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Abstract

Brain iron dyshomeostasis disrupts various critical cellular functions, and age-related

iron accumulation may contribute to deficient neurotransmission and cell death.

While recent studies have linked excessive brain iron to cognitive function in the

context of neurodegenerative disease, little is known regarding the role of brain iron

accumulation in cognitive aging in healthy adults. Further, previous studies have

focused primarily on deep gray matter regions, where the level of iron deposition is

highest. However, recent evidence suggests that cortical iron may also contribute to

cognitive deficit and neurodegenerative disease. Here, we used quantitative suscepti-

bility mapping (QSM) to measure brain iron in 67 healthy participants 18–78 years of

age. Speed-dependent (fluid) cognition was assessed from a battery of 12 psychomet-

ric and computer-based tests. From voxelwise QSM analyses, we found that QSM

susceptibility values were negatively associated with fluid cognition in the right infe-

rior temporal gyrus, bilateral putamen, posterior cingulate gyrus, motor, and premotor

cortices. Mediation analysis indicated that susceptibility in the right inferior temporal

gyrus was a significant mediator of the relation between age and fluid cognition, and

similar effects were evident for the left inferior temporal gyrus at a lower statistical

threshold. Additionally, age and right inferior temporal gyrus susceptibility interacted

to predict fluid cognition, such that brain iron was negatively associated with a cogni-

tive decline for adults over 45 years of age. These findings suggest that iron may

have a mediating role in cognitive decline and may be an early biomarker of neurode-

generative disease.

K E YWORD S

aging, biomarkers, brain iron, cognition, susceptibility

1 | INTRODUCTION

Iron is the most abundant metal in the brain and is critical for several

biological mechanisms that support neuronal functioning, including

oxygen transportation, myelination, neurotransmitter synthesis, and

mitochondrial respiration (Gutteridge, 1992; Koeppen, 1995;

Rouault & Cooperman, 2006; Todorich, Pasquini, Garcia, Paez, &

Connor, 2009). Brain iron concentration is not distributed uniformly,

and deep gray matter regions exhibit the highest iron levels, although

iron is detectable in cortical regions (Haacke et al., 2005; Morris,
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Candy, Oakley, Bloxham, & Edwardson, 1992). The association of

increased deep gray matter iron with the neuropathology of

Parkinson's diseases is well known (Gotz, Double, Gerlach, Youdim, &

Riederer, 2004; He et al., 2015; Sofic, Paulus, Jellinger, Riederer, &

Youdim, 1991). Recent evidence suggests that increased accumulation

of brain iron may have a role in Alzheimer's disease as well, by inter-

acting with amyloid-related neurodegeneration and increasing oxida-

tive stress (Ayton, Lei, & Bush, 2013; Bush, 2013; Cornett,

Markesbery, & Ehmann, 1998; Schubert & Chevion, 1995; Tao, Wang,

Rogers, & Wang, 2014). Additionally, there is evidence that iron chela-

tors reduce amyloid plaques and memory impairment in Alzheimer

mouse models (Cherny et al., 2001; Grossi et al., 2009) and in humans

(Ibach, Haen, Marienhagen, & Hajak, 2005; Ritchie et al., 2003).

Researchers have begun utilizing MRI techniques to measure brain

iron in vivo, including R2* relaxometry and quantitative susceptibility

mapping (QSM). While both techniques are validated measures of

brain iron (Langkammer et al., 2012; Sun et al., 2015; Zheng, Nichol,

Liu, Cheng, & Haacke, 2013), QSM is more iron selective, reproduc-

ible, and less dependent on field strength than relaxometry

(Ghassaban, Liu, Jiang, & Haacke, 2019; Li et al., 2015; Liu, Li, Tong,

Yeom, & Kuzminski, 2015).

In human development, iron accumulates in basal ganglia and

deep gray matter regions through adolescence (Li et al., 2014). Some

regions, such as the putamen, continue to accumulate iron throughout

later adulthood (Bartzokis et al., 1997; Hallgren & Sourander, 1958;

Ramos et al., 2014). While the level of iron is lower in the cortex than

in the deep gray matter, age-related iron accumulation is detectable

throughout the cerebral cortex (Khattar et al., 2021). The significance

of age-related increases in brain iron is not yet entirely understood.

However, neurobiological evidence suggests that iron deposition,

beyond some (unknown) threshold, contributes to dysregulation of

neuronal mechanisms that may disrupt neurotransmission and

increase neurotoxicity, even in the absence of frank disease (Becerril-

Ortega, Bordji, Fréret, Rush, & Buisson, 2014; Gutteridge, 1992; Hare,

Ayton, Bush, & Lei, 2013; Li & Reichmann, 2016; Zecca, Youdim,

Riederer, Connor, & Crichton, 2004). However, it is unknown if the

iron-related neuronal disruptions are attributable to failures of the

iron regulatory systems or dysfunctional iron-related proteins

(e.g., ferritin). Beyond the role of iron in neuropathology, evidence

from both QSM and histology suggests that region-specific iron may

be a biomarker for behavioral and cognitive decline in Parkinson's dis-

ease (Uchida et al., 2019) and Alzheimer's disease (Ayton et al., 2017;

Ayton et al., 2019; Sun et al., 2017). The accumulation of brain iron in

healthy aging has been linked to deficits in working memory, episodic

memory, and motor performance (Bartzokis, Tishler, Shin, Lu, &

Cummings, 2004; Daugherty, Haacke, & Raz, 2015; Li et al., 2015;

Penke et al., 2012; Raz & Daugherty, 2018; Sullivan, Adalsteinsson,

Rohlfing, & Pfefferbaum, 2009; Van Bergen et al., 2018; Zachariou

et al., 2020).

Most studies investigating brain iron in aging and neurodegenera-

tive diseases have analyzed relations within predefined regions of

interest (ROIs), particularly those in deep gray matter. This approach is

not sensitive to effects beyond these ROIs and involves estimating

iron across large cortical surfaces. Thus, whole-brain investigations

may reveal novel findings. For example, whole-brain QSM analyses of

Alzheimer's disease (Acosta-Cabronero et al., 2013) and Parkinson's

disease (Uchida et al., 2019) suggest that iron deposition in distinct

cortical regions contributes to neuropathology. Additionally, in healthy

aging, Acosta-Cabronero, Betts, Cardenas-Blanco, Yang, and Nes-

tor (2016) reported age-iron relations in basal ganglia and frontal motor

regions by utilizing a whole-brain approach. Investigation of iron in corti-

cal as well as deep gray matter regions may consequently help to clarify

the neural mechanisms of age-related decline in cognition, which is most

pronounced for speed-dependent (fluid) and sensorimotor functioning

(Baltes & Lindenberger, 1997; Craik & Salthouse, 2000; Salthouse, 1992,

1996; Salthouse & Madden, 2007). Zachariou et al. (2020), for example,

found that within a group of older adults, high cortical iron concentration

was associated with disrupted functional connectivity of frontoparietal

networks and reduced working memory performance. To our knowledge,

however, there has been no whole-brain or voxelwise analysis investigat-

ing the relation of brain iron to age-related differences in cognitive

function.

Here, we used a whole-brain, voxelwise QSM analysis to investi-

gate age-related differences in relation between brain iron and fluid

cognition, in healthy adults. We expected to replicate previous studies

demonstrating age-related brain iron accumulation within frontal sen-

sorimotor regions (Acosta-Cabronero et al., 2016; Zachariou

et al., 2020). Additionally, we hypothesized that cortical brain iron,

particularly within visual and sensorimotor regions, mediates age-

related decline in fluid cognition, in view of the strong dependence of

age-related cognitive decline on sensory functioning (Baltes &

Lindenberger, 1997; Monge & Madden, 2016; Schneider & Pichora-

Fuller, 2000). Further, we hypothesized that brain iron is a relatively

early biomarker of age-related declines in fluid cognition, such that

the brain iron-cognition association is stronger in mid to late life. We

first validated our QSM measures with data from histology and then

utilized voxelwise QSM to analyze the relation of iron to both age and

fluid cognition. We then tested whether brain iron within identified

cognition-related clusters has a mediating role in the age-cognition

relation. Finally, we investigated differences in the iron-cognition rela-

tion across age.

2 | METHODS

2.1 | Participants

Ninety-eight community-dwelling individuals between 18 and

78 years of age gave written informed consent and were enrolled in

the study protocol approved by the Duke University Institutional

Review Board. All participants were compensated for their time and

completed an initial screening (Session 1) that included three psycho-

metric tests: the vocabulary and logical memory subtests of the

Wechsler Adult Intelligence Scale-Revised (WAIS-R; Wechsler, 1981),

the Mini-Mental State Exam (MMSE; Folstein, Folstein, &

Mchugh, 1975), and the Beck Depression Inventory (BDI;
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Beck, 1978). Participants were excluded if the scaled score on the

WAIS vocabulary subtest was less than 10 (50th percentile), the

MMSE score was less than 27, or the BDI score was greater than 16.

See Table 1 for participant demographics and inclusion measures.

During Session 1, participants also performed 12 tests of fluid cogni-

tion, detailed below. Imaging was conducted approximately 1 month

later in Session 2. Eleven participants were excluded based on Session

1 screening criteria. Six individuals declined to participate in the sub-

sequent MRI session, and five additional participants failed MRI safety

screening. Finally, nine participants were excluded for poor image

quality (due to either motion or missing slices due to technical errors).

The final sample consisted of 67 participants (35 females), with 26 par-

ticipants between the ages of 18 and 39 years (M = 28 years,

SD = 5.36), 20 participants between the ages of 40 and 59 years

(M = 49 years, SD = 5.74), and 21 participants between the ages of

60 and 78 years (M = 70 years, SD = 4.87).

2.2 | Cognitive assessments

Cognitive testing assessed three domains of fluid cognition:

perceptual-motor speed, executive function, and episodic memory.

Twelve neurocognitive tests were administered, comprising four tests

for each domain. These were a combination of computer-based tests

of reaction time (RT) and standardized psychometric tests. Computer-

administered tests were developed in-house and described in more

detail in Madden et al. (2017a). Each domain included one test from

the cognition section of the NIH Toolbox (Gershon et al., 2013).

Perceptual-motor speed was measured from three computer-

administered RT tests (simple RT and two versions of choice RT) and

number correct in 85 s from the NIH Toolbox Pattern Comparison

Test. Executive function comprised two computer-administered tests

(two-choice digit/symbol comparison RT and flanker task incompati-

ble RT divided by compatible RT), a standardized psychometric test

(Trails B minus Trails A; Reitan, 1986), and the computed score on the

NIH Toolbox Dimensional Change Card Sort Test. We assessed epi-

sodic memory from two computer-administered tests (a 6-item shape

change detection task; Saults & Cowan, 2007; and 20-min delayed

recall of 16 words), one psychometric test (WAIS logical memory

delayed; Wechsler, 1997), and the computed score for the NIH Tool-

box Picture Sequence Memory Test.

We used a factor analytic approach (Dagley et al., 2017; Hedden

et al., 2012, 2014; Madden et al., 2017b; Salthouse et al., 2015) to

define a latent construct for perceptual speed, executive function, and

memory in terms of the first factor for the four tests in each of these

domains. We extracted the first unrotated factor from a factor analy-

sis of the four tests in each domain. We conducted a principal axis

factor analysis on the relevant indicator variables (for all participants)

and used the factor score (for each participant) from the first

unrotated factor as the summary measure. We used a principal factor

analysis rather than a principal components analysis because our

interest was in the shared variance among the indicator variables

rather than the mathematically independent components (Salthouse

et al., 2015). The factor scores served as summary measures for data

reduction. An overall measure of fluid cognition was derived from the

first factor derived from all 12 tests and the factor scores were covar-

ied for sex and WAIS vocabulary.

2.3 | Image acquisition

Anatomical imaging data were collected on a 3T GE Signa Ultra High

Performance (UHP) Signa MR360 whole-body 60 cm bore MRI scan-

ner (GE Healthcare, Waukesha, WI) equipped with a peak strength of

113 mT/m gradients and a 260 T/m/s slew rate. The scanner pos-

sessed a 48-channel head coil that was used for radiofrequency

reception. Participants wore earplugs to reduce scanner noise, and

foam pads were used to minimize head motion. Three-plane (straight

axial/coronal/sagittal) localizer fast spin-echo images were acquired at

the start of the scan to define the data collection volume. Global field

homogeneity was ensured by the use of a semi-automated high-order

shimming program. One run of T1-weighted anatomical images, one

resting-state run of T2*-weighted (functional) BOLD (blood-oxygen-

level-dependent) contrast imaging, one run of Susceptibility Weighted

Angiography (SWAN) sequence, four runs of event-related T2*-

weighted imaging, one run of DWI, and one run of T2-weighted FLAIR

imaging were recorded. The DWI, task, and resting-state imaging data

are not reported here.

TABLE 1 Participant characteristics

Range Mean Standard deviation r with age

Age 18–78 46.22 17.99 —

Education 12–20 17.41 2.29 .006

WAIS vocabulary 11–19 15.04 2.03 �.197

MMSE 28–30 29.59 0.60 .004

BDI 0–15 2.65 3.20 .077

Note: N = 67 (35 female).

Abbreviations: BDI, Beck Depression Inventory; MMSE, Mini-Mental State Exam; WAIS Vocabulary, Wechsler Adult Intelligence Scale-Revised Vocabulary

scaled score.
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Anatomical T1-weighted images included 292 straight axial slices

that were attained using a 3D fast inverse-recovery-prepared spoiled

gradient recalled (SPGR) sequence with repetition time

(TR) = 2,203.5 ms, echo time (TE) = 3.076 ms, inversion recovery

time (TI) = 900 ms, field of view (FOV) = 240 mm � 240 mm, flip

angle = 8�, voxel size = 1 � 1 � 1 mm, acquisition matrix

size = 240 � 240 mm, and a sensitivity encoding (SENSE) factor of

2, using the array spatial sensitivity encoding technique and extended

dynamic range.

SWAN images were obtained while participants practiced an

fMRI task with 8 echoes to obtain magnitude and phase imaging

under the following parameters: mean TE = 24.844 ms,

TR = 40.5 ms, flip angle = 15�, FOV = 256 mm � 256 mm, acquisi-

tion matrix size = 256 � 256 mm, voxel size = 1 � 1 � 1 mm, num-

ber of slices = 148 and a SENSE factor of 2.

2.4 | Susceptibility estimation

Susceptibility map reconstruction was performed with STI Suite v 3.0

(https://people.eecs.berkeley.edu/�chunlei.liu/software.html) in

MATLAB (version 2017a) and included phase unwrapping, back-

ground field removal (necessary because of the air-tissue interface),

and susceptibility reconstruction. The STI Suite utilized the 3D Axial

SWAN scans, and a binary brain mask was extracted from the average

magnitude image using functional magnetic resonance imaging of the

brain (FMRIB) software brain extraction tool (Jenkinson, Beckmann,

Behrens, Woolrich, & Smith, 2012). Using the unwrapped phase image

and the binary brain mask, the improved sparse linear equation and

least-squares (iLSQR) (Li, Wu, & Liu, 2011) algorithm was used to

reconstruct the susceptibility map.

2.5 | Validation of susceptibility data

To validate the voxelwise susceptibility analyses, we compared the

susceptibility data to iron concentrations, in deep gray matter ROIs,

derived from postmortem histology (Hallgren & Sourander, 1958). To

obtain these ROI data, individual T1 images for each participant were

registered to the 3D Axial SWAN images using FLIRT (FMRIB's Linear

Image Registration Tool) set to 6� of freedom. The T1 image was then

linearly registered to Montreal Neurological Institute (MNI) space

using FLIRT to create an affine matrix and nonlinearly registered to

MNI space using FNIRT (FMRIB's Nonlinear Image Registration Tool).

The nonlinear transformation was then inverse transformed from MNI

to native space. Atlas regions for nine subcortical ROIs, including the

substantia nigra, red nucleus, putamen, thalamus, globus pallidus, cau-

date nucleus, amygdala, hippocampus, and dentate nucleus, were

obtained from a developmental atlas devised for QSM data (Zhang

et al., 2018). The Fslstats tool was then used to calculate the mean

susceptibility of each ROI. The ROIs were averaged across the left

and right hemispheres. The substantia nigra subdivisions and the thal-

amus subdivisions were combined, and left/right averaged to obtain a

single value for the substantia nigra and a single value for the

thalamus.

The comparison data were iron concentrations derived from post-

mortem histology (Hallgren & Sourander, 1958). Using histological analy-

sis of 81 patient brains (ages 30–100 years) and 17 brains of young

people (ages 0–29 years), Hallgren and Sourander documented higher

iron deposition in subcortical regions relative to cortical regions and

graphed the average iron levels in several regions. During adulthood,

pronounced increases in iron content with increasing age were evident

in the putamen and caudate nucleus. We extracted comparison data

from the Hallgren and Sourander tables and used the DataThief program

(https://datathief.org/) to estimate the raw data presented only in fig-

ures. We selected comparison data from the Hallgren and Sourander

data set for individuals 18–79 years of age. The resulting sample size

was 55 participants for globus pallidus (M age = 47.41 years,

SD = 17.62), 54 participants for putamen (M age = 46.14 years,

SD = 17.26) and 52 participants for thalamus (M age = 47.42 years,

SD = 18.44). We averaged the iron concentrations across patients in

these regions. In addition, Hallgren and Sourander also reported average

iron concentrations for patients between 30 and 100 years of age for

the red nucleus (N = 44), substantia nigra (N = 52), dentate nucleus

(N = 45), and caudate nucleus (N = 58). These average concentrations

were also included in our analysis.

Next, we examined the degree to which the age trend in our data

set corresponded to that reported by Hallgren and Sourander (1958).

These authors observed that the adult age-related increase in deep

gray matter iron was pronounced for the putamen. We derived an

estimated iron value in the putamen for each participant, based on

their age and the Hallgren and Sourander regression equation, which

related adult age to putamen iron.

y¼14:62 1– exp –0:04xð Þf gþ0:46 ð1Þ

In Equation (1), y is the nonhaemin iron in the putamen (mg/100 g

fresh weight), and x is the individual age in years. We then correlated

the predicted values for our sample, based on the Hallgren and

Sourander regression equation for the histologically obtained values,

with our susceptibility values derived from QSM. As described in more

detail in the Results (Section 3.1 [or 3.2]), the comparison of our sus-

ceptibility data to the Hallgren and Sourander histology data demon-

strate good validity.

2.6 | Voxelwise QSM

We used FAST (FMRIB's Automated Segmentation Tool) to segment

the 3D T1-weighted structural images into gray matter, white matter,

and cerebrospinal fluid. Each participant's T1 and reconstructed sus-

ceptibility image were coregistered to their average magnitude image.

The resulting coregistration file was used to warp the magnitude

image to the 3D T1-weighted structural image using FLIRT in FSL.

The 3D T1-weighted structural image was then registered to the MNI

template using FSL FLIRT and warped using FNIRT. The resulting
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warp transformation parameters were then used to normalize the seg-

mented gray matter images, magnitude images, and reconstructed

susceptibility maps for each into MNI space. Visual inspection of the

reconstructed susceptibility map revealed oscillatory susceptibility

estimation around the edges of the brain. Because this would cause

unreliable whole-brain voxel-wise analysis, we eroded the binary brain

masks (previously generated by the average magnitude images) by

3 mm. We then masked the reconstructed susceptibility images by

the binary, eroded brain masks of each participant to ensure reliable

analyses. Susceptibility map and gray matter images were smoothed

with an 8-mm full width at half maximum Gaussian kernel. These pre-

viously validated parameters were validated in voxelwise structural

analyses, including voxelwise QSM (Uchida et al., 2019). The gray

matter images were then thresholded to exclude nongray matter

voxels with an 80% confidence level, binarized, and then used to mask

the susceptibility images. An overlap image was created, representing

the number of participants containing gray matter in each voxel. This

overlap image was thresholded and used to mask the analytical area

such that only voxels that included at least 20% of the participants

(n = 13) were analyzed. To replicate previous findings indicating

increased brain-iron accumulation in sensory-motor regions (Acosta-

Cabronero et al., 2016), a multiple regression was performed to iden-

tify voxels associated with age. Next, a multiple regression was per-

formed to identify voxels associated with general fluid cognition. The

resulting beta images were analyzed using the SPM toolbox. Voxels

significant at the uncorrected threshold of p <.0001 were cluster

corrected at 500 cubic voxels. Voxels that survived family-wises error

rate (FWER) correction at p <.05 were also reported (Figure 1).

2.7 | Mediation and moderation analyses

To determine whether susceptibility mediates the relation between

age and general fluid cognition, we performed a mediation analysis

with the PROCESS macro (Hayes 2013), implemented in SAS 9.4 (SAS

Institute, Inc., Cary, NC). Unlike ROI analyses, voxelwise analyses are

not constrained by our definitions of functional or structural areas. To

target analyses to those clusters related to fluid cognition and limit

the number of multiple comparisons, mediation and moderation ana-

lyses were only performed for voxel clusters in which, for all partici-

pants combined, susceptibility was correlated negatively with

cognition (i.e., higher iron associated with lower cognitive perfor-

mance). We then calculated, for each participant, the average suscep-

tibility in each cluster. To ensure that collinearity would not negatively

impact mediation results, we entered age and susceptibility for the

identified clusters into a regression model and calculated the variance

inflation factors (VIFs). After removing the two smallest clusters,

because they contributed to multicollinearity (VIFs >5), each

remaining cluster exhibited VIF <5, confirming that each remaining

cluster's susceptibility values represented unique variance.

We then entered the cluster susceptibility values into a mediation

model in which age was a predictor (x) of fluid cognition (y), and each

F IGURE 1 Pipeline for
analyses of brain data. (a). Steps
for ROI analysis. Representative
ROI, T1, and susceptibility
images. (b). Steps for voxelwise
QSM analyses. Representative
QSM, T1, and gray matter
segmentation. S1 and S2
represent subjects 1 and 2
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cluster's susceptibility mediated the age and fluid cognition relation.

This mediation is a path model in which the relation of age to each of

the clusters is a separate a path, the relation of each of the clusters to

fluid cognition (controlling for age) is a separate b path, the relation of

age to fluid cognition (the total effect of age) is the c path, and the

direct effect of age (controlling for all of the cluster mediators) is the

c0 path. We modeled the mediators as operating in parallel; thus each

mediator was covaried for the others. A significant a � b path interac-

tion for a mediator variable would imply that the predictor (age) effect

on the outcome variable (fluid cognition) is indirect, operating through

that variable rather than direct. The a � b path interaction effects

were tested with bootstrap confidence intervals. To confirm that

results were reliable and did not vary due to cluster exclusion for

multicollinearity, we also performed separate mediation analyses with

each cluster tested as an independent mediator (see Table 4).

Additionally, the moderation effects of age and susceptibility in each

cluster were calculated using the PROCESS macro. Finally, for clusters

with significant interactions (p <.01), we performed a Johnson–Neyman

test to identify the particular point, on the age continuum, at which sus-

ceptibility predicts fluid cognition (Johnson & Fay, 1950).

3 | RESULTS

3.1 | Cognitive assessments

Pearson correlations revealed that the three cognitive factor scores

were positively correlated with each other (r range = .48 to .84, all

p values <.0001) and negatively correlated with age (r range �.79 to

�.59, all p values <.0001). However, the residual domain scores

(i.e., each domain covaried for all tests outside the domain) were not

correlated with age (r range �.22 to �.03, all p values >.05). Thus, we

focus on overall fluid cognition factor score that showed a strong neg-

ative relation with age, r(65) = �.86, p <.0001 (Figure 2).

3.2 | ROI analysis and validation

Pearson correlations revealed that average susceptibility in the red

nucleus and putamen correlated positively with age after Bonferroni

correction for multiple comparisons (p <.0056). Age correlations for all

other ROIs were not statistically significant (Table 2). For a subset of

these ROIs corresponding to those reported by Hallgren and

Sourander (1958), a correlation indicated a significant relationship

between our susceptibility values and the histologically defined iron

(Figure 3a). Finally, our observed putamen susceptibility aligned very

closely with the estimated values based on the Hallgren and

Sourander age regression equation (Figure 3b).

3.3 | Voxelwise QSM

Voxelwise QSM analyses revealed seven clusters in which susceptibil-

ity values were positively associated with age: left putamen, cluster

size = 2,965, peak t-value = 8.95; right putamen, cluster size =1,342,

peak t-value = 8.03; a cluster spanning the left pre- and postcentral

gyri, cluster size = 2,863, peak t-value = 6.46; a cluster spanning the

right pre- and postcentral gyri, cluster size = 2,788, peak

t-value = 6.87; bilateral posterior cingulate gyrus, cluster

size = 2,863, peak t-value = 8.03; right intra calcarine cortex, cluster

size = 941, peak t-value = 5.29; left middle temporal gyrus, cluster

size = 541, peak t-value = 5.36 (Figure 4a).

Susceptibility in seven clusters was negatively associated with

general fluid cognition: left putamen, cluster size = 1,071, peak

t-value = 6.39; right putamen, cluster size =643, peak t-value = 6.17;

left precentral gyrus, cluster size = 1,087, peak t-value = 5.67; left

postcentral gyrus, cluster size = 587, peak t-value = 4.78; a cluster

spanning the right pre- and postcentral gyri, cluster size =2,718, peak

t-value = 6.19; bilateral posterior cingulate gyrus, cluster size =648,

peak t-value = 5.96; right inferior temporal gyrus, cluster size = 747,

peak t-value = 4.75 36 (Figure 4b).

F IGURE 2 Fluid cognition (y-axis) negatively correlates with age
(x-axis), p <.0001

TABLE 2 Susceptibility and age correlation for each of the
subcortical brain regions

Region r (age) p Significance

Substantia nigra .0437 .7255 ns

Red nucleus .4840 <.0001 **

Putamen .3780 .0010 *

Thalamus .0784 .5283 ns

Globus pallidus �.3186 .0078 ns

Caudate nucleus �.0474 .7057 ns

Amygdala .2538 .0398 ns

Hippocampus .0300 .8102 ns

Dentate nucleus .2170 .0778 ns

Note: Significance denotes p value after Bonferroni correction *p < .05

**p < .01.
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3.4 | Mediation analysis

The mediation analysis revealed that the effects of age on all of the

mediators (a paths) were significant (see scatter plots in Figure 5), as

well as the total effect of age (c path) on overall fluid cognition. Sus-

ceptibility in the right inferior temporal gyrus was significantly related

to fluid cognition controlling for age (b path). Additionally, a significant

a � b interaction indicated that susceptibility in the right inferior tem-

poral gyrus was a significant mediator of the relation between age

and fluid cognition. The mediation effect was significant but partial, in

that the direct effect of age remained significant with the mediators

taken into account (Tables 3 and 4).

Moderation analyses reveal that inferior temporal gyrus susceptibility

interacted with age, F(1, 63) = 7.27, p = .009, R2change = .026. To better

F IGURE 3 Validation of
subcortical susceptibility values with
histologically measured brain iron.
(a) Average ROI susceptibility (y-axis)
significantly correlates with
histologically measured brain iron
from Hallgren and Sourander (H&S,
x-axis). (b) Age-predicted brain iron
(calculated with H&S formula, x-axis)

significantly correlates with observed
putamen susceptibility (y-axis). ppm
indicates parts per million. mg/100 g
indicates milligrams of brain iron per
100 g of fresh weight. Level of
significance indicated by * (* <.05,
** <.01)

F IGURE 4 Voxelwise QSM
results. (a). Voxels correlated
with age. t-values for voxels
showing a positive age and
susceptibility association. (b).
Voxels correlated with fluid
cognition. t-values for voxels
showing a negative fluid
cognition and susceptibility
association. All clusters >500
cubic voxels
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F IGURE 5 Relation of age
(x-axis) to average susceptibility
(y-axis) in each identified cluster
negatively associated with fluid
cognition

TABLE 3 Mediation of age and fluid cognition relation by average cluster susceptibility

Variable 1 Variable 2 Coeff. SE t p Lower CI Upper CI

A path

Age Posterior cingulate 0.0002 <0.0001 6.3771 <.0001 0.0001 0.0002

Age Right inf. temp. 0.0004 0.0001 4.4181 <.0001 0.0002 0.0006

Age Left putamen 0.0004 <0.0001 7.9540 <.0001 0.0003 0.0005

Age Left precentral gyrus 0.0001 <0.0001 7.0122 <.0001 0.0001 0.0002

Age Right pre/postcentral gyri 0.0001 <0.0001 6.4685 <.0001 0.0001 0.0002

B path

Posterior cingulate Fluid cognition 12.5779 16.9666 0.7413 .4614 �21.3605 46.5164

Right inf. temp. Fluid cognition �10.7759 5.2543 �2.0509 .0447 �21.2861 �0.2657

Left putamen Fluid cognition 12.3903 8.7736 1.4122 .1631 �5.1597 29.9402

Left precentral gyrus Fluid cognition �5.2183 23.4318 0.2227 .8245 �41.6525 52.0892

Right pre/postcentral gyri Fluid cognition �32.3488 21.5720 �1.4996 .1390 �75.4995 10.8020

Mediation Effect SE t p Lower CI Upper CI

A � B interaction

Posterior cingulate 0.0021 0.0030 — — �0.0041 0.0078

Right inf. temp. �0.0041 0.0021 — — �0.0082 �0.0001

Left putamen 0.0047 0.0034 — — �0.0028 0.0108

Left precentral gyrus 0.0007 0.0037 — — �0.0071 0.0075

Right pre/postcentral gyri �0.0046 0.0033 — — �0.0111 0.0020

C path Total effect of age �0.0441 0.0033 �13.2899 <.0001 �0.0507 �0.0375

C0 path Direct effect of age �0.0430 0.0054 �7.9136 <.0001 �0.0538 �0.0321

Note: Interaction terms tested using confidence intervals (CIs).
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understand the nature of the interaction, we performed a Johnson–

Neyman test to identify the age at which the inferior temporal gyrus sus-

ceptibility negatively predicted fluid cognition. The results revealed that

inferior temporal gyrus susceptibility negatively predicted fluid cognition at

46 years of age and above (p <.05) (Figure 6). There were no significant

moderation effects for any other cluster (all p-values >.05). Although global

gray matter volumes did not significantly correlate with global QSM values

(r = �.173, p = .162), we performed post hoc analyses to determine if our

effects were attributable to regional gray matter volume. We added gray

matter volumes of the significant right inferior temporal cluster were

added to the mediation and moderation models as covariates. In these

models the effects for both mediation (see Table S1) and moderation, F

(1, 62)= 7.40, p = .009, R2change = .027, remained significant.

4 | DISCUSSION

Utilizing both ROI and voxelwise approaches, this study replicates

previous findings that iron in both deep gray matter and frontal motor

regions accumulates with age (Acosta-Cabronero et al., 2016;

TABLE 4 Mediation of age and fluid cognition relation by average cluster susceptibility in individual models

Variable Coeff. SE t p Lower CI Upper CI

Left postcentral gyrus

A path Age 0.0001 0 4.8386 <.0001 0.0001 0.0002

B path Fluid cognition �23.7464 16.198 �1.466 .1475 �56.1057 8.6129

A � B Interaction �0.0029 0.0023 — — �0.0079 0.0009

C0 path Direct effect of age �0.0412 0.0038 �10.7411 <.0001 �0.0489 �0.0336

Right putamen

A path Age 0.0003 0 6.8074 <.0001 0.0002 0.0004

B path Fluid cognition �2.581 9.1907 �0.2808 .7797 �20.9416 15.7795

A � B Interaction �0.0008 0.0024 — — �0.0057 0.004

C0 path Direct effect of age �0.0433 0.0044 �9.901 <.0001 �0.0521 �0.0346

Posterior cingulate

A path Age 0.0002 0 6.3771 <.0001 0.0001 0.0002

B path Fluid cognition �4.5566 15.722 �0.2898 .7729 �35.965 26.8518

A � B Interaction �0.0008 0.0027 — — �0.0061 0.0047

C0 path Direct effect of age �0.0433 0.0043 �10.1699 <.0001 �0.0519 �0.0348

Right Inf. Temp

A path Age 0.0004 0.0001 4.4181 <.0001 0.0002 0.0006

B path Fluid cognition �9.8474 4.6406 �2.122 .0377 �19.118 �0.5768

A � B Interaction �0.0038 0.0018 — — �0.0075 �0.0005

C0 path Direct effect of age �0.0404 0.0037 �10.9448 <.0001 �0.0477 �0.033

Left putamen

A path Age 0.0004 <0.0001 7.954 <.0001 0.0003 0.0005

B path Fluid cognition 6.3915 8.7166 0.7333 .4661 �11.0221 23.8051

A � B Interaction 0.0024 0.0032 — — �0.0037 0.0089

C0 path Direct effect of age �0.0465 0.0047 �9.942 <.0001 �0.0559 �0.0372

Left precentral gyrus

A path Age 0.0001 <0.0001 7.0122 <.0001 0.0001 0.0002

B path Fluid cognition �18.2651 20.7677 �0.8795 .3824 �59.7535 23.2233

A � B Interaction �0.0025 0.0029 — — �0.0087 0.003

C0 path Direct effect of age �0.0416 0.0044 �9.433 <.0001 �0.0504 �0.0328

Right pre/postcentral gyri

A path Age 0.0001 <0.0001 6.4685 <.0001 0.0001 0.0002

B path Fluid cognition �32.3553 18.6348 �1.7363 .0873 �69.5829 4.8722

A � B Interaction �0.0046 0.0027 — — �0.0100 0.0006

C0 path Direct effect of age �0.0396 0.0042 �9.4388 <.0001 �0.0479 �0.0312

Note: Interaction terms tested using confidence intervals (CIs).
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Zachariou et al., 2020). This study also presents the novel finding that

iron in several other cortical regions, including the postcentral gyri,

posterior cingulate, and middle and inferior temporal gyri, are associ-

ated with age and fluid cognition. In particular, iron within the right

inferior temporal cortex was significant mediator of age-related

decline in fluid cognition, such that increasing iron in this region was

associated with decreasing cognition, particularly for individuals

beyond 45 years of age (Figure 6).

Results from our ROI analysis show that QSM, a relatively recent

MRI technique, is a valid measure for estimating brain iron. We were

able to validate the striatal distribution across regions (Figure 3a) and

the histology-predicted degree of age-related increase of iron in the

putamen (Figure 3b). While in-vivo estimates of brain iron using the

ROI approach have elucidated its relation to cognition (Daugherty

et al., 2015; Penke et al., 2012; Sullivan et al., 2009; Van Bergen

et al., 2018; Zachariou et al., 2020), our results suggest that the

voxelwise approach, which is not constrained to predefined areas or

averaging over large cortical structures, reveals novel relations.

4.1 | Age-related brain iron accumulation

Age-related iron accumulation in the putamen and sensorimotor

regions is well established in previous findings that utilize various

iron-measurement techniques, including histology (Hallgren &

Sourander, 1958; Ramos et al., 2014), in vivo ROI (Daugherty

et al., 2015), and whole-brain analyses (Acosta-Cabronero

et al., 2016). In line with these findings, our age-related, voxelwise

QSM analysis found that iron was positively associated with age in

several sensorimotor regions (putamen, sensorimotor cortices, and

the cingulate gyrus). We also found age-related iron deposition in

nonmotor areas (visual cortex and middle temporal gyrus) (Figure 4a).

The detection of cortical regions outside sensory areas suggests an

advantage of the current whole-brain approach, revealing novel rela-

tions beyond predefined ROIs. However, it should be noted that the

current approach has some limitations. In particular, the variability of

QSM susceptibility in some structures, such as the hippocampus

(Daugherty et al., 2015; Rodrigue, Daugherty, Haacke, & Raz, 2013),

may mask age-related effects, especially for whole-brain, non-ROI

based approaches (Acosta-Cabronero et al., 2016).

4.2 | Brain iron accumulation relates to fluid
cognition

The fluid cognition-related voxelwise QSM analysis found that iron

was negatively associated with fluid cognition in many regions related

to age (putamen, sensorimotor cortices, and cingulate gyrus) and one

cluster that we did not detect in the age-related results (right inferior

temporal gyrus). Since fluid cognition highly negatively correlates with

age (Figure 4b), the overlapping results are not surprising. The media-

tion analysis revealed that brain iron in the right inferior temporal

gyrus cluster was associated positively with age p = .0001 (Table 3).

Therefore, we suspect that we did not find this result in the age-

related voxelwise analysis due to cluster thresholding. Indeed, relaxing

the cluster-size threshold from 500 mm3 to 450 mm3 reveals an age-

related cluster in the right inferior temporal gyrus (cluster size = 476,

peak t = 4.69). Further relaxing cluster thresholds also yielded signifi-

cant clusters in the superior temporal lobe, parahippocampus, cerebel-

lum, and left inferior temporal gyrus. We recognize that voxelwise

approaches to structural data have the risk of false negatives

(Whitwell, 2009), and that cluster thresholding, while necessary to

avoid spurious results, can be arbitrary and mask effects in small

clusters.

4.3 | Significance of the inferior temporal gyri

While we expected a negative relation between fluid cognition and

brain iron, we did not predict that fluid cognition would specifically

relate to brain iron in the inferior temporal gyrus. Previous ROI studies

have indicated iron in striatal regions, including the putamen, is pre-

dictive of dementia ratings (Sullivan et al., 2009), verbal working mem-

ory (Daugherty et al., 2015), and motor function (Daugherty

et al., 2015). Our fluid cognition measure indexes speed-dependent

cognitive functions within three domains: executive function,

processing speed, and memory. Researchers have noted that age-

related changes in sensory degradation and processing speed slowing

explain much of the shared age-related variance between cognitive

domains and may cause age-related cognitive declines (Baltes &

Lindenberger, 1997; Monge & Madden, 2016; Schneider & Pichora-

F IGURE 6 Visualization of age X right inferior temporal
susceptibility (in parts per million). Two age groups plotted as defined
by the Johnson–Neyman test (older adult aged 46 years and greater).
Solid black boxes and trend line indicate older adult right inferior
temporal susceptibility (x-axis) plotted against older adult fluid
cognition (y-axis), transparent circles, and dashed line indicate
younger adult susceptibility and fluid cognition
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Fuller, 2000). Thus, we expected that brain iron in primary visual and

sensorimotor regions would mediate the age-cognition relation. While

we did observe that visual and sensorimotor areas accumulate iron

with age, iron in these regions does not mediate the relationship

between age and fluid cognition. One possibility for this discrepancy

is that brain iron mediation effects in these regions may be more sub-

tle or only present for older adults. Future studies with a larger sample

of the older adult population should attempt to replicate these

findings.

Previous studies have reported increased inferior temporal iron

in patients with Alzheimer's disease (Tao et al., 2014). The increase

of iron in Alzheimer's disease patients has been found to interact

with increased neuropathology (e.g., neurofibrillary tangles) and

predict cognitive decline rate and magnitude (Ayton et al., 2019).

Since the current study did not measure these neuropathologies,

we cannot rule out that they could mediate our findings. However,

all the present participants exhibited MMSE scores of 27 and above

(Table 1), so the presence of undetected Alzheimer's disease is

unlikely.

The mechanism specific to the inferior temporal cortex that cau-

ses brain iron to impact cognition in aging or neuropathology remains

unknown. As discussed previously, iron accumulation may contribute

to cell death (Block, Zecca, & Hong, 2007) or disrupt neurotransmis-

sion (Becerril-Ortega et al., 2014; Zecca et al., 2004). The exact mech-

anism responsible for the decline in fluid cognition may be related to

the specific cognitive domains and functions in this cortical region.

For example, prevalent cell death may lead to degraded object repre-

sentation, and disrupted neurotransmission may have broader implica-

tions for processes involved in memory storage and attentional

control. Iron accumulation has been linked to decreased gray matter

volumes (Penke et al., 2012; Sullivan et al., 2009) and functional con-

nectivity (Salami, Avelar-Pereira, Garz�on, Sitnikov, & Kalpouzos, 2018;

Zachariou et al., 2020).

Importantly, it is unlikely that true effects are lateralized, and

that the right inferior temporal cortex cluster is the only region in

which brain iron acts as a mediator. As previously noted, voxelwise

approaches to structural data risk false negatives, and cluster

thresholding can be arbitrary and mask effects in small clusters. In

fact, a sub-threshold cluster (200 mm3) in the left inferior temporal

cortex also exhibited a negative relation to fluid cognition (see

Figure S1), and with confidence intervals relaxed to 92.5, mediation

of the age-fluid cognition relation was also significant for this left

inferior temporal region (Table 5). Future studies should also probe

how brain iron in the inferior temporal cortex and other regions

interacts with other determinants of age-related declines in fluid

cognition, such as white matter integrity and functional

connectivity.

4.4 | Brain iron as a biomarker

Previous studies have suggested that brain iron accumulation may

be a biomarker of mild cognitive impairment (Sun et al., 2017).

Although previous work targeted brain iron in subcortical regions,

the present findings demonstrated that iron in supratentorial corti-

cal regions, in this case inferior temporal cortex, may have a causal

role in cognitive decline in the context of healthy aging. Addition-

ally, we found that increasing iron in the right inferior temporal cor-

tex predicts decreasing fluid cognition beyond 45 years of age.

Data from fMRI also suggest that middle adulthood is a period dur-

ing which a decline in functional connectivity in visual sensory

regions contributes to age-related differences in task-related brain

activation (Madden et al., 2017b; Monge et al., 2017). Thus, like

declines in functional connectivity, brain iron accumulation is

detectable relatively early in healthy aging and neurodegenerative

disease and has predictive potential. However, the cross-sectional

nature of the current study limits our conclusions regarding age-

specificity. Longitudinal studies tracking brain iron in conjunction

with age-related cognitive decline and MCI onset should lend fur-

ther insights.

5 | CONCLUSIONS

This study demonstrates that QSM is a valid measure of brain iron

that is useful for understanding the interaction of adult age, iron, and

cognition. Here, we found that increasing brain iron in the right infe-

rior temporal cortex contributed to increased decline in fluid cogni-

tion, for individuals beyond 45 years of age. Iron within the left

inferior temporal cortex exhibited a similar pattern, though at a lower

statistical threshold. These novel findings suggest that iron may have

a mediating role in cognitive decline, is a critical source of variance in

cognitive aging studies, and may be a biomarker of neurodegenerative

disease.

TABLE 5 Mediation of age and fluid cognition relation by average susceptibility in the left inferior temporal cluster

Variable Coeff. SE t p Lower CI Upper CI

Left inferior temporal cortex

A path Age 0.0004 0.0001 4.0379 <.0001 0.0002 0.0005

B path Fluid cognition �8.7759 4.5479 �1.9297 .0581 �17.0074 �0.5445

A � B Interaction �0.0031 0.0019 — — �0.0070 �0.0002

C0 path Direct effect of age �0.0410 0.0036 �11.2651 <.0001 �0.0476 �0.0344

Note: Interaction terms tested using confidence intervals (CIs) of 0.925.
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