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Abstract: Native potato starch has a semi-crystalline structure associated with a low glycemic index.
Microwave vacuum drying (MWVD) produces crispy snacks under mild temperatures, reducing
starch structural changes. However, blanching pretreatment gelatinizes starch, reducing crystallinity.
A promising alternative is drying raw or blanched-then-cooled potatoes by MWVD. Cooling the
blanched potato before MWVD aims to promote the partial return of the crystalline structure. Thus,
this study evaluated how different pretreatments affect potato chips’ starch structure and physical
properties. Three samples were dried by MWVD: (i) raw (MWVD-RW), (ii) blanched (MWVD-
BL), and (iii) blanched followed by cooling (4 ◦C for 48 h) (MWVD-BLC) potatoes. MWVD-RW
samples presented a higher starch crystallinity (16.9%), which disappeared in MWVD-BL samples
and partially returned in MWVD-BLC (8.7%). MWVD-BL and MWVD-BLC samples presented lower
bulk (<0.338 g cm−3) density and higher porosity (>74%) and crispness. On the other hand, MWVD-
BLC samples presented intermediate characteristics for color, true density, and porous distribution
compared to others. All samples showed high porosity (>69%) and crispy texture. Therefore, based
on the quality assessment, the MWVD-RW and MWVD-BLC produced healthy and crispy oil-free
chips with a potentially lower glycemic index.

Keywords: snacks; oil-free; healthy food; drying; starch

1. Introduction

Potato chips are a significant part of the snack food market in many countries. They are
traditionally prepared by deep-frying raw or blanched potato slices in vegetable oils. This
process results in physical and chemical alterations to the tissues and internal components
of the cells, promoting a crispy crust formation and developing a delicious product [1,2].
Due to their unique sensory properties, potato chips have become the most popular snack
for ordinary customers [3]. However, the excessive oil content concerns consumers, driving
up searches for alternatives to produce oil-free potato chips or potato chips with reduced
oil concentration [3,4].

Oil-free potato chips can be produced by dehydration. Microwave vacuum drying
(MWVD) is a suitable process that operates at mild temperatures and results in crispy chips
in shorter times than those observed for freeze- and air-drying [5–11].

Potato often undergoes blanching before dehydration (pretreatment). Blanching is a
thermal treatment applied to raw vegetables before canning, freezing, or drying [12,13].
Hot water blanching is the most popular and commercially adopted method, as it is simple
to establish and easy to operate [13]. Besides inactivating enzymes responsible for deteri-
oration reactions of product quality, the blanching aims to modify the flavor and texture
properties of the foods. For potato food, texture improvement is related to the formation
of soluble pectic substances and starch structural changes during the heat treatment that
decreases product firmness [13]. Starch’s changes are major determinants of its functional
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properties for food processing and formulation. In addition, they influence their physical
properties, industrial applications, and digestibility, raising health concerns [14].

Starch is made of semi-crystalline granules composed of crystalline and amorphous
regions arranged in a concentric growth ring [15]. This native structure is poorly digested
in the human small intestine [16]. However, heating in the presence of excess water (as
observed during blanching), causes starch gelatinization. The amorphous region absorbs
water in this process, leading to starch granules swelling. This phenomenon destroys the
starch crystallinity and its molecular organization. As a result, the granules become more
accessible to digestive enzymes, which increases their glycemic index [17]. Consumption
of rapidly digestible starch causes, in the long term, a series of health complications such as
diabetes and cardiovascular diseases [18,19].

As digestibility is associated with starch structure, some techniques that modify
its structure have been used to prepare slowly digestible starch [18]. Physical methods
are widely used due to their safety, cost-effectiveness, and simplicity [18,20]. The most
important process of the physical method is retrogradation following gelatinization. The
gelatinized starch partially returns to its ordered native structure during retrogradation,
which is less digestible [16,18]. Strategies such as cooling boiled potatoes have been applied
to promote retrogradation and decrease the digestibility of potato starch [18,21–23].

Therefore, pretreatments that favor retrogradation can be associated with MWVD
since this drying method promotes minimal starch changes when conducted below the
gelatinization temperature, as reported by Gomide et al. [6], who conducted MWVD of raw
potatoes. However, the pretreatments that favor retrogradation with MWVD have not been
reported in the literature, and are deserving to be studied as an alternative to developing
tasty and healthy food. Furthermore, the application of different pretreatments can modify
the product’s physical properties, which is essential to understand because they can change
the sensory acceptance.

In this context, the objective of this study was to evaluate the influence of different
pretreatments on the starch structure and physical properties of potatoes dehydrated by
microwave vacuum drying. Thus, three conditions were evaluated: (i) drying potatoes
without pretreatment; (ii) drying blanched potatoes; (iii) drying blanched-then-cooled
potatoes.

2. Materials and Methods
2.1. Samples and Pretreatments

Fresh potatoes (Solanum tuberosum L.) were selected by appearance, ensuring no exter-
nal damage and microbial deterioration. First, selected potatoes were washed, manually
peeled, and cut into 3.8 ± 0.5 mm thick slices by a mandolin (Progressive, Model-PL8®,
Kent, WA, USA). Next, a stainless-steel cylindrical mold was used to cut the slices into a
cylindrical shape (41.6 ± 0.1 mm in diameter) for uniformity. Then, three different pro-
cedures were applied before drying: (i) RW samples: raw potato slices were washed to
remove the surface starch adhered after slicing and were placed on a filter paper (1 min) to
remove the excess surface water; (ii) BL samples: the potato slices were blanched (95 ± 2 ◦C
for 7 min) and cooled in an ice bath (6 ± 2 ◦C for 3 min) with a sample/water ratio of 1:20
(g:mL), and placed on a filter paper for 1 min; (iii) BLC samples: the slices were submitted
to the same procedure as BL samples. After that, the samples were stored in a refrigerator
(4 ◦C for 48 h) inside an impermeable package to avoid water loss.

2.2. Microwave Vacuum Drying Experiment

Potato samples were dried in a microwave vacuum dryer that used an inverter system
to control the magnetron power outside and a rotatory vacuum chamber. Gomide et al. [6]
describe this equipment in detail.

The oven (LG, Model-MS4297DIR A, Cajamar, SP, Brazil) has a volume of 42 L. The
magnetron operates at 2.45 GHz with 1200 W as the maximum power. The microwave
works by supplying the output power continuously (inverter), favoring control of the
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product temperature. The microwave was adapted to work uprighted, and the vacuum
chamber (cylindrical polypropylene container) operated as a rotating drum to favor a
uniform absorption of electromagnetic waves and heating. The drum was divided into
four sections for product disposal to favor heating uniformity and prevent the product’s
mechanical damage.

For the drying procedure, the samples (200 g) were uniformly positioned in the
vacuum drum (50 g in each section), and the pressure of the chamber was set up to
4 kPa (measured by a transducer Warme, Model-WTP4010, Itaquecetuba, SP, Brazil) and
maintained at this value during the entire drying process. Before turning on the microwave,
the rotation speed was set to 2 to 3 rpm. Microwave energy input was gradually reduced
during drying (1200-720-240-120 W), keeping the sample’s temperature below 60 ◦C. Power
manipulation was used to obtain a high drying rate while preventing samples from not
achieving the potato starch’s gelatinization range temperature, close to 69–76 ◦C [6], to
avoid significant changes in the starch structure. Furthermore, it was guaranteed that
in each moment of power reduction, the mass of the drying material was approximately
equal in the three processes to ensure the same variation of power densities between them,
enabling comparison.

The experimental data ensemble (samples weight, temperature, water activity) for
each drying time was determined from a new drying experiment to avoid distortion of
the results due to the interruption of the drying process. Immediately after turning off the
oven, the potato temperature was determined by an infrared thermometer (Fluke, Model-
62MAX, Everett, WA, USA). In this procedure, one measurement was taken from each
drum section to calculate the average value. The power density (ratio between power and
sample mass) was determined by weighting the samples (Knwaagen, Model-KNCD60/1,
Cotia – SP, Brazil). Next, moisture content was determined by the gravimetric method
using a vacuum oven at 70 ◦C (AOAC, 2005). Finally, the water activity was determined by
a digital hygrometer (Decagon Devices Inc., Aqualab Model-Series 3, Pullman, WA, USA).
The drying experiments were performed in two repetitions for each experimental point.

The curves of the temporal evolution of moisture content and sample mass were
represented by fitting the Midilli, Kucuk, and Yapar [24] model to the experimental data.
The values of the fitted mass were used to determine the evolution of power density. In
addition, a linear equation was fitted to the first part of the experimental drying curve to
verify the existence of a constant drying rate period.

The drying experiments were conducted using the same parameters and procedures
reported by Gomide et al. [6], who evaluated the impact of power density on the physical
characteristics and acceptability of chips produced from raw potato slices. Thus, their
experimental data were compared with those obtained in the present study for potato chips
produced from pretreated samples.

2.3. Starch Granules Structure

The starch structure was evaluated for samples before (RW, BL, and BLC) and after the
MWVD process (MWVD-RW, MWVD-BL, and MWVD-BLC) by light polarized microscopy,
scanning electron microscopy, and X-ray diffraction. Samples were freeze-dried and ground
to a powder before analysis.

2.3.1. Light Polarized Microscopy (PLM)

Light polarized micrographs were obtained with a confocal microscope (Leica, Model-
DMI6000 B, Wetzlar, Hesse, Germany) equipped with a polarizing filter. The micrographs
show whether starch granules presented birefringence, identified from the Maltase cross,
indicating a semi-crystalline structure and molecular organization.

2.3.2. Scanning Electron Microscopy

A scanning electron microscope (JEOL, Model-JSM 6390LV, Tokyo, Japan) operating
under 10 kV was used to investigate the starch granule shape and changes on the sample
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surfaces. Samples were coated with a fine gold layer in an anion-sputtering apparatus (EM
SCD500, LEICA). Micrographs were captured at 500 and 1500 times magnification.

2.3.3. X-ray Diffraction

The X-ray diffraction patterns and the relative crystallinity of samples were determined
by an X-ray diffractometer (Rigaku, Model-MiniFlex600, Osaka, Japan), working at 40 kV
and 15 mA with Cu-Kα1 and Cu-Kα2 radiation source. The analysis was performed in
the scattering range (2θ) of 4–40◦, with a scanning rate and step size of 2◦min−1 and 0.05,
respectively. The relative crystallinity (RC) was calculated as described by Singh, Dartois,
and Kaur [25] using Equation (1):

RC =
Ac

Ac + Aa
× 100, (1)

in which Ac and Aa are the areas of the crystalline and amorphous phases, respectively.

2.4. Physical Properties of Dried Samples
2.4.1. Optical Micrographs

Optical micrographs were captured from manually fractured samples using an optical
microscope (Meiji, Model RZ, Miyoshi, Japan) coupled to a microscopic câmera (Opticam
OPT 10000, Chácara Santo Antônio, SP, Brazil). The captured images were analyzed using
TSview (Tucsen, V, 7.3.1.7, Fuzhou, China).

2.4.2. Color Measurements

A computer vision system was used to determine the color parameters of samples,
according to that described by Cárdenas-Pérez et al. [26] with minor adaptations. Images
taken from a digital câmera (Nikon Corporation, Model D5500, Tokyo, Japan) were treated
using the ImageJ 1.6.0 software (National Institutes of Health, Bethesda, MD, USA). The
colors were converted from the RGB system to CIELab scale using the color-space converter
plug-in.

2.4.3. Bulk Density, True Density, and Porosity

The bulk density was obtained from the ratio between the mass of sample and bulk
volume, which was determined by measuring the buoyant forces of potatoes immersed
in n-heptane [27,28]. A helium gas pycnometer (Micrometrics, Model-AccupPyc II 1340,
Norcross, GA, USA) was used to determine the true density. Porosity was obtained from
bulk and true density, according to Carciofi, Prat, and Laurindo [29].

2.4.4. Acoustic–Mechanical Properties

Puncture tests were performed in a texture analyzer (Stable Micro System, Model-TA-
HD-Plus, Godalming, Surrey, UK). A cylindrical probe (2 mm diameter) penetrated to 90%
of the original sample thickness at 1 mm s−1. The following mechanical parameters were
determined: (a) the area under the curve (force versus time)—work performed; (b) the
force peaks number (force drops higher than 0.049 N); (c) maximum force; (d) average peak
force.

An acoustic sensor (GRAS Sound & Vibration, Model-GRAS 46AE 1
2 ” CCP Free-field

Microphone, Holte, Denmark) recorded the sound emitted during penetration tests. The
texture analyzer and the microphone (positioned 5 cm apart at a 45◦ angle to the sample)
were placed inside a semi-anechoic chamber to reduce the background noise, as described
by Andreani et al. [30]. The results were treated with a band-pass FIR filter, with a frequency
between 1 kHz and 22 kHz, as Moraes et al. [31] described. The acoustic parameters were:
(a) acoustic peaks number (drops of sound pressure level higher than 10 dB); (b) the sound
pressure level avarege considering the ten higher peaks (SPL10); (c) the maximum sound
pressure level (SPLmax). The data of mechanical (force versus time) and acoustic (sound
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pressure level versus time) analysis were synchronized using Matlab® 7.13 (Math-Works
Inc., Model-R2011b, Natick, MA, USA).

2.5. Statistical Analysis

The results of color, bulk, and true densities, porosity, and acoustic–mechanical prop-
erties were statistically analyzed using Statistica 7.0 (StatSoft, Tulsa, OK, USA), using the
analysis of variance (ANOVA), followed by the Tukey test (0.05 significance level).

3. Results and Discussion
3.1. Drying Kinetics

Raw potato samples (RW) presented a moisture content (Xdb) of 5.746 g g−1 ± 0.310 g g−1

(dry basis-db). After pretreatment, Xdb increased to 6.303 g g−1 ± 0.513 g g−1 (blanched,
BL) and 6.303 g g−1 ± 0.662 g g−1 (blanched-then-cooled, BLC), due to water incorporation
during immersion blanching. Monteiro et al. [9] also reported an increase in the moisture
content of sweet potato slices after blanching. As BLC samples were stored under refrigeration
in an impermeable package, the water loss to the cooling air was avoided, keeping its Xdb
approximately the same reported for BL samples.

The temporal evolution of Xdb, water activity, temperature, and microwave power
during the drying of RW, BL, and BLC samples are presented in Figure 1. The data are in
duplicate for each experimental point and had excellent reproducibility. Over time, the
microwave power was reduced in steps to keep the drying temperature under 60 ◦C. At
each step of reduction, all drying processeses had the same mass (Table 1) and, consequently,
the same pattern of power density variation (Figure 2a).

Figure 1. Variation of moisture content (Xdb), temperature, microwave power (–) and water activity
(aw), during the two drying repetitions of RW, BL, and BLC samples. (�,×) Symbols indicate the
duplicate of the drying process. * Data from Gomide et al. [6].
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Table 1. Mass (g) of samples and power density proportion between the drying process of each
sample (RW, BL, and BLC) during each power reduction step.

Power Reduction Step
Mass (g) Power Density Proportion

RW BL BLC RW:BL RW:BLC

Drying start 200 ± 0 a 200 ± 0 a 200 ± 0 a 1.0 1.0
1200 W—720 W 129 ± 5 a 131 ± 1 a 127 ± 2 a 1.0 1.0
720 W—240 W 97 ± 3 a 98 ± 2 a 97 ± 2 a 1.0 1.0
240 W—120 W 34 ± 1 a 36 ± 4 a 34 ± 2 a 1.1 1.0

a Means with the same letter in the lines indicate no significant differences (p > 0.05) by the Tukey test.

Figure 2. Temporal evolution of power density (a), constant drying rate period, represented by the
straight line fit (b), the temporal evolution of mass (c), and temporal evolution of dimensionless
moisture (d). Midilli model showed the goodness of fit (R2 > 0.9). * Data from Gomide et al. [6].

During the first four minutes of drying (period in which the maximum microwave
power was used, 1200 W), the moisture of all the samples presented linear behavior
(Figure 2b), which was corroborated by the fit of the straight line to experimental data
(R2 > 0.99), as reported by Monteiro et al. [8,32,33] during microwave vacuum drying of
bananas, tomatoes, chickpea, and carrots. The beginning of the drying was marked by
a high water content and constant water activity (≈1). At that moment, constant power
input was constantly applied (1200 W), and parts were dissipated and converted into latent
heat for vaporization of free water, keeping the liquid–vapor transition constant [34–36].
The period of constant drying rate corresponded to only ten percent of the total drying
time and was responsible for removing fifty percent of the samples’ initial moisture. After
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that, the mass transfer resistance increased, the water vapor pressure decreased, and the
microwave power gradually reduced, leading to the slow moisture remotion [5,8,35].

The pretreatments did not affect the drying kinetics, as observed in Figure 2c,d, which
show the time evolution of mass and dimensionless moisture (db) of potato samples.
Additionally, after the same drying length (37 min), the dried samples presented very
similar moisture (~0.045 g g−1) and water activity (~0.33). Furthermore, the drying rate at
the constant period was significantly equal (p > 0.05) for the three different pretreatments
of samples, which were 0.67 g s−1 ± 0.04 g s−1 (RW), 0.60 g s−1 ± 0.09 g s−1 (BL), and
0.74 g s−1 ± 0.08 g s−1 (BLC).

3.2. Starch Granule Structure
3.2.1. X-ray Diffraction

X-ray diffraction patterns of the different samples before (RW, BL, and BLC) and
after (MWVD-RW, MWVD-BL, and MWVD-BLC) drying are shown in Figure 3. This
technique was applied to identify the samples’ crystallinity and determine their relative
crystallinity. Furthermore, it was possible to determine the diffraction pattern to obtain
crystal arrangement.

Figure 3. X-ray diffraction pattern of fresh (RW, BL, BLC) and dried (MWVD-RW, MWVD-BL,
MWVD-BLC) potato samples.

X-ray detects long-range ordered structures involving a regular and repeated arrange-
ment of double helices [14], identified by peaks, as observed in RW samples. The raw
sample presented a relative crystallinity (RC) of 22% and showed a B X-ray diffraction
pattern, typical of regular potato starch [37], with reflection intensities at 2θ values of 15◦,
19◦, 22◦ e 24◦, reflecting a three-dimensional order and crystallinity of native potato starch
granules. Similar results were reported by Colussi et al. [38] and Tian et al. [39] for native
potato starch. The peaks disappeared for blanched samples (BL), suggesting starch gela-
tinization. During heat processing, the water molecule mobility to the amorphous regions is
facilitated. These molecules expand and transmit disruptive forces to the crystalline regions,
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destroying their structure [39,40]. However, some peaks appeared in blanched-then-cooled
samples, which presented reflection intensities at 2θ values of 17◦ and 22◦ and RC of 13.8%.
Tian et al. [39] reported similar values after cooling boiled potatoes at 4 ◦C for 24 h. These
results suggest that retrogradation occurred during cooling storage, promoting a partial
return of crystalline order.

The diffraction pattern of the dried sample presented similar behavior, where peaks
were observed only for MWVD-RW and MWVD-BLC samples. However, the dried samples
showed fewer peaks and lower RC values than the fresh samples (RW and BLC). Despite
the variations reported, the RC values observed for dried samples (16.9% for MWVD-RW
and 8.7% for MWVD-BLC) presented a low decrease compared to the samples before
drying. The result shows the potential of MWVD to preserve starch crystallinity.

3.2.2. Light Polarized Microscopy and MEV

Micrographs obtained by light polarized microscopy and MEV are presented in
Figure 4. RW samples presented birefringence (Figure 4a), marked by various structures
similar to the maltese cross, indicating typical crystallinity of native starch granule [41].
The frequency of these structures was reduced in MWVD-RW samples, attributed to gela-
tinization during drying. However, the birefringence phenomenon was still pronounced,
indicating that the MWVD process did not strongly affect the starch granule structure. The
SEM images of RW and MWVD-RW samples (Figure 4b) corroborate these results, showing
round and elliptical granules with a smooth surface (without fissures), typical of native
potato starch [18].

Figure 4. Micrographs obtained by polarized light microscopy (a) and MEV-500× and 1500× magni-
fication (b) of fresh (RW, BL, and BLC) and dried (MWVD-RW, MWVD-BL, and MWVD-BLC) potato
samples.

Birefringence disappeared in BL, BLC, MWVD-BL, and MWVD-BLC samples (Figure 4a)
due to gelatinization triggered by blanching. Although cooling provided partial crystallinity
to BLC and MWVD-BLC (as seen in DRX analysis results), these samples did not show
birefringence since the loss of this property is an irreversible change. Retrogradation caused
starch molecules to re-associate into an ordered structure, different from native starch [42].
Consequently, starch granules were no longer observed in pretreated samples (BL, BLC,
MWVD-BL, and MWVD-BLC) (Figure 4b). During blanching, gelatinization promotes a
significant change in starch structure. The starch granules swell, melt and fuse to form
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a netlike structure, totally collapsing the cell. During this process, the granules lose their
identity, and the beams of the neighboring deformed granules join together [18,39]. Finally,
a sponge-like structure with cavities was formed in the BL sample. BLC samples showed a
more compact structure with smaller cavities, resulting from an extensive aggregation of the
granule fragments (amylose and amylopectin) promoted by retrogradation. Similar results
were reported by Colussi et al. [38] and Xie et al. [18] after cooling boiled potatoes.

The MWVD resulted in a significant change in sample structure observed by SEM
micrographs. MWVD promotes rapid evaporation resulting in pores surrounded by a
more compact structure. As SEM was conducted in powder samples, most of the portion
captured by micrographs corresponds to a region of a denser solid matrix, hindering the
characteristics resulting from the pretreatment.

3.3. Physical Properties of Dried Samples
3.3.1. Optical Micrographs

The optical micrographs of fractures and the surface of dried samples are shown
in Figure 5. All samples presented an expanded and porous structure due to the puff-
ing effect caused by the vacuum pressure and the volumetric heating generated by mi-
crowaves [8,9,35]. However, a more expanded structure marked pretreated samples
(MWVD-BL and MWVD-BLC). The blanching treatment favors expansion, which reduces
firmness and increases the softness of the cell structures of vegetables due to gelatinization
and the formation of soluble pectic substances [13,43].

Figure 5. Optical micrographs of fractures and surface of dried samples MWVD-RW, MWVD-BL,
and MWVD-BLC.

Pretreatment also affects the porous structure. During gelatinization, hydrogen bonds
between amylose and amylopectin (intrachain and interchain) are broken, and water
molecules bond to the exposed hydroxyl groups [15]. Consequently, a network (starch–
water) was formed where water molecules became evenly distributed and surrounded
by starch molecules. Thus, water evaporation may have taken place at various points in
the structure during drying, resulting in a smaller porous structure uniformly distributed
in the sample MWVD BL. On the other hand, a starch–water network was not formed in
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MWVD RW samples since gelatinization occurred to a lesser extent. Therefore, the water
may have concentrated in certain micro-regions, where evaporation occurred preferentially,
originating in large and dispersed porous samples. MWVD BLC samples presented in-
termediate characteristics: a uniformly distributed porous structure due to gelatinization
and larger and isolated pores due to retrogradation. Retrogradation is marked by starch
molecules’ reassociation and water release [16]. Therefore, the water released may have
concentrated in specific regions, creating larger pores during MWVD.

The surface images show the surface irregularities, which reflect the pore characteris-
tics of samples, marked by larger pores in MWVD-RW, smaller pores in MWVD-BL, and
their combination in MWVD-BLC.

3.3.2. Color Measurements

Color differences between samples can be observed in Figure 6 and confirmed by
the color parameters (Table 2). Pretreatment significantly changed (p < 0,05) a∗ and b∗

parameters, while no differences (p > 0.05) were detected in L∗. The non-pretreated sample
(MWVD-RW) presented non-gelatinized starch on its surface, resulting in a floured aspect
(Figure 6), which could have contributed to some color differences. Furthermore, heat
treatment results in a cellular collapse and degradation of heat-sensitive compounds, such
as anthocyanins, a natural pigment present in potatoes [23,44,45]. This event can explain
the MWVD-BL and MWVD BLC color changes. Some studies also reported changes in
the color parameters of potatoes as the heat treatment became more intense [44,46,47].
Furthermore, anthocyanins may have leached into water during blanching since they are
highly water-soluble pigments [23]. In addition, the gelatinized starch with a disordered
structure could have altered the light reflection on the MWVD BL surface, contributing to
further color differences. Otherwise, MWVD-BLC samples showed color parameters closer
to MWVD-RW, probably due to the partially reordered starch resulting from retrogradation.

Figure 6. Digital image of dried samples MWVD-RW, MWVD-BL, and MWVD-BLC.

Table 2. CIELab color parameters (L∗, a∗, b∗), true density (ρt), bulk density (ρb) and porosity (ε).

Samples

MWVD-RW ** MWVD-BL MWVD-BLC

L∗ 86.37 ± 1.06 a 85.04 ± 1.44 a 84.67 ± 1.91 a

a∗ −2.87 ± 0.15 a −3.41 ± 0.20 b −2.81 ± 0.20 a

b∗ 11.94 ± 0.75 c 27.13 ± 1.41 a 15.66 ± 0.62 b

ρt (g cm−3) 1.499 ± 0.071 a 1.267 ± 0.035 b 1.325 ± 0.004 ab

ρb (g cm−3) 0.466 ± 0.077 a 0.308 ± 0.031 b 0.338 ± 0.013 b

ε (%) 69.0 ± 3.7 b 75.7 ± 1.8 a 74.5 ± 0.9 a

a,b,c Means with different letters in the same line indicate significant differences (p < 0.05) by the Tukey test.
** Adapted from Gomide et al. [6].

3.3.3. Bulk Density, True Density, and Porosity

Table 2 shows data on the bulk density (ρb), true density (ρt), and porosity of dried
potato samples. All samples presented high porosity (close to 70%), similar to the results
reported by Monteiro et al. [9] and Barreto et al. [5] for potato and sweet potato dehydrated
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by MWVD, respectively. During the MWVD, the increase of the capillary pressure, which
causes shrinkage, is compensated by forces related to gas expansion caused by volumetric
heating under vacuum, producing highly porous dehydrated products [9,48]. The MWVD
significantly increased sample porosity (p < 0.05) of pretreated potatoes (MWVD-BL and
MWVD-BLC). The blanching, accompanied by tissue softening, favored the expansion of
pretreated samples during drying (as shown in optical micrographs), favoring the porous
space formation.

The MWVD-BL and MWVD-BLC samples showed significantly (p < 0.05) lower values
of ρb as a consequence of their higher air volume proportion (porosity). The true density ρt
depends only on the water content and solid type, excluding air pores [49]. Thus, the ρt
differences between samples are explained by the solid matrix structure. The destruction of
the crystallinity during gelatinization is accompanied by the formation of the starch–water
network and the loss of the starch’s highly ordered packaged structure. This event led to an
increase in the true volume of MWVD-BL, justifying the significantly (p < 0.05) lower values
of ρt. On the other hand, no significant difference was detected between MWVD-BLC and
the other samples (p > 0.05), probably due to the partial reassociation of starch molecules
during retrogradation, resulting in partial molecular reordering.

3.3.4. Acoustic–Mechanical Properties

Figure 7 shows the mechanical (force versus time) and acoustic (sound pressure
level versus time) curves, and Table 3 presents the determined parameters. All samples
resulted in jagged force-deformation curves (Figure 7) with a high number of acoustic
and force peaks (Table 3), typical behavior of crispy products [1,50,51]. Curve jaggedness
depicts different fracture events and reflects the progressive collapse of the porous and
brittle structure of low deformation during the probe penetration. The sample crackling
is accompanied by sound emission [1,5,9,52,53]. This behavior was observed in crispy
snacks, such as bananas [31], sweet potatoes [11], restructured pineapple [54], and mango
leathers [55].

Table 3. Parameters obtained in the acoustic–mechanical test for dried samples (MWVD-RW, MWVD-
BL, and MWVD-BLC).

Parameters
Samples

MWVD-RW * MWVD-BL MWVD-BLC

Mechanical Area (n.mm) 13.4 ± 12.2 a 17.1 ± 8.6 a 11.9 ± 6.2 a

Number of force peaks 23 ± 8 b 31 ± 8 a 31 ± 11 a

Average Peak force (n) 7.1 ± 5.0 a 6.9 ± 2.1 a 5.2 ± 1.8 a

Maximum force (n) 25.5 ± 22.2 a 21.8 ± 9.3 a 16.8 ± 5.2 a

Acoustic SPL10 (dB) 103 ± 5 a 103 ± 6 a 105 ± 4 a

SPLmax (dB) 108 ± 6 a 108 ± 7 a 111 ± 5 a

Number of acoustic peaks 2374 ± 868 b 5557 ± 1591 a 6091 ± 2155 a

a,b Means with different letters in the same line indicate significant differences (p < 0.05) by Tukey test. *Adapted
from Gomide et al. [6].

The jagged pattern was more pronounced in MWVD-BL and MWVD-BLC curves, as
confirmed by its higher number of acoustic and mechanical peaks, suggesting a crispier
texture when compared to the MWVD-RW sample. This result can be explained by the
higher porosity associated with the presence of smaller pores (observed by optical micro-
graphs). Thus, as the probe penetrates the sample, it goes through more pores in its path,
resulting in more force events with sound emission.
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Figure 7. Representative curves of mechanical (–) and acoustic (sound pressure level-SPL) (–) data of
dried samples (MWVD-RW, MWVD-BL, and MWVD-BLC).

The number of force peaks observed for MWVD-BL and MWVD-BLC samples was
1.34-times greater than that observed for MWVD-RW samples. Concerning the acoustic
peaks, this proportion increased to 2.45. The highest acquisition frequency of acoustic
data and the microphone sensitivity make this methodology very sensitive to detecting
structural differences among the different samples. Figure 7 illustrates the differences
between the mechanical and acoustical signatures of the three samples submitted to the
puncture test. Some force events may have occurred but not been detected, showing
the complementary importance of acoustic tests in describing the instrumental texture.
Andreani et al. [30] also reported this occurrence in penetration tests of cereal bars, and
as a result, sensory properties were more correlated with acoustic rather than mechanical
properties.

Generally, samples showed low mean force, maximum force, area values, and high
SPL10 and SPLmax, typical of brittle structures of crispy texture products [10,54]. The in-
creases in both area and the maximum force are associated with the hardness of the material
felt by panelists [56], which reinforces the formation of porous and fragile sample structures.
A higher number of force peaks was directly related to the higher number of acoustic peaks,
SPL10 and SPLmax [1,10,57,58], corroborating the present findings. Pretreatments did not
affect mean force, maximum force, area, SPL10, and SPLmax parameters (p > 0.05). The
MWVD-RW sample showed high standard deviations, close to the mean value of these
parameters, indicating significant differences in detection. The high values are explained by
the heterogeneity of the samples’ microstructures, which had dispersed large pores (shown
by optical micrographs). Fewer force events are detected when the probe goes through
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a large pore. Otherwise, more force events are detected when perforation goes through
many small pores. Thus, the results are dependent on the perforation path, increasing the
standard deviation.

4. Conclusions

Raw potato has a significant crystallinity related to its native starch granules, which
are completely destroyed by heating and starch gelatinization during blanching. However,
this crystallinity partially returns in blanched-then-cooled samples during refrigerated
storage due to starch retrogradation.

A significant result is that the microwave vacuum drying process, as performed in
this study, caused few changes in the starch crystallinity of the raw and pretreated samples.
Therefore, it is possible to produce potato chips with significant crystallinity from the
microwave vacuum drying of raw and blanched-then-cooled potato slices. This is crucial
to produce potato chips with a reduced glycemic index.

The pretreatments also affected the physical structure of potato chips. Chips produced
from pretreated samples had higher porosity and crispness and lower bulk density than
those produced from raw samples. In addition, the retrogradation provided intermediate
characteristics to the blanched-then-cooled potatoes for color, true density, and porous
distribution. Although there were differences, all the dried samples presented a highly
porous structure with a crispy texture, one of the most appealing quality attributes for
consumers of potato chips.

Thus, microwave vacuum drying of raw or blanched-then-cooled potatoes potentially
addresses sensory and health issues simultaneously, delivering high-quality snacks without
added oil and with higher starch crystallinity, which likely results in a lower glycemic
index.
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