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Vaccine-Induced Linear Epitope-Specific Antibodies to Simian
Immunodeficiency Virus SIVmac239 Envelope Are Distinct from
Those Induced to the Human Immunodeficiency Virus Type 1
Envelope in Nonhuman Primates

Xiaoying Shen,a,b Ryan Duffy,a,b Robert Howington,a,b Alethea Cope,f Shanmugalakshmi Sadagopal,g Haesun Park,h Ranajit Pal,i

Suefen Kwa,g* Song Ding,j Otto O. Yang,k,l,m Genevieve G. Fouda,a Roger Le Grand,n Diane Bolton,o* Mariano Esteban,p

Sanjay Phogat,q Mario Roederer,o Rama R. Amara,g Louis J. Picker,h Robert A. Seder,o M. Juliana McElrath,r Susan Barnett,s

Sallie R. Permar,a,c,d Robin Shattock,f Anthony L. DeVico,t Barbara K. Felber,u George N. Pavlakis,v Giuseppe Pantaleo,j

Bette T. Korber,w David C. Montefiori,b Georgia D. Tomarasa,c,d,e

Duke Human Vaccine Institutea and Departments of Medicine,b Immunology,c Molecular Genetics and Microbiology,d and Surgery,e Duke University Medical Center,
Durham, North Carolina, USA; Mucosal Infection & Immunity Group, Section of Infectious Diseases, Imperial College London, London, United Kingdomf; Department of
Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USAg; Vaccine & Gene Therapy Institute (VGTI), Oregon
Health & Science University, Portland, Oregon, USAh; Advanced Bioscience Laboratories Inc., Rockville, Maryland, USAi; Laboratory of AIDS Immunopathogenesis, Service
of Immunology and Allergy, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerlandj; Department of Medicine, Geffen School of Medicine,k and Department of
Microbiology, Immunology, and Molecular Genetics,l University of California, Los Angeles, Los Angeles, California, USA; AIDS Healthcare Foundation, Los Angeles,
California, USAm; CEA, Division of Immuno-Virology—IMDIT Center, DSV, iMETI, Fontenay-aux-Roses, Inserm-U1184, Université Paris-Sud, Orsay, Francen; Vaccine Research
Center, NIAID, NIH, Bethesda, Maryland, USAo; Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones
Científicas (CSIC), Madrid, Spainp; Sanofi Pasteur, Swiftwater, PA, USAq; Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle,
Washington, USAr; Novartis Vaccines and Diagnostics, Inc., Cambridge, Massachusetts, USAs; Institute for Human Virology, Baltimore, Maryland, USAt; Human Retrovirus
Pathogenesis Sectionu and Human Retrovirus Section,v Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA; Theoretical Biology and
Biophysics, Los Alamos National Laboratory, Los Álamos, New Mexico, USAw

To evaluate antibody specificities induced by simian immunodeficiency virus (SIV) versus human immunodeficiency virus type
1 (HIV-1) envelope antigens in nonhuman primate (NHP), we profiled binding antibody responses to linear epitopes in NHP
studies with HIV-1 or SIV immunogens. We found that, overall, HIV-1 Env IgG responses were dominated by V3, with the nota-
ble exception of the responses to the vaccine strain A244 Env that were dominated by V2, whereas the anti-SIVmac239 Env re-
sponses were dominated by V2 regardless of the vaccine regimen.

Analyses of RV144 immune correlates identified V1-V2 IgG as
positively correlated with a decreased risk of infection (1–3),

and secondary correlate analysis with linear peptide microarrays
demonstrated that binding to linear V2 correlated with a de-
creased risk of infection (4). Follow-up studies (2, 3, 5, 6, 37, 38)
demonstrated that the magnitude, specificity, and subclass of the
antibody responses are all critical measurements for immune cor-
relate analyses.

The nonhuman primate (NHP) is a valuable model for AIDS
vaccine evaluation (7). There are currently two immunization and
challenge systems used in NHP. One is simian immunodeficiency
virus (SIV), and the other is chimeric simian-human immunode-
ficiency virus (SHIV), in which the envelope glycoproteins of SIV
are replaced with those of human immunodeficiency virus type 1
(HIV-1) (8). The SHIV system has the advantage of being capable
of testing immunogens that can be directly related to humans.
However, the SHIV strains that were developed early on were
X4-tropic, were of the tier 1 neutralization phenotype, and were
highly pathogenic compared to HIV-1 strains in human (9). En-
couragingly, new SHIV strains (10–15, 39) have been developed in
recent years that are R5-tropic, that are of the tier 2 neutralization
phenotype that is common for most circulating strains of HIV-1,
and that can exhibit pathogenesis after mucosal exposure. The SIV
system has the advantage of having relatively well characterized,
with consistent challenge models available, and thus has been used
widely in vaccine studies (16–21). However, significant differ-

ences exist between the SIV and HIV-1 genomes and pathogenesis
characteristics (22–24). One key issue for the field is how well
NHP vaccine-induced antibody responses translate to human
vaccine trials: are antibody responses to SIV vaccines indicative of
the responses to HIV-1 vaccines?

To investigate the comparability of antibody responses in the
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FIG 1 (A) List of NHP studies characterized in the study and information on vaccine regimens. IM, intramuscular; IN, intranasal; cynomolgus, cynomolgus
monkey. (B and C) Binding of serially diluted human immunodeficiency virus immune globulin (HIVIG) from a pool of chronically infected subjects to HIV-1
V3 and gp41 immunodominant (ID) epitopes (B) and binding of serially diluted DBM5 IgG (IgG purified from a SIVmac251-infected macaque) to SIV V2 and
gp41 ID epitopes by serially diluted DBM5 IgG (C). Concentrations of the antibodies are indicated on the x axis. (D and E) Representative gp120 binding plots
for serum samples from macaques immunized with either HIV-1 (VAC1003) (D) or SIVmac239 (CAVIMC031) (E) antigens. Numbers on the x axis are peptide
numbers in the array library. Different colors of bars represent different strains/clades as indicated in the keys in the panels (A244, TH023, MN, 1086C, TV-1, and
ZM651 for panel D and SIVsmE660 and SIVmac239 for panel E).
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FIG 2 (A to D) Proportions of linear binding responses to each epitope region in 2 representative HIV-1 Env (VAC1003, 1086C gp140 [A]; P167, ALVAC/MN
and A244 gp120 [B]) and 2 representative SIVmac239 Env (MVA gp145 protein [C] and DNA gp160/MVA gp150 [D]) immunization studies. Each slice
represents the mean percent binding relative to the total gp160 binding to the specific region in one NHP study. (E to G) Proportions of V2 (V2%) (E) and V3
(V3%) (F) in total Env binding and V2/V3 binding ratio (V2:V3) (G) for all studies/animals. Any V2% or V3% value lower than 0.1% was converted to 0.1%.
Animals from individual studies are represented by different symbols as indicated in the key, with data from HIV-1 studies in blue, data from SIVmac239 studies
in red, and data from the SIVmac251 and smE660 study in purple. Horizontal bars represent mean values for each category. Numbers on plots above each group
of symbols are mean values for the group. Statistical test, 2-tailed t test. Statistical analysis was not performed on the data from the mac251 and smE660 study (Pal
4.22) due to the limited number of animals.
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NHP model, we profiled the linear epitope serum IgG responses in
seven NHP studies using HIV-1 immunogens, six studies using
SIVmac239 immunogens, and one study using SIVmac251 and
smE660 immunogens, for a total of 120 macaques that were ana-
lyzed in this study. The regimens of the 14 NHP studies are listed
in Fig. 1A. The seven HIV-1 NHP studies included a DNA and
viral vector (NYVAC/ALVAC/MVA) as a prime or no-prime im-
munogen and Env gp120, gp140, or viral vector (Ad5/NYVAC
[40]) as a boosting immunogen. The seven SIV NHP studies in-
clude either DNA or viral vector (MVA) as a prime immunogen
and either Env protein (monomer or viral particles [25, 26]) or
viral vector (MVA [27] or Ad5 [28]) as a boosting immunogen.

We characterized serum IgG responses to HIV-1 and SIV lin-
ear epitopes using peptide microarray linear epitope mapping.
This technology has been used previously in various studies to
characterize antibody responses following infection and after vac-
cinations in humans and in NHP (29–31, 41). Notably, linear V2
binding data generated by peptide microarray correlated with a
decreased risk of infection in the RV144 efficacy trial (4). The
HIV-1 peptide libraries contain overlapping HIV-1 peptides cov-
ering full-length gp160 of 7 consensus clades/circulating recom-
binant forms (CRFs): clades A, B, C, and D, group M, CRF01 AE,
and CRF02 AG. Samples from four studies (CAVIMC369,
VAC1003, P167, and BM415) were mapped against a library that
also contained peptides for 6 vaccine strains: 3 clade C, 1 clade B,
and 2 CRF01 AE strains. The SIV peptide library contains peptides
covering full-length gp160 of SIVmac239 (GenBank accession no.
AAA47637, with a premature stop codon at amino acid [aa] 762
converted to W) and SIVsmE660 (GenBank accession no.
AFW03363). We were able to detect as little as 0.08 �g/ml HIV-1-
positive IgG (Fig. 1B) or 0.016 �g/ml SIV-positive IgG (Fig. 1C)
using this technology. The total binding intensity to all linear
epitopes identified in the peptide microarray correlates with
gp140 protein binding in the binding antibody multiplex assay

(BAMA [1, 3, 32]), which measures binding to linear as well as
conformational epitopes (data not shown).

We profiled IgG binding responses in these NHP studies and
calculated the proportions of binding to each epitope in the total
gp160 peptide array. Representative binding plots for serum IgG
against HIV-1 sequences (study CAVIMC369) and SIV sequences
(study CAVIMC031) are shown in Fig. 1D and E. The proportion
of binding to each identified epitope in the peptide arrays was
determined as follows: maximum binding intensity to a single
epitope/sum of maximum binding intensities to all epitopes iden-
tified. The proportions of specificities in two representative HIV-1
and two SIVmac239 studies are shown in Fig. 2A to D. Table 1
summarizes the average percentages of V1, V2, V3, C5, and gp41
immunodominant (ID) responses in these HIV-1 and SIV NHP
studies as well as the proportions of animals within each study
with V2, V3, C5, or gp41 ID among the top two specificities. We
also compared the proportions of V2 (V2%) and V3 (V3%) re-
sponses and V2/V3 ratios across all SIV and HIV-1 immunization
studies (Fig. 2E to G).

We found that binding antibodies elicited by HIV-1 immuno-
gens targeted epitopes in the C1, V2, V3, C5, and gp41 ID regions,
with the V3 response representing the dominant response and
demonstrating higher binding intensity than the V2 response in all
6 HIV-1 studies that contained V2 in the immunogens (immuno-
gen in HIVRAD6 is deleted of V2) (Fig. 1D, 2A, B, and E to G, and
Table 1). Binding antibodies elicited by SIVmac239 immunogens
also targeted C1, V2, V3, and C5 in peptide arrays (Fig. 1E and 2C
and D). However, the magnitude of binding to V2 was higher than
that to V3 in all 6 SIVmac239 studies (Fig. 1E, 2C, D, and E to G,
and Table 1). In addition, binding of antibodies against the SIV V1
region was detected in all SIV studies, while no anti-V1 response
was seen in 6 of the 7 HIV-1 vaccine studies (Fig. 2A to D and
Table 1).

Overall, the anti-V3 response was the dominant linear binding

TABLE 1 Proportions of antibody responses targeting common linear epitopesa

Env immunogen Study; no. of animals

% total bindinga Top ranking rate (%)b

V1 V2 V3 C5 gp41 ID V2 V3 C5 gp41 ID

HIV-1 CAVIMC369; n � 5 0 8 57 13 17 20 100 40 40
VAC1003; n � 16 9 5 47 8 11 6 100 13 31
HIVRAD6; n � 10 0 NAc,d 51 10 17 NAd 100 40 40
AUP513; n � 10 0 5 32 14 0 0 90 40 0
P167; n � 7 0 7 51 13 0 14 100 43 0
PAVEG1112; n � 3 0 0 85 0 5 0 100 0 33
BM415; n � 4 0 0 54 6 0 0 100 0 0

SIVmac239 CAVIMC031 (protein-only arm); n � 11 7 32 18 27 0 73 27 73 0
VRC145 (Ad5-only arm); n � 2 3 43 3 6 7 50 0 50 50
CAVIMC031 (MVA/protein); n � 14 11 32 5 19 0 79 0 79 0
M14; n � 20 10 40 2 8 29 75 0 20 80
VRC145 (DNA/Ad5 arm); n � 6 9 46 12 0 11 67 50 0 33
AUP417; n � 8 10 17 10 16 26 50 25 38 50

SIVmac251 � smE660 Pal 4.22; n � 4 15 9 9 1 32 0 0 0 100
a Data represent percentages of total gp160 linear binding against specific epitope regions in each study (mean percentage values for all animals analyzed in each study). Boldface
data represent the highest percentage value(s) for each study.
b Data represent percentages of animals in each study with binding magnitude for the specific epitopes ranked among the top 2 of their epitope specificities. Boldface data represent
the highest percentage value(s) for each study.
c NA, not applicable.
d The V2 loop was not included in the immunogen of HIVRAD6.
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response in the HIV-1 studies and accounted for an average of
48.9% (range, 32% to 85%) of the total linear Env-binding re-
sponse (Fig. 2F and Table 1). The anti-V2 response was lower,
representing an average of 4.6% (range, 0% to 8%) of the total
responses in these HIV-1 studies (Fig. 2E and Table 1). In the
SIVmac239 studies, the anti-V2 responses accounted for an aver-
age of 34.6% (range, 17% to 46%) of the total Env-binding re-
sponses (Fig. 2E and Table 1) and dominated the responses in 5 of
the 6 SIVmac239 studies. The sixth SIVmac239 study (AUP417)
had a dominant response to the gp41 ID region. The anti-V3 re-
sponse, in contrast, was much lower in all SIVmac239 studies and
accounted for only 2% to 18% of the total Env-binding responses
(average, 7.5%) (Fig. 2F and Table 1). The anti-V1 response, albeit
absent in 6 of 7 HIV-1 studies, accounted for 3% to 11% of total
response in the 6 SIVmac239 studies (Table 1).

To address the possibility that the mean proportion values ob-
tained from a study could be biased by nonrepresentative re-
sponses from a small number of animals, we ranked the epitope
specificities for each animal and counted how many animals in
each study ranked each epitope as being among the top two spec-
ificities. As shown in Table 1, the anti-V3 response ranked among
the top 2 specificities for 90% to 100% of the 55 animals in the
HIV-1 immunization studies, compared to 0% to 20% for V2,
whereas the anti-V2 response ranked among the top 2 specifies for
50% to 79% of the 61 animals in the SIVmac239 immunization
studies, compared to 0% to 50% for V3 (Table 1).

Differences in either V2% or V3% between the HIV-1 and
SIVmac239 studies overall were statistically significant, with P �
0.0001 (two-tailed t test; Fig. 2E and F). The difference in the
V2/V3 ratio between HIV-1 and SIVmac239 studies overall was
also statistically significant (P � 0.001) (two-tailed t test; Fig. 2G).

In one available study that utilized non-SIVmac239 immuno-
gens (mac251 plus smE660 DNA/protein), we found that neither
the V2 response nor the V3 response was the dominant response
(Fig. 2E and F and Table 1) (mean V2/V3 ratio � 0.9). Instead, the
anti-Env response was dominated by gp41 ID, another common
dominant/codominant response in both HIV and SIV studies,
when the epitope region was included in the vaccine (Table 1) (the
limited sample size precludes statistical analysis of this study).

We further examined vaccine strain-specific responses in four
HIV-1 studies where sequences from vaccine-matched strains
were included in the peptide library. CAVIMC369, BM415, and
VAC1003 studies elicited a V3-dominant IgG response to strains
1086C and C.TV1 (Fig. 3A). In contrast, P167 elicited a V3-dom-
inant response to vaccine strain MN gp120 but a V2-dominant
response to vaccine strain A244. Binding to 1086C, C.TV1, and
MN V3 in these four studies accounted for 51% to 70% of the total
gp120 binding, whereas for A244 in P167, the anti-V3 response
was minimal, accounting for only 1% of the total gp120 binding
(Table 2). This resulted in a “reversed” V2/V3 ratio for A244 in
P167 (a ratio of 39, compared to 0.006 to 0.2 for other strain-
matched HIV-1 V2/V3 values; Fig. 3C). For comparison, we also

FIG 3 (A) Proportions of vaccine strain-specific V2 and V3 binding in the total gp120 binding in four HIV-1 studies. CAVIMC369, BM415, and VAC1003
utilized 1086C, 1086C, and C.TV1 Env immunogens, respectively, and data were mapped against these strains. The P167 study utilized gp120 from both MN and
A244 strains, and data were mapped against both strains. (B) Proportions of mac239 (vaccine-matched strain)- and smE660 (unmatched with vaccine strain)-
specific V2 and V3 binding in total Env binding in study M14. (C) V2:V3 binding values for the 4 HIV-1 studies and 1 SIVmac239 study against the respective
vaccine-matched strains. Bars represent mean and 95% confidence interval (CI) values. Numbers above each group of symbols are group mean values.
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examined strain-specific binding to vaccine-matched mac239 and
unmatched smE660 for the SIVmac239 study M14 and observed
no difference in V2 versus V3 binding patterns for these two
strains (Fig. 3B).

In summary, our comparison of epitope-specific binding anti-
body responses as measured with overlapping peptide arrays
spanning the entire gp160 of HIV-1 and SIV revealed that the
antibody specificities generated by SIVmac239 Env immuniza-
tions were not representative of those generated from most HIV-1
Env immunizations in NHP. The dominant response to HIV-1
Env in the seven studies (55 animals) was to the V3 loop, with the
exception of A244-specific binding in one study that included
A244 gp120 as an immunogen. In contrast, the dominant re-
sponse to SIVmac239 Env (6 studies, 61 animals) was to the V2
loop of gp120. Whether the V2-specific antibody responses in
these studies were dominated by lambda light chains as has been
recently shown for V2-specific antibodies (33) is unknown and is
worth further study. In addition, the anti-V1 antibody responses
were more frequent in SIV Env immunization studies than in
HIV-1 Env immunization studies. These overall differences in
binding antibody specificities between SIVmac239 and HIV-1 Env
immunogens in NHP are likely due to differences in V2 and V3
loop structures, including differences in number of disulfide
bonds, which can result in differences in epitope exposure. More-
over, differences in Env glycosylation, as well as the capacity of Env
glycoproteins to modulate expression of genes relevant to innate
and adaptive immune responses (34, 35) in the context of differ-
ent vaccine vectors and adjuvants, may have contributed to the
observed differences. One caveat of this study is that the HIV-1
and SIV studies we examined involved different immunogen de-
signs, adjuvants, and immunization schedules. There was no di-
rect comparison between matched SIV and HIV-1 vaccine regi-
mens. Moreover, we focused on linear epitopes using technology
that could profile the entire envelope region to directly compare
HIV-1 and SIV epitopes in this study. The linear epitope mapping
did not include conformational or glycan-dependent epitopes.
However, the differences seen here suggest substantial differences
in epitope focusing of the IgG responses elicited by SIVmac239
and HIV-1 Env immunogens. Notably, NHPs immunized with
A/E A244, the RV144 vaccine strain immunogen, developed a
strong V2-specific response, consistent with the antigenic features
of this immunogen (36), whereas binding to the MN gp120 vac-
cine strain in the same study was strongly dominated by the an-

ti-V3 response. Our study results suggest that understanding how
vaccine inserts and regimens induce differential dominant anti-
body specificities is important for vaccine immunogen design.
Last, further studies are needed to improve the NHP immuniza-
tion model to infer the linear, conformational, and subclass/iso-
type-specific antibody responses that would be generated in hu-
man clinical trials with the same immunogen.
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