s-rule which has been 

suggested empirically in [5]. 

Here we have shown that (6.3) are the only permissible deformations of the left and 

the right curves, consistent with the asymptotic conditions and the U(1) R-symmetry. 

To show that all these deformations actually correspond to vevs of fields in the N = 1 

theory, we need to compute the Kahler metric for these deformations and show that it is 

regular and non-degenerate. This issue is currently under investigation [42]. 

A simple counting of the number of D4-branes suspended between the D6-branes and 

between the D6-branes and the NS' 5-brane gives (2NcNj - Nn as the complex dimension 

of the N = 1 theory. As in the N = 2 case the type IIA brane counting results in the 

dimension of a U(Nc) gauge group instead of an SU(Nc) gauge group, missing one complex' 

dimensions in the moduli space. It is possible that this missing dimension corresponds to 

the relative locations of the NS and NS' 5-branes in the x 7-direction and its superpartner. 

In order to fully establish this, we need to compute the Kahler metric for this direction. 
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Figure 16: Alternative Type IIA Description of the Higgs Branch 

6.2 The Baryonic Degrees of Freedom 

In section 4 we showed how the meson matrix is realized in the M theory fivebrane. 

For N j 2: Nc there are also baryonic degrees of freedom. In the following we will show 

how the latter are realized in the M theory fivebrane. We will derive the equations (2.29), 

(2.38) and (2.41) of section 2 from the fivebrane. 

We start with the case N j = Nc . The vev for the baryon operators is zero on the 

non-baryonic branches and is non zero on the baryonic branch. In order to illustrate 

the difference between the non-baryonic and baryonic branches let us consider the r-th 

non-baryonic branch with r = ~. In the limit I-l -+ 00 it is described by (5.23) 

{ 
t = (w 2 + A~=l)~ , 
V = 0, 

(6.5) 

In figure 17 we plot for simplicity, the two components of the curve (6.5) in the case 

Nc = N j = 2. The above non-baryonic branch is part of the N = 1 SQCD Higgs branch 

where BB = o. 
For comparison consider now the baryonic branch in the limit I-l -+ 00. It is given by 

(5.25) 

{ 
t = w Nc 

, { t = A~l , (6.6) 
v=O, w=o. 

In figure 18 we plot the two components of (6.6). The baryonic branch is part of the 

N = 1 SQCD Higgs branch where B B -:/= o. 
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v 

w 

Figure 17: The Two Components of (6.5) for Nc = Nj = 2 

v 

------
w 

Figure 18: The Two Components of (6.6) 

Comparing figures 17 and 18 we see that while in figure 17 the two branches intersect, 

in figure 18 they do not. The distance between the two branches at w = 0 is a candidate 

for iJ B, when the vev of the meson matrix vanishes. As a first check we have to see that 

it carries the U(I)R and U(I)A charges of BB. Using (5.5) and the relation between the 

,U(I)R and U(I)A charges and the U(I)45 and U(I)s9 charges: 

Nc () N j - Nc () 
N

j 
U 1 45 + N

j 
U 1 89 

-U(I)45 + U(I)89 , (6.7) 

we see that i carries the charges (U(I)R,U(I)A) = (2NcNr;;c ,2Nc) which are the correct 

charges that iJ B carries. 

A non-trivial check is to verify that when we shift the second branch of (6.6) by shifting 

w as in figure 19 which means giving a vev for the meson, the values of the distance and 
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the shift have to satisfy the relation (2.29). 

v 

w 

Figure 19: Shifting w in (6.6) 

Indeed we see that the distance !::l.t between the two branches at w = 0 is 

(6.8) 

which is identical to (2.29) if we identify the distance !::l.t as BB. Note also, that the 

brane equation (6.8) captures the fact that in N = 1 SQCD with Nj = Nc the classical 

moduli space of vacua is modified quantum mechanically. 

Consider next the case Nj = Nc + 1, and let J.1 be finite. The two components of the 

curve corresponding to the baryonic branch are given by (5.24). As in the case N j = Nc 

we shift w -+ w + m and get 

{ 

t- - A3Nc- N f 
- N=l V, 

W =0. 
(6.9) 

It is easy to compute the distance !::l.t between the two components of the curve (6.9) at 

w = 0 and we get 

(6.10) 

which is identical to (2.38) if we identify the distance !::l.t as BB. Note however that there 

is a difference between the N j = Nc + 1 and Nj = Nc cases. In the former BB is a 

matrix while in the latter it has a single component. Clearly the distance between the 

two parts of the baryonic branch curve cannot provide us with the information on the full 

BB matrix. Equations (6.10) and (2.38) describe only part of the possible vev's for the 

baryons. In the limit J.1 -+ 00 the RHS of (6.10) vanishes and we get the description of 
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the moduli space of vacua of N = 1 SQCD with N f = Nc + 1. In this case, the classical 

moduli space of vacua is not modified quantum mechanically. 

Finally, let Nf > Nc + 1, and keep J-l finite. In this case there was an ambiguity in the 

field theory analysis in finding the extrema of the superpotential in section 2. The two 

components of the curve corresponding to the baryonic branch read now 

(6.11) 

where we shifted w -7 w + m. The distance .6.tbetween the two components of the curve 

(6.11) at w = 0 satisfies 

(6.12) 

This relation is identical to (2.41) which we derived by field theory means with one choice 

of approaching the region in moduli space where the determinant of the meson matrix 

vanishes. Unlike the field theory analysis, there is no ambiguity in the brane framework 

in deriving (6.11). ~his is not surprising since we expect the brane to provide us with the 

good coordinates on the moduli space of vacua. The ambiguity that we encountered in 

section 2 can be traced to the fact that det M = 0 defines a moduli space and we need 

information about the good coordinates near that region in order to approach it. As in 

the previous case, in the limit J-l -7 00 the RHS of (6.12) vanishes and we get the correct 

description of the moduli space of vacua of N = 1 SQCD with Nf > Nc + 1, where the 

classical moduli space is not modified quantum mechanically. 

To summarize: We showed in this section how the baryonic degrees of freedom { up to 

the chiral rotation) are realized in M theory fivebrane. In particular we found a complet~ 

agreement for both finite and infinite values of the adjoint mass between the field theory 

results of section 2 and the fivebrane description of the moduli space of vacua. 

7 Beyond Holomorphy - Kahler Potential 

We have shown that the configuration of the fivebrane encodes strong coupling physics 

of the N = 1 theory, in particular the Affieck-Dine-Seiberg superpotential for Nc > N f 

and the holomorphic structure of the moduli space for Nc ::; Nf . In the field theory 

approach, these non-perturbative results were obtained using the holomorphy argument . 

. In order to fully understand the low energy dynamics, however, we also need to determine 

the Kahler potential. In the N = 1 theory, the Kahler potential is independent of the 

superpotential and the holomorphy argument is not sufficient to specify it. 
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We expect, in this regard, the fivebrane approach to be more powerful than the stan­

dard field theory method. The eleven-dimensional Planck scale 111, the radius R of the 

eleventh dimensional circle, the type IIA string coupling constant 9s and the string scale 

Is are related as 

I 1/31 
11 '" 9s s, (7.1) 

On the other hand, the gauge coupling constant ggauge of N = 1 theory that arises from 

the web of the branes scales [5] as 

2 gsls 
9 gauge '" -L--' 

brane 

where Lbrane is the distance between the NS and NS' 5-branes. Therefore 

( 
R ) 1/2 

ggauge '" -L-­
brane 

(7.2) 

(7.3) 

This means that we can take the limit R/Ill' Lbrane/Ill -+ 00 while keeping ggauge finite, 

and the low energy effective theory of M theory, namely the eleven-dimensional super­

gravity, should give an exact description of N = 1 theory. Low energy degrees of freedom 

of the fivebrane are its deformation in the spacetime and the chiral anti-symmetric temor 

field on the brane. Thus, we can directly read off their kinetic terms from the fivebrane 

action [43] and find the Kahler metric. 

One of the interesting questions on the Kahler potential is its behavior at the origin 

of the moduli space for Nc < Nj . If one can show, for example that the Kahler' metric is 

regular at the origin for Nj -:- Nc + 1, it gives a direct confirmation of the claim (based 

on the t 'Hooft anomaly matching condition) that both the mesons and the baryons are 

massless de~rees of freedom there. Since the superpotential for Nj = Nc + 1 is given by 

W = Al
-

2N
c (13MB - det M), (7.4) 

if the metric gil is regular, the potential for the scalar fields 

(7.5) 

vanishes quartically and is fiat at the origin. We hope to discuss more on this subject in 

our future publication [42]. 

Note added: After completing this work we were informed of [44] where related issues 

are studied. 

Acknowledgements 

49 



We would like to thank D. Kutasov, H. Murayama, R. Plesser, C. Vafa and E. Witten 

for valuable discussions. K.H. would like to thank Institute for Advanced Study and 

Rutgers Physics Department, H.O. would like to thank Harvard and Rutgers Physics 

Departments and Y.O. would like to thank the Weizmann Institute Physics Department, 

for hospitality. 

This research is supported in part by NSF grant PHY-95-14797 and DOE grant DE­

AC03-76SF00098. 

50 



References 

[1] J. Polchinski, "Dirichlet-Branes and Ramond-Ramond Charges,"hep-th/951115. 

[2] S. Kachru and C. Vafa, "Exact Results for N=2 Compactifications of Heterotic Strings," 

hep-th/950510. 

[3] S. Kachru, A. Klemm, W. Lerche, P. Mayr, C. Vafa, "Nonperturbative Results on the Point 

Particle Limit of N=2 Heterotic String Gompactifications," hep-th/9508155. 

[4] A. Klemm, W. Lerche, P. Mayr, C. Vafa and N. Warner, "Self-Dual Strings and N=2 

Supersymmetric Field Theory," hep-th/9604034. 

[5] A. Hanany and E. Witten, "Type liB Superstrings, BPS Monopoles, And Three-

Dimensional Gauge Dynamics", 'hep-th/9611230. 

[6] J. M. Maldacena, "Black Holes in String Theory," hep-th/960723 and references therein. 

[7] J. L. F. Barbon, " Rotated Branes and N=1 Duality," hep-th/970305. 

[8] S. Elizur, A. Giveon, D. Kutasov, "Branes and N=1 Duality in String Theory," hep­

th/9702014. 

[9] S. Elitzur, A. Giveon, E. Rabinovici, A. Schwimmer and D. Kutasov, "Brane Dynamics and 

N=1 Supersymmetric Gauge Theory," hep-th/9704104. 

[10] E. Witten, "Solutions Of Four-Dimensional Field Theories Via M Theory," hep-th/9703166. 

[ll] K. Becker, M. Becker and A. Strominger, "Fivebranes, Membranes and Non-Perturbative 

String Theory," hep-th/9507158. 

[12] E. Verlinde, "Global Aspects of Electric-Magnetic Duality," hep-th/9506011. 

[13] N. Evans, C. V. Johnson, A. D. Shapere, "Orientifolds, Branes, and Duality of 4D Gauge 

Theories," hep-th/9703210. 

[14] N. Seiberg and E. Witten, "Monopole Condensation, And Confinement In N = 2 Supersym­

metric Yang-Mills Theory," hep-th/9407087; " Monopoles, Duality and Chiral Symmetry 

Breaking in N=2 Supersymmetric QCD," hep-th/9408099. 

[15] S. Klemin, W. Lerche, S. Theisen and S. Yankielowicz, " Simple Singularities and N=2 

Supersymmetric Yang-Mills Theory," hep-th/9411048. 

[16] P. Argyres and A. Faraggi, "The Vacuum Structure and Spectrum of N=2 Supersymmetric 

SU(N) Gauge Theory," hep-th/9411057. 

[17] A. Hanany and Y. Oz, "On the Quantum Moduli Space of Vacua of N = 2 Supersymmetric 

SU(Nc) Gauge Theories," hep-th/9505075. 

[18] P. C. Argyres, M. R. Plesser and A. D. Shapere, "The Coulomb Phase of N=2 Supersym­

metric QCD," hep-th/9505100. 

51 



[19] I. Affleck, M. Dine and N. Seiberg, "Dynamical Supersymmetry Breaking in Supersymmet­

ric QCD," Nucl. Phys. B241 (1984) 493. 

[20] N. Seiberg, "Exact Results on the Space of Vacua of Four Dimensional SUSY Gauge The­

ories," hepth/9402044. 

[21] N. Seiberg, "Electric-Magnetic Duality in Supersymmetric Non-Abelian Gauge Theories," 

hepth/9411149. 

[22] J. de Boer, K. Hori, H. Ooguri, Y. Oz and Z. Yin, "Mirror Symmetry in Three-Dimensional 

Gauge Theories, S £(2, Z) and D-brane Moduli Space," hep-th 9612131. 

[23] J. de Boer, K. Hori, Y. Oz and Z. Yin, "Branes and Mirror Symmetry in N = 2 Super­

symmetric Gauge Theories in Three Dimensions," hep-th 9702154. 

[24] H. Ooguri and C. Vafa, " Geometry of N=1 Dualities in Four Dimensions," hep-th/9702180. 

[25] C. Ahn and K. Oh, "Geometry, D-Branes and N=1 Duality in Four Dimensions I," hep­

th/9704061. 

[26] J. H. Brodie, A. Hanany," Type IIA Superstrings, Chiral Symmetry, and N=1 4D Gauge 

Theory Dualities," hep-th/9704043. 

[27] A. Brandhuber, J. Sonnenschein, S. Theisen and S. Yankielowicz, "Brane Configurations 

and 4D Field Theory Dualities," hep-th/9704044. 

[28] O. Aharony and A. Hanany, "Branes, Superpotentials and Superconformal Fixed Points," 

hep-th/9704170. 

[29] C. Ahn, "Geometry, D-Branes and N=1 Duality in Four Dimensions II," hep-th/9705004. 

[30] R. Tatar, "Dualities in 4D Theories with Product Gauge Groups from Brane Configura-

tions," hep-th/9704198. 

[31] I. Brunner and A. Karch, "Branes and Six Dimensional Fixed Points," hep-th/9705022 .. 

[32] B. Kol," 5d Field Theories and M Theory," hep-th/9705031. 

[33] C. Ahn and R. Tatar, "Geometry, D-branes and N=1 Duality in Four Dimensions with 

Product Gauge Group," hep-th/9705106. 

[34] K. Landsteiner, E. Lopez, D. A. Lowe, " N=2 Supersymmetric Gauge Theories, Branes 

and Orientifolds," hep-th/9705199. 

[35] A. Brandhuber, J. Sonnenschein, S. Theisen and S. Yankielowicz, "M Theory And Seiberg-

Witten Curves: Orthogonal and Symplectic Groups,"hep-th/9705232. 

[36] A. Hanany and A. Zaffaroni, "Chiral Symmetry from Type IIA Branes," hep-th/9706047. 

[37] E. Witten, "Constraints On Supersymmetry Breaking", Nucl. Phys. B202 (1982) 253. 

[38] P. C. Argyres, M. R. Plesser and N. Seiberg, "The Moduli Space of Vacua of N=2 Susy 

QCD and Duality in N=1 Susy QCD," hep-th 9603042. 

52 



[39] K. Intriligator and N. Seiberg, "Lectures on Supersymmetric Gauge Theories and Electric­

Magnetic Duality," hep-th/950966. 

[40] P. K. Townsend, "The Eleven-Dimensional Supermembrane Revisited," hep-th/9501068. 

[41] K. Hori, H. Ooguri and C. Vafa, "Non-Abelian Conifold Transitions and N = 4. Dualities 

in Three Dimensions", hep-th/9705220. 

[42] K. Hori, H. Ooguri and Y. Oz, work in progress. 

[43] For the current status of the subject, see for example, J. H. Schwarz, "The M Theory 

Five-Brane and the Heterotic String," hep-th/9705092. 

[44] E. Witten, "Branes And The Dynamics Of QCD," to appear . 

. : 

53 



@m"'b'9U' ~ 1!:/.i.V ..... J!!I'"'!13i.1! @llll.J:iilllIY3\'? ~ ~ 
~ ~ ~ ~ @l3f1alllY3i1o ~.I;J~ @ce~ 




