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ARTICLE OPEN

Cellular and Molecular Biology

Identification of a 5-gene signature panel for the prediction of
prostate cancer progression
Michelle Shen1, Fernando García-Marqués2, Arvind Muruganantham2, Shiqin Liu1, James Robert White3, Abel Bermudez2,
Meghan A. Rice2, Kelsey Thompson2, Chun-Liang Chen4,5, Chia-Nung Hung4, Zhao Zhang4, Tim H. Huang 4, Michael A. Liss6,
Kenneth J. Pienta 7, Sharon J. Pitteri 2 and Tanya Stoyanova 1,8✉

© The Author(s) 2024

BACKGROUND: Despite nearly 100% 5-year survival for localised prostate cancer, the survival rate for metastatic prostate cancer
significantly declines to 32%. Thus, it is crucial to identify molecular indicators that reflect the progression from localised disease to
metastatic prostate cancer.
METHODS: To search for molecular indicators associated with prostate cancer metastasis, we performed proteomic analysis of
rapid autopsy tissue samples from metastatic prostate cancer (N= 8) and localised prostate cancer (N= 2). Then, we utilised
multiple independent, publicly available prostate cancer patient datasets to select candidates that also correlate with worse
prostate cancer clinical prognosis.
RESULTS: We identified 154 proteins with increased expressions in metastases relative to localised prostate cancer through
proteomic analysis. From the subset of these candidates that correlate with prostate cancer recurrence (N= 28) and shorter
disease-free survival (N= 37), we identified a 5-gene signature panel with improved performance in predicting worse clinical
prognosis relative to individual candidates.
CONCLUSIONS: Our study presents a new 5-gene signature panel that is associated with worse clinical prognosis and is elevated in
prostate cancer metastasis on both protein and mRNA levels. Our 5-gene signature panel represents a potential modality for the
prediction of prostate cancer progression towards the onset of metastasis.

British Journal of Cancer (2024) 131:1748–1761; https://doi.org/10.1038/s41416-024-02854-w

INTRODUCTION
In 2024, there will be an estimated 299,010 new prostate cancer
cases in the United States, making it the most common cancer
among men [1]. Prostate cancer alone accounts for 29% of cancer
incident cases in men, and 1 in 8 men are predicted to develop
prostate cancer during their lifetime [1]. While 5-year relative
survival for localised prostate cancer is as high as >99%, the 5-year
relative survival for patients with metastatic prostate cancer is only
32% despite extensive research and new therapies [1, 2]. This
suggests that metastatic prostate cancer accounts for approxi-
mately 35,250 deaths in the United States in 2024 alone, making
prostate cancer one of the three leading causes of cancer-
associated deaths amongst men despite the favourable prognosis
for localised disease [1]. Statistical analysis also demonstrates a
shift towards higher grade, higher stage prostate cancer, and an
increased incidence of metastasis, most likely due to changes in
screening guidelines [1, 3]. This increased prevalence of metastatic
prostate cancer and the worse prognosis of these cases highlights

the significant need to identify new predictors, drivers, and
treatment strategies for these cancers.
Currently, radical prostatectomy, radiation therapy, active

surveillance, and androgen deprivation therapy are the first line
of treatment for localised prostate cancer [4, 5]. However, for
patients with metastatic prostate cancer, the standard of care can
also include second-generation anti-androgens, radiation therapy,
and chemotherapies [4, 5]. The role of genetic alterations during
the onset and progression of prostate cancer has been suggested
in many studies [6–9]. Tests such as PCA3, SelectMDx, Decipher,
and ConfirmMDx can also be used consecutively to assess the risk
of prostate cancer [10–12]. However, with an increased incidence
of prostate cancer metastasis-driven mortality, it is important to
identify new markers that reflect metastasis progression, which
can effectively identify patients who are at risk of faster
progression and worse outcome. Therefore, the goal of this study
is to identify new candidates that are associated with prostate
cancer metastasis and disease outcome on both protein and
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mRNA levels so patients who most need escalated care can be
identified expeditiously.
To identify candidates associated with prostate cancer metas-

tasis, we performed proteomic analysis on rapid autopsy samples
from localised prostate cancer tumours and prostate cancer
metastases. Then, we utilised publicly available patient datasets to
find the subset of these candidates that also correlate with worse
clinical prognosis, including biochemical recurrence, reduced
disease-free survival, and metastasis onset on the mRNA level.
We discovered a new 5-gene signature panel that correlates with
worse clinical prognosis and is elevated in prostate cancer
metastasis. With the discovery of new protein and mRNA
candidates that are associated with worse clinical prognosis and
metastasis in prostate cancer, new therapeutic targets and
prognostic predictors may arise to benefit prostate cancer patients
with an increased risk of metastasis to reach optimal therapy
selection.

METHODS
Rapid autopsy samples
The rapid, “warm,” autopsy samples utilised in this study were collected from
patients who died of androgen-independent, metastatic CRPC at the
University of Michigan. Due to the short intervals between patient death
and sample collection (average interval < 3 h), these tissue samples were
characterised as “warm” or “rapid” autopsies. The sample collection was a
part of the radical prostatectomy series under the Rapid Autopsy Program at
the University of Michigan, which has been described previously [13, 14]. The
protocol for the rapid autopsy programme was conducted with informed
consent from the patient’s family or guardian and approved by the
University of Michigan Institutional Review Board. This study utilised two
samples of localised prostate tumours from patient R40 and eight prostate
cancer metastasis samples from various sites of collection (Fig. 1a). One
sample from the right lung, one sample from the peritoneal lymph node, and
two samples from the mediastinal lymph node were collected from patient
R43. One sample from the liver and one sample from the kidney were
collected from patient R45. One sample from the periaortic lymph node and
one sample from the dura were collected from patient R55 (Fig. 1a). Our
sample size for localised prostate tumours is limited since localised prostate
cancer samples are rare in rapid autopsy patients who died of metastatic
CRPC. Clinical information for the four patients, including age at diagnosis,
Gleason, and treatment exposure, are included in Table 1.

Sample preparation and proteomics
Optimal-Cutting-Temperature-Compound (OCT) was removed from the
tissue samples by scraping, and samples were placed in pre-labelled 5 mL
round bottom falcon tubes. Then, 1.0 mL of lysis buffer consisting of
12.5 mM Tris pH 8.0 (Fisher Scientific), 0.5 mM EDTA (EMD Inc.), 7.5 M urea
(Sigma-Aldrich), and 1X protease inhibitor (Sigma-Aldrich) was added to
the tissue samples and homogenised using a PRO-250 (ProScientific)
Homogeniser probe on ice, followed by sonication using a Branson probe
sonicator (Fisher Scientific). The insoluble fraction was pelleted by
centrifuging tissue lysates at 14,000×g for 10 min at 4 °C. The supernatant
was collected for protein quantification using a BCA protein assay kit
(Thermo Scientific). An aliquot of 50 µg of protein from each tissue sample
was processed for LC-MS-MS analysis. Tissue samples were prepared as
follows: proteins were reduced with 2 µL of 200mM Tris (2carboxyethyl)
phosphine (TCEP) (Sigma-Aldrich) at a final concentration of 10mM TCEP
in solution, incubated at room temperature for 1 h, and vortexed
occasionally. Then, free thiols on Cysteine residues were alkylated with
iodoacetamide (Acros Organics) using a 1.5-fold molar excess of TCEP
followed by incubation for 45min at room temperature in the dark. Urea
concentration was diluted to 300mM using 50mM ammonium bicarbo-
nate (Sigma-Aldrich). Proteins were digested with sequencing-grade
modified trypsin enzyme (Promega) in a 1:30 (enzyme: protein) ratio
followed by incubation at 37 °C overnight. The resulting tryptic peptides
were dried using a speed vacuum (LabConco) and desalted using Millipore
ZipTip pipette tips (Millipore Sigma). Samples were dried and reconstituted
in 50 µL of 0.1% formic acid (Fisher Scientific) in HPLC grade water (Fisher
Scientific) for LC-MS analysis.
Two µg of tryptic peptides were loaded into a 20 µL sample loop and

subsequently loaded onto an Acclaim PepMap C18 trap column (Thermo

Fisher Scientific) in tandem using a Dionex Ultimate Rapid Separation
Liquid Chromatography system (Thermo Fisher Scientific) at a rate of 5 µL/
min for 10min. Tryptic peptides were separated by reversed-phase
chromatography on a 25 cm long C18 analytical column (New Objective)
packed with Magic C18 AQ resin (Michrom Bioresources). Eluted peptides
were ionised using a Nanospray flex ion source (Thermo Fisher Scientific)
with 1.8 kV and introduced to an LTQ-Orbitrap Elite mass spectrometer
(Thermo Fisher Scientific). The flow rate for the chromatography gradient
was set at 0.6 µL/min with mobile phase A (consisting of 0.1% formic acid
in water) set at 98% and mobile phase B (0.1% formic acid in acetonitrile)
at 2% B for the first 10 min, slowly ramped up to 35% B over 100min,
followed by an increase to 85% B over 7min with a 5-min hold. The
analytical column was re-equilibrated before the next sample injection.
Each sample was analysed in triplicate. The top 10 most abundant ions per
MS1 scan were selected for higher energy collision-induced dissociation
(35 eV) in a data-dependent fashion. MS1 resolution was set at 60,000, FT
AGC target was set at 1e6, and the m/z scan range was set from m/
z= 400–1800. MS2 AGC target at 3e4 and dynamic exclusion was enabled
for 30 s.

Proteomic statistical analysis
The resulting raw data files were searched using Byonic 2.11.0 (Protein
Metrics) against the Swiss-prot reference human proteome databases
(2017; 20,484 entries). The search setting included trypsin as the digestive
enzyme, allowing up to two missed cleavages, and a precursor mass
tolerance set at 10 parts per million (ppm). The search parameters also
defined fixed modification of cysteine by carbamidomethylation and
variable modifications for methionine oxidation and asparagine deamina-
tion. Peptide identifications were filtered with a 1% false discovery rate
(FDR). Quantitative analysis was conducted on the MS1 level of all
identified peptides using a custom R script, built upon the MSnbase
package [15]. The relative protein quantities were initially computed
relative to the average of the localised prostates group, followed by
normalisation and standardisation. This process was performed using the
Generic Integration Algorithm at the spectrum level, in line with the WSPP
model [16]. Final statistical analysis was carried out using the Student’s t-
test, and the adjusted P-values were computed using the
Benjamini–Hochberg (BH) procedure. Only proteins with a P-value less
than 0.05 and a fold change (FC) greater than |1.5| were considered for
further analysis.

Prostate cancer patient datasets for candidate screening
For the screening of proteomic-derived signature candidates, three
independent and publicly available datasets were used. The mRNA
expression z-scores of all 154 signature candidates whose proteomic
expressions increased in metastases relative to localised prostate cancer
were downloaded from the BS Taylor, Cancer Cell [17] and the TCGA,
Firehose Legacy [18] datasets through cBioPortal (https://
www.cbioportal.org/). The available sample-matched patient information,
including biochemical recurrence status and patient disease-free survival,
was also downloaded from the same datasets. After assessing the
association with biochemical recurrence and disease-free survival out-
come, 11 candidates were advanced to the next round of selection
(Supplementary Fig. S1A, B). These 11 candidates advanced because they
positively associated with prostate cancer biochemical recurrence and
worse disease-free survival outcomes in at least one dataset with P-values
of <0.01, or because their positive correlations (P < 0.05) with biochemical
recurrence and worse disease-free survival are consistent in both datasets
in either biochemical recurrence or worse disease-free survival (Supple-
mentary Fig. S1B). The expression levels (in counts) of the 11 candidates
were downloaded from the Chandran UR, BMC Cancer, [19] dataset
(GDS2545, GSE6919 on Gene Expression Omnibus). The samples are then
grouped based on the tissue of origin, including normal prostate tissues,
benign prostate tissue that is adjacent to the tumour, localised prostate
cancer tumour, and prostate cancer metastasis. The seven candidates that
were highly expressed in metastasis relative to localised and normal
prostate tissues were selected as the final candidates. Samples with
missing expression data or clinical information were excluded from the
analysis. Python code was utilised to systematically screen the 154
candidates, and selected candidates were inputted into the GraphPad
Prism 10.0 software for plot generation. The Python code can be accessed
via the GitHub repository (https://github.com/shen-michelle/5-gene-
Metastasis.git).
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Fig. 1 Proteomic analysis of rapid autopsy samples reveals candidates associated with prostate cancer metastasis. a Sketch represents
the location from which the rapid autopsy samples were harvested. The patient ID and the corresponding location where the samples were
collected are also labelled on the sketch. More information about the samples and the Rapid Autopsy Program can be found in Rubin et al.,
Mehra et al. and Drake et al. [14, 56, 57]. Created with BioRender.com (https://biorender.com). b The outline of the processing steps the rapid
autopsy samples underwent, from tissue extraction, sample preparation for liquid chromatography–mass spectrometry (LC-MS) to the
downstream bioinformatic analysis. c Volcano plot demonstrates the statistical significance (BH adjusted P-value) and fold change relative to
localised prostate cancer. The FDR < 0.05 and fold change > |1.5| thresholds are plotted accordingly. Red represents proteins whose expression
increased in the metastasis group relative to localised prostate cancer, and blue represents proteins whose expression decreased in the
metastasis group relative to localised prostate cancer. The proteomic analysis revealed 154 candidates with increased expression in metastasis,
and these candidates are analysed in publicly available datasets to characterise their association with worse clinical prognosis, including
biochemical recurrence and disease-free survival. This discovered 12 candidates with positive correlations with the onset biochemical
recurrence and worse patient disease-free survival outcome. Only the 7 proteins that also displayed elevated expression in prostate cancer
metastasis relative to localised and normal prostate tissues were selected as candidates for the prostate cancer metastasis signature panel.
d Heat map that shows the result of the proteomic analysis that compares localised prostate cancer tissues (N= 2) to tissues from prostate
cancer metastasis (N= 8). Three injections are performed for each sample. Threshold of FDR < 0.05 and fold change > |1.5| are applied to
reduce background noise of the analysis. The minimum and maximum levels of normalised expressions are labelled.
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Kaplan–Meier survival curve
The Taylor BS et al., 2010, Cancer Cell [17] and the TCGA, Firehose Legacy
[18] dataset were selected due to their large sample size (>100 samples per
arm) and inclusivity of disease-free survival data. The mRNA z-scores of the
signature candidates and the clinical information of patient disease-free
outcome were obtained from previously published cBioPortal datasets
(https://www.cbioportal.org/). Samples were grouped into high and low-
expression groups using the median mRNA z-score expression as the
cutoff. While screening the 154 proteomic-derived candidates,
Kaplan–Meier curves were generated using the kaplanmeier-0.1.9 Python
package. After screening, the Kaplan–Meier Survival Curves of the selected
candidates were plotted using the GraphPad Prism 10.0 software, and the
Log-rank P-value was computed to compare the disease-free survival
outcome of the high and low-expression groups. To assess the association
between the expression of the pooled signature panel and prostate cancer
patient disease-free survival, a pooled expression value was computed
assuming equal contributions of the normalised z-score expressions of all
genes in the panel. For weighted models, the signature score was
computed using coefficients for each of the 5 genes that are derived from
elastic net model fitting. Then, the samples from the 2 datasets were
separated into high and low-expression groups using the median
cumulative expression score as the cutoff threshold. The Log-rank P-value,
the hazard ratio (HR) with confidence interval, and the χ2 were all
computed via GraphPad Prism 10.0.

Principal component analysis (PCA)
Expression profiles (mRNA z-score) of the 7 candidates were downloaded
from the TCGA Firehose Legacy dataset via cBioPortal (https://
www.cbioportal.org/) [18]. Samples with missing expression information
were excluded. Then, the data were compiled into a .csv file. The
sklearn.preprocessing.StandardScaler Python package was used to stan-
dardise the data and the sklearn.decomposition.PCA Python package was
used to perform the PCA analysis. The code is available in the GitHub
repository (https://github.com/shen-michelle/5-gene-Metatasis-PCA.git).

Assessment of the combined 5-gene signature panel in
prostate cancer patient datasets
After screening, two additional analyses were performed to assess the
expression profile of the 5-gene signature panel across various stages of
prostate cancer. Grasso CS et al., Nature, 2012 (GSE35988) [20] and
Varambally S et al., Cancer Cell, 2005 (GSE3325) [21] were accessed via
Gene Expression Omnibus. The mRNA z-scores of the five genes that
comprise the 5-gene signature panel were obtained from the two datasets,
and the expression of the combined 5-gene panel was calculated
assuming equal contributions from each gene. The relevant patient
information was also downloaded from the datasets, and the samples were
grouped based on the tissue of origin, including benign prostate, localised
prostate cancer, and prostate cancer metastasis. Samples with missing
expression data or clinical information were excluded from the analysis,
and two-tailed Student’s t-tests were performed for the comparison of two
groups, and plots display mean ± SD. In addition, the 5-gene signature
panel was also assessed in the Gerhauser, Cancer Cell, 2018 dataset to test
its association with biochemical recurrence [22]. Clinical information
regarding biochemical recurrence and mRNA profiles were downloaded
from cBioPortal (https://www.cbioportal.org/). This dataset contains 81
non-recurrent and 24 recurrent prostate cancer samples.

Receiver-operating characteristic (ROC) and area under the
curve (AUC)
Using the independent Grasso CS, Nature, 2012 dataset (GSE35988), the
expression profiles (z-score) of the genes in the signature panel were
downloaded via Gene Expression Omnibus. The combined 5-gene
expression is calculated by averaging the expressions of the single
candidates. The expressions of the single candidates and the combined
5-gene panel were used to generate ROC plots using the GraphPad Prism
10.0 software. Prostate cancer patients with metastasis (N= 39) are
compared against prostate cancer patients with localised diseases (N= 59).
Samples with missing expression data (N= 2 for RUVBL1, N= 41 for FABP4,
and N= 4 for POSTN) were treated as zeros in the combined expression
profile. The AUC and P-values for each plot were computed using the
GraphPad Prism 10.0 software.

Expression pattern across various Gleason scores
ThemRNA expression z-scores of the candidates were obtained from the TCGA
Firehose Legacy dataset via cBioPortal (https://www.cbioportal.org/) [18]. The
sample-matched patient Gleason scores at radical prostatectomy were also
obtained from the same dataset. The expression profiles of all candidates were
then plotted across the various Gleason scores, and Gleason scores of 9 and 10
were grouped into Gleason score 9+ due to the limited sample size. Then,
Student’s t-tests were performed to compare the expression of the candidate
genes across each group of Gleason scores. Samples with missing Gleason
score information or gene expression information were excluded from the
analysis. The P-values were computed using GraphPad Prism 10.0.

Elastic net model fitting for weighted signature score
The glmnet package in R was used to perform elastic net model fitting
using the five signature genes (U2AF2, RUVBL1, HDGF, FABP4, and STMN1)
as variables. Three elastic net models were generated. Model 1 was trained
on the TCGA, Firehose Legacy dataset (with 400 non-recurrent and 91
recurrent prostate cancer samples). Model 2 was trained on the BS Taylor,
Cancer Cell, 2010 dataset (with 104 non-recurrent and 36 recurrent prostate
cancer samples). Model 3 was trained on the two datasets combined. The
area under the curve (AUC) was computed, and the coefficients for each of
the five signature genes were obtained from the final models. For Model 1,
AUC= 65.5 and the coefficients are 0.21995 for U2AF2, 0.11618 for
RUVBL1, −0.06077 for HDGF, 0 for FABP4, and 0.31602 for STMN1. For
Model 2, AUC= 79.89 and the coefficients are −0.41372 for U2AF2,
0.15510 for RUVBL1, 0.20957 for HDGF, 0.31032 for FABP4, and 0.45953 for
STMN1. For Model 3, the AUC= 67.64 and the coefficients are 0.04864 for
U2AF2, 0.09297 for RUVBL1, −0.02813 for HDGF, 0.06348 for FABP4, and
0.41772 for STMN1. The code created for this model fitting can be accessed
via the GitHub repository (https://github.com/shen-michelle/5-gene-
Metastasis-Weights).

Statistical analysis
Student’s t-tests were performed using the GraphPad Prism 10.0 software to
compare the means of the two groups. Equal variance was assumed
between comparison groups. The plots display the mean ± SD, and the
corresponding P-values were labelled accordingly. The Log-rank (Mantel-
Cox) test was performed for all Kaplan–Meier analyses using the GraphPad
Prism 10.0 software. The Chi-square (χ2) statistic and the P-value were
calculated from the Log-rank test to assess the statistical significance of the
outcome prediction. The hazard ratios (HR) with 95% confidence intervals
were computed using the Mantel-Haenszel method to compare the risk of
worse disease-free survival outcomes in the high-expression groups relative
to the low-expression groups. For the receiver-operating characteristic (ROC)
analyses, the GraphPad Prism 10.0 software was used to compute the curves
and calculate the area under the curve (AUC). For all plots generated, ns =
non-significant, *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.

RESULTS
Proteomic profiling of rapid autopsy patient samples reveals
candidates associated with prostate cancer metastasis
To identify a signature panel that characterises prostate cancer
metastasis, we performed proteomic analysis on rapid autopsy
samples (two localised prostate cancer and eight prostate cancer
metastasis samples). These samples were obtained from four
patients who were diagnosed with androgen-independent

Table 1. Summary of the patient information.

Case no. Age at
diagnosis

Gleason
score

Number
of
samples

Treatmenta

RA40 72 10 2 H, C

RA43 47 9 4 P, R

RA45 66 N/A 2 N/A

RA55 73 9 2 H, C

Rubin et al. [14]; Mehra et al. [23].
H hormone ablation, C chemotherapy, R radiation, P radical prostatectomy.
aTreatment regimens.
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metastatic castration-resistant prostate cancer (mCRPC) [14, 23]. The
clinical information of these four patients is described in Table 1 and
includes age at diagnosis, Gleason score, and treatment history. The
samples utilised in this study were part of the Rapid Autopsy
Program at the University of Michigan. The eight samples of
prostate cancer metastases were collected from various metastatic
sites, including one sample from the right lung, one sample from
the peritoneal lymph node, two samples from the mediastinal
lymph node, one sample from liver, one sample from kidney, one
sample from the periaortic lymph node, and one sample from the
dura (Fig. 1a). Samples were subjected to flash freezing and
prepared for liquid chromatography–mass spectrometry (LC-MS)
(Fig. 1b). Each of the ten rapid autopsy samples were analysed in
triplicate by LC-MS, and the protein expression profiles of the
metastasis samples were compared to the protein profile of the
localised prostate cancer group. The adjusted P-values were
computed using the Benjamini–Hochberg (BH) procedure.
To reduce the background signal of the proteomic results and

to increase the relevance of the proteomic analysis, a threshold
false discovery rate (FDR) of P < 0.05 and a threshold fold change
(FC) of FC > |1.5| were applied to the proteomic results, revealing
154 protein candidates with increased levels in the metastasis
group relative to the localised prostate group, and 129 candidates
with decreased levels in the metastasis group (Fig. 1c, d). To select
metastasis candidates that capture the worse clinical prognosis of
prostate cancer metastasis, we utilised multiple publicly available
prostate cancer patient datasets to further screen the 154 proteins
with increased expression in the metastasis group (Supplementary
Fig. S1A). We assessed these 154 proteins in the TCGA Firehose
Legacy dataset and the BS Taylor, Cancer Cell, [17, 18] dataset to
search for candidates that correlate with prostate cancer
biochemical recurrence and predict shorter time of disease-free
survival (Supplementary Fig. S1A). Elevated levels of 28 candidates
from the 154 proteins were identified to correlate with prostate
cancer recurrence in at least one of the two datasets, and
increased levels of 37 protein candidates correlate with worse
disease-free survival in at least one of the two datasets (Fig. 1c).
This identified 12 candidates that positively correlated with
biochemical recurrence and shorter disease-free survival in at
least one dataset (Fig. 1c). To reduce dataset-specific candidates, a
selection criterion was set to include candidates that displayed at
least one set of consistent positive correlations (P < 0.05) in both
datasets (RUVBL1, HDGF, POSTN, STMN1, ASPN, CA2, H2AC1)
(Supplementary Fig. S1B). Candidates that were implicated in a
single dataset (U2AF2, FABP4, XPO1, DDX39B) were only included
in further analyses if they satisfied a more stringent FDR of P < 0.01
in their association with biochemical recurrence and worse
disease-free survival (Supplementary Fig. S1B).
Then, these 11 candidates were further analysed in the

Chandran UR, BMC Cancer, [19] dataset to discover candidates
associated with metastasis relative to localised prostate cancer
and normal samples in these datasets [17, 19] (Supplementary
Fig. S1A, B). This led to the identification of 7 genes that fit these
criteria (U2AF2, RUVBL1, HDGF, FABP4, XPO1, POSTN, and STMN1)
(Fig. 1c, d). These 7-gene candidates were chosen due to their
elevated levels in metastatic prostate cancer in both protein and
mRNA levels and their association with worse clinical prognosis in
terms of increased risk of biochemical recurrence and worse
patient disease-free survival outcome (Supplementary Fig. S1A, B).

Elevated levels of the 7-gene candidates, U2AF2, RUVBL1,
HDGF, FABP4, XPO1, POSTN, and STMN1, correlate with
prostate cancer biochemical recurrence and worse patient
disease-free survival
The 7-gene candidates we identified demonstrated a positive
correlation with recurrent prostate cancer in at least one of the two
datasets with clinical information of biochemical recurrence (Fig. 2).
In the TCGA Firehose Legacy dataset, U2AF2 (P= 0.0045), RUVBL1

(P= 0.0038), HDGF (P= 0.042), XPO1 (P= 0.0021), POSTN
(P= 0.044), and STMN1 (P= 0.0008) were elevated in the recurrent
group (N= 58) relative to the non-recurrent group (N= 371) (Fig. 2a,
b-left, c, e, f-left, g-left). In the BS Taylor, Cancer Cell, 2010 dataset,
RUVBL1 (P= 0.013), FABP4 (P= 0.0005), POSTN (P= 0.0073), and
STMN1 (P < 0.0001) were significantly elevated in recurrent prostate
cancer (N= 36) relative to non-recurrent prostate cancer (N= 104)
(Fig. 2b-right, d, f-right, g-right). There was no difference in FABP4
levels between the non-recurrent and recurrent groups in the TCGA
Firehose Legacy dataset (Supplementary Fig. S2A). There was also
no significant difference in U2AF2, HDGF, and XPO1 levels between
the non-recurrent and recurrent groups in the BS Taylor, Cancer Cell,
2010 dataset, potentially due to a smaller sample size (Supplemen-
tary Fig. S2B–D).
In addition, increased expression of these 7-gene candidates

was also associated with worse prostate cancer disease-free
survival in either the TCGA Firehose Legacy dataset and/or the BS
Taylor, Cancer Cell, 2010 dataset (Fig. 3) [17, 18]. Patient disease-
free survival was selected as an inclusion criteria since metastasis
is the major contributor to prostate cancer-driven mortality. Our
results identified that an increased level of U2AF2 was associated
with worse disease-free survival in the TCGA, Firehose Legacy
dataset with P= 0.0015 (Fig. 3a). The median expression of U2AF2
was used as the cutoff threshold to determine the U2AF2 high
(N= 246) and U2AF2 low (N= 245) groups. HDGF, RUVBL1, XPO1,
POSTN, and STMN1 also displayed the same trend with P= 0.0157,
0.0005, 0.0025, 0.0116, and 0.0001 respectively (Fig. 3b-left, c–e,
f-left). In the BS Taylor, Cancer Cell, 2010 dataset, elevated levels of
HDGF, STMN1, and FABP4 correlated with worse disease-free
survival with P= 0.0429, 0.0016, and 0.0079 respectively (Fig. 3b-
right, f-right, g). The median expression levels of each candidate
were also used as the cutoff threshold, and 70 samples were
included in each of the high and low-expression groups. Due to
variations between datasets, FABP4 expression did not predict
patient disease-free survival in the TCGA Firehose Legacy dataset,
while U2AF2, RUVBL1, XPO1, and POSTN did not predict disease-
free survival in the BS Taylor, Cancer Cell, 2010 dataset
(Supplementary Fig. S2E–I). In addition, six of the seven candidates
(all except FABP4) were also associated with higher Gleason scores
when assessed in the TCGA Firehose Legacy dataset (Supplemen-
tary Fig. S3). Notably, U2AF2 and STMN1 could differentiate
between all Gleason scores ranging from 6 to 9+ (Supplementary
Fig. S3A, G). This further suggests an association between
increased expression of the candidates and worse clinical risks
and prognosis. The statistically significant correlation between
these 7-gene candidates and clinical prognostic factors such as
biochemical recurrence and patient disease-free survival suggests
their clinical potential as prognosis indicators for worse outcomes.

The 7-gene candidates are elevated in metastatic
prostate cancer
In addition, the levels of the 7-gene candidates were increased in
metastasis samples relative to localised prostate cancer, benign
prostate tissue adjacent to cancer, and normal prostate tissues
(Fig. 4). The Chandran UR, BMC Cancer, 2007 dataset included 18
normal prostate tissues, 63 benign prostate tissues adjacent to
tumour, 65 localised prostate cancer, and 25 prostate cancer
metastasis [19]. In this dataset, all the 7-gene candidates exhibited
a significant increase of mRNA expression in the metastasis group
relative to localised tumours, with RUVBL1 exhibiting near
statistical significance (U2AF2 P= 0.0106, RUVBL1 P= 0.051, HDGF
P < 0.0001, FABP4 P= 0.0005, and STMN1 P= 0.032) (Fig. 4a–g). In
addition to differentiating between metastasis and localised
groups, the candidates also demonstrated the ability to stratify
between normal and metastatic groups and between begin
adjacent to tumour tissues and metastatic groups. The expressions
of U2AF2 (P= 0.014, P= 0.0001), RUVBL1 (P= 0.005, P < 0.0001),
HDGF (P= 0.0038, P < 0.0001), XPO1 (P < 0.0001, P < 0.0001),
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POSTN (P= 0.0068, P= 0.0002), and STMN1 (P= 0.0058,
P < 0.0001) were all significantly elevated in the metastasis group
relative to both normal prostate and benign adjacent to tumour
groups (Fig. 4a–g). However, while the increased expression of
FABP4 was statistically significant between metastasis and benign
tissues adjacent to the tumour (P= 0.0004), this difference was
not statistically significant between the metastasis and the normal
group (P= 0.088) (Fig. 4d).

To further assess the positive association between the 7-gene
candidates and prostate cancer metastasis, we also compared their
expressions in the BS Taylor, Cancer Cell, 2010 (N= 131 for localised
prostate cancer samples and N= 19 for metastasis samples). In the
analysis of this dataset, five of the seven candidates displayed
increased expression in the metastasis group relative to localised
prostate cancer with U2AF2 P= 0.0007, RUVBL1 P < 0.0001, HDGF
P= 0.0237, FABP4 P < 0.0001, and STMN1 P < 0.0001 (Fig. 4h–l) [17].
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Fig. 2 The 7 candidates, U2AF2, RUVBL1, HDGF, FABP4, XPO1, POSTN, and STMN1, are highly expressed in recurrent prostate cancer
relative to non-recurrent prostate cancer. a Scatter dot plot shows the mRNA expression of U2AF2 in recurrent prostate cancer (N= 58) and
non-recurrent prostate cancer (N= 371) from the TCGA Firehose Legacy dataset. b Scatter dot plots show the mRNA expression of RUVBL1 in
recurrent vs non-recurrent prostate cancer from the TCGA Firehose Legacy dataset (left) and the BS Taylor, Cancer Cell, 2010 dataset (right). In
the BS Taylor, Cancer Cell, 2010 dataset, N= 36 for recurrent prostate cancer and N= 104 for non-recurrent prostate cancer. c Scatter dot plot of
HDGF mRNA expression profile in recurrent vs non-recurrent prostate cancer from the TCGA Firehose Legacy dataset. d Scatter dot plot of
FABP4 mRNA expression profile in recurrent vs non-recurrent prostate cancer from the BS Taylor, Cancer Cell, 2010 dataset. e Scatter dot plot of
XPO1 mRNA expression profile in recurrent vs non-recurrent prostate cancer from the TCGA Firehose Legacy dataset. f Scatter dot plots of
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***P < 0.001, and ****P < 0.0001 for all comparisons between the two groups. The P-values are labelled correspondingly on each of the scatter
dot plots.
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The difference in expression levels of XPO1 and POSTN did not
reach statistical significance, likely due to the relatively small sample
size of the metastasis group (N= 19) (Supplementary Fig. S2J–K).
These results indicate that the 7-gene candidates selected have the
potential to distinguish metastatic prostate cancer from localised
prostate cancer. This, coupled with their association with worse
clinical prognosis, suggests their clinical potential to assist in
prognosis prediction and therapy selection.

Novel 5-gene signature panel predicts worse patient disease-
free survival relative to individual candidates
To develop a metastasis signature panel to best predict patient
outcome, we further assessed whether different combinations of

the seven candidates would achieve improved prediction of worse
outcome relative to individual candidates. To determine the best
combinations, we first performed principal component analysis on
the expression profiles of the seven candidates in the TCGA
Firehose Legacy dataset (Fig. 5a). We illustrated that four of the
seven candidates (U2AF2, RUVBL1, STMN1, HDGF) have expression
profiles in a cluster, suggesting that these candidates exhibit
similar profiles that associate with similar features (Fig. 5a). To
identify metastasis signature panel, we assessed the hazard ratios
and statistical significance captured by a variety of combinations
using Kaplan–Meier plots in the TCGA Firehose Legacy and the BS
Taylor, Cancer Cell, 2010 datasets (Fig. 5b–e, Supplementary
Fig. S4, S5). We identified that the 4-gene panel (U2AF2, RUVBL1,
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STMN1, HDGF) achieved an improved prediction in the TCGA
Firehose Legacy dataset relative to individual candidates (Figs. 3,
5c-left). However, this 4-gene panel did not improve prediction in
the BS Taylor, Cancer Cell, 2010 dataset since both STMN1

(P= 0.0016, HR= 2.879 [1.493–5.552]) and FABP4 (P= 0.0079,
HR= 2.434 [1.263–4.69]) achieved better statistical significance
and hazard ratios relative to the combined panel (P= 0.01,
HR= 2.374 [1.23–4.584]) (Figs. 3f-right, g-right, 5b, c-right). To
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improve the separation between patient survival outcomes, we
combined all 7 genes to capture more relative risk by including
more features (Fig. 5b, d). However, the 7-gene panel only
improved outcome prediction in the BS Taylor, Cancer Cell, 2010
dataset and is not consistent in the TCGA Firehose Legacy dataset
(Fig. 5b, d). To prevent adding additional features that are
subtractive for the prediction, we added features from the
additional three candidates, FABP4, XPO1, and POSTN, to the
4-gene panel to find the optimal combination that best captures
patient disease-free survival outcomes. After assessing all 5-gene
and 6-gene panels, we discovered a combination that consistently
improved disease-free survival outcome prediction in both TCGA
Firehose Legacy and BS Taylor, Cancer Cell, 2010 (Fig. 5b–e,
Supplementary Fig. S4, S5). The combination that demonstrated
the best disease-free survival prediction was the 5-gene panel
comprised of U2AF2, RUVBL1, STMN1, HDGF, and FABP4 (Fig. 5e).
In both datasets, this combination achieved a separation with
smaller P-values relative to all individual candidates, suggesting its
ability to achieve a lower false positive rate in outcome prediction
(Figs. 3a–c, f, g, 5e). The improvement of the statistical significance
of this 5-gene signature panel relative to all single candidates in
terms of P-values and χ2 statistics was also the most consistent
across the two datasets when compared to all other combinations
(Fig. 5c–e, Supplementary Fig. S4, S5). Additionally, this 5-gene
panel also consistently captured more relative risks in its hazard
ratios relative to all other combinations in both datasets,
suggesting not only more confident, statistically significant
predictions, but also increased risks association with an elevation
in its expression (Fig. 5b–e, Supplementary Fig. S4, S5).
We then attempted to improve this 5-gene signature by using

elastic net model to find weighted coefficients for the signature
genes. We used the glmnet package in R to generate three elastic
net models. Model 1 was trained in the TCGA Firehose Legacy
dataset. Model 2 was trained in the BS Taylor, Cancer Cell, 2010
dataset, and model 3 was trained on the two datasets combined.
However, we did not observe significant improvement in the
weighted models relative to the original equally weighted 5-gene
signature panel (Fig. 5e, Supplementary Fig. S6). Models 1 and 2
only significantly improved prediction in the datasets that they
were trained in, which suggests overfitting to their training datasets
(Supplementary Fig. S6A, B, Fig. 5e). Model 3 generated comparable
results as the original 5-gene signature panel in both TCGA Firehose
Legacy (model 3 HR= 2.52, unweighted HR= 2.37) and BS Taylor,
Cancer Cell, 2010 datasets (model 3 HR= 3.28, unweighted HR=
3.01) (Supplementary Fig. S6C, Fig. 5e). However, the original
unweighted signature demonstrates a better separation between
high and lor groups in the Kaplan–Meier plots. Thus, the
unweighted 5-gene signature panel is selected for further analyses.

The 5-gene signature panel also correlates with metastatic
prostate cancer in additional patient datasets
With the 5-gene prostate cancer metastasis signature panel
comprised of U2AF2, RUVBL1, STMN1, HDGF, and FABP4, we
further assessed the power of prediction of this gene signature
panel in two different, independent public patient datasets
(Grasso CS, Nature, 2012; Varambally S CS, Cancer Cell, 2005)
[20, 21]. The Grasso CS, Nature, 2012 dataset included 28 benign

prostate tissues, 59 localised prostate cancer tissues, and 35
metastatic castration-resistant prostate cancer (mCPRC) tissues
[20]. In this dataset, 4 of the 5 signature genes (except FABP4)
displayed a positive association with the onset of mCRPC relative
to benign prostate and localised prostate cancer groups (U2AF2
P= 1.71 × 10−9, 8.75 × 10−12; RUVBL1 P= 1.13 × 10−12, 4.15 ×
10−9; HDGF P= 2.06 × 10−8, 3.36 × 10−11; STMN1 P= 3.89 × 10−7,
2.49 × 10−11; FABP4 P= 0.0606, 0.1268) (Supplementary Fig. 7A–E).
The Varambally S CS, Cancer Cell, 2005 dataset included six benign
prostate, seven localised prostate cancer, and six metastatic
prostate cancer samples [21]. The increased expression of the
metastasis group relative to localised prostate cancer did not
reach statistical significance in U2AF2 (P= 0.090), STMN1
(P= 0.087), and FABP4 (P= 0.093), potentially due to small sample
sizes (Supplementary Fig. S7F–H). However, we still observed a
statistically significant increase in the expressions of RUVBL1
(P= 0.0073, 0.012) and HDGF (P= 0.025, 0.025) when comparing
the metastasis group to both benign and localised groups
(Supplementary Fig. S7I, J). In addition, while the elevation of
FABP4 in metastasis relative to benign prostate tissues did not
reach statistical significance (P= 0.15), the expression of U2AF2
(P= 0.013) and STMN1 (P= 0.011) was significantly increased in
the metastasis group relative to the benign group (Supplementary
Fig. S7F–H).
After characterising the expression profiles of the individual

signature candidates in different stages of prostate cancer
progression, we also tested the ability of the 5-gene signature
panel to separate the metastatic group from the benign and
localised groups (Fig. 6a, b). In both datasets, the 5-gene signature
panel achieved improved separation between the metastasis and
the localised groups relative to all individual candidates (Fig. 6a, b,
Supplementary Fig. S7A–J). In the Grasso CS, Nature, 2012 dataset,
the 5-gene signature panel displayed improved statistical
significance when comparing the metastasis group to both
benign (5-gene P= 1.88 × 10−17; single gene U2AF2 P= 1.71 ×
10−9, RUVBL1 P= 1.13 × 10−12, HDGF P= 2.06 × 10−8, STMN1
P= 3.89 × 10−7, FABP4 P= 0.061) and localised groups (5-gene
P= 6.17 × 10−22; single gene U2AF2 P= 8.75 × 10−12, RUVBL1
P= 4.15 × 10−9, HDGF P= 3.36 × 10−11, STMN1 P= 2.49 × 10−11,
FABP4 P= 0.1268) (Fig. 6a, Supplementary Fig. S7A–E). Similarly,
analysis in the Varambally S CS, Cancer Cell, 2005 dataset revealed
the same improvement when comparing the mean of the
metastasis group to that of the benign (5-gene P= 0.0035; single
gene U2AF2 P= 0.0132, STMN1 P= 0.0111, FABP4 P= 0.1475,
RUVBL1 P= 0.0073, and HDGF P= 0.0247) and localised groups (5-
gene P= 0.0071; single gene U2AF2 P= 0.0899, STMN1
P= 0.0868, FABP4 P= 0.0932, RUVBL1 P= 0.0124, HDGF
P= 0.0246) (Fig. 6b, Supplementary Fig. S7F–J). These results
suggest that the 5-gene signature panel displays a more reliable
association with prostate cancer metastasis than any single
candidate by outperforming all single candidates across datasets.
In addition, we performed Receiver-Operating Characteristic

(ROC) analysis in the Grasso CS, Nature, 2012 dataset (Fig. 6c–h).
Our results demonstrated that the 5-gene signature panel displays
an area under the curve (AUC) of 97.38% (P < 0.0001) relative to
that of the single candidates (U2AF2 87.17%, P < 0.0001; RUVBL1
81.74%, P < 0.0001; HDGF 83.73%, P < 0.0001; FABP4 59.68%,

Fig. 4 The 7 candidates are highly expressed in prostate cancer metastasis relative to localised prostate cancer and normal prostate
tissues. a Expression profiles of U2AF2 in the Chandran, BMC Cancer, 2007 dataset (N= 18 for normal prostate tissues, N= 63 for normal
prostate tissues adjacent to tumour, N= 65 for localised prostate cancer tumours, and N= 25 for metastatic prostate cancer). b–g Expression
profiles of RUVBL1 (b), HDGF (c), FABP4 (d), XPO1 (e), POSTN (f), and STMN1 g in the Chandran, BMC Cancer, 2007 dataset described in (a).
h Expression levels of U2AF2 in localised prostate cancer tumours vs prostate cancer metastases using the BS Taylor, Cancer Cell, 2010 dataset
(N= 131 for localised prostate cancer samples and N= 19 for prostate cancer metastasis samples). i–l The expression levels of RUVBL1 (i),
HDGF (j), FABP4 (k), and STMN1 (l) in localised prostate tumours vs prostate cancer metastases as described in (h). For all comparisons
between the two groups, Student’s t-test was performed with ns = non-significant, *P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001.
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P= 0.25; and STMN1 86.1%, P < 0.0001) (Fig. 6c–h). The 5-gene
signature panel also associates with biochemical recurrence in the
TCGA Firehose Legacy dataset (P= 0.0002) and an independent
dataset, Gerhauser, Cancer Cell, 2018 (P= 0.019) (Supplementary
Fig. S8A–C) [22]. The 5-gene signature demonstrates improved
statistical significance relative to all single candidates in the TCGA
dataset (Supplementary Fig. S8A, B). While the 5-gene signature
panel is not the most statistically significant in the Gerhhauser,
Cancer Cell, 2018 dataset, it demonstrates the smallest 95%
confidence interval (Supplementary Fig. S8A, 8D–H). With its
consistent association with worse patient outcomes and the
metastatic phenotype across multiple datasets, the 5-gene
signature can assist in making more reliable prognostic

predictions by reducing the variation and enhancing the statistical
significance of the risks associated with its expression.

DISCUSSION
Our proteomic profiling and transcript-level analysis revealed a
5-gene signature panel associated with a worse clinical course and
the onset of metastasis. The components of this 5-gene signature
panel include U2AF2, RUVBL1, HDGF, FABP4, and STMN1. U2 Small
Nuclear RNA Auxiliary Factor 2 (U2AF2) is a heterodimer
comprised of U2AF65 and U2AF35 that serves as an essential
pre-mRNA splicing factor critical for spliceosome assembly to the
pre-mRNA branch site [24, 25]. Previous studies demonstrated the
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role of U2AF2 in alternative splicing, which can foster a variety of
diseases, including cancer [26, 27]. Our study reveals that U2AF2 is
highly expressed in prostate cancer patients with biochemical
recurrence and worse disease-free survival. We also demonstrate
that U2AF2 mRNA and protein are both elevated in prostate cancer
metastasis relative to localised and benign prostate tissues.
However, while U2AF2 has been implicated in some solid tumours,
such as non-small cell lung cancer and glioma, its associations with
prostate cancer and metastasis have yet to be elucidated [28, 29].
Further assessment of the role of U2AF2 in advanced, metastatic
prostate cancers is needed to test its functional role in prostate
cancer metastasis. RuvB like AAA ATPase 1 (RUVBL1) is an ATPase
that can associate with various complexes and participate in various
cellular processes, including chromatin remodelling and transcrip-
tional regulation [30]. RUVBL1 has been reported to promote the
invasion of breast and pancreatic cancers and increased prolifera-
tion and resistance in various solid tumours, including lung cancer
and colorectal cancers [31–36]. In prostate cancer, RUVBL1 has been
associated with Enzalutamide resistance [37]. A genome-wide
association study also suggests that elevated RUVBL1 increases cell
proliferation and tumour growth, further suggesting an association
between RUVBL1 expression and prostate cancer progression [38].
HDGF, also known as hepatoma-derived growth factor, is a growth
factor with both mitogenic and DNA-binding activity. HDGF has
been implicated in angiogenesis, tumorigenesis, and worse disease
prognosis in oral, bladder, and lung cancers [39–43]. While the
prognostic value of HDGF has not yet been evaluated before,
previous studies have shown that downregulation of HDGF
inhibited migration and invasion of prostate cancer cells, and
HDGF activated the MAPK/ERK pathway via KRAS and RhoA
mediation in cell line models of prostate cancer [44–46]. Fatty acid
binding protein 4 (FABP4) is an intracellular lipid-binding protein
that regulates lipid trafficking and metabolism [47]. FABP4 is a
biomarker for metabolic diseases and has been shown to promote
proliferation, resistance, and metastasis in ovarian cancer, breast
cancer, and prostate cancer [47, 48]. FABP4 can exert endocrine and
exocrine effects as it is secreted from adipocytes and macrophages,
and its association with prostate cancer supports further assessment
of the regulatory relationships between these cells and prostate
cancer progression and metastasis [49–51]. Lastly, stathmin
(STMN1) is the best-performing single candidate in our signature
panel with its highly significant association with biochemical
recurrence, patient disease-free survival, and prostate cancer
progression. While the function and targeting of STMN1 have been
characterised in a variety of cancers ranging from lung and breast
cancers to leukaemia, the functional role of STMN1 in prostate
cancer metastasis remains unknown [52–55]. Our results warrant
further assessment of the mechanism of action behind these
candidates. In addition, this study only included candidates that
associate with prostate cancer metastasis on both protein and
mRNA levels to enable a wider application across various clinical
platforms that utilise protein or RNA detection. However, there
could be genes that were not chosen in this study that are only
deregulated at the protein level, not at the RNA level and vice versa.
As a result, further assessment of other candidates from our
proteomic analysis, as well as the other RNA candidates implied in
the transcript-level analyses, is needed for additional biomarker
identification.
Our study reports a new 5-gene metastasis signature panel that

correlates with an increased risk of worse patient disease-free survival.
This suggests that this combined 5-gene signature panel can be used
in prognosis prediction to identify patients who are likely to
experience poor survival outcomes. This 5-gene metastasis signature
panel also correlates with prostate cancer metastasis relative to
localised prostate cancer and benign prostate tissues. Compared to
the expression profiles of individual candidates, the combined 5-gene
panel separates the metastasis prostate cancer group from localised,
primary prostate cancers with improved statistical significance. This

suggests that an increase in the expression of the 5-gene panel
represents a higher risk of metastasis with a reduced probability of
false positives relative to an increase in any single candidate. Further
assessment of this 5-gene panel as predictors and effectors of
prostate cancer metastasis in additional large, independent prostate
cancer patient cohorts is warranted.

DATA AVAILABILITY
All patient datasets used in this study can be accessed via cBioPortal (https://
www.cbioportal.org/) or on Gene Expression Omnibus (GDS2545/ GSE6919,
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publicly available with the identifier PXD056300. Any additional information required
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