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ABSTRACT OF THE DISSERTATION 

Emotional Processing and Pattern Separation in Medial Temporal Lobe 
 

By 
 

Haoxin Zhang 
 

Doctor of Philosophy in Biomedical Engineering 
 

University of California, Irvine, 2022 
 

Professor Jack J. Lin, Chair 
 
 
 

Remembering a salient experience and discriminating between similar events 

are two cognitive abilities that are critical for human adaptation and survival. 

They depend on optimal functioning of neurobiological mechanisms underlying 

episodic memory processing. Enhanced memory for emotional stimuli requires 

more pronounced memory encoding of emotional, relative to neutral stimuli. 

Discrimination between two different events depends on a neural computation 

of pattern separation. However, the exact neural mechanisms underlying 

memory encoding and pattern separation are still unclear.   

 

In the present thesis, I applied an emotional memory encoding and 

discrimination task in human participants and examined the neural dynamics in 

the medial temporal lobe, known as a critical brain structure for memory 

processing. Local field potentials were recorded in the amygdala, hippocampus 

and peri-hippocampal regions, including entorhinal, parahippocampal and 

perirhinal cortex, from drug-resistant epilepsy patients undergoing pre-surgical 
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monitoring. First, I examined the role of hippocampal awake sharp-wave ripples 

(aSWRs) on emotional memory encoding, finding increased aSWRs after 

encoding of emotional, compared to neutral stimuli. The aSWRs were 

accompanied by memory reinstatement in the amygdala-hippocampal network. 

Additionally, the cross-structure joint-reinstatement during aSWR events was 

predictive of latter memory performance. Next, I investigated the neural 

mechanisms of pattern separation during memory discrimination. Stimulus-

specific neural representation in the hippocampus predicted memory 

discrimination. Moreover, I designed a machine learning algorithm to decode the 

neural state, and found that the neural trajectory of dentate gyrus/Cornu 

Ammonis3 (DG/CA3) visited more unexplored state and predicted successful 

pattern separation. Finally, continuously increasing dimensionality predicts 

correct discrimination, suggesting code expansion as a mechanism implementing 

the pattern separation in the DG/CA3 region. Overall, these results suggest a 

putative mechanism for encoding and discriminating for emotional experience.  
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CHAPTER 1  

Background and Significance 

 

1.1 Different Memory System 

 “Memory is the scribe of the soul.”  

 As quoted by Aristotle, memory is essential to the human expereience. 

Considerable research suggests the existence of partially distinct memory 

systems in the brain, including working, declarative and procedural memory 

(Squire, 1992; Lum et al., 2012). Working memory supports the maintenance and 

manipulation of ongoing information over a short time period, in the order of 

seconds, whereas declarative and procedural memory supports the long-term 

instantiation of knowledge for years (Lum et al., 2012). Declarative memory 

supports the encoding, storage, and retrieval of personal experience (episodic 

memory) and general knowledge about the world (semantic memory). 

Procedural memory, or non-declarative memory, encompasses a collection of 

nonconscious learning capacities which are expressed through performance but 

cannot be expressed verbally (Squire & Zola, 1996). The procedural system 

underlies a variety of perceptual, motor, and cognitive skills such as walking or 

riding a bicycle (Lum et al., 2012). The classification of declarative and non-

declarative memory was historically introduced based on the converging 
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evidence from animal and human studies that the hippocampus and the medial 

temporal lobe (MTL) are essential for episodic memory formation. MTL lesions 

impair the ability to acquire new material (anterograde amnesia) and recall 

previously acquired information (retrograde amnesia) but preserve normal 

intellectual function (Squire 1992). While that the hippocampus and adjacent 

MTL structures are essential to memory processing, the exact mechanism is still 

unclear. The present thesis aims to investigate the neural dynamics underlying 

episodic memory formation and retrieval in the human medial temporal lobe.  

1.2 Anatomical Overview of Medial Temporal Lobe 

 The medial temporal lobe consists of the hippocampus, amygdala, and their 

surrounding cortices, including the perirhinal cortex (PRC), parahippocampal 

cortex (PHC), and entorhinal cortex (EC). Information enters the MTL 

throughout different pathways from the neocortex. The perirhinal cortex receives 

inputs from the ventral visual stream area and has been shown to encode non-

physical features of the object, such as the face (Miyashita, 2019). Animal and 

human neuroimaging studies show visual memory is more dependent on 

perirhinal  cortex (Squire et al., 2004). The parahippocampal region is 

interconnected with multiple unimodal and multimodal cortical areas such as the 

temporal, parietal, and prefrontal cortex. It encodes a variety of aspects of the 

environment, such as spatial information (Aminoff et al., 2013). The entorhinal 

cortex receives input from both PRC and PHC, and projects to the hippocampus 

(Fig 1.1). The EC can be thought of as a gateway to the hippocampus for episodic 

memory formation, and its role on spatial and cognitive map is well established 
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(Fyhn et al., 2004; Tolman 1948; Epstein et al., 2017). The hippocampus is the 

ultimate recipient of convergent projections from the PRC, PHC and EC (Fig 1.1).   

 

 

Fig 1.1 Schematic view of the anatomical circuits of the medial temporal lobe and its 
surrounding areas. Solid lines indicate forward connection from the associative cortex to the 
hippocampus, while dash lines indicate backward projection in the other direction. 
Abbreviations: DG: dentate granule cells, F: forward input from primary cortex, mf: mossy 
fibers, PHG: parahippocampal gyrus and perirhinal cortex, pp: perforant path, rc: recurrent 
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collateral, S: superficial pyramidal cells, 2: layer 2 of entorhinal cortex, 3: layer 3 of entorhinal 
cortex, 5: layer 5 of entorhinal cortex. (Figure adapted from Rolls, 2014) 
 

 The hippocampus consists of the Dentate Gyrus (DG), a series of Cornu 

Ammonis areas, and the subiculum (Fig 1.1). The trisynaptic circuit is the basic 

anatomical circuitry in the hippocampus, which involves three major cell groups: 

granule cells in the DG, pyramidal neurons in the Cornu Ammonis area 3 (CA3), 

and the Cornu Ammonis area 1 (CA1). The dentate granule cell receives input 

through the perforant path (pp) from layer 2 of EC (Witter 1993), and projects 

onto the pyramidal neuron in the CA3 region through mossy-fibres (mf). The 

CA3 pyramidal neuron receives three types of afferent connection: pp inputs 

from the EC, mf inputs from DG, and recurrent collaterals (rc) from other CA3 

pyramidal neuron axion. Rodent studies show strong recurrent connections 

where each neuron roughly receives 12000 rc. The CA3-CA3 recurrent system is 

even more extensive in primates than in rats (Roll 2010; Kondo et al., 2009). It is 

followed by a moderate pp connection where each neuron receives 3600 pp 

inputs from EC. Each neuron receives roughly 46 mf connection resulting in 

sparse connectivity from dentate granule cells (Rolls et al.,1998; Treves et al., 

1994; Rolls 2010). In turn, the CA3 pyramidal neuron project to CA1 neuron 

through Schaffer collaterals (sc). Additionally, layer 3 of the EC pyramidal 

neuron axon terminates in the CA1 (Fig 1.1). 

1.3 Computation of Episodic Memory Processing 
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One fundamental feature of episodic memory is the associative binding of 

different elements of an episode (Davachi & Wagner, 2002). For example, a 

memory of riding a bicycle binds multiple aspects of the original event together, 

such as the location, the time, and the style of the bicycle. The collective 

combination of event details defines a unique memory representation for 

memory storage in the brain. This memory system is able to recover its original 

memory when presented with only partial information. For example, one might 

remind herself of riding a bicycle with her daughter in the park after seeing a 

similar bicycle in a different place.  

Hebb and Marr proposed an auto-associative network as a general model 

of associative learning (Fig 1.2) that could support this remarkable ability to 

reconstruct past experiences. Associative learning occurs when multiple inputs 

are activated simultaneously, and the network should have the ability to 

associate the inputs together and retrieve their original pattern even when some 

of the inputs are absent. The proposed neural network consists of a population of 

the principal neurons. Each of the neuron's dendrites receives multiple synaptic 

inputs from pathways representing different aspects of the ongoing event, such 

that the input activation pattern represents the information of an event. 

Associative learning happens when the synaptic modification obeys the Hebbian 

learning rule that synapses are strengthened if two synaptic inputs are active in 

close millisecond proximity (Hebb, 1949). This encoding process ensures the 

uniqueness of each memory representation because different input patterns 

result in different synaptic connectivity patterns supporting distinct memories. 
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During retrieval, the network can recall the whole memory pattern by the 

mechanism of recurrent activation when only partial input patterns are 

presented, known as a process of pattern completion (Marr, 1971). From the 

dynamical system's perspective, the strengthened synaptic connections form a 

stable attractor in the state-space, where each neuron activation is treated as a 

hidden variable. During the retrieval, the input response of the dynamical 

system may fall into the attractor (i.e., the encoded memory) if the input pattern 

(i.e., cue) is partially similar to the original input.   

 

 Experimental studies have reported neurobiological correlates of core 

elements of the model. The Hebbian rule of synaptic strengthening is analogous 

to long-term potentiation (LTP), where synaptic connections strengthen  if post-

synaptic firing occurs  right after pre-synaptic firing. An auto-associative 

network architecture has been found in the CA3 region of the hippocampus, 

where the CA3 principal neuron receives extensive projection from other 

principal neurons in the CA3 through recurrent collaterals. Moreover, the 

Fig. 1.2 Circuit diagram of an auto-
associative network.  
 
Each principal neuron receives external 
inputs as well as recurrent connection 
from other neuron. Solid triangle 
indicates principal neuron.  
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hippocampus is located at the top of the anatomical hierarchy, where it receives 

direct and indirect inputs from the primary and associative cortex. This allows 

the formation of association between inputs originating from very different parts 

of the cerebral (Rolls 2010). For example, a memory of riding a bicycle requires 

the network to associate the visual appearance of the bicycle originated from the 

visual cortex with the emotional perception of the experience originated from the 

amygdala. 
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1.4 Pattern Completion and Pattern Separation 

 In the last section, I discussed the auto-associative network as a general 

model for episodic memory. During memory formation, it activates an ensemble 

of interconnected neurons and induces synaptic potentiation in the 

corresponding recurrent synapses (Guzman et al., 2016). During retrieval, a 

partial pattern initially activates a subset of the ensemble, but the network 

subsequently recruits the remaining cells via a strong recurrent connection 

(Guzman et al., 2016). This retrieval process can be viewed from the dynamical 

system point of view where neuronal activation vector is defined as hidden state 

variables. A partial input may drive the neural state trajectory to fall into an 

attractor state originally formed during encoding (Fig. 1.3). This process is 

termed pattern completion and is proposed as a plausible neural computation 

occurring in the hippocampus supporting memory recall.  
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 However, pattern completion alone does not allow the memory system to 

discriminate a new but similar memory from an old one. Hebb-Mar associative 

learning theory suggests that to maximize information storage with minimal 

interference, the hippocampal associative network performs two competing, yet 

complementary, processes: pattern completion and pattern separation 

(Guzowski et al., 2004; McNaughton and Morris, 1987; Rolls and Treves, 1998; 

Neunuebel and Knierim, 2014). Pattern separation is a neural computation by 

which the network reduces the overlap between similar input patterns leading to 

non-overlapping patterns (Fig. 1.3). 

Although the exact biological implementation of pattern separation is still 

unclear, computational studies propose serval potential mechanisms. David 

Albus proposed a mechanism of expansion recoding in a feedforward network 

where the first layer inputs onto a significantly larger population in the second 

Fig. 1.3 Pattern separation 
and pattern completion.  
a, schematic view of two 
competing process. b, neural 
state trajectory undergoing 
pattern separation (upper) 
and completion (lower) in the 
dynamical system. 
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layer (Albus, 1971). This process allows a downstream decoder to linearly 

classify two similar inputs (Cayco-Gajic et al., 2019). Consistent with this idea, 

the entorhinal projects onto a much denser population of DG granule cells (Yassa 

and Stark, 2011; Knierim and Neunuebel, 2016; Rolls, 2016). Moreover, the 

remapping in the DG is more pronounced than CA3 and CA1 regions (Leutgeb 

et al., 2007; Neunuebel et al., 2013; Neunuebel and Knierim, 2014).  

 

 

Fig 1.4 High dimensional neural coding space support pattern separation 

a. Overlapping representation become distinctive representation under pattern separation 
process. b, Albus suggested that expending the dimensionality in the neural state space enable 
the downstream region to classify two stimuli (Albus, 1971).  (Adapted from Cayco-Gajic et al., 
2019) 
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 An important concept needed to describe this mechanism is the 

dimensionality of a system, which refers to the number of independent variables 

needed to describe a system's all possible states. In the neural network system, 

the dimensionality size is the number of neurons and the activity of an 

individual neuron is an independent variable, with a neuronal ensemble forming 

a neural state space. The coding subspace is derived from the neural activity 

space. It comprises the full set of population representations of all possible 

stimuli (Druckmann and Chklovskii, 2012; Cayco-Gajic et al., 2019).  Higher-

dimensional coding subspaces facilitate the separation of overlapping activity 

patterns by providing a larger activity space wherein representations are 

embedded, thereby increasing their linear separability (Cover, 1965; Cayco-Gajic 

et al., 2019; Fig. 1.4). In contrast, low-dimensional coding subspaces limit the 

extent of possible representations that can be generated. However, direct 

evidence of increased dimensionality as a mechanism of pattern separation has 

not been shown in humans. 

1.5 Emotional Modulation of Episodic Memory 

 Emotions can strengthen memories: we remember events that carried 

substantial positive or negative emotions better and more vividly than neutral 

experiences. (Kensinger 2009; Cahill & McGaugh, 1998) The memory advantages 

of emotional experience appear immediately after encoding and become more 
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pronounced over time (Yonelinas & Ritchey, M., 2015). Multiple neural 

mechanisms have been proposed to support this behavioral observation. The 

modulation theory suggests that the Glutamate Amplifies Noradrenergic Effects 

(GANE) during the encoding may prioritize preferred memory storage for 

emotional memories. Furthermore, the modulation theory proposes that the 

secretion of certain hormones such as adrenaline and cortisol during encoding 

leads to a greater extent of memory consolidation during sleep, which explains 

the enhancement effect with a time delay. (Cahill & McGaugh, 1998; Talmi, 2013; 

Yonelinas & Ritchey, M., 2015)  

 Sleep plays a critical role in memory enhancement. Behavioral studies 

show that sleep deprivation impairs post-learning memory performance. More 

specifically, selective disruption of hippocampal sharp-wave ripples (SWRs) 

impairs post-sleep memory performance, whereas prolonging SWRs enhances 

memory (Buzsáki, 2015). The SWR is a transient high-frequency oscillation (80-

150 Hz) that appears in the hippocampal local field potential (LFP) and is 

accompanied by synchronized neuronal population activity (Logothetis et al., 

2012; Buzsáki, 2015). Recent studies show anatomical distributed neocortical 

activation coincides with hippocampal SWR (Skelin et al., 2021; Ramirez-Villegas 

et al., 2015). From the perspective of Hebb's associative learning model, 

synchronized reactivation of encoded memory patterns strengthens synaptic 

connectivity, stabilizing memory representation (Fries, 2005). Hippocampal 

reactivation during SWR has been proposed as a neural substrate enabling the 
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binding of multiple memory traces across structures through LTP induction 

(Buzsáki, 2015).  

 Although behavioral studies reveal a critical role of sleep on remembering an 

emotional experience, the exact neural mechanism is largely unexplored. A recent 

rodent study highlights the role of hippocampal SWR in reactivating fearful 

memory engram in the amygdala-hippocampal network during the NREM sleep 

as a potential mechanism for consolidation (Girardeau et al., 2017). 

 SWRs have also been observed during immobile wakefulness (Carr et al., 

2011). The awake state occurrence of SWRs is more prevalent after exposure to 

salient or reward-associated context and is associated with hippocampal place 

cell reactivation (Joo & Frank 2018). Significantly, the reactivation of rewarded or 

fearful memory is enhanced relative to neutral memories. However, whether 

awake SWR (aSWR) plays a role in emotional memory processing and supports 

beneficial memory storage is unknown. In the present thesis, I hypothesized that 

the aSWR event provides a neural substrate for the coordinated reactivation of 

the memory engram in the amygdala-hippocampal network enabling 

enhancement of memory for an emotional experience. 

1.6 Human Electrophysiological Recording 

 Among the range variety of brain imaging techniques employed  in modern 

neuroscience research, there are four main types of functional recording methods 

available in human experiments: scalp electroencephalogram (scalp EEG), 

intracranial electroencephalogram including electrocorticography (ECoG) and 
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stereoencephalography (SEEG),  magnetoencephalography (MEG) and 

functional magnetic resonance imaging (fMRI). Intracranial EEG (iEEG) is an 

invasive electrophysiological recording approach that monitors extracellular 

electric field within a volume of brain tissue by surgically implanting either  

ECoG or  depth electrodes (SEEG) targeting deep brain structures such as the 

MTL (Buzsaki et al., 2012). This approach characterizes sub-millisecond time 

resolution not available with fMRI, as well as sub-millimeter spatial resolution, 

not available with scalp EEG (Slutzky et al., 2008; Buzsaki et al., 2012). The 

obtained local field potential (LFP) reflects the ensemble activity of tens of 

thousands of nerve cells (Canolty and Knight, 2010). In the present thesis, we 

recorded LFP on pre-surgical epilepsy patients with depth electrodes implanted 

in the MTL, providing a rare opportunity to study neural dynamics with superb 

temporal and spatial resolution. 

 

1.7 High Frequency Activity and Memory Processing 

1.7.1 Rhythmic Activity underlying Memory Processing 

Rhythmic activity is the most prominent feature observed in the local field 

potential. Oscillatory activity in humans was discovered by Hans Berger using 

scalp EEG recordings where he described as an 8 to 12Hz rhythm. Rhythmic 

activity in distinct frequency bands characterize changes in response to the 

sensory, motor, and cognitive events (Canolty & Knight, 2010). Among activities 

in multiple bands, theta oscillation (4-12Hz) and gamma activity (30-250Hz) are 
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both associated with declarative memory processing (Lisman & Jensen, 2013). 

Extensive animal and human studies suggest that successful memory formation 

and retrieval are associated with prominent theta and gamma power, as well as 

strong coupling between the two activities (Mormann et al., 2005; Montgomery 

and Buzsáki,2007; Sauseng et al., 2009; Shirvalkar et al., 2010; Axmacher et al., 

2010; Carr et al., 2012; Zheng et al. 2017&2019; Stevenson et al. 2018). More 

specific, the phase of theta rhythms modulates the amplitude of gamma 

frequency activity. In other words, the gamma activity power tends to increase or 

decrease at a particular phase of theta rhythm. A similar phenomenon, known as 

phase precession, was observed that the place cell representing different spatial 

locations tends to fire at distinctive phases of underlying theta oscillation using 

single-unit recording in rodents (Mehta et al., 2002; Battaglia et al., 2004; Lisman 

& Jensen, 2013). Although the exact mechanism of generating theta-gamma 

coupling is unclear, both the field potential and single-unit recording studies 

support a theta-gamma neural code theory (Lisman & Jensen, 2013). The theory 

proposes that the subset of cells that fire during a given gamma cycle (sometimes 

referred to as a cell assembly or an ensemble) form a spatial pattern that 

represents a given item so that largely non-overlapping assemblies representing 

different items are active at different theta phases (Lisman & Buzsáki, 2008; 

Lisman & Jensen, 2013).  

 Recent studies report a specific type of gamma oscillation, which occurs in 

different frequency ranges with short temporal duration, plays a role in episodic 
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memory processing and maintains multiple items in the working memory 

(Sirota, Anton, et al.,2008; Lopes-dos-Santos et al. 2018; Lundqvist et al. 

2016&2018; Kamiński et al. 2017; Navas-Olive, Andrea, et al.,2020). Following the 

theta-gamma neural code theory, each burst of gamma oscillatory activity 

reflects distinctive cell assemblies firing, which may represent different items. A 

series of theoretical works describe a potential mechanism of frequency-specific 

gamma bursting activity. In the next section, we first briefly describe the 

biophysical mechanism of gamma oscillation as well as theta-gamma coupling. 

We then present computational modeling research on working memory 

supported by gamma bursting activity.  

 

1.7.2 Theoretical Work of Frequency-specific Gamma Bursting Activity 

Theory proposes that two elementary circuit architectures generate stable 

gamma oscillations with both utilizing inhibitory interneurons (Buzsáki et al. 

2012).  

In the first scenario, when the interneurons are reciprocally connected, the 

synchronization starts when a subset of the interneurons synchronously 

discharge by chance, providing inhibitory input to other interneurons, until the 

decay of GABA-mediated hyperpolarization. Regardless of whether the initial 

input is tonic or stochastic (Fig 1.5a-b), the system starts to synchronize at the 

frequency of gamma determined mainly by the time constant of the IPSP and the 

net excitation of the interneurons.(Whittington et al. 1995, Wang & Buzsaki 1996 , 
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Buzsáki et al. 2012). In the second scenario, where excitatory pyramidal and 

inhibitory neurons are reciprocal connected (Fig. 1.5c), the synchronization is 

caused by the fast excitation and delayed feedback inhibition of the pyramidal 

neuron. The amount of delayed time of inhibition determines the frequency of 

gamma oscillation.  

Both scenarios could cooperate to generate gamma oscillation with 

different frequency characteristics depending on the underlying neuronal 

connection, input excitation and synaptic properties. For example, Renno-́Costa 

(Renno-́Costa et al. 2019) shows different feedforward inhibition would alter the 

frequency profile of the gamma oscillation in an excitatory-inhibitory (E-I) 

neuronal population (Fig 1.5d-e; Renno-́Costa et al. 2019)  
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Fig. 1.5. Model of Gamma Oscillation (a-c) demonstrates two types of elementary circuits 
generating gamma oscillation. a, I-I circuit with tonic input generate periodically firing of 
interneuron at 40Hz; b, I-I circuit with stochastic input generates sparsely synchronous 
oscillation; c, Reciprocally E-I model where pyramidal neuron(P) send fast excitation via AMPA 
receptor to interneuron which feedback inhibit P via GABA receptor. (Adapted from Buzsáki et 
al. 2012) (d,e) shows an example of an elementary model cooperating together to generates 
complex frequency profile. d, The reciprocally connected population of excitatory (E) and 
inhibitory population (IFB) generates gamma oscillation with a varied frequency response 
corresponding to varied input excitation onto excitatory neuron.; e, An I-I circuit generates 
inhibition onto E-I circuit. By introducing a self-connected inhibitory network IFF and further 
feedforward inhibit the excitation of E, the center gamma frequency of E-IFB network can be 
stabilized and varied with the strength of feedforward inhibition. By increasing the 𝑔𝑎𝑖𝑛!, the 
gamma frequency of E-I circuits decreases.( red: 𝑔𝑎𝑖𝑛!, = 20% and 𝑔𝑎𝑖𝑛", = 200%;purple: 𝑔𝑎𝑖𝑛!, 
= 40% and 𝑔𝑎𝑖𝑛", = 80%; 𝑔𝑎𝑖𝑛#, 

 
= 200% for both ; Adapted from Rennó-Costa et al. 2019) 

In principle, the generation of theta-gamma coupling requires 1) the 

generation of theta/gamma oscillation; and 2) the coupling between two 

oscillators (Hyafil et al. 2015). The two oscillatory circuits can either be 

independently generating theta and gamma rhythm and coupling through a 

unidirectional or bidirectional connection or sharing a common subpopulation 
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(Fig 1.6). In the abovementioned example (Rennó-Costa et al. 2019), the theta-

gamma coupling arises by adding unidirectional theta rhythmic input into the E-

I circuit, and the gamma oscillation shows the highest amplitude in the peak 

phase of theta oscillation (Fig 1.6).  

 
Fig. 1.6 Model of Theta-Gamma Coupling a&b demonstrate two regimes of coupling of fast 
oscillation and slow oscillation could occur. a, Independent oscillator coupling through 
unidirectional (left) or bidirectional (right) connection of two regions; b, Intermingled oscillator 
share a common subpopulation of neurons within the same region. (Adapted from Hyafil et al. 
2015) c,d, the E-I circuit with theta rhythm input generate coupled gamma oscillation. The right 
bottom figure is the averaged power frequency plot at each phase of the theta oscillation (white 
line). x-axis: phase of theta, y-axis: frequency of gamma oscillation, color: power of gamma 
oscillation. (Adapted from Rennó-Costa et al. 2019) 
 

Encoding and maintaining multiple items in working memory is 

associated with theta/gamma power increase and theta-gamma coupling 

(Axmacher et al. 2010; Tort et al. 2009; Fuentemilla et al. 2010). Moreover, item-

specific gamma oscillation is time-locked to a particular phase of the theta cycle 

(Heusser et al. 2016; Lundqvist et al. 2016&2018). A series of biophysically 
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detailed models were built to study the neuronal and LFP dynamics underlying 

working memory.  

Lundqvist et al. built a model with neocortical network architecture, 

containing nine hypercolumns where each hypercolumn containing 49 non-

overlapping minicolumns including excitatory pyramidal cells and two types of 

inhibitory interneurons, i.e., regular spiking non-pyramidal cells (RSNP) and 

basket cells (Lundqvist et al.2006,2010,2011; Herman et al. 2013). Pyramidal cells 

sharing the same minicolumn have dense (25%) recurrent connections and are 

viewed as the basic computational units of the network. However, attractors 

representing different items are stored by means of sparse long-range 

connectivity between minicolumns from separate hypercolumns. Each 

hypercolumn acts as a local winner-take-all module using basket cell feedback 

inhibition. That is, the network consists of several connected winner-take-all 

modules. Another set of interneurons, RSNP cells, provided long-range synaptic 

inhibition supporting competition between attractors (Lundqvist et al., 2011).  

To conclude, each burst of frequency-specific gamma oscillatory activity reflects 

distinctive cell assemblies representing different items, and the frequency 

characteristic is defined by its underlying synaptic properties generating gamma 

oscillation.  
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Fig.1.7 Computational Model of theta-Gamma Coupling during Working Memory 
 a, Schematic drawing of the model structure. Light squares mark hypercolumns, and dark 
squares mark minicolumns. Red triangles represent pyramidal cells, blue circles represent 
basket cells, and blue rhombs represent RSNP cells. Numbers show the likelihood of a 
connection between prepopulation and postpopulation and effect of a synaptic event in soma of 
the postsynaptic cell. (Adapted from Lundqvist et al. 2010) b, The time-frequency plot shows 
two states: the ground state from 0 to 2 sec and the active state from 2 to 4 sec. (Adapted from 
Lundqvist et al. 2010) c, Modulation strength with theta oscillation (5Hz) shows a peak at 
~30Hz. d, Distribution of spiking probability at different phases of theta oscillation. e, Raster 
plot of a subset of simulated population activity when two items were loaded. Cell assemblies 
representing two items fire alternatively. (Adapted from Lundqvist et al. 2011) 
 

The network could either be in a state where one of the stored attractors 

was active or in a ground state where all minicolumns exhibited low-level 

activity (Amit & Brunel, 1997; Lundqvist et al. 2011). The ground state simulates 

LFP mainly exhibits oscillation in beta frequency, mainly driven by the firing of 
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RSNP cell, while the active state exhibits increased theta and gamma activity 

(Fig. 1.7.b&c). Notably, the gamma rhythm was generated by the E-I circuits of 

pyramidal cell and basket cell within the hypercolumn with the frequency 

defined by the synaptic properties between them. The model showed that each 

frequency-specific gamma oscillation represented different items in the working 

memory. Moreover, it occurred in the bursting regime where each gamma 

oscillation existed for a short duration due to the RSNP's long-range inhibition, 

so that it supported the transition between different ensembles. Consistent with 

the experimental findings, both gamma and neuronal spiking activity tend to 

lock to a certain phase of underlying theta oscillation (Lundqvist et al., 2011). 

In the present thesis, I examined the frequency profile in the gamma range 

(30-280Hz, High Frequency Activity) to investigate the cell assemblies activation 

representing different aspects of memory in the human MTL. 

 

 
 

 

 



 
 

23 

 

CHAPTER 2  

Neural Dynamics of Emotional Memory Processing in 

the Amygdala-hippocampal network 

2.1 Abstract 

Intracranial recordings from the human amygdala and the hippocampus 

during an emotional memory encoding and discrimination task reveal increased 

awake sharp-wave/ripples (aSWR) after encoding of emotional compared to 

neutral stimuli. Further, post-encoding aSWR-locked memory reinstatement in 

the amygdala and the hippocampus was predictive of later memory 

discrimination. These findings provide electrophysiological evidence that post-

encoding aSWRs enhance memory for emotional events.  

2.2 Introduction 

Multiple mechanisms have been proposed to explain the prioritized encoding of 

emotional experiences (Cahill and McGaugh, 1998; Kensinger ,2009; Szőllősi and 

Racsmány, 2020), including the neuromodulatory effects on plasticity and the 

interplay between the amygdala and the hippocampus (Cahill and McGaugh, 

1998; Talmi 2013; Yonelinas and Ritchey, 2015). Several studies have found 

memory reinstatement during the immediate post-encoding period to be 

predictive of later memory performance (Ben-Yakov and Henson, 2018 ; Sols et 
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al., 2017). Sharp-wave/ripples (SWRs) are transient hippocampal oscillations (80-

150 Hz), associated with synchronous neural activation in the hippocampus and 

the amygdala (Logothetis et al., 2012; Skelin et al., 2021), and are implicated in 

the binding of anatomically distributed memory traces (Buzsáki ,2015). 

Behaviorally relevant reactivation of emotional memory occurs during aSWRs 

(Wu et al., 2017), and disruptions of post-experience aSWR interfere with 

memory utilization (Jadhav et al., 2016). Based on these findings, we 

hypothesized that aSWRs occurring immediately after stimulus encoding (post-

encoding) facilitate emotional memory discrimination through the coordinated 

hippocampal-amygdala memory reinstatement. Using intracranial 

electroencephalographic (iEEG) recordings in epilepsy patients during the 

performance of an emotional encoding and discrimination task, we first confirm 

reports of better discrimination memory for arousing stimuli (Szőllősi and 

Racsmány, 2020). Next, we demonstrate that the number of aSWR events 

immediately after encoding is associated with both stimulus-induced arousal 

and the accuracy of later discrimination. Finally, the coordinated memory 

reinstatement between the amygdala and the hippocampus during post-

encoding aSWRs is predictive of later memory discrimination performance, with 

the amygdala reinstatement showing a directional influence on the hippocampal 

reinstatement. Together, these findings provide evidence that aSWRs-mediated 

memory reinstatement in the amygdala and hippocampus as a mechanism 

accounting for better remembering of emotional experiences.  
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2.3 Materials and Methods 

Subjects 

Intracranial electroencephalography (iEEG) recordings were obtained from 

7 subjects (3 females; mean age ± SD = 33 ± 16), undergoing presurgical 

monitoring of epileptic foci at the University of California Irvine Medical Center 

(UCIMC) Epilepsy Monitoring Unit. The individual subject demographic 

information is shown in Table 1. Only the subjects with the correct 

discrimination rate of Novel trials >= 85% (see Emotional memory encoding and 

discrimination task) were included in the analysis. Electrode placements were 

determined entirely based on clinical considerations. All the research procedures 

were approved by the UCI Institutional Review Board and data was collected 

following informed consent. 

 

Statistics 

      All the statistical tests were performed with the individual subject as the unit 

of analysis. Unless stated otherwise, all the parametric statistical tests (e.g., 

Wilcoxon signed-rank test, t-test) were two-tailed. The effects of valence, 

stimulus-induced arousal and similarity on stimulus discrimination (Fig. 1c) 

were assessed using the logistic linear mixed-effect model (for details, see 

Behavioral Analysis). Conditional comparisons of aSWR occurrence 

(correct/incorrect discrimination or high/low arousal; Fig. 2.2c) were done using 

the Wilcoxon signed rank test (p < 0.05). Statistical significance of aSWR-locked 

memory reinstatement strength (Fig. 2.3b) was assessed by comparing the real 
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test statistics with empirical null distribution, obtained using Monte Carlo 

method (for details, see Representational Similarity Analysis). We implemented 

the cluster-based nonparametric permutation test(Maris & Oostenveld, 2007) to 

assess the conditional differences (correct/incorrect discrimination or high/low 

arousal) of memory reinstatement strength (Fig. 2.3c), mutual information (Fig. 

2.3e), by randomly shuffling the conditional trial labels 1000 times (for details, 

see Representational Similarity Analysis).Similarly, the significant temporal 

windows for the cross structure aSWR-locked joint memory reinstatement (Fig. 

2.3d) were assessed by comparing to empirical null distribution (for details, see 

Joint-reinstatement Analysis). 

 

Emotional memory encoding and discrimination task 

 The emotional memory encoding and discrimination (EMOP) task consists 

of encoding and discrimination blocks. During the encoding block (148 trials), 

each trial consists of a cross fixation (1000 msec), followed by stimulus encoding 

(2000 msec) and self-paced post-encoding response period (up to 2000 msec). 

During the post-encoding response period, subjects are asked to classify the 

stimulus emotional valence as either negative, neutral or positive, using the 

corresponding laptop key. During the retrieval block (290 trials), trial time 

structure is identical to encoding phase. Following the cross fixation (1000 msec), 

the subjects are presented for 2000 msec with a stimulus identical (Repeat, 54 

trials), slightly different (Lure, 97 trials) or unrelated (Novel, 139 trials) to 

previously encoded stimuli. Next, during the self-paced memory discrimination 
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epoch (up to 2000 msec), subjects are asked to discriminate if the presented 

stimulus was seen during encoding (Old) or not (New). Correct discrimination is 

defined as classifying the Repeat stimuli as Old and Lure or Novel stimuli as 

New. The stimuli were selected from the continuous distributions across the 

valence and stimulus-induced arousal axes (Supplemental Fig. 1). The same set 

of stimuli was used across subjects. In addition, the valence, arousal and 

similarity of each stimulus were rated by separate cohorts of healthy subjects. 

Specifically, a first cohort (N = 50, 32 females; age mean ± SD = 22 ± 5) rated the 

stimulus emotional valence on a continuous scale (range 1-9, with 1 denoting the 

most negative, 9 the most positive, and 5 neutral valence). Stimuli were assigned 

in Negative (valence <= 3.5), Neutral (3.5 > valence < 6) or Positive (valence >= 6) 

groups. Another cohort of healthy subjects (N = 16, 4 females; age mean ± SD = 

23 ± 5) rated the stimulus-induced emotional arousal on a scale 1 - 9 (1 being the 

least and 9 being the most arousing). Finally, a third cohort (N = 17, 11 females; 

age mean ± SD = 20 ± 1) examined relative similarity on the scale 1-8 (Leal et al., 

2014). The high correspondence of stimulus valence ratings obtained from study 

subjects and healthy population (match rate = 85.3 ± 1.3%) suggests the intact 

emotional processing in study subjects (Supplemental Fig. 1).  

 

Behavioral Analyses 

 To assess the effects of valence, stimulus-induced arousal and similarity on 

Lure stimulus discrimination, we implemented the logistic linear mixed-effect 

model     
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																																																								𝑦 = 𝛽𝑋 + 𝑢𝑍 + 𝜀. 

In this model, y indicates the responses across the individual Lure discrimination 

trials (0-Old; 1-New), 𝑋 = [𝑥!, 𝑥", 𝑥#]$denotes three fixed effect regressors 

(encoded stimulus valence and arousal as well as similarity between the encoded 

and Lure stimulus), 𝑍 = [𝑧!]$ denotes random effect regressor (subject identity), 

𝛽and 𝑢 denote the fixed and random-effect regression coefficients, and 𝜀 denotes 

the error term. The model includes random intercept to incorporate individual 

subject differences. We normalized the valence, stimulus-induced arousal and 

similarity values relative to the scale of 0 to 1. The statistics reported in Fig. 1c 

corresponds to the fixed-effect coefficients 𝛽. 

 

Data collection  

      The behavioral experiment was administered using the PsychoPy2 

software(Peirce, 2009) (Version 1.82.01). The laptop was placed at a comfortable 

distance in front of the subject. The iEEG signal was recorded using a Nihon 

Kohen system (256 channel amplifier, model JE120A), with an analog high-pass 

filter (0.01 Hz cutoff frequency) and sampling frequency 5000 Hz.   

       

Electrode localization 

 We localized each electrode using pre-implantation structural T1-weighted 

MRI scans (pre-MRI) and post-implantation MRI scans (post-MRI) or CT scans 

(post-CT). Specifically, we co-registered pre-MRI and post-MRI (or post-CT) 
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scans by means of a rigid body transformation parametrized with three 

translation in x,y,z directions as well as three rotations using Advanced 

Normalization Tools (ANTs https://stnava.github.io/ANTs/). We implemented 

a high-resolution anatomical template with the label of medial temporal lobe 

subfields(Leal et al., 2014) to guide the localization for individual electrodes. We 

resampled the template with 1mm isotropic, and aligned it to pre-MRI by ANTs 

Symmetric Normalization (Avants et al., 2011) to produce a subject-specific 

template. The electrode localization was identified by comparing the subject-

specific template subfield area with electrode artifacts.(Fig. 2.2a) The localization 

results were further reviewed by the neurologist (J.J.L.).  

 

Preprocessing 

      The signal preprocessing was done using the custom-written MATLAB code 

(Version 9.7) and Fieldtrip Toolbox(Oostenveld et al., 2011). The 60 Hz line noise 

and its harmonics were removed using a finite impulse response (FIR) notch 

filter (ft_preprocessing.m function in FieldTrip). The EEG signal was down-

sampled to 2000 Hz, demeaned and high-passed filtered (cutoff frequency 0.3 

Hz). The power spectrum density (PSD) was computed using the multitaper 

method with the Hanning window (ft_freqanalysis.m function in FieldTrip). All 

the channels were re-referenced to the nearest white matter channel from the 

same depth electrode, based on the electrode localization results. The interictal 

epilectic discharges were manually marked by an epileptologist (J.J.L.), using the 

ft_databrowser.m function in FieldTrip. The channels with severe contamination 
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and trials containing epileptiform discharges were excluded from further 

analyses.   

 

Awake sharp wave ripple detection 

Following the removal of channels with excessive epileptic activity and 

individual trials containing visually identified interictal epilectic discharges, 

awake sharp-wave/ripples (aSWRs) were detected on the remaining 

hippocampal channels, using the Freely Moving Animal Toolbox (FMA; 

http://fmatoolbox.sourceforge.net/). First, the iEEG traces from the trials used 

in the analysis were concatenated. Next, concatenated traces were bandpass-

filtered (80 - 150 Hz, Chebyshev 4th order filter, function filtfilt.m in Matlab) and 

the voltage values during periods ± 75 msec around the trial onsets/offsets were 

set to zero, to avoid the edge effects resulting from filtering discontinuous traces. 

The analytical amplitude was obtained by computing the absolute value of 

Hilbert-transformed filtered trace (function hilbert.m in Matlab) and z-scored 

(Supplemental Fig. 2a). Detected events were considered aSWRs if the z-scored 

analytical amplitude remained above the lower threshold (z = 2) for 20 - 100 

msec and if the peak value during this period exceeded higher threshold (z = 5). 

Only the channels with >150 detected aSWR events were used in the analysis. If 

the multiple channels from a single subject passed this criteria, a channel with 

highest number of detected aSWRs was selected for further aSWR-related 

analysis. Due to the low number of detected aSWRs, one subject was eliminated 

from the aSWR-related analysis.   
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Unsupervised decomposition of iEEG signal 

To assess the memory reinstatement, high-frequency activity (HFA; 30-280 

Hz) was used as an indirect measure of local populational activity(Canolty & 

Knight, 2010; Lopes-dos-Santos et al., 2018; Ray & Maunsell, 2011; Wixted et al., 

2014). To avoid the effect of low-frequency harmonics on the HFA estimate, we 

applied the Ensemble Empirical Mode Decomposition(Lopes-dos-Santos et al., 

2018; Wu & Huang, 2009) (EEMD; https://github.com/leeneil/eemd-

matlab.git). Briefly, the EEMD decomposes a non-stationary signal into its 

elementary components, referred to as intrinsic mode functions(Wu & Huang, 

2009) (IMFs; Supplemental Fig. 6). The procedure iteratively applies an empirical 

mode decomposition algorithm, while adding white noise to prevent the mode 

mixing(Huang et al., 1998; Wu & Huang, 2009). Using this approach, 

decomposition output entirely depends on the signal's intrinsic properties, 

avoiding prior assumptions(Huang et al., 1998; Lopes-dos-Santos et al., 2018; Wu 

& Huang, 2009). The resulting IMFs captured several canonical spectral features 

consistently across subjects and anatomical structures (Supplemental Table 2). 

Finally, the HFA time-series on individual channels were reconstructed by 

summing the channel-specific IMFs with center frequencies > 30 Hz(Lopes-dos-

Santos et al., 2018).  

 

Time-frequency representation of the HFA 
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      The instantaneous spectral power at each time-frequency bin was derived 

from the reconstructed HFA time series (𝑥), using a wavelet transform(Bârzan, 

2020; Moca et al., 2021). This approach consists of convolving the time series 

𝑥with a set of Morlet wavelets, parametrized by a range of cycle numbers (n = 2, 

3, …, 10) at a given frequency f, 

 

𝑃%,'(𝑡) = 4𝜓%,' ∗ 𝑥(𝑡)4, 𝑛 = 2,3, … ,10 

 

with 𝜓%,'defined as 

 

𝜓%,' =
1

𝐵'√2𝜋
𝑒
( )!
"*"!𝑒+",%), 𝑤ℎ𝑒𝑟𝑒	𝐵' =

𝑛
5𝑓 

 

and computing the geometric average (𝑃F(𝑓, 𝑡))of resulting spectral power at each 

time- frequency bin: 

 

𝑃G(𝑓, 𝑡) = H∏!-
'." 𝑃%,'(𝑡)

#  . 

 

This approach results in a high temporal and frequency resolution, facilitating 

the detection of narrow-band, transient oscillatory events(Bârzan, 2020; Moca et 

al., 2021). The wavelet center frequencies were within 30 - 280 Hz range, with 1 

Hz increments. The wavelet cycle number range (2-10) is commonly used(Cohen, 
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2014). To avoid the edge effects, this procedure was applied on the entire 

individual recording sessions, and the resulting time-frequency response 

matrices were segmented into trial epochs (starting -1000 msec prior to stimulus 

onset and ending 1000 msec after the response time). The power within each trial 

epoch was then normalized by z-transforming each frequency bin and 

subtracting the average pre-trial baseline (-1000 - 0 msec, relative to stimulus 

onset(Cohen, 2014)).  

 

Representational Similarity Analysis (RSA) 

     The representational similarity was quantified as the Spearman correlation 

between the HFA power spectral vectors (PSVs), for each combination of the 

encoding-response time bins from the same trial(Lohnas et al., 2018; Norman et 

al., 2019; Yaffe et al., 2014; Zhang et al., 2018) (Supplemental Fig. 6). Specifically, 

the instantaneous spectral power at each frequency was estimated for 100 msec 

time bins (10 msec step size, 90% overlap), producing the time bin - specific 

power spectrum vectors (PSV), spanning the encoding (2 sec time window after 

stimulus onset) and post-encoding response (time window after stimulus offset 

and before button press) periods: 

 

𝑃𝑆𝑉LLLLLLLL⃗ /'0123'4(𝑡!) = N𝑧!(𝑡!), … , 𝑧'$(𝑡!)O/'0123'4
 

 

𝑃𝑆𝑉LLLLLLLL⃗5/671'6/(𝑡") = N𝑧!(𝑡"), … , 𝑧'$(𝑡")O5/671'6/
 



 
 

34 

 

Similar to previous studies(Lohnas et al., 2018; Norman et al., 2019; Pacheco 

Estefan et al., 2019; Staresina et al., 2016; Yaffe et al., 2014; Zhang et al., 2018), we 

computed Spearman’s correlation as a measure of PSV similarity between the 

encoding time 𝑡! and response time 𝑡" for each encoded stimulus, 

 

𝑟(𝑡!, 𝑡") =
𝐶𝑜𝑣 S𝑟𝑔89:;;;;;;;;⃗ %"&'()"*()+), 𝑟𝑔89:;;;;;;;;⃗,%-.'"-%()!)U

𝜎54/01222222222⃗ %"&'()"*(5+)
𝜎54/01222222222⃗ ,%-.'"-%(5!)

					 , 𝑡! ∈ [0,2], 𝑡" ∈ [0, 𝑅𝑇]	𝑠𝑒𝑐 

 

, with 𝑟𝑔 representing the ranking operator on the vector 𝑃𝑆𝑉LLLLLLLL⃗ , and 𝜎 the variance 

of the vector. This produced a trial-specific two-dimensional similarity matrices, 

containing all the combinations of encoding (𝑡!) and response (𝑡") time bins 

(Supplemental Figure 6d). The correlation coefficients 𝑟 were then Fisher 

transformed, with the resulting coefficients following Gaussian distribution. The 

region-specific (amygdala and hippocampus) similarity matrices were averaged 

across trials within individual subjects, and used for group-level statistical 

analysis. 

  

aSWR-locked memory reinstatement  

 Memory reinstatement during individual post-encoding time bins was 

computed by averaging the bin-specific similarity with the encoding period (200 

time bins over 2 sec), resulting in a memory reinstatement time series. To obtain 
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the aSWR-locked memory reinstatement, we averaged the memory 

reinstatement within ± 250 msec around the individual aSWR peak times, 

separately for amygdala and hippocampus (Fig. 2.3a). We next tested whether 

the memory reinstatement is locked to aSWRs (Fig. 2.3b), by comparing the 

grand-average aSWR-locked reinstatement trace with an empirical null 

distribution obtained from Monte Carlo simulation. Specifically, we circularly 

randomly jittered the aSWR peak times within ± 500 msec window for 1000 

times, obtaining an empirical null distribution of memory reinstatement 

strength.  

 

      To test whether the aSWR-locked reinstatement is associated with stimulus-

induced arousal and later discrimination (Fig. 2.3c), we first derived the aSWR-

triggered reinstatement, a metric taking the time-locked specificity relative to 

aSWR peak time into account. For every per-aSWR reinstatement trace around 

aSWR peak time, we circularly jittered the time as the procedure described 

above. This results in an empirical null distribution of reinstatement (i.e., 

correlation coefficient) for every time point around aSWR. We normalized the 

real reinstatement by z-scoring with mean and standard deviation of the null 

distribution. We referred to the resulting z-value as aSWR triggered 

reinstatement and it follows Gaussian distribution. We quantified the aSWR-

locked reinstatement difference between the high/low arousal and between 

correct/incorrect discrimination at every time point by t-test, and corrected for 

the multiple comparisons using cluster-based nonparametric permutation test. 
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Specifically, we performed the group-level comparisons using paired t-test and 

identified contiguous time bins with the p < 0.05, defined as clusters. The t-

values within each cluster were summed as the cluster statistics. We created an 

empirical null distribution by shuffling the conditional trial labels 1000 times 

where the maximum cluster statistics was identified for each permutation. It is 

considered as statistically significant if the real t-sum cluster statistics exceeded 

the 95% percentile of the null distribution.  

 

Cross-structure joint aSWR-locked memory reinstatement  

 The cross-structure joint aSWR-locked memory reinstatement was obtained 

by calculating the outer product between the structure-specific reinstatement 

traces (hippocampus and amygdala) during post-encoding aSWR windows. The 

resulting joint reinstatement matrices were averaged across the individual 

aSWRs for each subject, separately for later correctly or incorrectly discriminated 

trials. To assess the statistical significance of joint cross-structure memory 

reinstatement, we performed a Monte Carlo simulation to generate an empirical 

null distribution by circularly jittering the aSWR peak times. The reinstatement 

significance was defined as exceeding the 95% percentile of null distribution (Fig. 

2.3d).  

 

Dual states analyses 

      Recorded periods were divided into low- and high-theta (3 - 10 Hz) or 

gamma (30 - 250 Hz) periods, based on the subject-specific power median split. 
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The aSWR occurrences are defined as the proportions of aSWRs occurring during 

each period. The aSWR occurrence comparisons between the low- and high-theta 

or gamma periods were performed using one-tailed Wilcoxon signed-rank test (p 

< 0.05; Supplemental Figure 9).  

       

Mutual information  

 Mutual information (MI)(Cohen, 2014; Quian Quiroga & Panzeri, 2009)  is 

a method for quantifying the amount of information shared between the 

variables of interest. In electrophysiology, MI is applied to test for the presence 

and directionality of information flow between the multiple time-series. We 

applied MI to assess the directional influence between the memory reinstatement 

in amygdala and hippocampus during the post-encoding aSWR windows (Fig. 

2.3e). First, the structure-specific memory reinstatement traces from the 

amygdala and hippocampus were obtained around each aSWR event (± 250 

msec; see aSWR-locked memory reinstatement). Next, we calculated the MI 

between the amygdala and hippocampal memory reinstatement traces, using the 

200 msec bin size (10 msec step size), covering the ± 250 msec window around 

aSWR peaks. For each time bin, the reinstatement strength was binned into 10 

bins (with uniform bin count), consistently across the subjects and conditions. 

The MI between the time series X and Y was defined as 
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𝑀𝐼(𝑋; 𝑌) = 	``𝑝b𝑥3 , 𝑦+c log" 𝑝b𝑥3 , 𝑦+c
?

+

'

3

−`𝑝(𝑥3) log" 𝑝(𝑥3)
'

3

−`𝑝b𝑦+c log" 𝑝b𝑦+c
?

+

 

 

 

, where 𝑝(𝑥3) and 𝑝b𝑦+c represented the marginal probability of signals X and Y, 

𝑝b𝑥3 , 𝑦+c indicated their joint probability, while m and n represented the numbers 

of reinstatement strength bins for time series X and Y(Cohen, 2014; Quian 

Quiroga & Panzeri, 2009). To test the directionality of information flow, we 

calculated the time-lagged MI by shifting one time series relative to another 

across all the time bin combinations. The 𝑀𝐼@AB	→	E8F 	and 𝑀𝐼E8F	→	@ABat 

individual time bins were defined as the mean of all the subsequent time-lagged 

MI bins in the other region(Cohen, 2014; Helfrich et al., 2019) . We defined the MI 

directional influence as the significant difference between the 𝑀𝐼@AB	→	E8F 	 and 

𝑀𝐼E8F	→	@AB, assessed using Wilcoxon signed-rank test for each time bin. 

Correction for multiple comparisons was performed using the cluster-based 

nonparametric permutation test.  

2.4 Results 

2.4.1 Memory Discrimination is better for Emotional Stimuli 
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We performed simultaneous iEEG recordings from the amygdala (𝑛/G/0)512/ =

20) and the hippocampus (𝑛/G/0)512/ = 17, Fig. 2.2a) in 7 human subjects, while 

performing an emotional memory encoding and discrimination task(Leal et al., 

2014; Zheng et al., 2019) (Methods, Fig. 1a). During the encoding stage, subjects 

were presented with a stimulus (image; stimulus encoding) and asked to rate the 

stimulus valence as negative, neutral, or positive (post-encoding/response). 

During the retrieval stage, subjects were presented with one of the 3 types of 

stimuli - Repeats (identical), Lure (slightly different) or Novel (stimuli not seen 

during encoding) - and classified each stimulus as “New” or “Old.”  

 

 
Fig. 2.1. Memory discrimination is more accurate for emotional stimuli.  
a, Task structure: subjects are presented with an image (Stimulus encoding). Following 
presentation, they rate the valence of the image as negative, neutral, or positive (Post-
Encoding/Response). Once all images are presented and rated, subjects are presented with 3 
types of stimuli - Repeat (identical), Lure (slightly different) or Novel (stimuli not seen during 
encoding) - and classify each stimulus as “old” or “new.” b, Correct discrimination is highest 
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for Novel stimuli (93.9 ± 1.4 %; median ± SEM), followed by Repeats (89.4 ± 2.4 %) and Lures 
(61.5 ± 3.7 %). Paired t-test: Novel vs. Repeat, *p = 0.016, t = 3.33, df = 6; Novel vs. Lure, 
***p<0.001, t = 8.36, df = 6; Repeat vs. Lure, ***p < 0.001, t = 6.13, df = 6. c, Correct discrimination 
of Lure stimuli is positively associated with encoded stimulus-induced arousal (*p=0.047, β = 
0.3 ± 0.12, t = 1.98, df = 452, logistic linear mixed-effect model) and valence (p = 0.137, β = 0.15 ± 
0.09, t = 1.48, df = 452 ), while negatively associated with similarity (*p = 0.039, β = -0.24 ± 0.00, t 
= -2.06, df = 452). The β sign and magnitude indicate effect direction and strength, respectively. 
Dots correspond to individual subjects. d, Probability of Lure correct discrimination as a 
function of SI and stimulus-induced arousal. The solid line shows the actual proportion 
of ’New’ responses (y-axis) as a function of Lure stimulus SI (x-axis) for low arousal (blue) or 
high arousal stimuli (red). The low/high arousal groups were created using the median split. 
 
 

Memory discrimination is defined as the correct classification of: 1) Repeat 
stimuli as Old, 2) Novel stimuli as New, or 3) Lure stimuli as New. Subjects 
classified Repeat stimuli and Novel stimuli with high accuracy (Repeat: 89.4 ± 
2.4%, Novel: 93.9 ± 1.4%; Fig. 1b). Memory discrimination accuracy was lower for 
Lure stimuli, relative to both Repeat or Novel stimuli (Lure: 61.5 ± 3.7 %; pNovel vs 

Lure < 0.001, t = 8.36; pRepeat vs Lure < 0.001, t = 6.13, paired t-test), reflecting 
similarity-induced memory interference. Indeed, there was a strong negative 
association between subjects' stimulus discrimination ability and stimulus 
similarity rating (p = 0.039, t = -2.06, see Methods, Fig. 1c-d). Stimulus-induced 
arousal (irrespective of valence) was associated with better memory 
discrimination, confirming previous reports(Cahill et al., 1998; Kensinger, 2009; 
Szőllősi & Racsmány, 2020) (p = 0.047, t = 1.98, Fig. 1c-d, Supplemental Fig. 1).  
 

2.4.2 Post-encoding aSWR Occurrence Predicts Stimulus Emotional Content 

and Later Discrimination  

We defined the post-encoding period as the interval between stimulus offset 
and subjects’ stimulus valence rating response (Fig. 1a). We tested the association 
of post-encoding aSWR occurrence (i.e., the number of aSWRs) with the stimulus 
emotional content (stimulus-induced arousal and valence) and correct 
discrimination during retrieval. Higher post-encoding aSWR occurrence was 
associated with stimulus-induced arousal (p = 0.03, z = -2.2, Wilcoxon signed-



 
 

41 

rank test, Fig. 2.2c) and also predicted correct discrimination during retrieval (p = 
0.03, z = -2.2, Wilcoxon signed-rank test, Fig. 2.2c), but was not associated with 
stimulus valence (p = 0.77, F(2, 15) = 0.25, one-way ANOVA; Supplemental Fig. 
3). Taken together, these results provide the first report of post-encoding aSWRs 
as a potential electrophysiological mechanism for enhanced memory 
discrimination of arousing stimuli, previously characterized at behavioral 
level(Kensinger, 2009; McGaugh, 2015; Szőllősi & Racsmány, 2020). Furthermore, 
the positive associations between aSWRs and stimulus-induced arousal/later 
discrimination were present in all individual subjects (Fig. 2.2c). The post-
encoding response time (RT) did not differ based on stimulus-induced arousal (p 
= 0.2, z = 0.7, RThigh-arousal = 0.8 ± 0.1 sec; RTlow-arousal = 0.6 ± 0.2 sec) or later 
discrimination (p = 0.25, z = 0.6, RTcorrect = 0.7 ± 0.2 sec, RTincorrect = 0.7 ± 0.3, 
Wilcoxon signed-rank test). Therefore, the associations between stimulus-
induced arousal or correct discrimination and post-encoding aSWR occurrence 
were unrelated to post-encoding duration. Associations between aSWR and 
stimulus-induced arousal/later correct discrimination accuracy were selective 
for the post-encoding time window. These relationships were absent for the 
stimulus encoding or the retrieval task stage (p > 0.05, Wilcoxon signed-rank test; 
Fig. 2.2c, Supplemental Fig. 3, 4). The aSWRs probability was significantly higher 
during low theta power periods (Supplemental Fig. 5), consistent with 
observations that cholinergic tone promotes theta oscillations and suppresses 
SWRs(Buzsáki, 2015; Jadhav et al., 2012). In addition, aSWRs did not overlap 
with increased broadband gamma power, suggesting that aSWRs are distinct 
from non-specific broadband power fluctuations(Bragin et al., 1999) 
(Supplemental Fig. 5).  
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Fig. 2.2. The post-encoding aSWR occurrence predicts the stimulus-induced arousal and 
memory discrimination.  

a, Reconstructed locations of hippocampal (blue) and amygdala electrodes (red). b, The aSWR 
grand average waveform (n = 4689 aSWRs in 6 hippocampal channels, 6 subjects). c, The aSWR 
occurrence is significantly higher following encoding of arousing (top right; *p = 0.03) and later 
correctly discriminated stimuli (bottom right, *p = 0.03). The aSWR occurrence was showing no 
conditional differences during stimulus encoding (left column, p’s > 0.05).        

 

2.4.3 Post-encoding Memory Reinstatement is Locked to aSWRs 

Recent studies suggest that post-encoding memory reinstatement supports 
successful subsequent memory retrieval (Ben-Yakov et al., 2013; Sols et al., 2017). 
Meanwhile SWR is associated with reactivation of pre-established neuronal 
patterns(Genzel et al., 2020). We hypothesized that memory reinstatement 
during the post-encoding aSWR window could enhance later memory 
discrimination. Distinct neural populations have been proposed to represent 
individual stimuli, resulting in stimulus-specific high-frequency activity (HFA) 
patterns(Lopes-dos-Santos et al., 2018; Wixted et al., 2014). We, thus, quantified 
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memory reinstatement as the Spearman correlation between HFA power spectral 
vectors (PSVs), for each combination of the encoding-response time bins from the 
same trial (Supplemental Fig. 6). Next, we computed the average reinstatement 
activity during ± 250 msec around post-encoding aSWR peaks. The reinstatement 
significance was determined relative to a null distribution, obtained by circular 
jittering of aSWR timestamps. The post-encoding aSWR-locked memory 
reinstatement was stronger for arousing and correctly discriminated stimuli 
(Supplemental Fig. 7). To assess specific contributions of the amygdala and the 
hippocampus to this phenomenon, we calculated post-encoding memory 
reinstatement for each region, relative to aSWR peak (Fig. 2.3a). The significant 
reinstatement period in the amygdala consisted of two intervals, the first starting 
slightly earlier and overlapping with the hippocampal reinstatement (-105 to -50 
msec), and a second period following the hippocampal reinstatement (40 to 200 
msec).  The significant reinstatement period in the hippocampus lasted from -100 
to 50 msec (Fig. 2.3b). These results demonstrated region-specific timing of the 
post-encoding aSWR-locked memory reinstatement in the amygdala and the 
hippocampus. Next, we tested for the temporal compression(Genzel et al., 2020) 
of post-encoding aSWR-locked reinstatement (no compression, 2x, 4x, and 6x 
compression) and showed the strongest aSWR-locked reinstatement with no 
compression (Supplemental Fig. 8). We then analyzed the association of the post-
encoding memory reinstatement with the stimulus-induced arousal and later 
discrimination. Remarkably, we observed a region-specific double dissociation. 
Specifically, the amygdala, not the hippocampus, showed a positive association 
between aSWR-locked memory reinstatements and the stimulus-induced arousal 
(AMY: -80 to -10 msec, p = 0.035; HPC: p > 0.05, see Methods; Fig. 2.3c). In 
contrast, the hippocampus, but not the amygdala, revealed a positive association 
between aSWR-locked memory reinstatement and later correct discrimination 
(AMY: p > 0.05; HPC: -15 to 90 msec, p = 0.008, see Methods; Fig. 2.3c). To 
summarize, post-encoding aSWR-locked memory reinstatements in the 
amygdala and the hippocampus followed distinct temporal dynamics and were 
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associated with reactivation of distinct aspects of encoded stimuli (i.e., the 
amygdala for stimulus-induced arousal and the hippocampus for later 
discrimination accuracy).  

 

 
Fig. 2.3. Memory reinstatement in the hippocampus and amygdala around aSWR. a, aSWR-
locked reinstatement in the amygdala (top) and hippocampus (bottom) during the post-
encoding period (line and shaded areas represent the mean ± SEM). b, Reinstatement is greatest 
around the time of aSWRs as shown by comparison with the null-distribution (within ± 250 
msec). Shaded areas denote the null-distribution 95% confidence interval. Reinstatement in the 
hippocampus overlaps with aSWR peak (orange), while reinstatement in the amygdala peaks 
prior to and after the aSWR (magenta). c, aSWR-locked reinstatement in the amygdala is 
stronger for arousing stimuli (top left, p = 0.035, see Methods) but is not associated with 
subsequent discrimination (bottom left, p = 0.066). Reinstatement in the hippocampus is robust 
for correctly discriminated stimuli (bottom right, p = 0.008, see Methods) but does not depend 
on stimulus-induced arousal (top right, p > 0.1). d, The aSWR-locked joint reinstatement in the 
hippocampus and amygdala for the correct (left) and incorrect (right) discrimination trials. 
Reinstatement in the amygdala starts 100 msec prior to the aSWR peak, followed by 
reinstatement in the hippocampus (-50 to 200 msec). There is no significant joint reinstatement 
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during incorrect discrimination trials, suggesting that the cross-structure joint reinstatement 
may be required for correct discrimination. e, Mutual information (MI) difference for the 
amygdala (AMY) and hippocampal (HPC) memory reinstatement time-courses, during the 
post-encoding aSWR windows (correct discrimination - top, incorrect discrimination - bottom). 
Positive values denote stronger AMY→HPC directionality. A temporal cluster of significant MI 
difference (AMY→HPC) is present before aSWR peak time(-70 to -30 msec) after encoding of 
correctly discriminated stimuli (top; p = 0.038, see Methods), indicating that hippocampal 
reinstatement is better predictable by amygdala reinstatement than vice versa. This effect is 
present only during the post-encoding period for correctly discriminated stimuli (top), but not 
for the incorrectly discriminated stimuli  
 

2.4.4 Post-encoding aSWR-locked joint memory reinstatement in the 

hippocampus and amygdala is predictive of memory discrimination 

In rodents, the coordinated memory reactivation in the amygdala and 
hippocampus during sleep SWRs is proposed to bind neuronal ensembles 
encoding emotional and spatial information, respectively(Girardeau et al., 2017). 
We reasoned that a similar interaction between the amygdala and the 
hippocampus exists in which cross-regional post-encoding aSWR-locked 
memory reinstatement facilitates later discrimination. We hypothesized that the 
reinstatement in both structures co-occurs during the same aSWR events and 
follows a consistent temporal dynamic. To test this, we separately computed 
aSWR-locked joint memory reinstatement for the correctly and incorrectly 
discriminated stimuli (Methods). A significant joint aSWR-locked memory 
reinstatement in the amygdala and hippocampus was present during the post-
encoding period only for correctly discriminated stimuli (Fig. 2.3d; Supplemental 
Fig. 9). Specifically, the amygdala reinstatement preceded the hippocampal 
reinstatement by ~100 msec. Further, mutual information analysis showed a 
significant unidirectional influence from the amygdala to the hippocampus 
before aSWR peak (-70 to -30 msec, p = 0.038; see Methods; Fig. 2.3e). To 
conclude, aSWR-mediated coordination of memory reinstatement in the 
amygdala and the hippocampus promotes later successful discrimination.  
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2.5 Discussion 

Rodent studies have implicated the SWRs in the retrieval and consolidation of 
emotional memory. However, it is unclear whether it supports the memory 
benefits of emotional experience(Trouche et al., 2020).  Our study reveals an 
association of higher aSWR occurrence with stimulus-induced arousal and 
subsequent correct stimulus discrimination, providing direct evidence for aSWR-
mediated strengthening of emotional memory. Interestingly, the higher aSWRs 
occurrence has been shown in rodents, after exposure to a novel or reward-
associated context(Joo & Frank, 2018). Together, this suggests that aSWRs may 
play a general role in the selective enhancement of salient experiences(McGaugh, 
2013).  

 
Notably, such association is specific to the post-encoding period that starts 

immediately after memory encoding, when memory retrieval is essential to rate 
the emotional content of the stimuli. This finding supports theoretical 
assumptions that SWRs mediate both the retrieval of stored representation 
utilized in decision-making, and the strengthening of the same representation, 
contributing to memory consolidation(Joo & Frank, 2018).  
 

Next, we aimed to discern the link between the aSWR-associated interaction 
between the amygdala and hippocampus during post-encoding and subsequent 
memory effect. We found the aSWRs were accompanied by memory 
reinstatement during the post-encoding period. Specifically, the reinstatement in 
the amygdala appears shortly before the aSWR peak and shows association with 
arousing stimuli, while the hippocampal reinstatement appears around the 
aSWR peak and shows associations with correct subsequent memory 
discrimination. Moreover, the co-occurrence of the amygdala and the 
hippocampal reinstatement during the same post-encoding aSWR events - with 
the amygdala reinstatement leading hippocampal by ~100 msec - is predictive of 
subsequent correct memory discrimination. This finding suggests that the 
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coordinated reinstatement in the amygdala and hippocampus during aSWR is 
responsible for combining emotional and contextual aspects of the 
memory(Girardeau et al., 2017; Trouche et al., 2020). 

 
Both the joint-reinstatement and mutual information analyses further confirm 

the predictive validity of directional influence from the amygdala to the 
hippocampus before aSWRs on correct discrimination, establishing a link 
between the amygdala reinstatement and memory discrimination as a 
physiological mechanism of emotional memory enhancement. Together, our data 
support a model wherein the memory reinstatement in the amygdala, triggered 
by emotional stimuli, elicits amygdala-hippocampal aSWR-associated memory 
reinstatement, enabling the coordinated joint-reinstatement, which facilitates 
subsequent memory performance.  
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CHAPTER 3  

Neural Dynamics of Pattern Separation in the Medial 

Temporal Lobe  

 
3.1 Abstract 

    Episodic memory depends on pattern separation, the ability to discriminate 

between unique experiences. The neural dynamics of pattern separation was 

studied in the rodent hippocampus, with unclear behavioral relevance. Human 

imaging studies were consistent with behaviorally-relevant pattern separation, 

but the temporal resolution precluded testing the dynamical theories postulated 

by the rodent and theoretical work. We recorded the intracranial 

electroencephalogram (iEEG) from the human temporal lobe (amygdala, dentate 

gyrus/Cornu Ammonis3 (CA3), CA1 and parahipocampal cortex), during 

performance on mnemonic discrimination task. The stronger hippocampal 

representational similarity between the previously encoded and newly presented 

stimulus interferes with correct discrimination. The hippocampal 

representational dynamics is consistent with discrete attractors, characterized by 

abrupt transitions at sub-second time scale. Finally, higher representational 

dimensionality predicts correct discrimination, suggesting the code expansion as 

a mechanism implementing the pattern separation. This is the first 
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demonstration of behaviorally-relevant pattern separation dynamics at 

subsecond timescale in the human brain.  

3.2 Introduction 

    The critical component of episodic memory is the ability to distinguish 

between unique, but similar experiences. For example, recognizing the nuanced 

difference between the two experiences allows us to separate the memories of 

different birthday parties, despite the shared structure and details. This ability is 

supported by the pattern separation - a neural computation that increases 

representational distance between the similar experiences (Marr, 1971; Treves, 

1992; O'Reilly, 1994; McNaughton et al., 1987; Miller et al., 2019; Hainmueller and 

Bartos, 2020). In contrast, the failure of pattern separation is proposed as a 

pathophysiological mechanism underlying various cognitive and 

neuropsychiatric disorders (reviewed by Leal and Yassa, 2018). 

      The extensive theoretical and empirical work implies the hippocampal 

network in storage of unique memory representations (Marr, 1971; Treves, 1992; 

O'Reilly, 1994; McNaughton et al., 1987; Guzowski et al., 2004; Moser and 

Buzsaki, 2013). Within this network, the anatomical implementation of pattern 

separation was attributed to dentate gyrus (DG) and Cornu Ammonis 3 (CA3) 

hippocampal subfields (Berron et al., 2016; Bakker et al., 2008; Segel et al., 2012; 

Gilbert et al. 2001; McHugh,  2007; Wiskott et al., 2006; Sahay, 2019). The 

empirical support for DG/CA3 role in pattern separation is based on the spatial 

representation changes during exposure to environments with different degrees 
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of similarity, the phenomena known as remapping (Wills et al., 2005; Leutgeb et 

al., 2006; Leutgeb et al. 2007; Colgin et al, 2010; Jezek et al., 2011; Alme et al., 

2015; Neunuebel et al., 2014; Knierim, 2016). Remapping could occur as a fast 

flickering between competing maps, suggesting the attractor-like organization of 

hippocampal spatial maps and possibly episodic memories in general (Hopfield, 

1982; Morris and McNaughton, 1987; Redish, 2007; Fenton and Kelemen, 2010; 

Jezek et al., 2011; Kay et al., 2019). The mechanistic implementation of pattern 

separation underlying remapping was attributed to expansion recoding, an 

increase in the representation dimensionality during propagation through 

DG/CA3 network (Marr, 1969; Albus, 1971; Cayco-Gajic and Silver, 2019). It was 

hypothesized that remapping reflects the subjective perception of contextual 

change, but the behavioral relevance of remapping was difficult to establish in 

animal models (Fuhs and Touretzky, 2007; Colgin et al., 2008; Kubie et al., 2020; 

Sanders et al., 2020). Meanwhile, human fMRI studies have shown the evidence 

of behaviorally-relevant representational remapping between the trials in 

DG/CA3 (Julian and Doeller, 2021; Wanjia et al., 2021). However, establishing 

the relation of hippocampal remapping in humans with remapping dynamics 

observed in rodents and predicted by theoretical work requires the subsecond-

level monitoring of remapping dynamics during individual trials.   

     To address this question, we recorded intracranial EEG (iEEG) from the 

human temporal lobe, while the subjects performed mnemonic discrimination 

task. In this task, the subjects were classifying image stimuli (Lures) as old or 
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new, based on the ability to discriminate them from highly similar, previously 

presented stimuli (Targets). We hypothesized that the pattern separation neural 

dynamics in DG/CA3 could be identified by contrasting the neural activity 

during the correct and incorrect trials (correct rejections and false alarms, 

respectively). The representational similarity between the Target and Lure trial 

pairs in DG/CA3 was significantly higher for false alarm, relative to correct 

rejection trials, suggesting that the balance between pattern separation and 

completion determines the perceptual similarity. Neural trajectory through 

representational space during discrimination trials was flickering between the 

states of high and low similarity to Target stimulus. The states were separated by 

a large representational distance and the individual state visitation was 

predictive of stimulus discrimination behavioral outcome. Finally, the 

representational dimensionality during correct rejection trials was higher relative 

to false alarm trials, implying the expansion recoding as a mechanism underlying 

successful pattern separation (Cayco-Gajic and Silver, 2019). Overall, these 

findings represent the first demonstration of behaviorally-relevant hippocampal 

remapping at subsecond timescale in the human brain, consistent with a long-

standing theoretical prediction of expansion recoding as an underlying 

mechanism.  

3.3 Materials and Methods 

Subjects  
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      Data were obtained from 8 subjects (3 females) with pharmacoresistant 

epilepsy (age 38 ± 18, mean ± SD; see Table 1 for individual subject 

demographics), during pre-surgical evaluation at the University of California 

Irvine, Medical Center (UCIMC). The localization of implanted electrodes was 

determined strictly based on the individual subject clinical situation. All the 

procedures were approved by the UCIMC Institutional Review Board and each 

subject provided informed consent prior to data collection. 

      Mnemonic discrimination task 

The mnemonic discrimination task (Fig. 3.1A) consisted of the encoding (n = 

148) and discrimination trial blocks (n = 290). Encoding trials consisted of a 

fixation epoch, when a fixation stimulus (white cross) was presented for 1000 ms, 

followed by the presentation of image stimulus at the center of the screen (2000 

ms) and the response epoch (self-paced, up to 2000 ms). During response epoch, 

subjects rated the emotional valence of the presented stimulus as either positive, 

negative or neutral, using button press. Discrimination trials followed the same 

temporal structure - fixation epoch (1000 ms), stimulus presentation (2000 ms), 

and the response epoch (self-paced, up to 2000 ms). During the response epoch, 

subjects were asked to indicate (using button press) whether the presented 

stimulus is identical to one of the stimuli from the encoding block (Old) or not 

(New). The subjects were instructed that a similar but not identical stimuli 

should also been responded as a New stimuli.  
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Three types of stimuli were presented during the discrimination block (Fig. 

1A): Repeat - the stimulus identical to one of the stimuli from encoding trials (n = 

54), Lure - a stimulus similar to the one previously seen, but not identical (n = 97) 

and Novel - a stimulus with no similarity to any of the previously presented 

stimuli (n = 139).  

Statistics 

  For the group level analyses, the linear mixed-effect model (LME) was 

implemented, in the form of 𝑦 = 𝛽𝑋 + 𝑢𝑍 + 𝜀, with y denoting the response on 

individual trial , 𝑋 = [𝑥!, 𝑥", … , 𝑥H]$ denoting K task variables of interest, 𝑍 =

[𝑧!, 𝑧", … , 𝑧I]$denoting L group variables, β denoting the fixed-effect 

coefficients, u denoting the random-effect coefficients, and ε denoting the 

random noise. Subject identity was the grouping variable.  

      Behavioral Analyses 

The correct rate were first calculated as the portion of correctly responded trials 

over all trials per condition (P(Old|Repeat), P(New|Lure), P(New|Novel)). We 

then compared the correct rate difference between task conditions using paired t-

test (Fig. 3.1C).  

      Data collection 
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      The behavioral task was administered using PsychoPy2 (Version 1.82.01) 

software2 installed on an Apple MacBook Pro. The task laptop was placed in 

front of the patient at a comfortable distance. The intracranial EEG (iEEG) signal 

was digitized and recorded using a Nihon Kohden acquisition system (256 

channel amplifier, model JE120A), with an analog highpass filter (0.01 Hz cut-off) 

and sampling frequency of 5000 Hz.   

      Electrode localization 

      Pre-implantation structural T1-weighted MRI (pre-MRI) and post-

implantation MRI (post-MRI) or CT (post-CT) scans were used for electrode 

localization. The pre-MRI and post-MRI (or post-CT) were co-registered with 

translations and rotations in x, y and z directions, using Advanced 

Normalization Tools (ANTs; https://stnava.github.io/ANTs/). A high-

resolution anatomical template with the labels of medial temporal lobe subfields 

was used to guide the localization of individual electrodes. The template was 

resampled with 1 mm isotropic and aligned to pre-MRI using ANTs Symmetric 

Normalization, producing a subject-specific template. The electrode locations 

were identified by comparing the subject-specific template subfield areas with 

electrode artifacts. The localization results were reviewed by the neurologist 

(J.J.L.). For the visual illustration, we collected the electrode coordinates in the 

MNI space across all the subjects and rendered on the Colin27 template brain 

(Lever et al. 2009). 
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      Preprocessing 

      All the analysis was performed using the custom-written MATLAB code 

(Version 9.7) or FieldTrip Toolbox 3. The digitized EEG signal was down-

sampled to 2000 Hz, demeaned and high-passed filtered (0.3 Hz). The power 

spectrum density (PSD) of the signal was computed using the multitaper method 

with the Hanning window (ft_freqanalysis.m function in FieldTrip). The 60 Hz 

line noise and its harmonics were removed using a FIR bandpass filter 

(ft_preprocessing.m function in FieldTrip). The signal from each channel was re-

referenced by subtracting the signal from the nearest white matter channel on the 

same depth electrode. The epileptiform discharges were manually marked by an 

epileptologist (J.J.L.; ft_databrowser.m function in FieldTrip). The channels with 

severe line noise contamination and trials containing epileptiform discharges 

were excluded from further analyses.   

       Unsupervised decomposition of intracranial EEG 

      Ensemble empirical mode decomposition (EEMD) was applied to decompose 

the iEEG signal into distinct modes (EEMD MATLAB package; 

https://github.com/leeneil/eemd-matlab.git). The EEMD procedure consists of 

breaking down a non-stationary signal into elementary components, referred to 

as intrinsic mode functions (IMFs; Fig. S1; Oostenveld et al., 2011). The EEMD 

algorithm is iteratively applied with n=100, while adding white noise to prevent 

mode mixing (Oostenveld et al., 2011; Ray and Maunsell 2011). Such 
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decomposition solely depends on the signal's intrinsic properties, without prior 

assumptions on the mode structure (Oostenveld et al., 2011; Ray and Maunsell 

2011; Lopes-dos-Santos et al., 2018). The resulting IMFs consistently capture 

several canonical spectral features across all recorded anatomical structures, with 

center frequencies in delta (IMF1, 1.5 Hz), theta (IMF2, 2.5 Hz), alpha (IMF3, 8 

Hz), beta (IMF4, 20 Hz), gamma (IMF5, 57.5 Hz) and high-gamma range (IMF6, 

159.5 Hz), as well as noise term (IMF7) with frequency > 300 Hz, and ultra-slow 

component with center frequencies < 0.5 Hz (Fig. S1). The gamma range activity 

was then reconstructed by summing the IMFs with center frequencies in the 30 - 

300 Hz range. This procedure avoids the contamination of gamma activity by 

low-frequency harmonic artifacts structure (Oostenveld et al., 2011; Lopes-dos-

Santos et al., 2018). 

      Time-frequency representation  

      The instantaneous spectral power at each time bin was derived from the 

reconstructed gamma time series using ‘Superlet’ transformation, which is a 

wavelet-based approach (Bârzan, 2020; Moca et al., 2021), resulting in a trial-

specific time-frequency matrix (Fig. S1). Specifically, the reconstructed iEEG time 

series was convolved with a set of Morlet wavelets,  
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parametrized by a range of cycle numbers (n = 2, 3,…, 10) at a given frequency f, 

and the geometric mean was computed for individual time-frequency bins.  

𝑃G(𝑓, 𝑡) = ij𝑃%,'(𝑡)
!-

'."

#

 

This approach facilitates the detection of transient oscillations in narrow 

frequency bands (Bârzan, 2020; Moca et al., 2021).The wavelet center frequencies 

used were in a range 30 - 280 Hz, with 1 Hz step size. The cycle number range of 

2-10 was based on the previous literature9. To avoid the edge effects, the 

procedure was applied on the entire recording, followed by segmentation of the 

resulting matrix into trial epochs (starting 1000 ms prior and ending 2000 ms 

after the stimulus presentation onset). Finally, the power in each individual 

frequency was normalized at the individual trial level by z-transformation and 

correction for average pre-trial baseline power (-1000 - 0 ms, relative to stimulus 

onset)9.  

      Representational Similarity Analysis 

      To quantify the representational similarity (Lohnas et al., 2018; Norman et 

al., 2019; Yaffe et al., 2014; Zhang et al., 2018) between the stimulus encoding and 

discrimination trials, the instantaneous spectral power was first binned into a 200 

ms time windows, with 40 ms (80% overlap). The Spearman’s correlation was 
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computed as a measure of similarity between the two power spectral vectors 

(PSVs) for encoding and discrimination trials I and J, respectively 

𝑃𝑆𝑉LLLLLLLL⃗ /'0123'4,J(𝑡!) = N𝑧!(𝑡!), … , 𝑧'$(𝑡!)O/'0123'4,J
 

𝑃𝑆𝑉LLLLLLLL⃗ 236053?3'K)31',L(𝑡") = N𝑧!(𝑡"), … , 𝑧'$(𝑡")O236053?3'K)31',L
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𝜎54/01222222222⃗ %"&'()"*,8(5+)
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					 , 𝑡!, 𝑡" ∈ [0,2]	𝑠𝑒𝑐 

, with 𝑟𝑔 denoting the vector ranking operator, and 𝜎 denoting the vector 

variance. This procedure generated a two-dimensional representational 

similarity map for each stimuli pair, spanning the entire encoding and 

discrimination trial (Fig. S2). Next, the Spearman correlation coefficients were z-

transformed using Fisher transformation. 

      The stimulus-specificity of neural representations on Repeat trials (Fig. 3.2A; 

Fig. S2) was tested by comparing the representational similarities of the repeated 

presentations of the same stimuli (Same), with the randomly paired stimuli 

(Different), using one-tailed paired t-test (Fig. 3.2A; Fig. S2). The representational 

similarity matrices at individual electrode level were averaged over conditions, 

followed by averaging at the subject level and statistical testing at the group level 

(one-tail t-test; p < 0.05). Correction for multiple comparisons was done using a 

non-parametric cluster-based permutation (Maris and Oostenveld, 2007), with 
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random shuffling of stimulus identity (n = 1000 permutations). The analyses 

were performed separately for each ROI (amygdala, hippocampus, peri-

hippocampal structure).  

      The representational similarity of the Lure encoding-discrimination trial pairs 

(Fig. 1A) was compared using the same procedure, except that the comparisons 

were made between the presentation of highly similar Target-Lure pairs (Similar) 

and randomly paired Target-Lure pairs (Different).  

       State-space analysis 

      State-space analysis was performed on encoding-discrimination Lure trial 

pairs (Fig. 1A). We designed an algorithm to predict the neural representation at 

each time point during the discrimination trial, by investigating its 

corresponding stimulus-specific memory representation during encoding trial. 

The window of unique memory representation (encoding window) was defined 

based on the peak times of stimulus-specific representational similarity across 

the Repeat trial pairs from all subjects (0.95 ± 0.51 sec; median ± SD; Fig. S3). The 

rationale for defining the encoding window based on the pooled trials was to use 

the fixed window width across subjects. Next, the PSVs from the encoding 

window (1000 ms), pre-discrimination trial baseline (1000 ms; cross-fixation) and 

discrimination trial (2000 ms) were concatenated for each encoding-

discrimination trial pair (Fig. S4B). The pre-discrimination trial baseline was used 

to control for the possibility that representational distance between the encoding 
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and discrimination trials is attributable to change in temporal context (Howard 

and Kahana, 2002; Polyn et al., 2009; Folkerts et al., 2018). Next, the principal 

component analysis (PCA) was performed on concatenated TFR and the 

resulting vector was projected into a low-dimensional space. Consistent with 

previous studies, the dimensionality of the principal component space is 

determined by the equation 

𝐷 =
S∑ 𝜆3

M$
3.! U
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∑ 𝜆3"
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, where 𝜆3 is the i-th eigenvalue from singular value decomposition (SVD). 

Theoretically, the resulting dimensionality covers the large proportion of 

variance (>80%) in the high dimensional space. So that each data point were 

projected into a stimulus-specific D-dimensional subspace (Fig. S4C).   

A k-nearest-neighbor (k-NN) algorithm was used to classify each discrimination 

time point into one of the two sub-states (Encoding, Baseline) using data point 

during encoding trial and pre-discrimination baseline trial as training samples. 

Next, the states that were outside of the assigned state boundary (as defined by 

the 95th percentile) were classified as Outside states (Fig. S4C). Specifically, we 

calculated an within-category pairwise distance distribution for each encoding 

data point. The 95th percentile of the distance distribution was then identified as a 

radius to draw the boundary corresponding to one encoding data point (Fig. 

S4D). The combination of the boundaries defined by each encoding data point 
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constructed an enclosed area surrounding the encoding data points. The same 

procedure was used to draw the boundary defined by pre-discrimination 

baseline data points (Fig. S4C). As a result, the designed algorithm identified 

each discrimination time point into three possible sub-states (Encoding, Baseline 

and Outside).  

      The state-space velocity was defined as the Euclidean distance between the 

PC vectors at neighboring time-points. The state-space transitions are defined as 

the timepoints of transition between any of the sub-states (T0; Fig. 3.4D). The 

transition-locked state-space velocity was calculated by averaging the velocity 

during the time-windows centered at T0. To assess the velocity changes at state 

transitions, the average velocity locked to the state transitions (encoding to 

outside and opposite direction +/- 250 ms). To assess the statistical significance 

of higher velocity at state transition points, we performed a Monte Carlo 

simulation to generate an empirical null distribution by circularly shifting 

transition time points with n=1000 times. The velocity significance was defined 

as exceeding the 95% percentile of null distribution.  

      Transition probability analysis 

      To assess the sub-state transition dynamic between sub-states (Encoding, 

Baseline and Outside), the transition probability was computed at individual 

trial level, for each sub-state combination and direction. P was defined as the 

instance of unidictional transition between two states over all possible transition 
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time points duing one trial . Next, the transition probabilities were compared 

between the trials with different behavioral outcomes (CR and FA), using the 

linear mixed effect model (Fig. 3.4E). Correction for multiple comparisons was 

performed using Bonferroni method, based on the number of state 

combinations.  

      Expansion recoding analysis 

      Expansion recoding is defined as the increase in signal dimensionality during 

input propagation through a neural network. Signal dimensionality was 

computed by performing the PCA on the TFR (Fig. 3.5), followed by singular 

value decomposition (SVD) and evaluating the dimensionality using the 

following equation. 

𝐷 =
S∑ 𝜆3
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 Signal dimensionality was computed starting from the time window including 

the Encoding and Baseline periods (2 sec), increasing the window size at 50 ms 

increments, until covering the entire Encoding, Baseline and Discrimination 

windows (4 sec). Dimensionality during discrimination trials was compared 

between the conditions (CR and LA; Fig. 3.5B). Dimensionality expansion was 

defined as the first derivative of dimensionality trace (Fig. 3.5B). Dimensionality 

expansion was compared for the discrimination trial time windows before and 
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after the center of significant representational similarity cluster (Fig. 3.5C), 

separately for hippocampal subfields (DG/CA3 and CA1) and behavioral 

outcomes (CR and LA).  

      Non-parametric cluster-based permutation  

When applying a statistical test multiple times, it may falsely provide positive 

results, and any of its false positives may result in a false conclusion of the 

overall hypothesis. To address this issue, we applied a cluster-based permutation 

test (Maris and Oostenveld, 2007). For the RSA, stimulus identity were randomly 

permuted 1000 times (Same Fig. 3.2 and Fig. 3.3). For each permutation, the 

representational similarity was computed and contiguous encoding-

discrimination temporal windows with P < 0.05 were identified as individual 

clusters. Within each cluster, the t-value was summed (cluster-specific t-sum) 

and the maximum t-sum was obtained for permutation. This resulted in an 

empirical null distribution, and the true cluster statistics were compared against 

the 95% percentile of the null distribution for testing the statistical significance. 

3.4 Results     

3.4.1 Task Paradigm and Behavior Result 

      To investigate the neural dynamics underlying pattern separation, we 

employed a emotional memory encoding and discrimination task (EMOP; Fig. 

3.1a, Leal et al., 2014; Zheng et al., 2019), while recording intracranial 
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electroencephalogram (iEEG; Fig. 3.1b) in the amygdala (n = 23), hippocampus (n 

= 21), and peri-hippocampal areas (n = 19; including parahippocampal, 

perirhinal, and entorhinal cortex) in 8 pre-surgical patients with epilepsy (3 

females, see Table S1 for detailed demographics). During encoding trials, stimuli 

were presented on a computer screen for 2 s. Next, the subjects were instructed 

to classify the stimulus valence as negative, neutral, or positive. During 

discrimination trials, subjects were presented with three types of stimuli, 

classified based on the relation to encoded stimuli: 1) Repeats - stimuli identical 

to one of the encoded stimuli, 2) Lures - stimuli highly similar, but not identical 

to one of the encoded stimuli and 3) Novel - an entirely new stimulus, not similar 

to any of the encoded stimuli. Subjects were instructed to classify the stimulus as 

‘Old’ or ‘New’, depending if the stimulus was perceived as one of the stimuli 

presented during encoding or not. Subjects performed the task with a high 

accuracy, classifying Novel stimuli as New (94%, P(New|Novel) = 0.94 ± 0.01; 

Fig. 3.1c) and Repeat stimuli as Old (90%, P(Old|Repeat) = 0.90 ± 0.02). As 

expected, the discrimination accuracy for Lure stimuli was lower than for Novel 

or Repeat stimuli (61%, P(New|Lure) = 0.61 ± 0.03; pNovel vs Lure < 0.001, t = 8.36; 
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pRepeat vs Lure < 0.001, t = 6.13, paired t-test), suggesting memory interference 

between similar stimuli. 

 

 
Fig. 3.1. Behavioral task and electrode localization. 
 a, Schematic task design. During the Encoding trials, the subjects were asked to rate the 
valence of the presented stimuli (Targets) as negative, neutral, or positive. b, During the 
discrimination phase, three types of stimuli were presented:  Repeat - a stimulus identical to 
one of the previously presented Target stimuli; Lure - a stimulus partially overlapping with 
the one of Target stimuli; and Novel - a stimulus without similarity to any of the Target 
stimuli. The subjects were instructed to discriminate whether the presented stimulus 
(Repeat, Lure or Novel) was identical as one of the Target stimuli (Old) or different from 
any of the Target stimuli (New). c, Discrimination accuracy (%) for Novel, Repeat, and Lure 
stimuli (N = 8 subjects, median ± SEM). Discrimination accuracy was high for Novel (94.5 ± 
1.3%, Novel recognized as New) and Repeat stimuli (89.6 ± 2.1%, Repeat recognized as Old). 
The performance was lower for Lure stimuli (61.0 ± 3.3%, Lure recognized as New), 
reflecting the memory interference. d, Intracranial depth electrode locations across all the 
subjects. The iEEG signal was simultaneously recorded in three ROIs:  hippocampus (blue, 
n=21),  amygdala (red, n=23), and  peri-hippocampal regions (yellow, n=19), including the 
entorhinal cortex (EC), parahippocampal cortex (PHC) and perirhinal cortex (PRC). 
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3.4.2 Stimulus-specific memory representation in the hippocampus  

      The iEEG signal was parsed into distinct frequency bands (intrinsic mode 

functions; IMFs), using ensemble empirical mode decomposition (EEMD; Wu 

and Huang, 2009; Lopes-dos-Santos et al., 2018; Fig. S1, see APPENDIX B). The 

EEMD is a data-driven unsupervised approach, particularly suited for 

segregating signals from nonlinear and non-stationary time series, such as the 

iEEG (see Methods). The IMFs with center frequencies within gamma range (30 - 

300 Hz) were extracted following the EEMD, due to the high correlation of 

gamma power with spiking activity (Ray and Maunsell, 2011) and hippocampal 

memory representations (Staresina et al., 2016.; Pacheco et al., 2019). The gamma IMF 

time series were summed and the resulting signal was spectrally decomposed 

using ‘Superlet’ transform, resulting in individual trial time-frequency matrices 

(see Unsupervised decomposition of intracranial EEG, Methods). Next, the 

representational similarity analysis (RSA, Kriegeskorte et al., 2008; McKenzie et 

al., 2014; Nili et al., 2014) was applied to quantify the similarity between the 

neural activity patterns at encoding and discrimination trials for identical stimuli 

(Repeats; e.g. Aenc and Aret). Representational similarity was defined as the 

Spearman correlation of spectral power vectors for all encoding and 

discrimination trial time bin combinations, producing a unique representational 

similarity matrix for each encoding-discrimination stimulus pair (Fig. S2, see 

APPENDIX B).  
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     The necessary prerequisite for studying the dynamics of pattern separation is 

the ability to identify unique stimulus representations in the hippocampus. We 

defined the unique stimulus representation as the higher encoding-

discrimination representational similarity for the repetitions of the same stimuli 

(Same) than for encoding-discrimination trial pairs of randomly paired different 

stimuli (Diff). The representational similarity was quantified by correlating the 

neural activity during encoding (Enc) and discrimination (Ret) trials, for identical 

stimuli (RSASame; e.g. stimuli AEnc and ARet,) or different stimuli (RSADiff; e.g. AEnc 

and BRet). Indeed, the RSA revealed a stimulus-specific representation in the 

hippocampus (RSASame >  RSADiff; p = 0.028, nonparametric cluster-based 

permutation test, 1000 permutations, Fig. 3.2a). In contrast, there was no 

stimulus-specific representation in the amygdala and peri-hippocampus, 

reflected by no significant difference between the RSASame and RSADiff in those 

regions (p > 0.05, nonparametric cluster-based permutation test, 1000 

permutations; Fig. 3.2a). To assess if the RSA difference in hippocampus is 

driven by increased similarity of the Repeat pairs or decreased similarity of 

Different pairs, we compared the representational similarity of these trial groups 

during the significant temporal similarity cluster (Fig. 3.2a, enclosed by black 

line). The average hippocampal representational similarity within the significant 

temporal window in the hippocampus was higher for the Same trial pairs than 

for Different trial pairs (p < 0.005, one-tailed paired t-test; Fig. 3.2b). There was 

no significant difference in either amygdala or parahippocampus (p > 0.05, one-

tailed paired t-test; Fig. 3.2b). Overall, these results confirm the previous 
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theoretical and empirical notions of unique memory representations in the 

hippocampus (Marr, 1971; Treves, 1992; O'Reilly, 1994; McNaughton et al., 1987; 

Guzowski et al., 2004; Moser and Buzsaki, 2013; Lohnas et al., 2018; Pacheco-

Esteban et al., 2019; Popham et al., 2021; Gelbard-Sagiv et al., 2008) and validate 

the approach for identifying those representations.  

 

Fig. 3.2. Stimulus-specific neural representation in the hippocampus.  
a, Regional t-maps showing the similarity between the multiple presentations of the same 
stimuli (Repeats). The temporal window of significant stimulus-specific neural representation in 
the hippocampus (left) is encircled by black line (p=0.028, nonparametric cluster-based 
permutation test, Same > Different). There was no significant stimulus-specific representation in 
the amygdala (middle) or peri-hippocampus (right), suggesting the hippocampus as the 
location of unique memory representations. b, The average representational similarity during a 
significant temporal window shown in A is significantly higher for the Same-pair trials, relative 
to Different-pair trials (p=0.003, t(6)=4.126, one side paired t-test) and the difference is 
consistent across the individual subjects (color coded). There was no significant difference 
during the same temporal window in the amygdala (middle, p=0.85, t(6)=-1.17, one side paired 
t-test) or peri-hippocampus (right, p=0.9574, t(6)=-2.27, one side paired t-test). 
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3.4.3 Stimulus-specific neural representation in the hippocampus predicts 

successful or failed discrimination 

      The peak stimulus-specific representational similarity was highest between 

the 0.95 ± 0.51 (mean +/- SD) sec during encoding and 1.05 ± 0.50 sec during 

discrimination (Fig. S3, see APPENDIX B). Next, we hypothesized that during 

Lure trials (Fig. 3.1b), the degree of representational similarity in the 

hippocampus will predict the behavioral outcome, i.e. whether the Lure item is 

correctly classified as New or misclassified as Old. Based on this prediction, the 

stimuluss representation during the failed discrimination trials (FA) would show 

higher similarity to respective encoding trials, compared to stimulus 

representation on correct discrimination trials (CR). This would reflect the 

reinstatement of the originally encoded stimulus, triggered by the presentation of 

the Lure stimulus on the FA trials. In contrast, lower representational similarity 

on CR trials would reflect decorrelation of Lure stimulus sensory input from the 

original stimulus representation. These two dynamical patterns are consistent 

with the pattern completion and pattern separation mechanisms, respectively. 

The dentate gyrus (DG) has been implicated in transformation of similar cortical 

inputs into distinct memory representations. Therefore we predicted that neural 

activity patterns in DG/CA3, but not in CA1 hippocampal subfield, will show 

decorrelated patterns for correctly discriminated (CR), compared to incorrectly 

discriminated (FA) Lure stimuli.  



 
 

70 

      To test these hypotheses, we first quantified representational similarity 

between the similar and different stimulus pairs in Lure trials. When subjects 

misclassified Lure images as Old (FA), the DG/CA3 representational similarity 

was significantly higher for the pairs of similar, relative to unrelated stimuli 

(RSASimilar > RSADifferent; p = 0.042; nonparametric cluster-based permutation test, 

1000 permutations). The temporal cluster of significant difference spans 0.7 - 1.3 s 

following the encoding onset and 0.8 - 1.1 s following the discrimination onset 

(Fig. 3.3a). This result suggests that the failure of mnemonic discrimination of 

highly similar stimuli is associated with significant representational similarity. In 

contrast, there was no significant representational similarity between the similar 

stimuli that were correctly perceived as different (CR condition; p > 0.05; 

nonparametric cluster-based permutation test, 1000 permutations). This 

dissociation was selective for the DG/CA3, as there was no significant 

representational similarity between the similar items in the amygdala or 

parahippocampus, regardless of the correct stimulus discrimination (p > 0.05; 

nonparametric cluster-based permutation test; Fig. 3.3b, S1). Thus, the presence 

of correlated neural representation in DG/CA3 predicts the false recognition of 

the Lure item as identical (FA). Additionally, the timing of this representational 

similarity during the encoding is strikingly similar to the timing of stimulus-

specific representation in repeated stimuli, suggesting that during lure false 

alarm, the DG/CA3 network erroneously reinstates the representation of a 

similar but non-overlapping stimulus, resulting in the lack of discrimination 

between those stimuli (Fig. S2). The average correlation coefficient of same-pair 



 
 

71 

and different-pair within tROI during FA and CR in the hippocampus across all 

the subjects. The same-pair correlation was significantly higher than different-

pair during FA. The same pair correlation during CR was significantly lower 

than during FA. Moreover, the neural representation during FA is more similar 

than during CR with its encoded stimulus (p = 0.023, paired t-test; Fig. 3C).  

 

Fig. 3.3 Representational similarity to encoding trial predicts the correct discrimination of 
Lure stimuli.  
a, Schematic view of Correct rejection (CR) trial and False alarm (FA) trial. b, T-value maps for 
the FA (Lure stimuli misclassified as Old, left) and CR condition (Lure stimuli correctly 
classified as Old, right), in the hippocampus, amygdala and parahippocampus. Significant 
representational similarity was present in the hippocampus during FA trials (p = 0.042, 
nonparametric cluster-based permutation test, encircled in black), suggesting the pattern 
completion as a neural mechanism underlying the misclassification of Lure stimuli as Old.  
c, Average hippocampal representational similarity (Spearman r) during the significant 
representational similarity window (encircled black in A). The colored lines represent 
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individual subjects. The Same-pair representational similarity was significantly higher during 
FA trials than Different-pair similarity (p=0.002, t(6)=4.517, one side paired t-test). There was no 
difference between the Same- and Different-pair similarity during CR trials (p=0.32, t(6)=0.50, 
one side paired t-test), while the Same-pair representational similarity was significantly lower 
during CR, relative to FA trials (p=0.007, t(6)=3.356, one side paired t-test), suggesting the 
pattern separation as a mechanism enabling the correct discrimination of highly similar Lure 
stimuli. 
 

3.4.4 Subsecond network dynamics predicts the discrimination of highly 

similar stimuli 

      Pattern separation is a neural computation hypothesized to decrease memory 

interference by increasing the representational distance between the highly 

similar memories (O’Reilly and McClelland, 1994; Leutgeb et al., 2007; Favilla et 

al., 2016). Based on the notion of attractor-like organization of memory 

representations in the hippocampus (Hopfield et al., 1982; Morris and 

McNaughton, 1987), we predicted that the successful pattern separation would 

result in the formation of a distinct memory representation of a Lure stimulus. To 

test this hypothesis, we projected the neural spectral patterns from encoding and 

discrimination trials into a common low-dimensional state-space for each Target-

Lure stimulus pair, using principal component analysis (Fig. 3.4a, b; Methods). 

Next, the k-nearest neighbor (k-NN) algorithm was applied to classify the 

discrimination trial time points as either: 1) Encoding state - within the 

neighborhood of the stimulus-specific encoding states, 2) Baseline state - the state 

within the neighborhood of the pre-trial baseline states, or 3) Outside state - the 

state outside either the Encoding or Baseline states (Fig. 3.4b). The average 

amount of time classified as Encoding state was significantly higher during FA 
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compared to CR discrimination trials, both in DG/CA3 and CA1 subfields 

(pDG/CA3 = 0.040, pCA1 = 0.019, paired t-test; Fig. 3.4c). The difference in the 

Encoding state visitation was reflected in the longer visitation to Outside state on 

CR trials in DG/CA3, but not in CA1 (pDG/CA3 = 0.003, pCA1 > 0.05, paired t-test; 

Fig. 3.4c). These results suggest that the state trajectory moving outside the 

neighborhood of previously encoded Target stimulus facilitates successful 

pattern separation. This result was consistent across the individual subjects (Fig. 

3.4c). As expected, there were no conditional differences in the Baseline state 

visitation in either subfield (p > 0.05, paired t-test). These results further support 

the role of DG/CA3 in decreasing memory interference by pattern separation. 

Moreover, the flickering pattern of transition between the states is reminiscent of 

fast transitions between the competing hippocampal spatial maps in rodents 

(Jackson and Redish, 2007; Jezek et al., 2011). 

      Theoretical and empirical literature suggests that the hippocampal memory 

representations are organized as discrete attractors (Hopfield et al., 1982; Morris 

and McNaughton, 1987; Wills et al., 2005; Leutgeb et al., 2007; Jezek et al., 2011). 

If the Encoding and Outside sub-states represent distinct entities, they would be 

separated in the state-space, rather than a smooth transition. To test this 

hypothesis, we computed the velocity of state-space trajectory centered at the 

transitions between the Encoding and Outside sub-states (in either direction). 

State-space velocity is significantly higher at state transitions, relative to velocity 

null-distribution obtained by randomly shuffling the state identity (p < 0.05, see 
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Method ’State-space analyses’ , Fig. 3.4d), consistent with the presence of distinct 

spatially-separated sub-states.  

      We hypothesized that the Lure stimulus presentation initially triggers the 

reinstatement of Target stimulus representation (Encoding state), followed by the 

later transition to Outside state. The prediction of such a dynamics is that the 

Encoding→Outside transition predicts the successful pattern separation. To test 

this hypothesis, we compared all the combinations of bidirectional state 

transitions between the CR and FA trials. Probability of Encoding→Outside 

transition was significantly higher during CR trials, compared to FA trials in 

DG/CA3, but not in CA1 hippocampal subfield (p=0.006, mixed-effect model, 

Fig. 3.4e). The transition probability difference was significant during the later 

part of the trial (~1-1.5 sec following the trial onset; p<0.001, nonparametric 

cluster-based permutation test, Fig. 3.4f), consistent with the initial retrieval of 

Encoding state, followed by the later transition into Outside state, associated 

with correct discrimination of similar stimuli (CR).  
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Fig. 3.4 Neural state-space dynamics in the hippocampus during Lure discrimination trials. 
Encoding state (0.5-1.5 s of the encoding trial) contains the stimulus-specific representation. 
Baseline state (pre-trial baseline on discrimination trial) is used to control for difference in 
temporal context. Neural activity during discrimination trials was classified as either Encoding 
or Baseline, using a k-nearest neighbour (k-NN) algorithm. Next, the time bins outside of 
Encoding or Baseline state radius (Methods) were classified as Outside state.  
a, A state-space dynamics on an example FA (left ) and CR (right) trials. Neural activity is 
projected into a common state-space (only the first three principal components are shown). The 
red and green manifolds represent the Encoding and Baseline state, respectively. The black line 
denotes a state-space trajectory. b, The linearized state-space trajectories from the example Lure 
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discrimination trials shown in (A). The state color coding is the same. Trajectory in the FA trials 
starts from Baseline state, transitions to Encoding state and mostly remains within the Encoding 
state for the rest of the trial. Similarly, the trajectory during CR trials starts from the Baseline 
state and transitions to the Encoding state, but later tends to settle in the Outside state. This 
dynamics is suggestive of pattern separation and predicts the correct discrimination. c, The total 
duration of state visitations for DG/CA3 (top) and CA1 (bottom) state-space trajectories, during 
CR and FA trials. Colored lines indicate individual electrodes and the gray lines indicate mean 
± SEM. Both DG/CA3 and CA1 neural trajectory visits more Encoding state during FA trials 
(pDG/CA3 = 0.040, pCA1 = 0.019, paired t-test;). Only DG/CA3 activity spends more time in 
Outside state during the CR trials.(pDG/CA3 = 0.003, pCA1 > 0.05, paired t-test;) d, State-space 
trajectory velocity abruptly increases at the state transitions, suggesting the large 
representational distance between the states, consistent with attractor-like organization of 
stimulus representations. Dashed line represents the velocity null-distribution, obtained by 
shuffling the temporal structure. e, Comparison of state transition probabilities between the CR 
and FA trials, for DG/CA3 (top) and CA1 (bottom). The arrow color and thickness depict the t 
and p-value (1 - p). Encoding to Outside transition probability is significantly higher on CR, 
relative to FA trials (p=0.006, mixed-effect model). f, Significantly higher transition probability 
from Encoding to Outside state is present during later part of CR discrimination trials (1.3 - 1.5 
sec), relative to FA discrimination trials (p<0.001, nonparametric cluster-based permutation 
test). This suggests that the Lure stimulus presentation triggers the retrieval of encoded Target 
stimulus (Encoding state), followed by transition to Outside state on CR trials. Such an outcome 
leads to pattern separation and correct discrimination between highly similar stimuli. On the 
FA trials, the lack of transition to Outside state results in pattern completion and failure to 
discriminate between highly similar stimuli. However, such phenomena is not observed in CA1 
(p=0.11, nonparametric cluster-based permutation test). 
 

 

      Expansion recoding predicts behavioral outcome 

      One of the hypothesized mechanisms of pattern separation is expansion 

recoding, defined as the increase in number of neurons representing a given 

memory between the hippocampal layers DG and CA3 (Marr 1971; Cayco-Gajic 

and Silver, 2019). Expansion recoding is predicted to increase the dimensionality 

of neural representations (Treves and Rolls 1994; Cayco-Gajic and Silver, 2019). 

To test this hypothesis, we quantified the dimensionality of neural signal during 

discrimination trials (Methods). The signal dimensionality increased early during 

discrimination trials, regardless of the behavioral outcome (Fig. 3.5A). 
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Dimensionality increase was continued throughout the CR trials, defined by the 

successful discrimination of highly similar stimuli. During FA trials, defined by 

the failed discrimination, dimensionality asymptoted ~1 sec following the trial 

onset. The slowing of dimensionality increase coincided with the temporal 

window of significant Target-Lure representational similarity on FA trials (Fig. 

3.5a), indicated by an abrupt dimensionality increase drop (Fig. 3.5b). This is 

reflected by the significantly faster dimensionality increase on CR trials, 1600-

1800 msec following the trial onset (p = 0.008, nonparametric cluster-based 

permutation test; Fig. 3.5b). To quantify the possible effect of representational 

similarity on dimensionality, we compared the dimensionality increase prior and 

after the representational similarity peak (Fig. 3.5a, dashed vertical line). 

Dimensionality increase during FA trials was significantly smaller after the 

representational similarity peak (p = 0.002, t(3) = 5.06, paired t-test, Fig. 3.5c left), 

suggesting that both measures might be reflecting the same underlying process, 

resulting in pattern completion and failure to discriminate the similar stimuli. 

This dynamics is consistent with the model whereby the dimensionality of Lure 

stimulus sensory information is increasing during propagation through the 

DG/CA3 network, due to divergent nature of network projections (Witter 1993). 

During FA trials, this activity triggers reinstatement of previously encoded 

Target stimulus representation, resulting in pattern completion, which stabilizes 

the activity within the Target stimulus attractor and attenuates the further 

dimensionality increase. On the CR trials, dimensionality keeps increasing, 
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resulting in the pattern separation and correct discrimination of Lure stimulus 

from the highly similar, previously encoded Target stimulus.         

 

Fig. 3.5. Expansion recoding in DG/CA3 predicts the correct discrimination of highly similar 
stimuli.  
a, The dimensionality of DG/CA3 neural activity during Lure discrimination trials (mean +/- 
SEM), superimposed on the representational similarity matrices from the same trials (Fig. 3B). 
FA trials (top): dimensionality asymptotes during and after the significant representational 
similarity window. CR trials (bottom): dimensionality increases throughout the discrimination 
trial. Dashed line - peak similarity timepoint. b, Dimensionality expansion (first derivative of 
dimensionality trace) is significantly higher on CR, compared to FA trials (p = 0.008 , 
nonparametric cluster-based permutation test). c, Dimensionality expansion is significantly 
lower after the similarity peak on FA trials, but not different on CR trials (FA: p = 0.002, t(3) = 
5.06; CR: p = 0.344, t(3) = 1.027, paired t-test). 
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3.5 Discussion 

      In the present study, we demonstrate the behaviorally relevant, sub-second 

pattern completion/separation dynamics in the human hippocampus. The 

behavioral relevance is reflected by the association between correct 

discrimination of highly similar stimuli (Target/Lure pairs) and degree of 

representational distance, neural state-space trajectory and representation 

dimensionality increase during discrimination trials. The observed dynamics is 

consistent with remapping as the reflection of underlying perceptual state 

(Sanders et al., 2020; Kubie et al., 2019; Fenton and Kelemen, 2016) and expansion 

recoding as a mechanism underlying pattern separation (Cayco-Gajic and Silver, 

2019).  

      Pattern separation is defined as an input processing that results in increased 

representational distance between the non-simultaneously presented similar 

stimuli (Santoro, 2013; Madar et al., 2019). The opposite process, pattern 

completion, is defined as the reinstatement of previously encoded 

representation, following the presentation of an overlapping input (Hebb 1949; 

Treves and Rolls, 1994). Therefore, the demonstration of stimulus-specific 

representation in the human hippocampus is a necessary prerequisite for 

studying the pattern separation/completion dynamics. For this purpose, we 

demonstrated the presence of stimulus-specific hippocampal representation as 

the higher similarity between the multiple presentations of the same stimuli, 

relative to representations of randomly paired stimuli. The stimuli-specific 
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activity occurs ~1 sec following the stimuli onsets, suggesting the relatively long 

input processing in the hippocampal network, consistent with previous findings 

(Staresina et al., 2016). This finding aligns with previous reports based on fMRI, 

iEEG and single unit recordings (Lohnas et al., 2018; Gao et al., 2021; Gelbard-

Sagiv et al., 2008, but see Pacheco-Esteban et al., 2019).  

      Pattern completion prevents mnemonic discrimination 

      Pattern completion is a process whereby the sensory input overlapping with 

previously encoded memory triggers memory reinstatement (Yassa and Stark, 

2011). Extensively studied animal model of pattern completion consists of the 

exposure to environments with different degrees of similarity. This research 

suggests that the balance between the pattern completion/separation might 

reflect the animal’s perception of the environment novelty (Miller and Sahay, 

2019). By analogy, we hypothesized that the balance between the pattern 

completion/separation in the human hippocampus underlies mnemonic 

discrimination - ability to perceive the stimulus novelty, despite the high 

similarity to previously encoded stimulus. This hypothesis was tested by 

collecting the subjective perceptual report from human subjects, while recording 

the iEEG from temporal lobe structures, including the individual hippocampal 

subfields critical for pattern separation/completion. The misclassification of a 

new stimulus as previously experienced (false alarm - FA) is associated with 

significantly high representational similarity between the Target/Lure stimulus 

presentations (Fig 3.3a). Thus, the retrieval of previously encoded similar 
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stimulus representation, likely reflecting the pattern completion, is predictive of 

behavioral outcome - the conflation of two similar stimuli as identical. On the 

contrary, the Target/Lure representational similarity was not different from the 

randomly paired stimuli when the Lure stimulus was correctly perceived as 

novel (Fig. 3.3a). This suggests that the discrimination of similar stimuli is driven 

by the pattern separation, process of increasing the representational distance, 

consistent with hippocampal remapping. Behaviorally-relevant representational 

difference was present in the hippocampus, but not in other temporal lobe 

structures, consistent with hippocampal role in pattern completion/separation. 

These findings support the notion that hippocampal remapping reflects 

subjective perception of contextual change, rather than sensory input differences 

(Kelemen and Fenton,2010  ; Kubie et al., 2020; Sanders et al., 2020). Such an 

insight would be difficult to obtain in animal models, due to uncertain inference 

of the animal's hidden perceptual state.  

      Visitation of distinct states predicts the behavioral outcome 

      Rodent, non-human primate, and human fMRI studies suggest that the 

pattern separation is implemented in the DG/CA3 network (Wills et al., 2005; 

Leutgeb et al., 2007; Colgin et al., 2008;  Jezek et al., 2011; van Dijk et al., 2018; 

Sakon and Suzuki, 2019; Julian and Doeller, 2020; Hainmueller et al., 2020; 

Wanjia et al., 2021). Several human fMRI experiments associated the perceptual 

change with hippocampal remapping, showing the abrupt change of 

multivariate pattern of hippocampal BOLD signal, coinciding with learning 
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milestones. While these studies convincingly point to pattern separation and 

hippocampal remapping as underlying the perception of contextual change, 

remapping was observed between the individual trials, due to temporal 

resolution constraint. To observe the temporal dynamics of remapping at 

individual trial level, we applied the state-space decoding approach, whereby 

the individual time bins during discrimination trials were classified based on the 

state-space distance to encoding trial. In this framework, the high or low 

proximity to the encoding trail is hypothesized to reflect the reinstatement of 

Target stimulus or the formation of new representation of Lure stimulus. In 

addition, to control for the change in temporal context as a source of state-space 

distance, the time bins with high proximity to pre-discrimination trial baseline 

were treated as a separate category. The total amount of time the neural 

trajectory spends in the Encoding or Outside state was predictive of behavioral 

outcome. This effect was present in DG/CA3, but not CA1 hippocampal 

subfield, consistent with lower correlation between the spatial maps of multiple 

environments in rodent DG/CA3 (Guzowski et al., 2004; Leutgeb et al., 2007). 

Encoding and Outside states don’t represent a continuum in state-space, as 

reflected by the large state-space trajectory velocity at the state-transitions, 

suggesting a large separation between, relative to within the states. Such a state-

space configuration suggests that the balance between the pattern 

completion/separation depends on the transition dynamic characteristic of 

distinct attractors. Temporal structure of state-transitions suggest that the 

network initially retrieves the Target stimulus representation, but the later 



 
 

83 

transitioning to Outside state - possibly reflecting the hippocampal remapping - 

predicts the behavioral outcome.The observed state-space trajectory is consistent 

with the retrieval of the most similar encoded spatial representation, when 

processing the ambiguous sensory input (e.g. Leutgeb et al., 2005). These results 

are in agreement with the observations of spatial maps switching on the theta 

cycle time scale in the rodent hippocampus (Jezek et al., 2011; Kelemen and 

Fenton, 2016). Specifically, the presence of additional velocity peaks ~200 ms 

from the state transition peak suggests that the state transitions occur at ~5 Hz. 

To our knowledge, this is the first demonstration of behaviorally relevant, 

subsecond time-scale representational switching in the human hippocampus. We 

also demonstrate the utility of the iEEG gamma band state-space approach in 

tracking the map dynamics at sub-second level (Jezek et al., 2011; Kelemen and 

Fenton, 2016; Kay et al., 2020; Farhoodi et al., 2020).    

     Remapping dynamics is consistent with expansion recoding  

      Expansion recoding is defined as increase in the number of neurons 

representing individual memories across the neural network layers, combined 

with non-linear mixing (Cayco-Gajic and Silver, 2019). This process is 

hypothesized as a mechanism underlying pattern separation (Marr, 1969; Albus, 

1971; Treves and Rolls ,1998; Cayco-Gajic and Silver, 2019). Based on the 

prediction that expansion recoding results in increased dimensionality, we tested 

the signal dimensionality on discrimination trials. The initial dimensionality 

increase could reflect the input propagation through the DG/CA3 network, 
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characterized by fanning projections and huge increase in neuron number across 

the layers. The dimensionality asymptote on FA trials starts ~1 sec following the 

trial onset and coincides with the temporal window of high representational 

similarity between the Target/Lure trials. This dynamics is consistent with the 

Lure stimulus input triggering the pattern completion of the previously encoded 

Target stimulus representation, due to significant overlap of sensory information. 

On the CR trials, defined by the correct discrimination between the highly 

similar Target/Lure stimulus pair, dimensionality increased throughout the trial, 

possibly resulting in the formation of separate representation following pattern 

separation.  
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Chapter 4  

Conclusion and Future Directions 

 

4.1 Overview of the Findings 

4.1.1 Hippocampal aSWR supports Enhanced Emotional Memory Formation 

It is a long-held notion and common personal observation that emotional 

events are better remembered. Multiple lines of evidence have suggested 

neuromodulatory mechanisms on modifying plasticity during emotional 

memory encoding and offline sleep periods. Extensive studies suggest a key role 

of SWR in memory consolidation during sleep with emerging evidence for 

awake SWR (aSWR) occurrence associated with exposure to novel or reward-

related contexts. However, it is largely unknown whether aSWR plays a role in 

emotional memory processing. Here we hypothesized that aSWR occurrence was 

associated with emotional experience, and coordinated amygdala-hippocampal 

activity, to support enhanced memory for the emotional event.  

We found that the hippocampal aSWR occurrence during the immediate 

post-encoding period predicted both stimulus-induced arousal and subsequent 

memory performance. In addition, memory reinstatement was presented 

selectively during aSWRs, but not during post-encoding periods outside of 
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aSWR windows. Notably, memory discrimination was further predicted by the 

co-occurrence of aSWR-locked memory reinstatement in the amygdala and 

hippocampus, with the amygdala directionally influencing hippocampal 

memory reinstatement. These findings provide direct evidence linking aSWRs 

and emotional encoding through the engagement of amygdala-hippocampal 

networks. 

4.1.2 Expansion Recoding supports Pattern Separation in the DG/CA3 

Underlying Memory Discrimination 

 Discriminating a similar event from previously encountered one is a 

critical cognitive ability for adapting to novel situations. Pattern separation is a 

mechanism hypothesized to support the cognitive discrimination of similar 

representations in the brain. Theoretical works suggest pattern separation results 

in independent populations of neurons forming two distinctive attractors. We 

found that increased hippocampal representational similarity between the 

previously encoded and newly presented stimulus predicted failed 

discrimination, while decorrelated representational similarity predicts successful 

discrimination. Moreover, the hippocampal representational dynamic is 

consistent with discrete attractors, which are characterized by abrupt transitions 

between encoding and an outside state at a sub-second time scale.  

A long-standing theory proposed expansion recoding as a putative 

mechanism underlying pattern separation. Anatomical studies suggest the DG 
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network as a neural substrate to implement expansion recoding by increasing 

neural activity space. We found the representational dimensionality in DG/CA3 

was continuously increasing during successful discrimination, while a strong 

correlation with encoded memory representation impedes it from increasing 

during failed discrimination. Overall, these results support the discrete attractor 

hypothesis and suggest expansion recoding as a putative mechanism underlying 

pattern separation. 

4.2 Future Directions 

 
In the present study, we described the role of aSWR associated neural 

reinstatement during the post-encoding period in indexing the strength of 

memory encoding. Our findings show that formed cell ensembles representing 

the stimulus memory were reactivated and consolidated during the immediate 

post-encoding window (which occurred right after the active stimulus encoding 

period).  

The two-stage model proposed that sequential activation during theta 

rhythm supports initial memory trace formation and subsequent sequential 

reactivation during SWR supports consolidation of memory representation 

(Buszaki, 1989). Recent finding report that place cell sequence underlying 

degraded theta rhythm when rodent was moved passively impaired subsequent 

SWR-associated reactivation during sleep, whereas theta-associated place cell 

sequence during active moving preserved the reactivation during sleep (Drieu et 
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al., 2018). This study constructed a causal relationship between theta and SWR 

sequences during wakefulness and sleep. However, an important question that 

remain is the relationship between theta-associated ensembles activation and 

aSWR-associated reactivation.  

Although extensive studies suggest discontinuous human theta rhythms 

instead of the stable theta in the rodent hippocampus, theta power has been 

associated with the strength of memory encoding. Thus, it is plausible to make 

an analogy between rodent theta rhythm and human increased theta oscillatory 

power. Specifically, we can test the hypothesis that whether the neural 

representation occurred during elevated theta power window (i.e., theta-

window) is predictive of the subsequent neural representation during aSWR 

window, compared to outside of the theta-window.  

Accumulating evidence suggests that rapid eye movement (REM) sleep 

plays a critical role in strengthening and modulation of emotional memories 

(Yonelinas and Ritchey ,2015; Hutchison et al., 2015; Kensinger et al., 2009). 

Walker has proposed that REM sleep is implicated in two ways in emotional 

memory reprocessing: while the content of the memory is strengthened, the 

affective tone associated with the memory is weakened during REM sleep 

(Walker, 2009). However, physiological data supporting this proposal is lacking. 

Moreover, the distinctive roles of REM sleep and non-rapid eye movement sleep 

(NREM) sleep on emotional memory consolidation remains controversial. A 

recent finding showed preferential reactivation of fearful memory ensembles 

during non-rapid eye movement sleep (Girardeau et al., 2017), which suggests 
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NREM sleep is also involved in modifying emotional experience. In the future, 

we can investigate the occurrence of reinstatement during sleep. Specifically, 

whether the memory reinstatement will be observed during REM or NREM 

sleep. Moreover, investigating the temporal dynamics of memory reinstatement 

strength in the amygdala and hippocampus network during different instances 

of reinstatement events may shed light on testing the strengthening and 

weakening hypothesis of REM sleep (Walker, 2009). 
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APPENDIX A  

Supplemental Materials for Chapter 2 

 

 
 

Supplemental Fig. 1. a, Positive and negative valenced stimuli are associated with higher 
stimulus-induced arousal, relative to neutral valence stimuli (***p<0.001, Wilcoxon rank-sum 
test). b, Stimuli valence ratings of study subjects are highly similar to the healthy population 
(match rate = 85.3 ± 1.3%). 
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Supplemental Fig. 2. Awake SWR detection. a, Examples of several detected aSWRs (yellow 
highlights), showing the raw trace (top), filtered trace (80 - 150 Hz range, middle) and z-scored 
envelope of filtered trace (bottom). Detection is based on double-threshold (orange dashed 
lines) crossing of z-scored power (80-150 Hz) for the period of 20-100 msec. b, Z-scored power 
spectral density of average detected aSWR. c, Z-scored power during aSWR windows shows a 
bump in the 80-150 Hz range. This suggests that the aSWRs are not detected during signal 
artifact periods, which would reflect as a broadband power increase. In addition, detected 
aSWRs are not detected during non-specific increase in broadband gamma power or 
pathological high-frequency oscillations (> 200 Hz). 
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Supplemental Fig. 3. Stimulus valence is not significantly associated with aSWR occurrence 
during encoding stage. a, Stimulus encoding phase: F(2, 15) = 0.67, p = 0.53; Post-encoding: F(2, 
15) = 0.25, p = 0.77, One-way ANOVA). The data from individual subjects are color-coded. 
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Supplemental Fig. 4. The aSWR occurence during retrieval task stage is not associated with 
stimulus-induced arousal, valence or correct discrimination. Arousal: Stimulus presentation 
(top row), p = 0.11, z = 1.57; Response (bottom row), p = 0.17, z = 1.36, Wilcoxon signed-rank 
test. Valence: Stimulus presentation, p = 0.69, F(2, 15) = 0.69; Response, p = 0.51, F(2, 15) = 0.71, 
One-way ANOVA). Correct discrimination: Stimulus presentation: p = 0.6, z = -0.52; Response: 
p = 0.92, z = 0.11, Wilcoxon signed-rank test).  

 

 

 

 



 
 

104 

 

 Supplemental Fig. 5. aSWRs occur predominately outside of high theta or broadband 
gamma periods. a, Low frequency (top, color) and high frequency spectrogram (bottom, color), 
and  aSWR rate (white line) during the stimulus encoding (left) and post-encoding (right, 
response-locked) periods. b, The probability of aSWR occurrence is lower during the high theta 
state (top, p = 0.017, z = 2.1, one-tailed Wilcoxon signed-rank test), or during high gamma state 
(bottom, p = 0.028, z = 1.9, one-tailed Wilcoxon signed-rank test). Theta/gamma state 
classification was based on the power median split (for details, see ‘Dual state analysis’).  
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Supplemental Fig. 6. Overview of Ensemble Empirical Mode Decomposition (EEMD) and 
representational similarity analysis (RSA) methods. a, An example hippocampal raw iEEG 
trace (top) was decomposed into multiple intrinsic mode functions (IMFs; lower 6 panels). IMFs 
within the HFA range (IMF2 and IMF3) were used for HFA reconstruction. The HFA time-
frequency matrix (bottom) was estimated using wavelet transformation (for details, see Time-
frequency representation of the HFA). b, Power spectral density (mean ± SEM) of the IMFs 
decomposed from the hippocampal (left) and amygdala (right) electrodes. IMF spectral features 
were consistent across subjects and structures, with mean center frequencies in delta (IMF7), 
theta (IMF6, IMF5), alpha/beta (IMF4), gamma (IMF3), high-gamma bands (IMF2), and the noise 
term (IMF1). The HFA time series were estimated by summing the IMFs with center 
frequencies > 30 Hz (IMF2 and IMF3). c, The similarity matrix (top right) was constructed by 
computing the power spectrum vector (PSV) Spearman’s correlations for each combination of 
stimulus encoding (top left) and post-encoding (bottom right) time bins. 
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Supplemental Fig. 7. Post-encoding aSWR-locked reinstatement (amygdala and 
hippocampus combined) is increased for high stimulus-induced arousal and correctly 
discriminated stimuli. a, Arousal: *p = 0.046, z = -1.991, Wilcoxon signed-rank test. b, Correct 
discrimination: *p = 0.028, z = -2.201, Wilcoxon signed-rank test). Data from individual subjects 
is color-coded. 
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Supplemental Fig. 8. Post-encoding aSWR-locked memory reinstatement in the hippocampus 
is strongest without time compression. a, aSWR-locked hippocampal reinstatement during the 
post-encoding response period, across different temporal compression factors.  Memory 
reinstatement strength area under curve (AUC) is defined as enclosed by the reinstatement 
trace (blue line) and 95% percentile of empirical null-distribution (blue shading upper limit). 
AUC reflects the memory reinstatement strength at different compression factors. b, Memory 
reinstatement strength is highest with no compression. 
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Supplemental Fig. 9. Joint cross-structure memory reinstatement occurs selectively during 
aSWR time windows. a, Average joint cross-structure reinstatement (hippocampus and 
amygdala) relative to aSWR peak times (left) and relative to jittered aSWR peak times (right). 
The white line encircles the periods of significant joint cross-structure memory reinstatement 
(Fig. 2.3d). The color scale represents the Spearman correlation between the encoding stimulus 
presentation and post-encoding aSWR windows. The absence of significant joint cross-structure 
memory reinstatement following the jittering of aSWR peak times (right) reveals the specificity 
of cross-structure reinstatement to aSWR windows. 
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Supplemental Table 1. Demographic information for the study subjects. 
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Supplemental Table 2. Center frequencies of the IMFs in the hippocampus and amygdala. 
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APPENDIX B  

Supplemental Materials for Chapter 3 

 

Fig. S1. Overview of the ensemble empirical mode decomposition (EEMD). a, The raw iEEG 
(top panel) was decomposed into multiple intrinsic mode functions (IMFs 1-6; lower 6 panels). 
IMFs with peak frequencies within the gamma range (30 - 300 Hz; IMF2 and IMF3) were used for 
gamma activity reconstruction. b, Power spectral density (mean ± SEM) of the IMFs 
decomposed from the hippocampal (left), amygdala (middle) and peri-hippocampal (right) 
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electrodes. Spectral features were consistent across the electrodes and anatomical structures. 
The mean center frequencies correspond to delta (IMF7), theta (IMF6, IMF5), alpha/beta (IMF4), 
gamma (IMF3), high-gamma bands (IMF2), and the noise term (IMF1). The gamma time series are 
the sum of the IMFs with center frequencies > 30 Hz (IMF2 and IMF3).  
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Fig. S2. Representational similarity analysis (RSA). a, Representational similarity matrix was 
obtained by computing the Spearman correlations between the power spectrum vectors for each 
combination of encoding and discrimination trial time bins (left). Significance was assessed by 
comparing the similarity of the same stimulus trial pairs (Same) with encoding - discrimination 
trial pairs of randomly paired stimuli (Different), using two-tail t-test and non-parametric 
cluster-statistics with 1000 permutations (p < 0.05; Fig. 2). The analysis in Fig. 3 is identical, 
except that the Target-Lure trial pairs were compared with randomly paired stimuli. b, 
Representational similarity matrices (left and middle) and t-value matrix (right) obtained using 
the procedure described in A. 
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Fig. S3. Distribution of peak representational similarity timing across individual Repeat trials. 
The median +/- SD (the thick and dashed vertical lines) of this distribution was used to define 
the Encoding space window..  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

115 

 

Fig. S4. State-space analysis overview. a, Flow diagram of the designed algorithm. b, 
Following the gamma trace reconstruction (Fig. S1), gamma trace TFR was computed using the 
wavelet transform. Next, the TFRs from the encoding trial (median similarity peak ± SD, 
duration 1000 ms; Fig. S3), pre-discrimination trial baseline (1000 ms) and discrimination trial 
(2000 ms) were concatenated to produce the encoding-discrimination pair-specific TFR. c, 
Dimensionality reduction was performed on pair-specific TFR using principal component 
analysis (1) and the first n PCs with cumulative explained variance (EV) > 80% were projected 
on a TFR matrix, resulting in a projection matrix.. Each projection matrix time bin was defined 
by an n-dimensional vector, denoting the respective PC weights (PC vector). Next, the pairwise 
Euclidean distances were computed between each timepoint PC vector and all other PC vectors 
from the same epoch (encoding or baseline) and the Encoding or Baseline sub-state boundaries 
were defined as the union of all the encoding or baseline boundaries. Next, the K-nearest 
neighbor (K-NN) algorithm was used to classify the PC vectors from discrimination trial based 
on the Euclidean distance to Encoding or Baseline  sub-states (2). The PC vectors outside the 95th 
percentile of either the Encoding or Baseline substrate were classified as Outside sub-state (3). d, 
Pairwise distance distribution were computed and the 95th percentile were identified as radius 
for each points.  
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Table 1. The demographics of study subjects.  
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