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Abstract

Multilinear and Sharpened Inequalities

by

Kevin William O’Neill

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor Michael Christ, Chair

Multilinear integral inequalities, such as Hölder’s inequality and Young’s convolu-
tion inequality, play a large role in analysis. In [6] and [5], Bennett, Carbery, Christ,
and Tao provide a classification of such inequalities of the form∫

Rd

n∏
j=1

fj(Lj(x))dx ≤ C
n∏
j=1

||fj||pj

for constant C > 0, exponents pj ∈ [1,∞], and surjective linear maps Lj : Rd → Rdj ,
with fj : Rdj → R.

In Chapter 2, we discuss a generalization of the above related to work by Ivanisvili
and Volberg [23]. Specifically, we provide a classification of functionsB : Rn → [0,∞)
such that ∫

Rd
B(f1(L1(x)), ..., fn(Ln(x))dx ≤ CB

(∫
f1, ...,

∫
fn

)
.

In some cases, it will be shown that maximizers of the above inequality exist. Tuples
of Gaussians are not always maximizers, differing from the usual multilinear theory.

Chapter 3 focuses its attention on the trilinear form for twisted convolution:∫∫
Rd×Rd

f(x)g(y)h(x+ y)eiσ(x,y)dxdy.

While existence of maximizers can shed light on the structure of an operator,
sometimes it is useful to establish more refined information. For twisted convolution,
we show a quantitative version of the statement that if a triple of functions nearly
maximizes the form, then it must be close to a maximizing triple. Such a statement
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may be referred to as a sharpened inequality. Here, the proof of a sharpened inequality
is complicated by the fact that no maximizers exist for twisted convolution; however,
one may vary the amount of oscillation and compare to the case in which there is
zero oscillation.

In Chapter 4, we establish a sharpened version of the following inequality due to
Baernstein and Taylor [3]:∫∫

Sd×Sd
f(x)g(y)h(x · y)dσ(x)dσ(y) ≤

∫∫
Sd×Sd

f ∗(x)g∗(y)h(x · y)dσ(x)dσ(y)

where f, g, h are restricted to the class of indicator functions and h is monotonic on
[−1, 1]. In the above, f ∗ refers to the symmetric decreasing rearrangement of f , and
likewise for g and g∗.
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Chapter 1

Introduction to Extremizers and
Multilinear Forms

Given a linear operator T : Lp1(Rd)→ Lp2(Rd), it is often useful to prove estimates
of the form

||Tf ||p2 ≤ C||f ||p1 (1.1)

for some 0 < C <∞. For one, this implies T is continuous. However, it is sometimes
desirable to obtain further information about T .

Question 1.1. What is the optimal constant C such that (1.1) holds?

For linear operators such as the above, this optimal constant is the operator norm,
though we will often ask the question for inequalities of a more complicated form.

Question 1.2. If A is said optimal constant, does there exist nonzero g ∈ Lp1 such
that ||Tg||p2 = A||g||p1? If so, can we characterize such g?

When such a g exists, we refer to it as a maximizer (or extremizer) of T . If T is a
bounded linear operator, then there always exists an optimal constant C in (1.1) by
the least upper bound property of the real numbers. However, not all such operators
have maximizers.

For example, let T : `2(N) → `2(N) by (an) 7→ ((1 − 2−n)an). Clearly, T
has norm 1, yet there is no nonzero sequence (bn) ∈ `2(N) such that

∑
n |bn|2 =∑

n(1 − 2−n)2|bn|2. By compactness of the unit ball, maximizers trivially exist in
the case of linear transformations on finite-dimensional domains. In the infinite-
dimensional case, this reasoning may fail, yet it motivates the effort towards estab-
lishing precompactness, such as in Chapter 2.



CHAPTER 1. INTRODUCTION TO EXTREMIZERS AND MULTILINEAR
FORMS 2

One instance of a nontrivial operator which has maximizers is the Fourier trans-
form F : Lp(Rd)→ Lp

′
(Rd) defined by

F(f)(ξ) = f̂(ξ) :=

∫
Rd
e−2πix·ξf(x)dx (1.2)

whenever p ∈ (1, 2). It was shown by Babenko [1] and Beckner [4] that

||f̂ ||p′ ≤ Ad
p||f ||p, (1.3)

where Ad
p =

[
p1/2p/p′1/2p

′]d
is the optimal constant, and later by Lieb [26] that the

maximizers are precisely Gaussians.
We now use this example as an opportunity to discuss the role of symmetry in

this type of analysis. Suppose that g(x) is a maximizer of F and let a > 0 denote a

constant. Then by the elementary identity êiaxg = ĝ(ξ− a), we see that eiaxg(x) is a
maximizer as well, since Lp norms are invariant under translation and modulation.

For this reason, we refer to modulation– and any operation which preserves the
ratio ||f̂ ||p′/||f ||p– as a symmetry of F . The set of maximizers of F is closed under
the symmetries of F by definition. This same property holds for any operator with
its maximizers and symmetries, and provides a natural manifold structure to the set
of maximizers.

There are a number of other questions one could ask about maximizers– if they are
unique up to symmetry, if the operator satisfies certain precompactness properties–
though we turn our attention to just one.

To motivate this question, consider the following. Let M be the manifold of
maximizers for a bounded linear operator T . By continuity, if f is close to M, then
||Tf ||/||f || is close to ||Tg||/||g|| for g ∈M. However, the converse of this statement
fails in general.

We now consider one particular quantitative formulation of this converse.

Question 1.3. Given a linear operator T : Lp1(Rd) → Lp2(Rd) with manifold of
maximizers M and optimal constant A, does there exist c > 0 such that

||Tf ||p2 ≤ A||f ||p1 − cdist(f,M)2 (1.4)

for some natural, appropriately normalized definition of distance function dist?

When such a c exists, we refer to (1.4) as a sharpened inequality.
The particular form of (1.4) is reminiscent of a truncated Taylor series centered

at the maximum of a function on Rd. Furthermore, in examples, the exponent 2 is
often shown to be sharp.
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In some scenarios, it is desirable to consider the distance between the orbit of f
under the symmetries of the operator to a single, fixed maximizer. In either case, it
is notable that the distance function respects the symmetries of the operator since
they do not change the left hand side of (1.4).

Each of the three above questions may be formulated for multilinear operators
(Lp1 × · · · × Lpn → Lq) and multilinear forms (Lp1 × · · · × Lpn → R). In this thesis,
we will answer Question 1.3 for certain multilinear forms in Chapters 3 and 4. But
before doing so, we digress to provide some context on multilinear forms.

1.1 Multilinear Forms and Inequalities

The field of analysis is abundant with multilinear integral inequalities. Long-known
examples include:

• Multilinear Hölder’s inequality∣∣∣∣∣
∫
Rd

n∏
j=1

fj(x)dx

∣∣∣∣∣ ≤
n∏
j=1

||fj||pj , (1.5)

whenever
∑n

j=1 p
−1
j = 1 and pj ∈ [1,∞].

• Young’s convolution inequality (in dual form)∣∣∣∣∫
Rd×Rd

f1(x)f2(y)f3(x+ y)dxdy

∣∣∣∣ ≤ 3∏
j=1

||fj||pj , (1.6)

for
∑3

j=1 p
−1
j = 2 and pj ∈ [1,∞].

• Loomis-Whitney inequality∣∣∣∣∣
∫
Rd

d∏
j=1

fj(x1, ..., xj−1, xj+1, ..., xd)dx

∣∣∣∣∣ ≤
d∏
j=1

||fj||d−1. (1.7)

Note the above only holds with all exponents equal to d− 1.

While there are other examples of multilinear integral inequalities (such as the
Hardy-Littlewood-Sobolev inequality and boundedness of the bilinear Hilbert trans-
form), the three examples above are all of the form
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∣∣∣∣∣
∫
Rd

∏
j

fj ◦ Lj(x)dx

∣∣∣∣∣ ≤ C
∏
j

||fj||pj (1.8)

for surjective maps Lj : Rd → Rdj and some C > 0. In particular, the range of
allowable exponents is the set of (pj) satisfying certain linear inequalities.

The work of Bennett-Carbery-Christ-Tao classified all instances of such inequal-
ities (see [5,6]). Specifically, there exists a C > 0 such that (1.8) holds if and only if
both

n∑
j=1

dj
pj

= d (1.9)

and

dim(V ) ≤
n∑
j=1

dim(LjV )

pj
(1.10)

for all vector subspaces V ⊂ Rd. These inequalities are known as the Hölder-
Brascamp-Lieb inequalities.

In [5], the authors completely answer Question 1.1 and provide a nearly complete
answer for Question 1.2 for Hölder-Brascamp-Lieb inequalities. Note that here, one
is concerned with maximizing n-tuples of functions (g1, ..., gn).

In Chapter 2, we introduce a generalization of the Hölder-Brascamp-Lieb inequal-
ities and classify all such examples. We then answer Question 1.2 for a particular
subclass of examples. While we are able to show maximizers exist, it remains open
what those maximizers are. However, it is shown they are not always the usual
suspects (tuples of Gaussians).

The work of Christ [17] answers Question 1.3 in the case of Young’s convolution
inequality (1.6), and in Chapter 3 we extend this work to the trilinear operator for
twisted convolution

T ′(f) :=

∫∫
R2d×R2d

f1(x)f2(y)f3(x+ y)eiσ(x,y)dxdy, (1.11)

where σ is the symplectic form on R2d.
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1.2 Rearrangement Inequalities and Restriction

to Indicator Functions

Another way of illuminating which functions have larger outputs under a particular
operator or form may sometimes be found in a rearrangement inequality. For this
purpose, given a function f : Rd → [0,∞), we define its nonincreasing symmetric
rearrangement as the (unique) upper semi-continuous, radially symmetric, decreasing
function f ∗ : Rd → [0,∞) such that |{x : f(x) > λ}| = |{x : f ∗(x) > λ}| for all
λ > 0. (Here, by radial, we mean f(x) = g(|x|) for some g : [0,∞)→ [0,∞) and by
nonincreasing, we mean g is nonincreasing.)

The classical Riesz-Sobolev inequality [9, 28, 30] states that for arbitrary f, g, h :
Rd → [0,∞),∫∫

f(x)g(y)h(x+ y)dxdy ≤
∫∫

f ∗(x)g∗(y)h∗(x+ y)dxdy. (1.12)

See [9, 10] for discussions of the history of the inequality.
While this is an interesting result in its own right, it has found applications

in the analysis of maximizers of integral inequalities. For instance, [12] uses the
Riesz-Sobolev inequality in its proof of qualitative stability for Young’s convolution
inequality, and [25] uses a related result in establishing the existence of maximizers
for the Hardy-Littlewood-Sobolev inequality. In Chapter 2, we use a generalization of
(1.12) to prove the existence of maximizers in a generalization of Young’s convolution
inequality.

One feature of the Riesz-Sobolev inequality is that it lends naturally to the re-
striction to indicator functions. For instance, proofs of the inequality (such as that
featured in [27]) work via “layer-cake decomposition,” reducing to proving (1.12) for
indicator functions. Also, letting 1E denote the indicator function of the set E ⊂ Rd,
(1E)∗ = 1E∗ , where E∗ is the closed ball of measure |E| centered at the origin. Lastly,
indicator functions are more natural for our purpose of proving sharpened inequali-
ties.

To this point, we have only considered function spaces on Rd. However, some
of this theory may be generalized to other domains, including the Riesz-Sobolev
inequality. Letting f ∗ denote the symmetric, decreasing arrangement of f : Sd →
[0,∞) (see Chapter 4 for a precise definition for functions on the sphere), one has the
following generalization of the Riesz-Sobolev inequality, due to Baernstein-Taylor [3].

Let f, g : Sd → [0,∞) and let h : [−1, 1] → R be a monotonically increasing
function. Then,
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∫∫
Sd×Sd

f(x)g(y)h(x · y)dxdy ≤
∫∫

Sd×Sd
f ∗(x)g∗(y)h(x · y)dσ(x)dσ(y), (1.13)

where σ denotes the surface measure on Sd.
In the case d = 1, one may check that the integrals in (1.13) correspond to the

trilinear form for convolution defined in terms of the natural group structure on S1.
In the case of Abelian groups, Christ and Iliopoulou proved a sharpened inequality
for (1.13) [18]. The higher-dimensional case requires a different sort of analysis and
is established in Chapter 4.
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Chapter 2

A Variation on
Hölder-Brascamp-Lieb Inequalities

2.1 Introduction

In a dual form, Young’s convolution inequality on Rd states that∫
Rd

∫
Rd
f(y)g(x− y)h(x)dxdy ≤ Cp,q,r,d||f ||p||g||q||h||r, (2.1)

where p, q, r ∈ [1,∞], 1
p

+ 1
q

+ 1
r

= 2 (interpreting 1/∞ as 0) and Cp,q,r,d is the optimal
constant.

It was established in [4], [26], and [9] that certain compatible triples of Gaussians
are the maximizers of (2.1), providing a sharp form of the inequality. Later, Carlen,
Lieb, and Loss [11] proved this by running an Lp-norm-preserving heat equation
through time with f, g, and h as initial data and showing that the left hand side is
nondecreasing with time.

Recall from Chapter 1 that [6] provides the following generalization of Young’s
inequality which also encompasses Hölder’s inequality and the Loomis-Whitney in-
equality. Let d, n, dj be positive integers (1 ≤ j ≤ n) and let Lj : Rd → Rdj be
surjective linear maps. Then there exists C <∞ such that∫

Rd

n∏
j=1

fj(Lj(x))dx ≤ C

n∏
j=1

||fj||Lpj (Rdj ) (2.2)

for all fj ∈ Lpj(Rdj) and with C depending only on d, n, dj, and Lj if and only if
both
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n∑
j=1

dj
pj

= d (2.3)

and

dim(V ) ≤
n∑
j=1

dim(LjV )

pj
(2.4)

for all vector subspaces V ⊂ Rd. The set of exponents (1/p1, ..., 1/pn) satisfying both
(2.3) and (2.4) is called the Hölder-Brascamp-Lieb (HBL) polytope. Thus, the HBL
polytope is compact and convex with finitely many extreme points.

One may obtain (2.1) from (2.2) by setting d = 2k, n = 3, dj = k, and L1(x, y) =
y, L2(x, y) = x − y, L3(x, y) = x, where R2k = {(x, y) : x, y ∈ Rk}. In another
paper ( [6]), Bennett, Carbery, Christ, and Tao proved the existence of maximizers
(in particular, certain tuples of Gaussians) by a generalization of the above heat
equation method.

(2.2) may be rewritten in the form∫
Rd

n∏
j=1

fj(Lj(x))sjdx ≤ C
n∏
j=1

(∫
Rdj

fj

)sj
, (2.5)

where sj = 1/pj and fj ≥ 0. (This is a non-restricting assumption since |
∫
f | ≤∫

|f |.) In this chapter, we will frequently use the notation s = (s1, ..., sn). The above
may be rewritten as∫

Rd
B(f1(L1(x)), ..., fn(Ln(x)))dx ≤ CB

(∫
f1, ...,

∫
fn

)
, (2.6)

where B(y1, ..., yn) = ys11 · · · ysnn . In this chapter, we will say B : Rn
+ → R+ is a

Hölder-Brascamp-Lieb (HBL) function for {Lj} if (2.6) holds for all nonnegative
fj ∈ L1(Rdj) . Here R+ = [0,∞).

A similar question was explored in [23] in the case where each Lj is of rank 1
(dj ≡ 1). The authors found sufficient conditions on B for the left hand side of
(2.6) to be bounded by the same expression where the fj are replaced with certain
Gaussians Gj satisfying

∫
fj =

∫
Gj. A corollary of this result is that certain tuples of

Gaussians are among the extremizers. The key condition was a concavity requirement
on B which allowed the heat equation method from [11] to work. Their bounding
term matches ours in the case where each Lj is the identity.

In this chapter, we remove the rank 1 restriction and provide necessary and
sufficient conditions for a function B : Rn

+ → R+ to be an HBL function in the
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following theorem, which will be proven in Section 2.2. Part of the proof will involve
the construction of a parallelipiped with particular dimensions through a dual linear
programming problem as in [21].

By A . B, we mean that there exists a 0 < C < ∞ such that A ≤ CB and by
A & B, we mean there exists a 0 < C ′ < ∞ such that A ≥ CB. A ≈ B means
A . B and A & B.

Theorem 2.1. Let B : Rn
+ → R+ be nondecreasing in each coordinate and satisfy

B(y1, ..., yn) = 0 whenever any of the yj are 0. Let d, dj, (1 ≤ j ≤ n) be positive inte-
gers and Lj : Rd → Rdj surjective linear maps whose Hölder-Brascamp-Lieb polytope
P is nonempty. Then the following are equivalent:

(a) B is an HBL function for {Lj}.

(b) For all 0 < λj, yj <∞,

B(λ1y1, ..., λnyn) . max
s∈P

λs1 · · ·λsnn B(y1, ..., yn). (2.7)

(c) For all 0 < λj, yj <∞,

B(λ1y1, ..., λnyn) & min
s∈P

λs1 · · ·λsnn B(y1, ..., yn). (2.8)

Allowing for a change of underlying constant, each of the possible conclusions in
the above theorem is invariant under multiplication of B by a bounded function with
bounded inverse. Thus, the theorem still holds if we replace the hypothesis that B
is nondecreasing in each coordinate with the weaker hypothesis that B is bounded
above and below by a positive multiple of a function which is nondecreasing in each
coordinate.

Example 2.1. Given a collection of linear maps {Lj}nj=1 and (s1, ..., sn) lying in its
Hölder-Brascamp-Lieb polytope, B(y1, ..., yn) = ys11 · · · ysnn is an HBL function.

Example 2.2. The class of HBL functions for any {Lj} is closed under linear combi-
nations with nonnegative coefficients and taking minima and maxima. For instance,
if B1, ..., B4 are HBL functions, then so is min{max{B1, B2}, 2B3 +B4}.

Here, the advantage of Theorem 2.1 is control over the implicit constants. For
instance if B1 and B2 satisfy (2.7) with constant 1, then so does max{B1, B2}.

The class of HBL functions is also closed under pointwise limits of sequences,
provided there is uniformity in the implicit constants. In particular, one may com-
bine different HBL functions with an integral. As an example, B(y1, y2, y3) =
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−1/6 y
2/3−t/2
1 y

2/3−t/2
2 y

2/3+t
3 dt is an HBL function for the linear maps found in Young’s

convolution inequality.

Example 2.3 (Uniqueness of Loomis-Whitney inequalities). The classical Loomis-
Whitney inequality is given by∫

Rd
B(f1(π1(x)), ..., fd(πd(x)))dx ≤ B

(∫
f1, ...

∫
fd

)
, (2.9)

where B(y1, ..., yd) = y
1/(d−1)
1 · · · y1/(d−1)n . Previous theory says this B is the only

power function which also serves as an HBL function. Theorem 2.1 says, up to
multiplication by constants, this B is the only HBL function (even allowing for non-
power functions).

The remainder of the chapter is dedicated to the question of maximizers. In
particular, we will focus on the choice of d, n, dj, Lj used in Young’s inequality to
emphasize the differences in setting rather than prove statements in their most gen-
eral form.

In Section 2.3, we will state and prove a rearrangement inequality that allows one
to replace each fj with its symmetric decreasing rearrangement. The proof of this
uses the classical technique found in [20], where it was shown that

∫
F (f(x), g(x))dx ≤∫

F (f ∗(x), g∗(x))dx for F satisfying a certain second-order condition.
In Section 2.4, we will show that for certain B, near-maximizing triples of (2.6)

must be localized in scale and that these scales must be close for each function in
the triple. This result is similar to the one found in [12] for the setting of Lp norms
and will be used in establishing precompactness. Section 2.5 will piece together these
arguments to establish the existence of extremizers in certain cases of HBL functions,
as stated in the following theorem.

For notation, let ~y = (y1, ..., yn) denote a vector in Rn
+ and let ∆3(B; a, b, c, d, e, f)

denote the third order difference:

B(b, d, f)−B(a, d, f)−B(b, c, f)−B(b, d, e)

+B(b, c, e) +B(a, d, e) +B(a, c, f)−B(a, c, e). (2.10)

Theorem 2.2. Let Pi(a, b, c) = a1/pib1/qic1/ri, where pi, qi, ri ∈ (1,∞) and 1/pi +
1/qi + 1/ri = 2. Let B = ρ(P1, ..., Pn) where it is assumed that

ρ(λ1y1, ..., λnyn) ≤ C max
i
λiρ(y1, ..., yn)

for all 0 < λi, yi <∞ and

ρ(~y1) + ρ(~y2) ≤ ρ(~y1 + ~y2)
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for all ~yi ∈ Rn
+. Furthermore, suppose B is continuous with

B(0, 0, 0) = B(x, 0, 0) = B(0, y, 0) = B(0, 0, z) = 0,

along with

∆3(B; a, b, c, d, e, f) ≥ 0

for all a ≤ b, c ≤ d, e ≤ f .
Let α, β, γ > 0. Then, there exist f, g, h which maximize∫∫

B(f(y), g(x− y), h(x))dxdy

under the constraint
∫
f = α,

∫
g = β,

∫
h = γ.

The setup of Theorem 2.2 includes the hypotheses of the rearrangement inequality
from Section 2.3 as well as conditions which allow us to use some tools from the Lp

norms setting while also extending the conclusion to other HBL functions.
Lastly, Section 2.6 will provide an example of an HBL function with non-Gaussian

maximizers. We will prove this to be the case by showing that no Gaussian is a critical
point with regards to the Euler-Lagrange equations and referencing the existence of
extremizers result from Section 2.5.

2.2 Necessary and Sufficient Conditions for HBL

functions

The proofs of (c)⇒ (b)⇒ (a) are relatively straightforward so we will address those
here before moving on to the proof of (a)⇒ (c).

Proof of (c)⇒ (b)⇒ (a). Suppose (c) holds. Simultaneously replace each yj in the
given inequality with λjyj and each λj with λ−1j . Then (b) is obtained by dividing
both sides by

min
s∈P

λ−s1 · · ·λ−snn

and then using the fact that the reciprocal of the minimum is the maximum of the
reciprocals.

Now suppose (b) and consider nonnegative L1 functions fj. If any of the fj has
zero integral (hence is zero a.e.), then (2.6) holds trivially, so assume

∫
fj > 0 for all
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j. Letting gj(x) =
fj∫
fj

, we rewrite the left hand side of the desired integral inequality

to obtain

∫
Rd
B(f1 ◦ L1(x), ..., fn ◦ Ln(x))dx

=

∫
Rd
B

(
g1 ◦ L1(x) ·

∫
f1, ..., gn ◦ Ln(x) ·

∫
fn

)
dx. (2.11)

By applying (2.7), we may bound (2.11) by a constant times∫
Rd

max
s∈P

(g1 ◦ L1(x))s1 · · · (gn ◦ Ln(x))sn dx ·B
(∫

f1, ...,

∫
fn

)
.

Let us recall the fact that P is a compact, convex polytope. If s, s′ ∈ P , then
taking any point on the segment between s and s′ corresponds to taking a weighted

geometric mean of λs11 · · ·λsnn and λ
s′1
1 · · ·λ

s′n
n . Thus, for any x ∈ Rd, the above

maximum may be obtained at extreme points of P . We denote the set of extreme
points of P as P ′. Since all terms are nonnegative, we may bound the maximum by
a summation over extreme points to obtain

∫
Rd

max
s∈P

(g1 ◦ L1(x))s1 · · · (gn ◦ Ln(x))sn dx

≤
∫
Rd

∑
s∈P ′

(g1 ◦ L1(x))s1 · · · (gn ◦ Ln(x))sn dx. (2.12)

Next, we exchange the integral with the sum and bound each of the integral
terms. Since each function gn has integral equal to 1, we have∫

Rd
(g1 ◦ L1(x))s1 · · · (gn ◦ Ln(x))sn dx ≤ Cs, (2.13)

where Cs is the optimal constant such that∫
Rd

n∏
j=1

fj(Lj(x))dx ≤ Cs

n∏
j=1

||fj||Lpj (Rdj ).

Since P has only finitely many extreme points, we combine (2.11), (2.12), and
(2.13) to obtain
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∫
Rk
B(f1 ◦ L1(x), ..., fn ◦ Ln(x))dx ≤

(∑
s∈P ′

Cs

)
B

(∫
f1, ...,

∫
fn

)
= CB

(∫
f1, ...,

∫
fn

)
.

The main goal of the remainder of the section will be to prove the following
lemma.

Lemma 2.3. Let λ = (λ1, ..., λn) such that log λj are nonnegative integers and let
Lj : Rd → Rdj be a collection of surjective linear maps with HBL polytope P as
before. Then, there exists a parallelipiped S ⊂ Rd such that

|S| ≈ min
(s1,...,sn)∈P

λs11 · · ·λsnn

and

|Lj(S)| ≤ λj,

where the proportionality constants are independent of λ.

To see the usefulness of Lemma 2.3, let us demonstrate how it may be used to
complete the proof of Theorem 2.1. The reduction to the case in which log λj are
nonnegative integers will be established in Lemma 2.6.

Proof of (a)⇒ (c). Given λj such that log λj are nonnegative integers, let S be as
in Lemma 2.3. Define fj = yj1Lj(S). By plugging these fj into (2.6), we obtain a left
hand side equal to

| ∩j L−1j (Lj(S))|B(y1, ..., yn) ≥ |S|B(y1, ..., yn) = min
(s1,...,sn)∈P

λs1 · · ·λsnn B(y1, ..., yn)

and a right hand side equal to

B(|L1(S)|y1, ..., |Ln(S)|yn) ≤ B(λ1y1, ..., λnyn).

Combining the two inequalities gives (2.8).
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Now we begin the proof of Lemma 2.3. By taking logs of the minimum seen
in (2.8), we reduce computing this term to a linear programming problem. Fixing
λ = (λ1, ..., λn) ∈ Rn

+, we now define the primal LPP as

minimize log λ · s =
∑
j

sj log λj over s ∈ Rn
+

subject to∑
j

sj · dim(Lj(V )) ≥ dim(V ) for all V ∈ E, d =
∑
j

sjdj, sj ≥ 0.

In the above, E is a finite list of subspaces which are sufficient to determine the
HBL polytope. By this, we mean that (2.4) for only subspaces in E together with
(2.3) is sufficient to describe P . Because of this fact, we may add a finite number of
subspaces to E without changing the optimum value of log λ · s.

One may note that while we have included the restriction sj ≥ 0, we have ne-
glected to explicitly include the restriction sj ≤ 1. However, this may be obtained
from the existing inequalities and proper choice of subspace as follows. Subtract the
restriction dimV ≤

∑
j sj dimLj(V ) from d =

∑
j sjdj to obtain

(d− dimV ) ≥
∑
j

sj(dj − dimLj(V ))

for all subspaces V ⊂ Rd. Fix 1 ≤ j0 ≤ n and pick V = Ker(Lj0). By the Rank-
Nullity theorem, the coefficient on sj0 in the above is equal to d − dimV . Since all
other sj are already taken to be nonnegative, sj0 ≤ 1. By taking E to include all
subspaces of the form Ker(Lj), we may recover the bounds sj ≤ 1.

Next, we prove three technical lemmas to aid us in the analysis of this linear
programming problem. The first is preliminary, the second allows us to deal with
only nonnegative solutions and coefficients, and the third will aid us in showing that
a certain algorithm terminates.

Lemma 2.4. If B : Rn
+ → R+ is an HBL function, then

B(Rd1y1, ..., R
dnyn) ≈ RdB(y1, ..., yn)

for all 0 < R, yj <∞.

Proof. Let 0 < R, yj <∞ be arbitrary. Plug in the functions fj = yj1BR(Rdj ) to (2.6).

The right hand side becomes B(Rd1y1, ..., R
dnyn) while the left hand side scales like

Rd, giving us the inequality
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RdB(y1, ..., yn) . B(Rd1y1, ..., R
dnyn).

Since the above holds for all 0 < R, yj < ∞, we may simultaneously replace R
with 1/R and yj with Rdjyj to obtain the reverse inequality.

Lemma 2.5. It suffices to establish (2.8) for λj ≥ 1. That is, if B : Rn
+ → R+ is

an HBL function and (2.8) holds for λj ≥ 1 and 0 < yj <∞, then it also holds for
0 < λj, yj <∞.

Proof. Let 0 < yj, λj < ∞ be given. Choose R > 0 sufficiently large such that
Rdjλj > 1 for all j. Then, by Lemma 2.4 and the fact that d =

∑
j sjdj for any

s ∈ P ,

RdB(λ1y1, ..., λnyn) ≈ B(Rd1λ1y1, ..., R
dnλnyn)

& min
s∈P

(Rd1λs1) · · · (Rdnλsnn )B(y1, ..., yn)

= Rd min
s∈P

λs11 · · ·λsnn B(y1, ..., yn).

Dividing both sides by Rd gives the desired result.

Lemma 2.6. It suffices to establish (2.8) for log λj ∈ N ∪ {0} for all j.

Proof. Choose nonnegative integers mj such that emj ≤ λj < emj+dj . (We may take
the mj ≥ 0 by the previous lemma.) Since B is nondecreasing in each coordinate,
we have

B(em1y1, ..., e
mnyn) ≤ B(λ1y1, ..., λnyn) ≤ B(em1+d1y1, ..., e

mn+dnyn).

By Lemma 2.4, all three terms are uniformly comparable up to a constant multiple
of ed. Similarly, for any s ∈ P (in particular the minimum),

Πj(e
mj)sj ≤ Πjλ

sj
j < Πj(e

mj+dj)sj .

Again, all three terms are equivalent up to a constant multiple of ed by the relation
d =

∑
j sjdj for all s ∈ P . By hypothesis, we have

B(em1y1, ..., e
mnyn) & min

s∈P
Πj(e

mj)sjB(y1, ..., yn).

By replacing the above terms with the corresponding ones involving λj and ad-
justing the constant of proportionality, (2.8) for log λj ∈ N ∪ {0} extends to all
λj > 1, and therefore all λj.
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Let dim(E) = (dimV )V ∈E. We define the dual LPP as

maximize y · dim(E)

subject to

y · dim(Lj(E)) ≤ log λj for all j, yV ≥ 0 for all V 6= Rd, yRd free.

The dual LPP relates to the primal LPP via the following elementary theorem
from linear programming. For a source, see an introductory textbook on linear
programming, such as [22].

Theorem 2.7 (Duality Theorem (special case)). Let A be an m×n matrix, c, x ∈ Rn,
and b, y ∈ Rm for m,n ≥ 1. Suppose that A, b, c have all nonnegative entries and
{x : Ax ≤ b, x ≥ 0} is nonempty and bounded. Then, the maximum value of cTx
subject to the constraints Ax ≤ b, x ≥ 0 is equal to the minimum value of yT b subject
to the constraints yTA ≥ cT , y ≥ 0. Furthermore, there exist optimal vectors x, y for
both problems.

By the above theorem, the optimal value of the dual LPP is equal to the optimal
value of the primal LPP. In the remainder of this section, we will work with dual
vectors y to construct a parellelipiped S whose volume is ey·dim(E). By taking the
optimal value of y · dim(E), we will show the volume of S is mins∈P λ

s1 · · ·λsnn . We
may then use S to construct functions fj which we plug into (2.6) to obtain (2.8).

Since the remainder of this section will only involve the dual LPP with minimal
reference to the primal LPP, we now make the following convention. Each dual
vector y is of the form (yV )V ∈V, where V is the set of all subspaces of Rd. If W is
a collection of subspaces of Rd, then we say a dual vector y is supported on W if
yV = 0 for all V /∈W. Each vector y that we consider will be supported on a finite
list of subspaces; hence the expression y ·V will always be well-defined.

To begin, we will show that y may be taken to be supported on a flag, which we
define to be a sequence of properly nested subspaces W1 ( W2 ( ... ( Wt = Rd.

Proposition 2.8. Let y be an optimal dual vector of the dual LPP which is supported
on E. Then, there exists a dual vector y′ supported on a flag such that y · dim E =
y′ ·dim V and y′ ·dim(Lj(V)) ≤ y ·dim(Lj(E)) ≤ log λj. Furthermore, there exists a
finite list of subspaces E′ independent of y such that y′ may be chosen to be supported
on E′ for any optimal dual vector y.

Before proving the Proposition 2.8, we remark that the finiteness of E′ is advan-
tageous for the following reason. When we construct the parallelipiped S, we would
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like the volumes of S and Lj(S) to be porportional to the λj in appropriate ways.
However, the proportionality constants will depend on the arrangement of the sub-
spaces. A priori, if one changes λj, then one also changes the optimal dual vector,
which changes which flag y′ is supported on. But, limiting the subspaces to a finite
list ensures that a single constant will work as the λj vary. This is nontrivial, since
the algorithm developed in [21] involves summing and intersecting subspaces. It is
known [8] that a finite list of subspaces will not necessarily generate a finite list un-
der those operations. We work around this difficulty by performing these operations
in a particular order and applying the following lemma.

Lemma 2.9. Suppose V ⊂ Rd is a subspace and W1 ⊂ ... ⊂ Wt is a flag. Then
{V,W1, ...,Wt} generates only a finite list of subspaces under the operations of re-
peated summation and intersection.

Proof. It suffices to list all such subspaces and show the list is closed under summa-
tion and intersection. We claim the complete list is {V }∪{Wi, V +Wi, V ∩Wi}ti=1∪
{Wi + (V ∩Wj)}i<j.

Beginning with {V } ∪ {Wi, V + Wi, V ∩Wi}ti=1, we note that most summations
and intersections are already on this list since many subspaces are contained within
one another and when S ⊂ T , we have S + T = T and S ∩ T = S. The two cases
which this does not cover are Wi + (V ∩Wj) where i < j and (V +Wi) ∩Wj where
i < j. Since Wi ⊂ Wj, these two are equal and the last type of subspace on our list.

It remains to show that intersections and summations involving subspaces of the
Wi + (V ∩Wj) are still on our list. Adding two such subspaces, we find that

[Wi1 + (V ∩Wj1)] + [Wi2 + (V ∩Wj2)] = Wmax(i1,i2) + (V ∩Wmax(j1,j2)),

which is of the same form.
Similarly, intersecting two such subspaces, we find that

[(Wi1 + V ) ∩Wj1 ] ∩ [(Wi2 + V ) ∩Wj2 ] = (Wmin(i1,i2) + V ) ∩Wmin(j1,j2),

which is also of the same form.

To prove the proposition, we will use the following basic algorithm (BA): Given
a vector y which is not supported on a flag, find two subspaces V and W such that
neither is contained in the other and yV ≥ yW > 0. Set y′V+W = yV+W +yW , y

′
V ∩W =

yV ∩W + yW , y
′
W = 0, y′V = yV − yW . Repeat this process until the desired result.

It was shown in [21] that the BA terminates provided the initial y has all non-
negative and rational coordinates. Furthermore, at each step y ·dim(V) is preserved
and y · dim(Lj(V)) does not increase.
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Proof of Proposition 2.8. Write E = (E1, ..., Ek,Rd). Perform the BA on y but only
with respect to the coordinates yE1 and yE2 . This creates a flag W1,1 ( ... ( W1,t1

such that our modified y is supported on {W1,1, ...,W1,t1 , E3, ..., Ek,Rd}.
Now, given a y supported on a flag Wi,1 ( ... ( Wi,ti and the remaining orig-

inal subspaces {Ei+2, ..., Ek}, we perform the BA on y using only the subspaces
{Wi,1, ...,Wi,ti , Ei+2}. This converts y to a new dual vector supported on a flag
Wi+1,1 ( ... ( Wi+1,ti+1

together with Ei+3, ..., Ek.
Continue this process until the list of subspaces Ei is exhausted, resulting in a

dual vector supported solely on a flag. While yRd is excluded from modification, this
does not prevent our final list from being a flag since every subspace is contained in
Rd.

Since the log λj are integers, we may take optimal y with all rational coordinates.
In addition, each coordinate used in the BA is nonnegative as yRd is excluded from
such operations. Since this algorithm is solely the concatenation of the BA performed
on particular collections of subspaces and the BA is known to terminate in such an
instance, our algorithm terminates.

It remains to prove the claim that a finite number of subspaces is considered.
Certainly, in the case of a particular given y this is true as only finitely many sub-
spaces are introduced in each of a finite number of steps. However, at each inductive
step there are only finitely many subspaces which can be generated from the previous
subspaces by Lemma 2.9. The total number of inductive steps is bounded by k − 1,
so the total number of subspaces may be counted via a finite tree.

Now we will begin the construction of particular functions which when plugged
into (2.6) will establish (2.8).

Definition 2.4. Suppose a dual vector y is supported on an independent collection
of subspaces Y1, ..., Yt whose direct sum is Rd. Define the parellipiped

Sy =

{
x ∈ Rd|x =

t∑
i=1

ji∑
j=1

ajiv
j
i , 0 ≤ aji ≤ eyYi

}
,

where {v1i , ..., v
ji
i } is a (fixed) basis for Yi.

We cite the following two results from [21]. While they were proven in the context
of Hölder-Brascamp-Lieb inequalities over the integers, the proofs for the results as
stated here may be obtained by simply repeating the proofs from [21], but replacing
Z with R and Zd with Rd. Similarly, the dependence on the subspaces Yi may be
deduced by simply following the proofs.
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Let {Vi}ni=1 be a collection of subspaces of a vector space V . We say {Vi}ni=1 is
linearly independent if {v1, ..., vn} is linearly independent for all nonzero vi ∈ Vi.

Proposition 2.10. Let y be a dual vector supported on linearly independent sub-
spaces Y1, ..., Yt whose direct sum is Rd. Then,

|Sy| ≈ ey·dim(V),

where the proportionality constant depends only on the Yi.

Lemma 2.11. Let y be a dual vector supported on linearly independent subspaces
Y1, ..., Yt whose direct sum is Rd. Let Wi = Y1 + ...+ Yi.

Let L : Rd → Rd′ be any linear map and set ci = dim(L(Wi)) − dim(L(Wi−1)).
Then

|L(Sy)| . e
∑
yYici ,

where the proportionality constant depends only on L and the Yi (or equivalently, the
Wi).

Now fix y as the dual vector supported on a flag W1 ( ... ( Wt as obtained
from Proposition 2.8. Choose linearly independent subspaces Yi of Wi such that
Y1 + ...+ Yi = Wi and define the dual vector y′ supported on {Y1, ..., Yt} by

y′Yi = yWi
+ ...+ yWt . (2.14)

Proof of Lemma 2.3. Fix a list of subspaces E which are sufficient to determine the
HBL polytope and include Ker(Lj) and all the subspaces generated in Proposition
2.8.

Let y be an optimal dual vector from the dual LPP, modified by Proposition 2.8
to be supported on a flag. Define S = Sy′ , where y′ is the dual vector obtained in
(2.14). Then, by Proposition 2.10,

|S| ≈ ey
′·dim(E) = e

∑
i(yWi+...+yWt )(dimYi)

= e
∑
i yWi (dimY1+...+dimYi) = e

∑
i yWi dimWi .

Since y is an optimal dual vector, the value of
∑

i yWi
dimWi above is optimal

and hence equal to the optimal value of s · log λ from the primal LPP, giving us the
desired volume estimate.

Similarly, by Lemma 2.11,
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|Li(S)| ≈ e
∑
i y
′
Yi
ci = e

∑
i(yWi+...+yWt )ci

= e
∑
i yWi (c1+...+ci) = e

∑
i yWidim(Lj(Wi)) ≤ elog λj = λj.

where the last step follows from the constraints on dual vectors. We may obtain
|Lj(S)| ≤ λj in place of |Lj(S)| . λj by a uniform scaling of S with scaling parameter
dependent only on the previous proportionality constants.

2.3 Rearrangement Inequality

Given a function f : Rd → R, let Ef (λ) = |{x ∈ R : f(x) ≥ λ}| denote its
distribution function. If Ef (λ) < ∞ for all λ > 0, then let f ∗ denote symmetric
decreasing rearrangement of f , that is, the unique lower semicontinuous function
such that f ∗ is radially symmetric and nonincreasing with Ef∗ = Ef .

Given a function F : R3 → R, denote its third-order difference by

∆3(F ; a, b, c, d, e, f) = F (b, d, f)− F (a, d, f)− F (b, c, f)− F (b, d, e)

+ F (b, c, e) + F (a, d, e) + F (a, c, f)− F (a, c, e).

Theorem 2.12. Let F : R3 → R be continuous and satisfy

F (0, 0, 0) = F (x, 0, 0) = F (0, y, 0) = F (0, 0, z) = 0, (2.15)

along with

F (R) := ∆3(F ; a, b, c, d, e, f) ≥ 0 (2.16)

for all rectangles R = {(x, y, z) : a ≤ x ≤ b, c ≤ y ≤ d, e ≤ z ≤ f}.
Then, for any non-negative measurable functions f, g, h on Rd with finite distri-

bution functions,

∫∫
F (f(s), g(t), h(s+ t))dsdt ≤

∫∫
F (f ∗(s), g∗(t), h∗(s+ t))dsdt. (2.17)

Condition (2.15) is simply to ensure that all integrals in the following proof are
finite. If R is replaced with a finite measure space, this condition pay be dropped.
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INEQUALITIES 21

Proof. For this proof, we use the notation

I(f, g, h) :=

∫∫
F (f(s), g(t), h(s+ t))dsdt.

By pp.64-68 of [29], we may extend F (R) from a measure on rectangles to a
Borel measure on R3, also denoted by F , provided that F is additive.1 Here, F
is additive if F (R1 ∪ R2) = F (R1) + F (R2) for any non-overlapping rectangles R1

and R2. For F (R1 ∪ R2) to be pre-defined, R1 and R2 must have an overlapping
face; without loss of generality, assume this face is parallel to the yz-plane. Thus,
R1 = {(x, y, z) : a0 ≤ x ≤ a1, c ≤ y ≤ d, e ≤ z ≤ f} and R2 = {(x, y, z) : a1 ≤ x ≤
a2, c ≤ y ≤ d, e ≤ z ≤ f}. By definition of F (R),

F (R1) + F (R2) = F (a1, d, f)− F (a0, d, f)− F (a1, c, f)− F (a1, d, e)

+ F (a1, c, e) + F (a0, d, e) + F (a0, c, f)− F (a0, c, e)

+ F (a2, d, f)− F (a1, d, f)− F (a2, c, f)− F (a2, d, e)

+ F (a2, c, e) + F (a1, d, e) + F (a1, c, f)− F (a1, c, e)

= F (a2, d, f)− F (a0, d, f)− F (a2, c, f)− F (a2, d, e)

+ F (a2, c, e) + F (a0, d, e) + F (a0, c, f)− F (a0, c, e) = F (R1 ∪R2).

Let

Rxyz = {(α, β, γ) : 0 ≤ α ≤ x, 0 ≤ β ≤ y, 0 ≤ γ ≤ z}
be a rectangle with characteristic function

χxyz(α, β, γ) = Φαβγ(x, y, z).

Then, by (2.15), we have

∫
χxyz(α, β, γ)dF (α, β, γ) = F (Rxyz)

= F (x, y, z)− F (x, y, 0)− F (x, 0, z)− F (0, y, z).

1The book of Saks [29] proves that F extends to a Borel measure in a similar way that one
typically proves volume of rectangles extends to Lebesgue measure. It works by constructing an
outer measure F ∗ in the typical fashion, where F ∗(E) is the infimum of

∑
F (Ri) for countable

collections of rectangles Ri which cover E, and showing that F ∗ and F agree on rectangles.
Alternatively, one may prove our rearrangement lemma by first assuming that F ∈ C3(R3), so

dF = Fxyzdxdydz is well-defined. The third-order condition is used to obtain positivity of the
involved integrals. Then, one may extend the result to continuous F by a standard approximation
argument which takes F to be the uniform limit of C3 functions.
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Now we substitute x = f(s), y = g(t), h(s + t) and integrate both sides of the
above to obtain

I(f, g, h) =

∫∫ [∫
Φαβγ(f(s), g(t), h(s+ t))dF (α, β, γ)

]
dsdt

+

∫∫
F (f(s), g(t), 0)dsdt+

∫∫
F (f(s), 0, h(s+ t))dsdt

+

∫∫
F (0, g(s), h(s+ t))dsdt (2.18)

The
∫∫

F (f(s), g(t), 0)dsdt term is invariant under symmetrization of f and g
since f and g appear as functions of independent variables. The two following terms
may be dealt with similarly after a change of variables. Thus it suffices to show that
the first term of (2.18) is nondecreasing under rearrangement. By Fubini’s theorem,

∫∫ [∫
Φαβγ(f(s), g(t), h(s+ t))dF (α, β, γ)

]
dsdt =

∫
J(f, g, h)dF (α, β, γ).

where

J(f, g, h) :=

∫∫
Φαβγ(f(s), g(t), h(s+ t))dsdt.

Therefore, using the hypothesis that F is a nonnegative measure, it suffices to
show

J(f, g, h) ≤ J(f ∗, g∗, h∗). (2.19)

By the steps above, we have in fact shown (2.19) to be equivalent to (2.17).
However, note that (2.19) is a statement independent of our choice of F . In the case
that F (x, y, z) = xyz, then (2.17) is the classical Riesz rearrangement inequality, a
previously proven theorem. Hence by this series of equivalences, we have proven our
theorem for any F .

We conclude this section with the following remark. One may show by example
that the third-order condition which is found as a hypothesis in the rearrangement
inequality is necessary. To see this, suppose that there exist a1 ≤ a2, b1 ≤ b2, c1 ≤ c2
such that F (R) < 0, where R = {(x, y, z) : a1 ≤ x ≤ a2, b1 ≤ y ≤ b2, c1 ≤ z ≤ c2}.
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Let χ[s,t] denote the indicator function of the interval [s, t] and let f = a1χ[−5/2,5/2]+
(a2−a1)χ[1/2,3/2], g = b1χ[−5/2,5/2]+(b2−b1)χ[1/2,3/2], and h = c1χ[−5,5]+(c2−c1)χ[−1,1].
Denoting LHS =

∫∫
F (f(s), g(t), h(s+ t))dsdt and RHS =

∫∫
F (f ∗(s), g∗(t), h∗(s+

t))dsdt, then one may compute

LHS = F (a2, b2, c1) + 2[F (a2, b1, c2) + F (a2, b1, c1) + F (a1, b2, c2) + F (a1, b2, c1)]

+ 5F (a1, b1, c2) + 11F (a1, b1, c1) + F (a1, 0, c2) + F (0, b1, c2)

+ 5[F (a2, 0, c1) + F (0, b2, c1)] + 19[F (a1, 0, c1) + F (0, b1, c1)]

and

RHS = F (a2, b2, c2) + F (a2, b1, c2) + 3F (a2, b1, c1) + F (a1, b2, c2) + 3F (a1, b2, c1)

+ 6F (a1, b1, c2) + 10F (a1, b1, c1) + F (a1, 0, c2) + F (0, b1, c2)

+ 5[F (a2, 0, c1) + F (0, b2, c1)] + 19[F (a1, 0, c1) + F (0, b1, c1)]

Thus, RHS − LHS = F (R) < 0.

2.4 The Scales Argument

Let f, g, h : Rd → R and write f =
∑

j∈Z 2jFj, where 1Fj ≤ |Fj| < 2 · 1Fj and the

Fj are disjoint subsets of Rd. Similarly, we write g =
∑

k∈Z 2kGk and h =
∑

l∈Z 2lHl

with associated sets Gk and Hl, respectively.
For this section we introduce the following notation. If B : R3

+ → R+ is measur-
able, then

IB(f, g, h) :=

∫∫
B(f(y), g(x− y), h(x))dxdy.

B is an HBL function is and only if IB(f, g, h) . B(
∫
f,
∫
g,
∫
h).

Proposition 2.13. Let Pi(a, b, c) = a1/pib1/qic1/ri, where pi, qi, ri ∈ (1,∞) and 1/pi+
1/qi + 1/ri = 2. Let B = ρ(P1, ..., Pn) where

ρ(λ1y1, ..., λnyn) ≤ C max
i
λiρ(y1, ..., yn) (2.20)

and
ρ(~y1) + ρ(~y2) ≤ ρ(~y1 + ~y2). (2.21)

Then there exist positive constants δ0, c0, C0 and positive functions θ,Θ such that
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lim
t→∞

θ(t) = 0 lim
δ→0

Θ(δ) = 0

with the following properties. Let 0 < δ ≤ δ0 Let f, g, h : Rd → [0,∞) be integrable
functions with

∫
f = α,

∫
g = β,

∫
h = γ and

IB(f, g, h) ≥ (1− δ)AB(α, β, γ),

where A is the optimal constant in the reverse inequality. Then there exist k, k′, k′′ ∈
Z such that

2k|Fk| ≥ c0∑
|j−k|≥m

2j|Fj| ≤ θ(m) + Θ(δ)

with the analogous properties for g (with k′ in place of k) and h (with k′′ in place of
k). Lastly, we have

|k − k′|+ |k − k′′| ≤ C0.

Remark 2.14. It is implicit in the statement of this theorem that B is an HBL
function. This may be established by using (2.20) to prove (2.7). We also note that
(2.20) is precisely the condition for ρ to be an HBL function in the case that each of
the Lj is the identity map.

Proof. Let η > 0 be a small parameter and define S = {j ∈ Z : 2j|Fj| > η}. Let
f =

∑
j∈S 2jFj. Note that |S| ≤ Cη−1 by Chebyshev’s inequality.

Fix 1 ≤ i ≤ n and write p = pi, q = qi, r = ri. Choose p̃ > p, q̃ > q, r̃ > r with
1
p̃

+ 1
q̃

+ 1
r̃

= 1. Then, taking advantage of the disjointness of the Fj, we have
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||f 1/p − f 1/p||p̃
Lp,p̃

= ||
∑
j /∈S

2j/pF
1/p
j ||

p̃
Lp,p̃

�
∑
j /∈S

(2j/p|Fj|1/p)p̃

≤ max
j /∈S

(2j/p|Fj|1/p)p̃−p
∑
j /∈S

(2j/p|Fj|1/p)p

≤ η
p̃−p
p

∑
j /∈S

(2j/p|Fj|1/p)p

≤ Cη
p̃−p
p ||f 1/p − f 1/p||pLp .

Now define S(η) = S × Z× Z. Taking advantage of the classical inequality

〈f ∗ g, h〉 ≤ C||f ||Lp,p̃ ||g||Lq ||h||Lr ,

we see that

IPi(f − f, g, h) =
∑
S(η)

2j/pi+k/qi+l/ri〈F 1/pi
j ∗G1/qi

k , H
1/ri
l 〉

≤ C||f 1/p − f 1/p||Lp
≤ Cηγi ,

where γj = p̃i−pi
pip̃i

> 0.

By disjointness of supports of f and f ,

IB(f, g, h) = IB(f, g, h) + IB(f − f, g, h)

By Theorem 2.1,∫∫
ρ(f1(x, y), ..., fn(x, y))dxdy ≤ Cρ

(∫
f1, ...,

∫
fn

)
.

Thus,

IB(f − f, g, h) ≤ ρ
[
IP1(f − f, g, h), ..., IPn(f − f, g, h)

]
≤ Cρ(C1η

γ1 , ..., Cnη
γn)

≤ Cηmin γi
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and
IB(f − f, g, h) ≤ Cηγ (2.22)

for some fixed γ > 0.
As η → 0, the left hand side of (2.22) approaches 0. However, we are given that

f is a near-maximizer of this integral, so f 6= 0 and S 6= ∅. This establishes our first
conclusion.

For our next conclusions, we will find an upper bound on the diameter of S,

M = max
j,j′∈S

|j − j′|.

Let N be a large positive integer. Then there exist integers I[ < I] such that
S∩(−∞, I[] 6= ∅, S∩[I],∞) 6= ∅, S∩(I[, I]) = ∅, I]−I[ ≥M/(2N |S|), and, denoting
f0 =

∑
I[<j<I] 2jFj, ∫

|f0| ≤ N−1
∫
|f − f | ≤ CN−1ηc.

Additionally, we may take I] − I[ to be divisible by 2. Now define

f ] =
∑
j≥I]

2jFj, f [ =
∑
j≤I[

2jFj

so that f = f 0 + f ] + f [. Next, let I = (I] + I[)/2 and define

g] =
∑
k≥I

2kGk, h] =
∑
l≥I

2lHl,

and g[ = g − g], h[ = h− h]. We will shortly be analyzing the expression

〈(f − f 0)1/p ∗ g1/q, h1/r〉 = 〈(f ] + f [)1/p ∗ (g] + g[)1/q, (h] + h[)1/r〉 (2.23)

so let us first prove the following lemma.

Lemma 2.15. There exist constants c > 0 and C <∞ such that each of the mixed
terms in the expansion of (2.23) is ≤ C2−cηM/N .

Note that while (2.23) involves nonlinear expressions, we may expand it in a
multilinear fashion since f ] and f [ have disjoint supports, hence (f ] + f [)1/p =
(f ])1/p + (f [)1/p and so on. To prove the above lemma, we will make use of the
following result from [12].
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Lemma 2.16. Let p, q, r ∈ (1,∞) with 1/p+ 1/q+ 1/r = 2. There exists τ > 0 and
C <∞ such that

〈1F ∗ 1G, 1H〉 ≤ C

[
min

x,y∈{|F|,|G|,|H|}

x

y

]τ
|F|1/p|G|1/q|H|1/r (2.24)

for all measurable subsets F ,G,H of R with finite measure.

Proof of Lemma 2.15. Consider the mixed term 〈(f ])1/p ∗ (g[)1/q, (h])1/r〉 and let S
be the set of multi-indices (j, k, l) such that j ≥ I] and k < I. Let ε > 0 and S† ⊂ S
be the set of (j, k, l) such that 2j/p|Fj|1/p ≥ ε, 2k/q|Gk|1/q ≥ ε, and 2l/r|Hl|1/r ≥ ε.
Note that |S†| ≤ Cε−3, a bound which may be obtained by the same reasoning as
for our bound on |S|. By (2.22), we have∑

S\S†
2j/p+k/q+l/r〈1Fj ∗ 1Gk , 1Hl〉 ≤ Cεγ. (2.25)

If (j, k, l) ∈ S†, then 2j/p|Fj|1/p ≤ C and 2k/q|Gk|1/q. The fact that (j, k, l) ∈ S
implies

j ≥ I] ≥ I +
1

4
M/N |S| ≥ I + cηM/N,

so

|Fj| ≤ C2−j ≤ C2−I2−(i−I) ≤ C2−I2−cηM/N .

Also, since k ≤ I, we have

|Gk| ≥ c2−jεq.

Therefore,

|Fj|
|Gk|
≤ Cε−q2−cηM/N

and (2.24) implies∑
S†

2j/p+k/q+l/r〈1Fj ∗ 1Gk , 1Hl〉 ≤ Cε−C2−cηM/N . (2.26)

Combining (2.25) with (2.26) and choosing ε small enough gives∑
S

2j/p+k/q+l/r〈1Fj ∗ 1Gk , 1Hl〉 ≤ C2−cηM/N .
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This implies the lemma for both f ], g[, h] and f ], g[, h[. All other mixed terms
may be dealt with similarly.

We now observe a simple corollary to the above lemma:

IB(f ], g[, h]) =

∫∫
ρ(P1(f

](y), g[(x− y), h](x)), ..., Pn(f ](y), g[(x− y), h](x)))dxdy

≤ Cρ(IP1(f
], g[, h]), ..., IPn(f ], g[, h]))

≤ Cρ(C2−cηM/N , ..., C2−cηM/N)

≤ C2−cηM/N

We are almost ready to complete the proof of Proposition 2.13, but we will need
to employ the following lemma. It is proven in [12] in the form where f ∈ Lp, g ∈
Lq, h ∈ Lr.

Lemma 2.17. Let P (y1, y2, y3) = y
1/p
1 y

1/q
2 y

1/r
3 , where 1 < p, q, r <∞. Let f ], f [, g],

g[, h], h[, and η be as before. Then, there exist constants c, γ > 0, depending only on
p, q, r such that

P
(∫

f ],
∫
g],
∫
h]
)

+ P
(∫
f [,
∫
g[,
∫
h[
)
≤ (1− cηγ)P

(∫
f,
∫
g,
∫
h
)
. (2.27)

Now, let A be the optimal constant such that
∫∫

B(f(y), g(x − y), h(x))dxdy ≤
AB(

∫
f,
∫
g,
∫
h). We apply Lemma 2.15 and the disjointness of supports for f ], f [, f0

to observe that

IB(f, g, h) ≤ AB
(∫

f ],
∫
g],
∫
h]
)

+ AB
(∫

f [,
∫
g[,
∫
h[
)

+ AB
(∫

f0,
∫
g,
∫
h
)

+ C2−cηM/N . (2.28)

We deal with the f0 term as follows:

B
(∫

f0,
∫
g,
∫
h
)

= ρ
[
P1

(∫
f0,
∫
g,
∫
h), ..., Pn(

∫
f0,
∫
g,
∫
h
)]

= ρ((CN−1ηc)1/p1β1/q1γ1/r1 , ...(CN−1ηc)1/pnβ1/qnγ1/rn)

≤ CN−1ηc.
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Now we analyze the first two terms of (2.28). We begin by using the definition of
ρ, along with (2.21) to combine everything into a single term containing just ρ and
terms found in Lemma 2.17.

B
(∫

f ],
∫
g],
∫
h]
)

+B
(∫

f [,
∫
g[,
∫
h[
)

≤ρ
[
P1

(∫
f ],
∫
g],
∫
h]
)
, ..., Pn

(∫
f ],
∫
g],
∫
h]
)]

+ρ
[
P1

(∫
f [,
∫
g[,
∫
h[
)
, ...,Pn

(∫
f [,
∫
g[,
∫
h[
)]

≤ρ
[
P1

(∫
f ],
∫
g],
∫
h]
)
+P1

(∫
f [,
∫
g[,
∫
h[
)
, ...,Pn

(∫
f ],
∫
g],
∫
h]
)
+Pn

(∫
f [,
∫
g[,
∫
h[
)]
.

Next, we apply Lemma 2.17, then use (2.20) before returning B to the expression:

B
(∫

f ],
∫
g],
∫
h]
)

+B
(∫

f [,
∫
g[,
∫
h[
)

≤ ρ
[
(1− c1ηγ1)P1

(∫
f,
∫
g,
∫
h
)
, ..., (1− cnηγn)Pn

(∫
f,
∫
g,
∫
h
)]

≤ (1− cηγ)ρ
[
P1

(∫
f,
∫
g,
∫
h
)
, ..., Pn

(∫
f,
∫
g,
∫
h
)]

= (1− cηγ)B
(∫

f,
∫
g,
∫
h
)
,

where γ = mini γi as before.
In summary, we now have:

A(1− δ)B
(∫

f,
∫
g,
∫
h
)
≤ IB(f, g, h) ≤ A(1− cηγ)B

(∫
f,
∫
g,
∫
h
)

+ CN−1ηc + C2−cηM/N , (2.29)

the first inequality due to the fact that (f, g, h) is a near-maximizing triple. Thus,

2−cηM/N ≥ cηγ − cN−1ηc − Cδ ≥ cηγ − cN−1 − Cδ.

We now choose N to be the integer closest to a sufficiently small multiple of η−γ

so that

2−cη
1+γM ≥ cηγ − Cδ,

so if C0 is chosen large enough we have η ≥ C0δ
1/γ implies M ≤ Cη−1−γ(log η)−1.

This completes the proof of the proposition for f and functions g and h may be
addressed similarly.

Corollary 2.18. Let S be a compact subset of (1,∞)3 and let {Bk}∞k=1 be a sequence
of functions satisfying the hypotheses of Proposition 2.13 such that the triples of
exponents found in the Pi are each contained in S and such that limk→∞Bk exists,
where the limit is taken pointwise. Then the conclusions of Proposition 2.13 hold
with B = limk→∞Bk.
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Proof. All but one of the main steps in the proof of the main proposition involve
bounding an integral of B. These steps may be repeated with Fatou’s lemma as∫∫

B(∗)dxdy ≤ lim inf
k→∞

∫∫
Bk(∗)dxdy,

where ∗ represents any appropriate collection of functions and the arguments (such
as (f, g, h), or (f [, g[, h[), etc.). We complete the last step of the proof as following,
using compactness of S to obtain uniform behavior for the constants γk and ck.

AB
(∫

f ],
∫
g],
∫
h]
)

+ AB
(∫

f [,
∫
g[,
∫
h[
)

=A lim
k→∞

Bk

(∫
f ],
∫
g],
∫
h]
)

+Bk

(∫
f [,
∫
g[,
∫
h[
)

≤A lim inf
k→∞

(1− ckηγk)Bk

(∫
f,
∫
g,
∫
h
)

≤A(1− cηγ)B
(∫

f,
∫
g,
∫
h
)
,

where ck and γk are the appropriate constants corresponding to Bk.

Example 2.5. The previously mentioned example

B(y1, y2, y3) =

∫ 1/6

−1/6
y
2/3−t/2
1 y

2/3−t/2
2 y

2/3+t
3 dt

satisfies the conclusions of Proposition 2.13.

2.5 Existence of Maximizers

Following [12], we introduce the following definitions.

Definition 2.6. Let θ : R+ → R+ be continuous such that limρ→∞ θ(ρ) = 0. Then
a function f ∈ L1(Rd) is normalized with norm α with respect to θ if

∫
f = α and∫

|f(x)|>ρ
|f(x)|dx ≤ θ(ρ) for all ρ <∞∫

|f(x)|<ρ−1

|f(x)|dx ≤ θ(ρ) for all ρ <∞.

If η > 0, then f ∈ L1(Rd) is η-normalized with respect to θ if there exists a
decomposition f = g + b where g is normalized with respect to θ and ||b||1 < η.
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Under the above definitions, Proposition 2.13 states that any extremizing se-
quence {(fn, gn, hn)}∞n=1 for

∫∫
B(f(y), g(x− y), h(x))dxdy may be dilated such that

all fn, gn, and hn are η-normalized with their original norms and with respect to the
same θ with η → 0 as n→∞.

While this is trivial in the setting involving Lp norms, here we must reference
Lemma 2.4, which says B(λy1, λy2, λy3) = λ2B(y1, y2, y3). Thus, we obtain the
dilation symmetry

∫∫
B(λf(λy), λg(λ(x−y)), λh(λx))dxdy =

∫∫
B(f(y), g(x−y), h(y))dxdy. (2.30)

One may now take each triple (fn, gn, hn) to be at the same scale by application
of the dilation symmetry.

We now begin our proof of Theorem 2.2.

Proof. Let {(fn, gn, hn)}∞n=1 be an extremizing sequence satisfying
∫
fn = α,

∫
gn =

β,
∫
hn = γ for all n ≥ 1. By Theorem 2.12 (and a suitable change of coordinate),

we may replace fn, gn, hn with (f ∗n, g
∗
n, h

∗
n) to obtain another extremizing sequence

consisting of functions which are radially symmetric and nonincreasing.
By Proposition 2.13 and (2.30), we may replace the extremizing sequence with

one which is η-normalized with respect to a continuous function θ : R+ → R+, where
η → 0 as n → ∞. (The benefit here is that we may use the same θ for all triples
in our sequence.) In the sequel, {(fn, gn, hn)}∞n=1 will denote the new, normalized,
symmetrized sequence. To complete the proof, it suffices to show that each of the
sequences {fn}, {gn}, {hn} is precompact.

Let ε > 0. For any ρ <∞ and 0 < A <∞ we have∫
|t|≤A

fn(t)dt ≤ cdρA+

∫
fn>ρ

fn.

Since fn is η-normalized with η → 0, there exist ρ and N large enough such that
n > N implies ∫

fn>ρ

fn < ε/2.

By choosing A small enough, we have∫
|t|≤A

fn(t)dt < ε (2.31)
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for sufficiently large n. Now let 0 < B < ∞. Since symmetric decreasing fn with∫
fn = α satisfy fn(s) ≤ cdα|s|−d, we have∫

|t|≥B
fn(t) ≤

∫
|t|≥B

fn ≤ cdαB
−dfn(t)dt ≤ θ(c−1d α−1Bd) + o(1),

where o(1)→ 0 as n→∞. Since θ(ρ)→ 0 as ρ→∞, we may take B large enough
that ∫

|t|≥B
fn(t)dt < ε (2.32)

for sufficiently large n. Fixing 0 < A < B < ∞, we see that the restrictions of
fn to [A,B] are radial symmetric decreasing with 0 ≤ fn(t) ≤ cdαA

−d so they are
precompact in L1 on {t ∈ Rd : A ≤ |t| ≤ B}. By (2.31) and (2.32), {fn} is
precompact in L1(Rd). By the same reasoning, {gn} and {hn} are precompact in
L1(Rd) as well, which completes the proof.

2.6 Non-Gaussian Maximizers

In the classical version of Young’s inequality, it is known that maximizers exist when
pj ∈ (1,∞ and

∑
j p
−1
j = 2. Furthermore, those maximizers are always triples of

Gaussians. In [23], it is shown that for a certain class of functions B, there exist
maximizers of ∫∫

B(f(y), g(x− y), h(x))dxdy

and that these maximizers are always Gaussians. However, the following proposition
shows that our expansion of the class of functions B breaks this pattern.

Proposition 2.19. Fix α, β, γ > 0. There exists a B : R3 → R satisfying the
hypotheses of Theorem 2.2 such that under the constraints

∫
f = α,

∫
g = β,

∫
h = γ,

there exist maximizers of ∫∫
B(f(y), g(x− y), h(x))dxdy

which are not all Gaussians.
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The proof of this proposition is based on a simple use of Euler-Lagrange equations,
though some aspects are modified to fit our particular setting. Extremizers exist due
to results from previous sections and extremizers must also be critical points of the
functional

∫
B(f(x), g(x − y), h(y)). However, any critical point must satisfy the

Euler-Lagrange equations and it will be clear that no triple of Gaussians does.
To conduct this analysis, let us define a critical point as a triplet of L1 functions

(f, g, h) such that for any j ∈ C∞c with
∫
j = 0,

∫∫
B(f(y) + tj(y), g(x− y), h(x))dxdy =

∫∫
B(f(y), g(x− y), h(x))dxdy + o(|t|)

as t→ 0 and that the analogous equation holds with perturbations of g and h. The
reason we add the restriction that

∫
j = 0 is so that

∫
(f + j) =

∫
f = α and f + j

satisfies the appropriate constraint. The condition that j is bounded with compact
support is to ensure convergence of certain integrals which arise in the proof.

Proof. Let B(y1, y2, y3) = y
1/p1
1 y

1/p2
2 y

1/p3
3 + y

1/q1
1 y

1/q2
2 y

1/q3
3 , where

1

pi
+

1

qi
+

1

ri
= 2

and pi, qi, ri ∈ (1,∞) for i = 1, 2, but (p1, q1, r1) 6= (p2, q2, r2). Suppose, to the
contrary, that there exist Gaussians f, g, h which are maximizers of

∫∫
B(f(y), g(x−

y), h(x))dxdy. Then, f, g, h must also form a critical point. Taking the binomial
expansion of (f + tj)1/p1 , we find

∫∫
(f(y)+tj(y))1/p1g1/q1(x−y)h1/r1(x)dxdy=

∫∫
f 1/p1(y)g1/q1(x−y)h1/r1(x)dxdy

+
t

p1

∫∫
f 1/p1−1(y)j(y)g1/q1(x− y)h1/r1(x)dxdy

+O

(
t2
∫∫

f 1/p1−2(y)j2(y)g1/q1(x− y)h1/r1(x)dxdy

)
.

The left hand side is well-defined since f is bounded below by a positive constant
on the domain of j. Thus, we may take t small enough that f + tj > 0 everywhere.
Furthermore, the integrals on the right hand side are convergent since j is bounded
with compact support and 1/f is bounded on the support of j. In fact, f 1/p1−1j ∈ Lp
for all 1 ≤ p ≤ ∞. Thus,
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∫∫
f 1/p1−1(y)j(y)g1/q1(x− y)h1/r1(x)dxdy

+

∫∫
f 1/p2−1(y)j(y)g1/q2(x− y)h1/r2(x)dxdy = 0

for all bounded j with compact support with
∫
j = 0. This implies that

f 1/p1−1(g̃1/q1 ∗ h1/r1) + f 1/p2−1(g̃1/q2 ∗ h1/r2) = C

for some constant C, where g̃(x) = g(−x). There are now two cases. The first is that
neither of the 2 summed terms is constant, in which case each is either a Gaussian
or the inverse of a Gaussian and their sum cannot be constant. The second case is
that each of the two terms is constant. However, since (p1, q1, r1) 6= (p2, q2, r2), this
is impossible to obtain with the same Gaussians for each term. Thus, a triple of
Gaussians cannot be a critical point (or a triple of maximizers) for

∫∫
B(f(y), g(x−

y), h(x))dxdy under the given constraints.
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Chapter 3

A Sharpened Inequality for
Twisted Convolution

3.1 Introduction

Young’s convolution inequality, in its optimal form, states that for dimensions d ≥ 1
and functions f ∈ Lp(Rd), g ∈ Lq(Rd),

||f ∗ g||Lr ≤ Ad
p||f ||Lp ||g||Lq , (3.1)

where p, q, r ∈ [1,∞] with 1
p

+ 1
q

= 1 + 1
r
. Ad

p =
∏3

j=1C
d
pj

is the optimal constant,

where Cp = p1/p/p′1/p
′
, and p′ is the conjugate exponent of p [4], [9]. For the purpose

of this chapter, it is convenient to use the following, related trilinear form:

T (f1, f2, f3) =

∫∫
f1(x)f2(y)f3(x+ y)dxdy. (3.2)

Through duality, one may rewrite (3.1) as

|T (f)| ≤ Ad
p

3∏
j=1

||fj||Lpj (3.3)

for all f = (fj ∈ Lpj(Rd) : j = 1, 2, 3), with
∑
p−1j = 2 and p = (pj : j = 1, 2, 3) ∈

[1,∞]3.
From here on out, we take pj ∈ (1,∞). In [9], Brascamp and Lieb show that the

maximizers of (3.3) are precisely the triple of Gaussians g = (e−πp
′
j |x|2 : j = 1, 2, 3)

and its orbit under the following symmetries.
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• (f1, f2, f3) 7→ (af1, bf2, cf3) for a, b, c 6= 0. (Scaling)

• (f1, f2, f3) 7→ (Mξf1,Mξf2,M−ξf3), where Mξf(x) = eix·ξ for ξ ∈ Rd. (Modu-
lation)

• (f1, f2, f3) 7→ (τv1f1, τv2f2, τv1+v2f3), where τvf(x) = f(x + v) for v ∈ Rd.
(Translation)

• (f1, f2, f3) 7→ (f1 ◦ ψ, f2 ◦ ψ, f3 ◦ ψ), where ψ is an invertible linear map on Rd.
(Diagonal Action of the General Linear Group)

Note that these symmetries do not necessarily preserve |T (f)|, but they do pre-

serve |Φ(f)|, where Φ(f) := T (f)∏
j ||fj ||pj

.

Let OC(f) denote the orbit of the triple f under the above symmetries. Define
the distance from g to OC(f) as

distp(OC(f),g) := inf
h∈OC(f)

max
j
||hj − gj||pj . (3.4)

Note that the symmetries of an operator preserve the (normalized) distance of a
triple from the manifold of maximizers.

Christ [17] proved the following quantitative stability theorem for Young’s con-
volution inequality.

Theorem 3.1. Let K be a compact subset of (1, 2)3. Let p satisfy
∑3

j=1 p
−1
j = 2.

For each d ≥ 1, there exists c > 0 such that for all p ∈ K and all f ∈ Lp(Rd),

|T (f)| ≤
(
Ad

p − cdistp(OC(f),g)2
)∏

j

||fj||pj . (3.5)

One may instead state the above theorem in terms of the distance of a triple f
from the set of all triples of maximizers (that is, OC(g)), as is done in [17]. However,
the distance defined in (4.4) is more useful for analogy with our current analysis.

It is also shown that the conclusion of Theorem 3.1 is true for p ∈ (1, 2]3 provided
one does not require the same c for all p in a region. (However it is not known if this
uniformity fails.) Furthermore, the conclusion in this particular quantitative form is
false whenever any pj = 1 or pj > 2.

The purpose of this chapter is to prove a similar quantitative stability result for
twisted convolution. Let t ≥ 0 be a parameter and let fj ∈ Lpj(R2d), where R2d is
viewed as Rd×Rd = {(x′, x′′′) : x′, x′′ ∈ Rd}. Define the trilinear twisted convolution
form with parameter t as
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Tt(f) :=

∫∫
f1(x)f2(y)f3(x+ y)eitσ(x,y)dxdy, (3.6)

where σ(x, y) = x′ · y′′ − x′′ · y′ is the symplectic form. It is often useful to write
σ(x, y) = xtJy, where J is the matrix

J =

(
0 Id
−Id 0

)
, (3.7)

and Id is the d× d identity matrix.
When t = 0, (3.6) becomes the trilinear form representing convolution. When

t 6= 0, it is obvious through the inequality

|Tt(f)| ≤ T (|f |) (3.8)

that Tt is bounded for any triple p of exponents for which T is bounded. It is also
known that for t 6= 0, T (f , t) is also bounded for (p1, p2, p3) = (2, 2, 2) and the full
range of exponents implied by interpolation (see Chapter XII.4 of [31], for instance).
However, the particular conclusion we desire is false in the case

∑
j p
−1
j 6= 2 since

T0 = T is unbounded.
By (3.8), it is easy to see that Tt has norm at most A2d

p , the optimal constant
for Young’s convolution inequality. Furthermore, the optimal constant may be seen
to equal A2d

p by taking a triple of Gaussians which optimize Young’s inequality and
dilating them to concentrate at the origin so the oscillation of the twisting factor has
negligible effect. However, no extremizers of Tt exist for fixed t 6= 0. [24]

One challenge to dealing with the above form directly arises because the symmetry
group of T contains the general linear group Gl(2d), while Tt does not; the only linear
transformations which preserve σ are the symplectomorphisms. To avoid this issue,
it helps to introduce the following trilinear form:

TA(f) :=

∫∫
f1(x)f2(y)f3(x+ y)eitσ(Ax,Ay)dxdy, (3.9)

where A : R2d → R2d is an arbitrary linear map. Replacing x with Lx and y with Ly
for an invertible matrix L sends A to A ◦ L, and the functional remains of the form
(3.9). Boundedness properties of TA follow directly from those of Tt and a change of
coordinates.

The symmetries of TA are similar to the those of T with some slight modifications,
though they reduce to the symmetries of T (f) when A = 0. Here, the symmetries

preserve |Φ(f , A)|, where Φ(f , A) = T (f ,A)∏
j ||fj ||pj

.
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• (f1, f2, f3, A) 7→ (af1, bf2, cf3, A), where a, b, c ∈ C. (Scaling)

• (f1, f2, f3, A) 7→ (Mξf1,Mξf2,M−ξf3, A). (Modulation)

• (f1, f2, f3, A) 7→ (MAT JAv2τv1f1,M−AT JAv1τv2f2, τv1+v2f3, A), where AT repre-
sents the transpose of the matrix A. (Translation/ Modulation Mix)

• (f1, f2, f3, A) 7→ T (f1 ◦ ψ, f2 ◦ ψ, f3 ◦ ψ,A ◦ ψ), where ψ ∈ Gl(d). (Diagonal
Action of the General Linear Group)

Note that only the last of these symmetries alters A.
Let OTC(f , A) denote the orbit of (f , A) under the above symmetries.
Now, it is less obvious how to represent the distance of A from the zero transfor-

mation than it was when our parameter was just a real number t. One may naively
suggest that ||A|| will play a role, but this approach ignores the role of the sym-
plectic group. The real symplectic group Sp(2d) is defined as the set of invertible
(2d) × (2d) matrices S such that STJS = J . Equivalently, Sp(2d) may be viewed
as the set of coordinate changes which preserve σ. Under this view, we see that
σ(Ax,Ay) = σ(SAx, SAy) for any S ∈ Sp(2d). Thus, replacing A with S ◦A should
not change our distance.

With this in mind, define the distance from OTC(f , A) to (g, 0) by

distp(OTC(f , A), (g, 0))2 := inf
(h,M)∈OTC(f ,A)

[
max
j
||hj − gj||2pj + ||MTJM ||2

]
(3.10)

A useful fact in analyzing this distance is that infS∈Sp(2d) ||S ◦ A||2 = ||ATJA||.
(See Lemma 10.1 of [16].) Define ||f ||p = maxj ||fj||pj . We now state our main
theorem.

Theorem 3.2. Let K be a compact subset of (1, 2)3. For each d ≥ 1, there exists
c > 0 such that for all p ∈ K with

∑3
j=1 p

−1
j = 2, f ∈ Lp(R2d), and (2d) × (2d)

matrices A,

|TA(f)| ≤
(
A2d

p − cdistp(OTC(f , A), (g, 0))2
)∏

j

||fj||pj . (3.11)

By setting A = t1/2I2d in Theorem 3.2 (where I2d is the (2d) × (2d) identity
matrix), one obtains the following corollary. However, one is cautioned that the
orbit in this expression refers to the symmetries of TA, not those of Tt.
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Corollary 3.3. Let K be a compact subset of (1, 2)3. For each d ≥ 1, there exists
c > 0 such that for all p ∈ K with

∑3
j=1 p

−1
j = 2, f ∈ Lp(R2d), and |t| ≤ 1,

|Tt(f)| ≤
(
A2d

p − cdistp(OTC(f , t1/2I2d), (g, 0))2
)∏

j

||fj||pj . (3.12)

The reason one uses t1/2I2d rather than tI2d is so the ||MTJM ||2 term appearing
in (3.10) is proportional to t2, rather than t4. An alternative form of Corollary 3.3
states the function ε(δ) in Theorem 3.4 may be taken to be C

√
δ for some C > 0.

The methods in this chapter follow the general approach found in [17] and [7] in
which one takes a Taylor-like expansion of the given operator and diagonalizes the
resulting quadratic form.

We will often use C or c to denote an arbitrary constant in (0,∞) which may
change from line to line but always be independent of functions found in the equation.

3.2 Reduction to Perturbative Case

Our argument centers around an expansion of T (f , A) which requires a reduction to
small perturbations. To this end, the following result from [16] is essential.

Theorem 3.4. Let d ≥ 1. Let K be a compact subset of (1, 2)3 for which each p ∈ K
satisfies

∑3
j=1 p

−1
j = 2. Then, there exists a function δ 7→ ε(δ) (depending only on

K and d) satisfying limδ→0 ε(δ) = 0 with the following property. Let f ∈ Lp(R2d)
and suppose that ||fj||pj 6= 0 for each 1 ≤ j ≤ 3. Let δ ∈ (0, 1) and suppose
that |T (f , t)| ≥ (1 − δ)A2d

p

∏
j ||fj||pj . Then there exist S ∈ Sp(2d) and a triple of

Gaussians G = (G1, G2, G3) such that G\
j = Gj ◦ S satisfy

||fj −G\
j||pj < ε(δ)||fj||pj (3.13)

for 1 ≤ j ≤ 3 and
Gj(x) = cje

πp′j |L(x−aj)|2eix·veitσ(ãj ,x) (3.14)

where v ∈ R2d, 0 6= cj ∈ C, a1 + a2 + a3 = 0, ã3 = 0, ã1 = a2, ã2 = a1, L ∈ Gl(2d), and

|t| · ||L−1||2 ≤ ε(δ). (3.15)

Here is a rephrasing of Theorem 3.4.

Theorem 3.5. Let d ≥ 1. Let K be a compact subset of (1, 2)3 for which each p ∈ K
satisfies

∑3
j=1 p

−1
j = 2. Then, there exists a function δ 7→ ε(δ) (depending only on
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K and d) satisfying limδ→0 ε(δ) = 0 with the following property. Let f ∈ Lp(R2d)
and suppose that ||fj||pj 6= 0 for each 1 ≤ j ≤ 3. Let δ ∈ (0, 1) and suppose that
|TA(f)| ≥ (1− δ)A2d

p

∏
j ||fj||pj . Then,

distp(OTC(f , A), (g, 0)) < ε(δ) (3.16)

Proof of Theorem 3.4 ⇒ Theorem 3.5. By a standard approximation argument, it
suffices to prove Theorem 3.5 for invertible maps A, as each noninvertible map is
arbitrarily close to an invertible map.

Suppose that |T (f , A)| ≥ (1− δ)A2d
p

∏
j ||fj||pj . Then invoking the symmetry of

diagonal action of the general linear group,

|T (f ◦ A−1, I2d)| ≥ (1− δ)A2d
p

∏
j

||fj ◦ A−1||pj , (3.17)

where f ◦ A−1 = (fj ◦ A−1 : j = 1, 2, 3).
Applying Theorem 3.4 under the case t = 1, there exists S0 ∈ Sp(2d) and a triple

of Gaussians G = (G1, G2, G3) such that

||fj ◦ A−1 −Gj ◦ S0||pj < ε(δ)||fj ◦ A−1||pj (3.18)

for 1 ≤ j ≤ 3 and
Gj(x) = cje

πp′j |L(x−aj)|2eix·veitσ(ãj ,x) (3.19)

where v ∈ R2d, 0 6= cj ∈ C, a1 + a2 + a3 = 0, ã3 = 0, ã1 = a2, ã2 = a1, L ∈ Gl(2d), and

||L−1||2 ≤ ε(δ). (3.20)

By a combination of translations, modulations, scalings, and compositions with
invertible linear maps, (3.18) becomes

||hj − gj||pj < ε(δ)||hj||pj , (3.21)

where hj is fj ◦ A−1 composed with said operations.
Since G was the composition of g with the stated symmetries of TA, we see that

h is obtained by the composition of f ◦ A−1 with symmetries of TA by the following
reasoning. Three of these symmetries (scaling, modulation, and the diagonal action
of the general linear group) may trivially be inverted by symmetries of the same
form. To address the inversion of the translation/modulation mix, one observes that
τwjMBT JBw̃jf = eiB

T JBw̃j ·wjMBT JBw̃jτwjf for matrices B and vectors wj. Hence, h
is obtained from f ◦ A−1 through the inverses of the symmetries applied initially to
g to obtain G but with an additional scaling symmetry.
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The only above symmetry which changes the matrix B in TB is the diagonal
action of the general linear group. Following the use of this symmetry above, one
obtains from (3.17) that (h, S−10 ◦ L−1) ∈ OTC(f , A).

We now see that

distp(OTC(f , A), (g, 0))2 ≤ max
j
||hj − gj||2pj + inf

S∈Sp(2d)
||S ◦ S−10 ◦ L−1||4

≤ ε(δ)2 + ||S0S
−1
0 ◦ L−1||4

≤ ε(δ)2 + ||L−1||4 ≤ 2ε(δ)2.

As a corollary to Theorem 3.5, it suffices to prove Theorem 3.2 in the case in which
distp(OTC(f , A), (g, 0)) < δ0 for some δ0 > 0. Theorem 3.5 guarantees that there are
no sequences of (fn, An) at distance greater than δ0 such that TAn(fn)/(

∏
j ||fn,j||pj)

converges to A2d
p . Thus, for (f , A) at distance at least δ0, TA(f) must have a maximum

strictly less than A2d
p . While ||ATJA|| → ∞ for an appropriate sequence of matrices

A, distp(OTC(f , A), (g, 0)) remains bounded above as the symmetries of TA ensure
there exists (h,M) ∈ OTC(f , A) with ||MTJM || ≤ 1. Therefore, the conclusion of
Theorem 3.2 holds for distances greater than δ0.

3.3 Treating Some Terms of the Expansion

In this section, we consider TA(g + f), where A is a (2d) × (2d) matrix, g = (gj =

e−πp
′
j |x|2 : j = 1, 2, 3) and f ∈ Lp(R2d) are small perturbations. (This change in nota-

tion of f from functions close to g to the differences will continue for the remainder
of the chapter.) As in [17], we may assume

∫
g
pj−1
j fj = 0 via the scaling symmetry.

In short, we will expand T (g + f , A) = T0(g + f) + (TA − T0)(g + f) and use
the multilinearity of T0 and TA to get sixteen terms of eight different types. Before
writing out the expansion, we prove a few lemmas about its terms and describe a
useful decomposition.

Following [14] and [17], let η > 0 be a small parameter to be chosen later (see
Proposition 3.10). For each 1 ≤ j ≤ 3, decompose fj = fj,] + fj,[, where

fj,] =

{
fj(x) if |fj(x)| ≤ ηgj(x)
0 otherwise,

(3.22)

and fj,[ = fj − fj,]. The purpose of this decomposition is twofold. First, it is
used in the analysis of [17] to analyze the quadratic form in the expansion with L2
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functions. Using the same decomposition allows us to borrow from that analysis in
Proposition 3.10, a version of Theorem 3.1 with an additional favorable term. Second,
the decomposition is used to reduce to the case of fj = fj,], which concentrates closer
to the origin, allowing for control of the third order term in Lemma 3.7.

Lemma 3.6. (TA − T0)(f) = O(||f ||3p).

Proof. This claim follows trivially from the uniform boundedness of TA and T0.

The following lemma represents our main use of the fj = fj,]+fj,[ decomposition
and the swapping of fj for fj,] will be justified later.

Lemma 3.7. (TA−T0)(f1,], f2,], g3) = o(||f ||2p+ ||ATJA||2) with decay rate depending
only on η.

Lemma 3.7 also applies to the other two terms of this type.
Note that the trivial bound

|(TA − T0)(h1, h2, g3)| = O (||h1||p1||h2||p2) (3.23)

is insufficient to deal with the above term directly since it provides a second order
control of a term which should heuristically be third order. However, (3.23) still
plays a useful role in the proof of Lemma 3.7.

Proof. First, suppose that ||ATJA||3 ≥ ||f1,]||p1 ||f2,]||p2 . Note that by our reduction
to small perturbations in Theorem 3.5, ||ATJA|| may be taken small enough that
||ATJA||3 ≤ ||ATJA||2. By (3.23),

(TA − T0)(f1,], f2,], g3) ≤ C||f1,]||p1||f2,]||p2 ≤ ||ATJA||3 = o(||f ||2p + ||ATJA||2)

and we are done.
So suppose that ||ATJA||3 < ||f1,]||p1||f2,]||p2 . Now, for j = 1, 2, write fj,] =

fj,],≤Mj
+ fj,],>Mj

, where fj,],≤Mj
= fj,]1B(0,Mj) and fj,],>Mj

= fj,]1B(0,Mj)c . In the
above, 1E refers to the indicator function of the set E, B(x0, R) refers to the closed
ball of radius R centered at x0, E

c is the complement of the set E, and Mj is chosen
so that

||fj,],>Mj
||pj = ||fj,]||2pj . (3.24)

Note that Mj is dependent on η.
We claim that Mj ≤ C log(||fj,]||−1pj ). To see this, observe that for given η and

||fj,]||pj and varying fj,], Mj is maximized when fj,] = ηgj on B(0,M)c and fj,] = 0
on B(0,M), where M is the positive real number that leads to the appropriate value
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of ||fj,]||pj . (Here, M < Mj since ||fj,]||pj is small.) It suffices to find an upper bound
for Mj in this scenario. We integrate with respect to spherical coordinates to obtain

||fj,]||2pj = ||fj,],>Mj
||pj

=

∫
Sd−1

[∫ ∞
Mj

ηe−πp
′
jr

2

r2d−1dr

]
dσ(θ)

= Cdη

∫ ∞
Mj

ηe−πp
′
jr

2

r2d−1dr

= O(M2d−2
j e−πp

′
jM

2
j ).

Thus, ||fj,]||pj ≤ Ce−Mj , proving our claim.
Expand

(TA−T0)(f1,], f2,], g3) = (TA−T0)(f1,],>M1 , f2,],>M2 , g3)+(TA−T0)(f1,],>M1 , f2,],≤M2 , g3)

+ (TA − T0)(f1,],≤M1 , f2,],>M2 , g3) + (TA − T0)(f1,],≤M1 , f2,],≤M2 , g3).

The first three of these terms may be treated by combining the trivial bound (3.23)
with (3.24).

Let R = B(0,M1)×B(0,M2) ⊂ R2d × R2d. The absolute value of the remaining
term is

|(TA − T0)(f1,], f2,], g3)| ≤
∫∫

R

|f1,](x)| · |f2,](y)| · g3(x+ y) · |σ(Ax,Ay)|dxdy

≤ C||f1,]||p1 ||f2,]||p2||g3||p3||ATJA||M1M2

≤ C||f1,]||4/3p1
||f2,]||4/3p2

log(||f1,]||−1p1 ) log(||f2,]||−1p2 ) = o(||f ||2p)

Lemma 3.8. For all f ∈ Lp1(R2d)∫∫
f(x)g2(y)g3(x+ y)σ(Ax,Ay)dxdy = 0 (3.25)

The conclusion also applies to the same integral with (g1, f, g3) or (g1, g2, f) in
place of (f, g2, g3) (with f ∈ Lpj for the appropriate j ∈ {1, 2, 3}).
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Proof. Since σ(Ax,Ay) = xTATJAy is an antisymmetric bilinear form, we may
diagonalize ATJA as QTΣQ for some orthogonal Q and

Σ =


0 a1 ... 0 0
−a1 0 ... 0 0

...
...

. . .
...

...
0 0 ... 0 ad
0 0 ... −ad 0

 , (3.26)

where ak ∈ R and ±aki are the eigenvalues of ATJA. Since gj(x) = e−πp
′
j |x|2 , g2

and g3 remain unchanged under an orthogonal change of coordinates. Thus, we may
write the term in question as∫∫

f(Qx)g2(y)g3(x+ y)
d∑

k=1

ak(x2k−1y2k − x2ky2k−1)dxdy. (3.27)

Since f(x) is an arbitrary function of x, f(Qx) is also an arbitrary function of x, so
it suffices to show that∫

g2(y)g3(x+ y)
d∑

k=1

ak(x2k−1y2k − x2ky2k−1)dy = 0 (3.28)

for all x ∈ R2d.
By linearity and permutation of coordinates, it suffices to show that∫

g2(y)g3(x+ y)(x1y2 − x2y1)dy = 0. (3.29)

Writing e−πp
′
j |w|2 = e−πp

′
j(w

2
1+w

2
2)e−πp

′
j(w

2
3+...+w

2
2d), the above integral factors into∫

g2(y1, y2)g3(x1 + y1, x2 + y2)(x1y2 − x2y1)dy1dy2 ·
∫
g2(ỹ)g3(x̃+ ỹ)dỹ, (3.30)

where x = (x1, x2, x̃), y = (y1, y2, ỹ), and through abuse of notation, gj(w) = e−p
′
j |w|2

for w in any dimension. It now suffices to show the first factor is zero.
Expanding this factor gives

x1

∫
y2g2(y2)g3(x2 + y2)dy2 ·

∫
g2(y1)g3(x1 + y1)dy1

− x2
∫
y1g2(y1)g3(x1 + y1)dy1 ·

∫
g2(y2)g3(x2 + y2)dy2. (3.31)



CHAPTER 3. A SHARPENED INEQUALITY FOR TWISTED
CONVOLUTION 45

An elementary computation shows that g2 ∗ g3 = Cg1 and
∫
yg2(y)g3(x+ y)dy =

C ′xg1(x), hence the above becomes

x1 · C ′x2g1(x2) · Cg1(x1)− x2 · C ′x1g1(x1) · Cg1(x2) = 0. (3.32)

If S is a list of parameters, let A ≈S B mean there exists a C > 0 depending only
on elements of S such that A ≤ CB and B ≤ CA.

Lemma 3.9. For g and A as above,∫∫
g1(x)g2(y)g3(x+ y)σ2(Ax,Ay)dxdy ≈d,p ||ATJA||2. (3.33)

Proof. As in the proof of Lemma 3.8, one may use an orthogonal change of coordi-
nates to reduce to the computation of∫∫

g1(x)g2(y)g3(x+ y)

[
d∑

k=1

ak(x2k−1y2k − x2ky2k−1)

]2
dxdy. (3.34)

Expanding the square gives

d∑
j,k=1

ajak

∫∫
g1(x)g2(y)g3(x+ y)(x2j−1y2j − x2jy2j−1)(x2k−1y2k − x2ky2k−1)dxdy.

By factoring the gj and computing the above integrals two coordinates at a time as in
the proof of Lemma 3.8, one finds that the cross terms are zero. Thus, the original
integral is equal to a function to d and p alone times

∑d
k=1 a

2
k. Recall that ±aki

are the eigenvalues of ATJA, so ||ATJA||2 = maxk |ak|2 and the two expressions are
equivalent.

At this point, it is tempting to expand TA(g + f), using the previous four lemmas
to treat the (TA − T0) terms (to get −c||ATJA||2) and Theorem 3.1 to treat the T0
terms (and get A2d

p − c||f ||2p). However, Theorem 3.1 may only be applied directly
when the perturbative terms fj represent the projective distance from the orbit of the
original functions to g. The subtle difference here is that the fj which represent the
minimum value of ||f ||2p may not be the same functions which represent the minimum
value of ||f ||2 + ||ATJA||2.

For this reason, we will delve somewhat into the proof of Theorem 3.1 and show
that it is possible to obtain the same circumstances which lead to a −c||f ||2 decay.
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3.4 Balancing Lemma

For t > 0 and n = 0, 1, 2, ..., let P
(t)
n denote the real-valued polynomial of degree

n with positive leading coefficient and ||P (t)
n e−tπx

2 ||L2(R) = 1 which is orthogonal to

P
(t)
k e−tπx

2
for all 0 ≤ k < n.

For d > 1, α = (α1, ..., αd) ∈ {0, 1, 2, ...}d, and x = (x1, ..., xd) ∈ Rd, define

P (t)
α (x) =

d∏
k=1

P (t)
αk

(xk). (3.35)

Let τj = 1
2
pjp
′
j (j = 1, 2, 3). In [17], the following is proved en route to the main

theorem.

Proposition 3.10. Let δ0 > 0 be sufficiently small. There exists c, c̃ > 0 and a
choice of η > 0 in the fj = fj,] + fj,[ decomposition such that the following holds.
Suppose ||f ||p < δ0 and fj satisfy the following orthogonality conditions:

• 〈Re(fj), P
(τj)
α g

pj−1
j 〉 = 0 whenever α = 0, |α| = 1 and j ∈ {1, 2}, or |α| = 2

and j = 3.

• 〈Im(fj), P
(τj)
α g

pj−1
j 〉 = 0 whenever α = 0 or |α| = 1 and j = 3.

Then,
T0(g + f)∏
j ||gj + fj||pj

≤ A2d
p − c||f ||2p − c̃

∑
j

||fj,[||pjpj . (3.36)

The above proposition is not stated as an explicit result of [17]. However, (3.36)
is, in effect, the penultimate line of the proof of Theorem 3.1 in Section 8 of [17].

(The one difference is that c||f ||2p is replaced by
∑

j ||fj,]g
(pj−2)/2
j ||22 in the line in [17],

though it is shown the latter majorizes a constant multiple of the former.)
We cite this particular intermediate result in order to take advantage of the

fj = fj,] + fj,[ decomposition. The terms in Lemma 3.7 involve fj,] in place of fj so
(3.36) is used to deal with the case that fj,[ makes up a significant portion of the Lpj

norm of fj.
The goal of this section is to reduce to the situation in which the hypotheses

of Proposition 3.10 apply. This is done through the use of the following balancing
lemma.

Lemma 3.11 (Balancing Lemma). Let d ≥ 1 and p ∈ (1, 2]3 with
∑

j p
−1
j = 2. There

exists δ0 > 0 such that if ||Fj − gj||pj ≤ δ0, ||ATJA|| ≤ δ0, and 〈Fj − gj, g
pj−1
j 〉 = 0,
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then there exist vj ∈ R2d satisfying v1+v2+v3 = 0, aj ∈ C, ξ ∈ R2d, and a (2d)×(2d)
matrix ψ such that

∑
j

(|vj|+ |aj − 1|) + ||ψ− I2d||+ |ξ| ≤ C

(∑
j

||fj − gj||pj

)2

+ ||ATJA||2
 (3.37)

and the orthogonality conditions of Proposition 3.10 hold for the functions

F̃j(x) = ajFj(ψ(x) + vj)e
ix·ξ+iAT JAṽj ·x, (3.38)

where ṽ1 = v2, ṽ2 = v1, and ṽ3 = 0.

Proof. Begin by writing hj = gj − Fj and h̃j = gj − F̃j, where F̃j = ajFj(ψ(x) +

vj)e
ix·ξ+iAT JAṽj ·x and ψ, vj, aj, ξ are to be determined. Letting aj = 1+bj and subbing

in fj = gj + hj,

h̃j(x) = ajFj(ψ(x) + vj)e
ix·ξ+iAT JAṽj ·x − gj(x)

= (1 + bj)(gj(ψ(x) + vj)e
ix·ξ+iAT JAṽj ·x + hj(ψ(x) + vj)e

ix·ξ+iAT JAṽj ·x)− gj(x).

Writing ψ(x) = x+ φ(x) and taking the two terms involving gj from above,

gj(ψ(x) + vj)e
ix·ξ+iAT JAṽj ·x − gj(x)

= gj(x)[g−1j (x)gj(x+ vj + φ(x))eix·ξ+iA
T JAṽj ·x − 1]

= gj(x)(e−πp
′
j [|x+vj+φ(x)|2−|x|2]eix·ξ+iA

T JAṽj ·x − 1)

= gj(x)x · [−2p′j(φ(x) + vj) + iξ + iATJAṽj] +O((||φ||+ |v|+ |ξ|)2),

where O((|φ|| + |v| + |ξ|)2) represents the Lpj norm of the remainder term. Substi-
tuting back into the initial expression for h̃j, one finds

h̃j(x) = ajhj(ψ(x) + vj)e
ix·ξ+iAT JAṽj ·x

+ gj(x)x · [−2p′j(φ(x) + vj) + iξ + iATJAṽj] +O((||φ||+ |v|+ |b|+ |ξ|)2). (3.39)

In computing 〈h̃j, P
(τj)
α g

pj−1
j 〉, we begin with the main term from (3.39).

〈ajhj(ψ(x) + vj)e
ix·ξ+iAT JAṽj ·x, P (τj)

α g
pj−1
j 〉

= 〈hj(ψ(x) + vj), P
(τj)
α g

pj−1
j 〉+O((|b|+ |ξ|+ |v|)||hj||pj)

= | det(ψ)|−1
∫
hj(y)P (τj)

α (ψ−1(y − vj)g
pj−1
j (ψ−1(y − vj)dy

+O((|b|+ |ξ|+ |v|)||hj||pj)
= 〈hj, P (τj)

α g
pj−1
j 〉+O((|b|+ |ξ|+ ||φ||+ |v|)||hj||pj).
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Considering the full expression from (3.39),

〈h̃j, P (τj)
α g

pj−1
j 〉 = 〈hj, P (τj)

α g
pj−1
j 〉

+ 〈gj(x)x · [bj − 2p′j(φ(x) + vj)− iξ − iATJAṽj], P (τj)
α g

pj−1
j 〉

+O((||φ||+ |v|+ |b|+ |ξ|)2 + (||φ||+ |v|+ |b|+ |ξ|)||hj||pj). (3.40)

In order to complete the proof via the Implicit Function Theorem, it suffices to show
that the map

(b,v, ξ, φ) 7→ 〈gj(x)[bj − vj · x− i(ξ +ATJAṽj) · x− 2p′jx · φ(x)], P (τj)
α g

pj−1
j 〉 (3.41)

with (j, α) ranging over the indices specified in Proposition 3.10 and taking the real
or imaginary part as specified is invertible.

Since {x · φ(x) : φ is a symmetric real (2d)× (2d) matrix} is precisely the set of
symmetric, real, homogeneous, quadratic polynomials on R2d, the map φ 7→ (〈x ·
φ(x)g3(x), P

(τ3)
α gp3−13 〉 : |α| = 2) is invertible. These inner products vanish when

|α| = 0, 1.
The contribution from the mapping (v, ξ) with the constraint v1 + v2 + v3 = 0 to

〈gj(x)[vj · x− i(ξ + ATJAṽj) · x], P
(τj)
α g

pj−1
j 〉 ranging over the indices of Proposition

3.10 and taking the real and imaginary parts is also invertible. These products vanish
when |α| = 0, 2.

Lastly, the contribution from 〈gj(x)bj, P
(τj)
α g

pj−1
j 〉 indexed over j = 1, 2, 3 is in

one-to-one correspondence with b and these inner products vanish when |α| = 1, 2.
Thus, the maps described in (3.41) is invertible.

3.5 Putting it All Together

Proof of Theorem 3.2. Let (h1, h2, h3, B) be a 4-tuple with hj ∈ Lpj and B an arbi-
trary (2d) × (2d) matrix such that distp(OTC(h, B), (g, 0)) is sufficiently small. By
the Balancing Lemma, there exists an element (F1, F2, F3, A) of the orbit of (h, B)
which satisfies the orthogonality conditions of Proposition 3.10. Let fj = Fj − gj.
Since

distp(OTC(h, B), (g, 0))2 ≤ max
j
||fj||2pj + ||ATJA||2, (3.42)

it suffices to prove that

TA(g + f)∏
j ||gj + fj||pj

≤ A2d
p − c

[
max
j
||fj||2pj + ||ATJA||2

]
. (3.43)
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By Proposition 3.10,

T0(g + f)∏
j ||gj + fj||pj

≤ A2d
p − c||f ||2p − c̃

∑
j

||fj,[||pjpj . (3.44)

Thus, it suffices to show that

(TA − T0)(g + f)∏
j ||gj + fj||pj

≤ −c||ATJA||2 +O((||f ||p + ||ATJA||)3). (3.45)

We may ignore the product of norms in the denominator by appropriate modifi-
cation of the constant c. Expanding (TA − T0)(g + f) through the multilinearity of
TA − T0, one obtains four types of terms. By Lemma 3.8 and Lemma 3.9,

(TA − T0)(g1, g2, g3) =

∫∫
g1(x)g2(y)g3(x+ y)(eiσ(Ax,Ay) − 1)dxdy

=

∫∫
g1(x)g2(y)g3(x+ y)(iσ(Ax,Ay)− 1

2
σ(Ax,Ay)2 +O(σ(Ax,Ay)3))dxdy

= −c||ATJA||2 +O(||ATJA||3).

By similar application of Lemma 3.8,

(TA − T0)(f1, g2, g3) =

∫∫
f1(x)g2(y)g3(x+ y)(iσ(Ax,Ay) +O(σ(Ax,Ay)2))dxdy

≤ 0 + ||ATJA||2
∫
f1(x)x2

[∫
y2g2(y)g3(x+ y)dy

]
dx

= O(||f1||p1||ATJA||2)

and likewise for all other terms involving one fj and two gj’s.
The (TA−T0)(f1, f2, f3) term is negligible by Lemma 3.6, so only the terms with

two fj’s and one gj remain. Lemma 3.7 only addresses the situation where the fj are
replaced with fj,]. However, Proposition 3.10 provides a −c̃

∑
j ||fj,[||

pj
pj term which

may be used here. Expanding further and applying Lemma 3.7 and (3.23) gives

|(TA − T0)(f1, f2, g3)| − c̃
∑
j

||fj,[||pjpj

≤ o(||f ||2p + ||ATJA||2) +O(||f1,]||p1 ||f2,[||p2 + ||f2,]||p2||f1,[||p1)− c̃
∑
j

||fj,[||pjpj .

If
∑

j ||fj,[||
pj
pj is small relative to ||f ||2p, then the above is negligible, as each ||fj,[||pj

is small. (Specifically, one may split into cases where ||fj,[||pj ≥ ||fj||
(4−pj)/2
pj for at
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least one j or none of the j.) However, if
∑

j ||fj,[||
pj
pj is large relative to ||f ||2p, then

the last term dominates (as pj < 2), and the above is still negligible.
This holds for the other terms involving two fj’s and one gj, thus completing the

proof of the main theorem.
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Chapter 4

A Sharpened Inequality for
Convolution on the Sphere

4.1 Introduction

Recall from Chapter 1 that a version of convolution on the sphere Sd is given by the
trilinear form

T (f, g, h) :=

∫∫
Sd×Sd

f(x)g(y)h(x · y)dσ(x)dσ(y), (4.1)

where f, g : Sd → R, h : [−1, 1]→ R and σ is surface measure on Sd (normalized so
σ(Sd) = 1).

Keeping with the theme of this thesis, we ask for which functions f, g, and h
is T (f, g, h) relatively large? A useful answer involves the nondecreasing symmet-
ric rearrangement f ∗ of a function f : Sd → R. Writing the coordinates of Sd as
(x1, ..., xd+1), f

∗ : Sd → R is defined as the unique function (up to sets of mea-
sure zero) which depends only on xd+1, is nondecreasing in xd+1, and has the same
distribution function as f . (That is, σ({f ∗ > λ}) = σ({f > λ}) for all λ ∈ R.)

A classical result of Baernstein and Taylor [3] says the following:

Theorem 4.1. Let h : [−1, 1] → [0,∞) be a nondecreasing, bounded, measurable
function and let f, g ∈ L1(Sd). Then,

T (f, g, h) ≤ T (f ∗, g∗, h). (4.2)

This is analogous to the Riesz-Sobolev inequality∫∫
Rd×Rd

f(x)g(y)h(x+ y)dxdy ≤
∫∫

Rd×Rd
f ∗(x)g∗(y)h∗(x+ y)dxdy (4.3)
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on Rd (where the symmetric decreasing rearrangement is defined as in Chapter 1),
except the latter makes no extra assumption on the function h. Further work of
Baernstein established the conclusion of Theorem 4.1 without the nondecreasing
hypothesis on h in the d = 1 case [2]. To the best of the author’s knowledge, this
remains an open problem in dimensions d ≥ 2.

In this chapter, we prove a sharpened version of (4.2) in the special case where
f, g and h are indicator functions, writing T (E1, E2, I) = T (1E1 ,1E2 ,1I). Here,
Ej ⊂ Sd and I = [a, 1] for some −1 < a < 1. Often, T (E1, E2, I) will be written
as T (E1, E2) when I is clear from context. E∗ will be used to denote the set such
that (1E)∗ = 1E∗ , or alternatively, the spherical cap of measure σ(E) with center
N = (0, ..., 0, 1).

Two obstacles arise in constructing the proper statement of our main theorem.
First, observe that T (Q(E1), Q(E2), I) = T (E1, E2, I) for any orthogonal trans-

formationQ on Rd+1. In fact, the symmetry group of the operator T is the orthogonal
group O(d + 1). Thus, any sharpened version of (4.2) must account for the case in
which E1, E2 are spherical caps centered at some point other than N .

For this purpose, define the distance of a pair of sets E = (E1, E2) from the orbit
of maximizers to be

dist(E,O(E∗)) := inf
Q∈O(d+1)

max
j∈{1,2}

|Ej∆Q(E∗j )|, (4.4)

where A∆B denotes the symmetric difference between the sets A and B and |A|
refers to the surface measure of A.

Second, consider for example the case where I = [0, 1] and E1, E2 are small
spherical caps centered at N . A small perturbation of E1 and E2 preserves the
property that x ·y > 0 for all x ∈ E1 and y ∈ E2. Therefore, T (E) remains constant,
despite taking the sets further from their rearrangements. A similar problem arises
if E∗2 is much bigger than E∗1 and I is a small interval.

To address this issue, let ri (i = 1, 2) be the spherical radius of the cap E∗i , that
is, the Riemannian distance on Sd from the center of E∗i to its boundary. If I is the
interval [a, 1], then let r3 be the Riemannian distance between any two points on
Sd whose dot product is a. We say that (σ(E1), σ(E2), I) (or (E1, E2, I)) is strictly
admissible if ri + rj > rk for all permutations (i, j, k) of (1, 2, 3).

Our main theorem is the following.

Theorem 4.2. Let d ≥ 1 and K be a compact subset of the set of strictly admissible
triples (e1, e2, a) with 0 < e1, e2 < 1,−1 < a < 1. Then, there exists c > 0 such
that for all (e1, e2, a) ∈ K and pairs of Lebesgue measurable subsets Ej ⊂ Sd with
σ(Ej) = ej,

T (E1, E2, I) ≤ T (E∗1 , E
∗
2 , I)− cdist(E,O(E∗))2, (4.5)
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where I = [a, 1].

Results of this type were proved for R in [13] and for Rd in [15].
The d = 1 case of Theorem 4.2 is established by Christ and Iliopoulou in the

more general case where I is replaced with an arbitrary subset of [−1, 1] [18].
While Theorem 4.2 will be proven focusing on a single arbitrary triple (e1, e2, a),

one may check that uniformity holds at each step.
To the best of the author’s knowledge, the following corollary is new for dimen-

sions d ≥ 2.

Corollary 4.3. Let d ≥ 1. Fix a strictly admissible triple (e1, e2, a) and let I = [a, 1].
Up to difference of Lebesgue null sets, the maximizers of T (E1, E2, I) among Ej ⊂ Sd

with σ(Ej) = ej are precisely {(Q(E∗1), Q(E∗2)) : Q ∈ O(d+ 1)}.

Again, the d = 1 case is established in [18]. A result of this type for Rd was
proven in [10].

The proof of Theorem 4.2 largely follows the proof of the main theorem of [15].
Similar techniques were used in work by Bianchi and Egnell [7]. (See also [19].)
The strategy is to expand about (E∗1 , E

∗
2) and analyze the quadratic term, reducing

to functions supported on the boundaries of E∗1 and E∗2 . From here, the quadratic
form may be diagonalized by spherical harmonics and a balancing lemma is used to
eliminate those of degree 1.

However, two distinct challenges arise in following this method. First, in this
method one reduces to the case of small perturbations, that is, when dist((E,O(E∗)) ≤
δ0. In [15] and [19], this is done through the use of a continuous flow which takes
arbitrary sets to maximizers and under which the functional is nondecreasing. The
flow is stopped at precisely the time which the distance from the maximizers is δ0.
In the case of spherical convolution, no such flow is known to exist in dimensions
d ≥ 2. (See [18] for a flow in d = 1.)

As an alternative, we use the reflection method deployed in [3] which is used
to prove (4.2) by transforming the initial sets under a sequence of reflections about
hyperplanes. While a general sequence of reflections may not give rise to sets at a
distance δ0 from their rearrangements, one may modify the sequence to produce the
desired distance.

Second, it is not inherently clear how to complete the proof once one reduces
to the case of particular sets Ej determined by spherical harmonics. To address
this issue in [15], Christ uses the one-dimensional sharpened Riesz-Sobolev [13] and
Steiner symmetrization. Given the geometry of the sphere, this part of the proof
is completed by induction, applying the sharpened inequality on Sd−1 to horizontal
slices of Sd.
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4.2 Reduction to Small Perturbations

In this section, we show that it suffices to prove Theorem 4.2 in the case where
dist(E,O(E∗)) is small. Specifically, Theorem 4.2 will follow from Proposition 4.4.

Proposition 4.4. Let d ≥ 1 and (e1, e2, a) be a strictly admissible triple. Let I =
[a, 1]. Then, there exist δ0, c > 0 such that for all Lebesgue measurable sets Ej ⊂ Sd

with σ(Ej) = ej (j = 1, 2),

T (E1, E2, I) ≤ T (E∗1 , E
∗
2 , I)− cdist(E,O(E∗))2 (4.6)

whenever dist(E,O(E∗)) ≤ δ0.

Given an oriented hyperplane H in Rd+1 which passes through the origin, let H+

denote the half-space determined by H and the positive orientation of H, and let
H− denote the complement of H+. Let ρH denote reflection across H.

Construct the set EH ⊂ Sd as follows. If x ∈ H+, then x ∈ EH if either
x ∈ H+ ∩ E or ρH(x) ∈ H− ∩ E. If x ∈ H− then x ∈ EH if x ∈ H− ∩ E and
ρH(x) ∈ H+ ∩ E.

A useful formula for EH is

EH = [H+ ∩ (E ∪ ρH(E)] ∪ [H− ∩ E ∩ ρH(E)]. (4.7)

Given oriented hyperplanes Hj, the notation EH1···Hn will be used to denote
(· · · (EH1)H2 · · · )Hn .

The following two lemmas were proven in [3] in more general context. (While
they were stated for continuous functions in place of sets, a standard approximation
argument recovers the conclusion for sets. Lemma 4.6 is implicit in the proof of
Theorem 4.1 found in [3]. Furthermore, we allow for a larger class of reflections,
though their results extend trivially.)

Lemma 4.5. Let E,F ⊂ Sd and H be an oriented hyperplane in Rd+1 through the
origin. Let EH and FH be defined as above. Then,

1. |EH | = |E|.

2. T (E,F ) ≤ T (EH , GH).

Lemma 4.6. Given sets F,G ⊂ Sd, there exists a sequence of oriented hyperplanes
H1, ..., Hn, ... through the origin such that |FH1···Hn∆F ∗| → 0 and |GH1···Hn∆G∗| → 0
as n→∞.
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Proof of Prop. 4.4 ⇒ Thm. 4.2. If dist(E,O(E∗)) ≤ δ0, we are done, so assume that
dist(E,O(E∗)) > δ0.

Let H1, ..., Hn, ... be a sequence of oriented hyperplanes guaranteed by Lemma
4.6 and let En = (E1H1···Hn

, E2H1···Hn
).

Suppose there exists an n0 such that dist(En0 ,O(E∗)) ∈ (δ0/100, δ0). Then, by
Lemma 4.6, Proposition 4.4, and the finite measure of Sd,

T (E) ≤ T (En0) ≤ T (E∗)− cδ20/104 ≤ T (E∗)− c̃dist(E,O(E∗))2 (4.8)

for some c̃ > 0 by the boundedness of dist(E,O(E∗)). (The distance is at most
σ(Sd).)

Now suppose the contrary, that there exists n0 such that dist(En0−1,O(E∗)) > δ0,
but dist(En0 ,O(E∗)) < δ0/100. Our goal is to modify Hn0 so that dist(En0 ,O(E∗))
lies in the interval (δ0/100, δ0).

Denote F = En0−1 and H0 = Hn0 so dist(FH ,O(F∗)) < δ0/100.
Suppose for the moment that there exists an oriented hyperplane H̃ such that

dist(FH̃ ,O(F∗)) > δ0/100. Let H(t) (0 ≤ t ≤ 1) be a continuous path in the space
of oriented hyperplanes through the origin such that H(0) = H0 and H(1) = H̃. If
dist(FH(t),O(F∗)) is continuous in t, one may apply the Intermediate Value Theorem
to obtain t0 such that dist(FH(t0),O(F∗)) ∈ (δ0/100, δ0). Thus, replacing Hn0 with
H(t0) reduces to the previously addressed case.

To establish continuity of dist(FH(t),O(F∗)) in t, note that by (4.7), |AH∆Q(A∗)|
is jointly continuous in H and Q for any set A. (To prove this, one may use outer
regularity of surface measure to reduce to the case where A is a finite union of balls,
for which the statement is obvious.) It follows that

dist(FH ,O(F∗)) = inf
Q∈O(d)

max
j=1,2
|(Fj)H∆Q(F ∗j )| (4.9)

is continuous in H on the image of H(t).
It remains to establish the existence of such an H̃. Let F = Fj0 , where maxj=1,2

is obtained with j = j0; that is, dist(F,O(F∗)) = infQ |Fj0∆Q(Fj0)|. We begin with
a series of reductions. By applying an orthogonal transformation on F , one may
suppose without loss of generality that H0 is the hyperplane determined by xd = 0
oriented toward the positive xd-axis. Thus, choosing Q such that |FH0∆Q(F ∗)| <
δ0/100, the center of Q(F ∗) is contained in H+ = {xd ≥ 0}. Taking complements, it
suffices to prove the claim for |F | ≤ 1/2. By possibly replacing H0 with its opposite
orientation, suppose |F ∩H+

0 | ≥ 1/2|F |.
Since dist(F,O(F ∗)) > δ0 and |FH0∆Q(F ∗)| < δ0/100, we have |F∆FH0| >

99δ0/100, hence there exists a set G such that |G| > δ0/25, ρH0(G) ⊂ Q(F ∗), G ∩
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Q(F ∗) = ∅, and a small rotation of ρH0(G) intersects F nontrivially. Hence, we
may choose H̃ to be a rotation of H0 of angle O(δ0) in the xdxd+1-plane such that
|G ∩ FH̃ | > δ0/100.

Let G′ be the subset of Q(F ∗) of size δ0/25 which is furthest from G. If |G′∩F | >
δ0/50, then we are done since G ∩ Q(E∗) = ∅. Else, since |Q(F ∗) ∩ FH̃ | < δ0/100,
|ρH̃(G′) ∩ F | > δ0/50 and we are done because no orthogonal transformation of F ∗

may contain ρH̃(G′) ∩ F,G, and ρH̃(G).

4.3 Reductions to Near and on the Boundary

At this point, we have reduced to the case of small perturbations. Hence, we assume
that dist(E,O(E∗)) ≤ δ0 and that (E1, E2, I) is strictly admissible.

Reduction to Near the Boundary

Replace the coordinates (x1, ..., xd+1) of Sd with (θ, t), where t = xd+1 and θ repre-
sents the spherical coordinates on the horizontal Sd−1 slices of Sd. For j = 1, 2, let
Bj = E∗j and let hj be the value of tj for the points of ∂Bj. A useful fact is that

dσ(x) = (1 − t2)
d
2dtdµ(θ), where µ is the surface measure on Sd−1, normalized so

µ(Sd−1) = 1.
Choose Q ∈ O(d + 1) such that maxj |Q(Ej)∆E

∗
j | = dist(E,O(E∗)) and replace

E with Q(E). (Note that equality is attained in the definition of distance since it is
the minimum of a continuous function on a compact set.)

Also, let fj = 1Ej − 1Bj .
Expand

T (E) = T (1B1 + f1,1B2 + f2) = T (E∗) +
2∑
j=1

〈Kj, fj〉+ T (f1, f2), (4.10)

where 〈·, ·〉 is the L2 inner product on Sd and

Kj(x) =

∫
Sd

1Bk(y)1I(x · y)dσ(y) (4.11)

with the notation {j, k} = {1, 2}. Each Kj is nonnegative and symmetric (depending
only on t). Writing Kj(x) = Kj(t), Kj is increasing in t.

The strict admissibility hypothesis is equivalent to the statement that K ′j(hj) > 0
for j = 1, 2. A related equivalent assertion is that for each x ∈ ∂Bj, there exist
y, y′ ∈ Bk (k 6= j) such that x · y > a and x · y′ < a.
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Since
∫
fj = 0,

〈Kj, fj〉 =

∫
(Kj(x)−Kj(hj))fj(x)dσ(x)

= −
∫
|Kj(x)−Kj(hj)| · |fj(x)|dσ(x),

as Kj(x)−Kj(hj) and −fj(x) are both nonnegative on Bj and nonpositive on Bc
j .

Let λ be a large positive constant independent of δ to be chosen later. For
sufficiently small δ (say ≤ δ0), K

′
j(hj) > 0 implies

〈Kj, fj〉 ≤ −cλδ
∫
|t−hj |≥λδ

|fj(x)|dσ(x)

= −cλδ|{(θ, t) ∈ Ej∆Bj : |t− hj| ≥ λδ}|.

The above term is linear in δ, while T (f1, f2) is quadratic in δ. For this reason,
we reduce to the case in which Ej∆Bj ⊂ {(θ, t) : |t − hj| ≤ λδ}, with the formal
argument appearing below.

By an argument found in [15], for each j = 1, 2, there exists a set E†j such that

1. |E†j | = |Ej|.

2. Ej∆Bj is the disjoint union of E†j∆Bj and Ej∆E
†
j .

3. {(θ, t) ∈ Ej∆Bj : |t− hj| > λδ} ⊂ E†j∆Ej.

4. |E†j∆Ej| ≤ 2|{(θ, t) ∈ Ej∆Bj : |t− hj| > λδ}|.

Lemma 4.7. Let d ≥ 1 and let (e1, e2, a) be a strictly admissible triple and let I =
[a, 1]. Then, there exist λ <∞ and δ0, c > 0 with the following property. If Ej ⊂ Sd

are Lebesgue measurable sets such that σ(Ej) = ej for j ∈ {1, 2}, maxj=1,2 |Ej∆E∗j | ≤
δ0, and E† is defined as above, then

T (E, I) ≤ T (E∗, I)− cλ
2∑
i=1

|Ei∆E∗i | ·
2∑
j=1

|Ej∆E†j |. (4.12)

Proof. Let δ = maxj=1,2 |Ej∆E∗j | ≤ δ0. Let f †j = 1E†j
− 1Bj and write

1Ej = 1Bj + f †j + f̃j, (4.13)
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where f̃j = 1Ej − 1E†j
.

Expanding T (1B1 + f †1 + f̃1,1B2 + f †2 + f̃2), one obtains 9 terms. The 4 terms
which do not contain an f̃j recombine to form T (E†).

There are 2 terms of the form 〈Kj, f̃j〉. By property (1) of E†j ,
∫
fj = 0. Thus,

by the previous discussion and property (3) of E†j , the sum of these two terms is less

than or equal to −cλδ
∑

j |Ej∆E
†
j |.

The remaining 3 terms each contain two or more f̃j or an f̃j and an f †k . By the
inequality

T (E1, E2) ≤ |E1| · |E2| (4.14)

and properties (2) and (4) of E†j , each of these terms is

O(max
j
|Ej∆E∗j | ·max

k
|E†k∆Ek|) = O(δmax

k
|E†k∆Ek|). (4.15)

Putting this together and taking λ large enough, we obtain

T (E) ≤ T (E†)− cλδ
∑
j

|Ej∆E†j |+O(δmax
k
|E†k∆Ek|)

≤ cλ
2∑
i=1

|Ei∆E∗i | ·
2∑
j=1

|Ej∆E†j |.

The claim follows from the conclusion of Theorem 4.1, that T (E†) ≤ T (E∗).

If maxj |Ej∆E†j | ≥ 1
2

maxj |Ej∆E∗j |, then the conclusion of Theorem 4.2 follows
immediately from Lemma 4.7.

If maxj |Ej∆E†j | ≤ 1
2

maxj |Ej∆E∗j |, Lemma 4.7 still gives T (E) ≤ T (E†), so it
suffices to prove

T (E†) ≤ T (E∗)− cdist(E,O(E†))2. (4.16)

Reduction to the Boundary

Letting fj = 1Ej − 1Bj as before, define the functions f±j with values in {0, 1} by
f+
j = 1Ej\Bj and f−j = 1Bj\Ej . Note that fj = f+

j − f−j .

Define F±j ∈ L2(Sd−1) = L2(Sd−1, µ) by

F±j (θ) :=

∫ 1

−1
f±j (θ, t)(1− t2)

d
2dt. (4.17)



CHAPTER 4. A SHARPENED INEQUALITY FOR CONVOLUTION ON THE
SPHERE 59

We say Fj is the function associated to the set Ej.
By the reduction of the previous subsection, Ej∆Bj ⊂ {x : |t− hj| ≤ λδ}. Thus,

|Ej∆Bj|2 ≈ ||F+
j ||2L2(Sd−1) + ||F−j ||2L2(Sd−1) (4.18)

and it suffices to establish a bound of the form

T (E) ≤ T (E∗)− c
2∑
j=1

(
||F+

j ||2L2(Sd−1) + ||F−j ||2L2(Sd−1)

)
. (4.19)

Define the quadratic form Q on L2(Sd−1) by

Q(F,G) :=

∫∫
(Sd−1)2

F (θ1)G(θ2)1I

(√
1− h21

√
1− h22θ1 · θ2 + h1h2

)
dµ(θ1)dµ(θ2).

Let γj = K ′j(hj), which is positive by the strict admissibility hypothesis.

Proposition 4.8. Under the hypotheses from our reductions,

T (E) ≤ T (E∗)− 1

2

2∑
j=1

γj(1−h2j)−d/2(||F+
j ||2L2 +||F−j ||2L2)+Q(F1, F2)+O(δ3). (4.20)

Expand T (1B1 + f1,1B2 + f2), obtaining four terms. Proposition 4.8 is the im-
mediate result of the following two lemmas.

Lemma 4.9. For j = 1, 2,

〈Kj, fj〉 ≤ −
1

2
γj(1− h2j)−d/2(||F+

j ||2L2 + ||F−j ||2L2) +O(δ3). (4.21)

Proof. Since Kj(t) is twice continuously differentiable in a neighborhood of t = hj,
we may write

〈Kj, fj〉 =

∫
Sd−1

∫ 1

−1
(Kj(hj) + γj(t− hj) +O(δ2))fj(θ, t)(1− t2)d/2dtdσ(θ). (4.22)

Expanding the above gives three integrals. First,∫
Sd−1

∫ 1

−1
Kj(hj)fj(θ, t)(1− t2)d/2dtdµ(θ) = 0 (4.23)
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since
∫
fj = 0. Next,∫
Sd−1

∫ 1

−1
O(δ2)fj(θ, t)(1− t2)d/2dtdσ(θ) = O(δ2)||fj||L1 = O(δ3) (4.24)

Lastly, factor out the γj, split fj = f+
j − f−j , and consider the integral∫

Sd−1

∫ 1

−1
(t− hj)f+

j (θ, t)(1− t2)d/2dtdµ(θ). (4.25)

For each θ, the support of f+
j (θ, t) is contained in {t ≤ hk}. Among functions gj

such that
∫ 1

−1 gj(θ, t)(1− t
2)d/2dt = F+

j (θ) and supp g ⊂ {t ≤ hj},∫
Sd−1

∫ 1

−1
(t− hj)g(θ, t)(1− t2)d/2dtdµ(θ) (4.26)

is maximized when gj(θ, t) = 1[hj−h(θ),hj ](t). Here, the function h(θ) is defined recur-
sively by

F+
j (θ) =

∫ hj

hj−h(θ)
(1− t2)d/2dt. (4.27)

Since h(θ) = O(δ),

h(θ) = (1− h2j)−d/2F+
j (θ) +O(δF+

k (θ)). (4.28)

Thus, using the fact that ||F+
j ||L∞ = O(δ),∫ 1

−1
(t− hj)f+

j (θ, t)(1− t2)d/2dt ≤
∫ hj

hj−h(θ)
(t− hj)(1− t2)d/2dt

= −1

2
h(θ)2(1− h2j)d/2 +O(h(θ)3)

= −1

2
(1− h2j)−d/2F+

j (θ)2.

Plugging back into the original integral from (4.23), we find that

γj

∫
Sd−1

∫ 1

−1
(t− hj)f+

j (θ, t)(1− t2)d/2dtdµ(θ) ≤ −1

2
γj(1− h2j)−d/2||F+

j ||2L2 +O(δ3).

A similar result holds for F−j (θ) and fj.

Lemma 4.10. T (f1, f2) = Q(F1, F2) +O(δ3).
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Proof. Rewriting in (θ, t)-coordinates, the left hand side is equal to∫
(Sd−1)2

∫∫
[−1,1]2

f1(θ1, t1)f2(θ2, t2)1I

(√
1− t21

√
1− t22θ1 · θ2 + t1t2

)
× (1− t21)d/2(1− t22)d/2dt1dt2dµ(θ1)dµ(θ2). (4.29)

By the definition of Fi, the right hand side is∫∫
(Sd−1)2

F1(θ1)F2(θ2)1I

(√
1− h21

√
1− h22θ1 · θ2 + h1h2

)
dµ(θ1)dµ(θ2) +O(δ3).

To compare, it suffices to observe that, since fi is supported in a λδ-neighborhood
of {ti = hi},∫∫
[−1,1]2

f1(θ1, t1)f2(θ2, t2)1I

(√
1− t21

√
1− t22θ1 · θ2 + t1t2

)
(1− t21)d/2(1− t22)d/2dt1dt2

= F1(θ1)F2(θ2)1I

(√
1− h21

√
1− h22θ1 · θ2 + h1h2

)
unless |

√
1− h21

√
1− h22θ1 ·θ2 +h1h2−a| ≤ Cδ. However, by the strict admissibility

hypothesis (and taking δ sufficiently small), the σ × σ measure of the set of pairs
(θ1, θ2) satisfying this inequality is O(δ). Since Fi = O(δ), the contribution of this
set to the integral is O(δ3).

4.4 Diagonalization and Balancing Lemma

By Proposition 4.8, it would suffice to prove Theorem 4.2 by showing that

Q(F1, F2) ≤ A

2∑
j=1

γj(1− h2j)d/2||Fj||2L2 (4.30)

for all Fj ∈ L2(Sd−1) satisfying
∫
Fjdσ = 0 with constant A < 1

2
. This is because

||Fj||2L2 = 〈F+
j −F−j , F+

j −F−j 〉 = ||F+
j ||2L2+||F−j ||2L2−2〈F+

j , F
−
j 〉 ≤ ||F+

j ||2L2+||F−j ||2L2 .

However, (4.30) does not hold for all Fj ∈ L2(Sd−1) satisfying
∫
Fjdσ = 0 and

A < 1
2
. If it did, then this inequality combined with the above machinery would
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imply that for all strictly admissible triples (E1, E2, I) satisfying maxj |Ej∆E∗j | ≤
δ0 and Ej∆E

∗
j ⊂ {(θ, t) : |t − hj| ≤ C maxj |Ej∆E∗j |}, that T (E) ≤ T (E∗) −

cmaxj |Ej∆E∗j |2. However, this conclusion is false for E = Q(E∗), where Q ∈
O(d + 1), and Q(E∗) satisfies all these hypotheses when Q is small. To fix this
problem, we will need to use the full strength of

max
j
|Ej∆E∗j | = O(dist(E,O(E∗))). (4.31)

We now diagonalize Q over the spherical harmonics. Lemma 4.11 will use (4.31)
to obtain an orthogonality condition on Fj under which (4.30) does hold for A < 1/2.

To begin, let Hn ⊂ L2(Sd−1) denote the space of all spherical harmonics of
degree n. Since Q is a symmetric quadratic form which commutes with rotations, it
is diagonalizable over spherical harmonics in the following sense. Let πn denote the
projection of L2(Sd−1) onto Hn. Then there exists a compact, self-adjoint operator
T on L2(Sd−1) such that Q(F,G) ≡ 〈T (F ), G〉, T : Hn → Hn for all n, and T agrees
with a scalar multiple λ = λ(n, r1, r2, r3) of the identity on Hn.

Since
∫
Fj = 0 for each j, we have π0(Fj) = 0 and

Q(F1, F2) =
∞∑
n=1

Q(πn(F1), πn(F2)). (4.32)

Let Q◦πn(F1, F2) = Q(πn(F1), πn(F2)). By the compactness of the operator T given
above, it suffices to bound

|Q ◦ πn(F1, F2)| <
1

2

2∑
j=1

γj(1− h2j)d/2||πn(Fj)||2L2 (4.33)

for each n ≥ 1, as the operator norms of Q ◦ πn must tend to zero as n → ∞,
preventing an optimal constant of 1/2 in the limit. While this statement turns out
to be false in the case n = 1, the following lemma will allow us to ignore that case
by applying an O(δ) perturbation to E which makes Q(π1(F1), π1(F2)) = 0.

Let Id denote the identity element of O(d+ 1).

Lemma 4.11. Let d ≥ 1. Let E be as above, and let δ = dist(E,O(E∗)). Then there
exists Q ∈ O(d+ 1) satisfying ||Q− Id|| = O(δ) such that the functions F̃j associated
to the sets Ẽj = Q(Ej) satisfy π1(F̃1) = 0.

Proof. As Ẽ2 and F̃2 are absent from the conclusion, consider just E1 and F1, drop-
ping the subscript to write them as E and F .
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Let Q ∈ O(d + 1) and let F̃ be the function associated to the set Ẽ = Q(E).
Then,

F̃ (θ)− F (θ) =

∫ 1

−1
(1Q(E) − 1B)(θ, t)(1− t2)d/2dt−

∫ 1

−1
(1E − 1B)(θ, t)(1− t2)d/2dt

=

∫ 1

−1
(1Q(E) − 1E)(θ, t)(1− t2)d/2dt.

Let P ∈ H1. Define 〈F, P 〉 =
∫
Sd−1 F (θ)P (θ)dθ. Let x = (θ, t) be coordinates on

Sd and g(x) = g(θ, t) = P (θ). By linearity of the integral and an orthogonal change
of coordinates x 7→ Qx,

〈F, P 〉 − 〈F̃ , P 〉 =

∫
Sd

(1Q(E) − 1E)(x)g(x)dσ(x)

=

∫
Sd

1E(x)[g ◦Q−1(x)− g(x)]dσ(x).

Consider F as an element of H∗1, the dual space of the vector space H1, by the
linear mapping

〈F, P 〉 =

∫
Sd−1

F (θ)P (θ)dµ(θ), (4.34)

where P ∈ H1. Then

||F̃ − F ||H∗1 ||P ||∞ ≤ C||g ◦Q−1 − g||L1(Sd)

≤ C||Q− Id|| · ||P ||∞,

where || · || is any norm on the finite-dimensional space of linear maps on Rd+1. The
second line is obtained from the first by splitting Sd into the small set where |t| ≈ 1
and g is bounded in L∞ norm, and the remaining set where g has bounded derivative.
Thus, ||F̃ − F ||H∗1 = O(||Q− Id||).

We may conclude the proof by a standard application of the Implicit Function
Theorem, though it remains to be shown that Q 7→ F̃ is locally surjective.

Identifying O(d) with the subset of O(d+1) of maps which preserve the coordinate
t, we see that for any Q ∈ O(d), g◦Q−1−g ≡ 0. If this were true for all Q ∈ O(d+1),
then no perturbation F̃ of F would satisfy ||F̃ ||H∗1 = 0, as F̃ and F would always be
equal. However, considering Sd as a subset of Rn+1 with coordinates (x1, ..., xn+1),
we pick d distinct choices of Q as rotations in the xixn+1-plane for 1 ≤ i ≤ d. These
choices of Q determine d linearly independent values of F̃ − F in the d-dimensional
spaceH∗1. In fact, one may see these elements ofH∗1 have pairwise O(δ) inner product
by testing them against the basis {x1, ..., xd} for H1.
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4.5 Completing the Proof

Given a pair of spherical harmonics G = (G1, G2) of equal degree n, define for all
real s in a neighborhood of 0

Ej(s) := {(θ, t) : t ≥ hj − ϕj(θ, s)}, (4.35)

where φj(θ, s) is defined recursively via the equation
∫ hj
hj−ϕj(θ,s)(1− t

2)d/2dt = sGj(θ).

Note that the functions Fj,s associated to the Ej(s) satisfies Fj,s ≡ sGj +O(s2).

Lemma 4.12. Let d ≥ 1, n ∈ N and (e1, e2, a) be a strictly admissible triple. Then,
uniformly for all pairs of spherical harmonics G of degree n satisfying ||G|| = 1,
there exists η > 0 such that

T (E(s)) = T (E∗)− 1

2
s2

2∑
j=1

γj(1− h2j)−d/2(||Gj||2L2) + s2Q(G) +O(s3) (4.36)

whenever |s| ≤ η.

In making sense of the above lemma, note that the construction of E(s) depends
solely on the values of hj, which are in one-to-one correspondence with the values of
σ(Ej).

The proof of Lemma 4.12 is essentially the same as that of Proposition 4.8. The
one difference is that the restrictions of the functions on Sd to a particular θ are in
fact indicator functions of t. By considering only these particular choices of sets E,
one is able to reach a conclusion with equality in (4.36).

At this point, it is possible to conclude the proof of Theorem 4.2 in the case
d = 1.

Proof of Theorem 4.2 when d = 1. Let Ẽj be as in the conclusion of Lemma 4.11.
Then, by the fact that π1(F1) = 0 and π0(F1) = π0(F2) = 0 (since

∫
fj = 0), (4.33)

holds trivially for n = 0 and n = 1. When d = 1, the sphere Sd−1 consists of two
points, so there are no spherical harmonics of degree greater than or equal to 2.
Hence, (4.33) holds in all cases and the proof is complete.

Now that the base case d = 1 is established, it is possible to apply Theorem 4.2
in dimension d − 1 as an inductive case to prove the theorem in dimension d. In
particular, the inductive case will be used to prove the following lemma.
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Lemma 4.13. Let d ≥ 1. There exists c > 0 such that for all pairs G of spherical
harmonics such that ||G|| = 1 and deg(G1) = deg(G2) = n ≥ 2,

T (E(s)) ≤ T (E∗)− cs2 (4.37)

for all s ∈ R sufficiently close to 0.

Combining Lemmas 4.12 and 4.13, one obtains (4.33) for all n, completing the
proof of Theorem 4.2 for dimensions d ≥ 2. Thus, it suffices to prove Lemma 4.13.

Proof. It suffices to prove the lemma for any single arbitrary such G. Uniformity
will follow by compactness of {G : ||G|| = 1, deg(G1) = deg(G2) = n}.

Of use is the following expression of T in terms of similar operators acting on
sets of one lower dimension. Writing x = (θ1, t1), y = (θ2, t2),∫∫

(Sd)2
1E1(x)1E2(y)1I(x · y)dσ(x)dσ(y)

=

∫∫
[−1,1]2

∫∫
(Sd−1)2

1E1(θ1, t1)1E2(θ2, t2)1I

(√
1− t21

√
1− t22θ1 · θ2 + t1t2

)
× dµ(θ1)dµ(θ2)(1− t21)

d
2 (1− t22)

d
2dt1dt2 (4.38)

For fixed t1, t2,
√

1− t21
√

1− t22θ1 ·θ2+t1t2 ≥ a if and only if θ1 ·θ2 ≥ a−t1t2√
1−t21
√

1−t22
.

Thus, we may write

T (E(s), [a, 1]) =∫∫
[−1,1]2

T ′
(
E1(s; t1), E2(s; t2),

[
a− t1t2√

1− t21
√

1− t22

])
(1− t21)d/2(1− t22)d/2dt1dt2,

(4.39)

where Ej(s; t) = {θ : (θ, t) ∈ Ej(s)} and

T ′(A1, A2, I
′) :=

∫∫
Sd−1×Sd−1

1A1(θ1)1A2(θ2)1I′(θ1 · θ2)dµ(θ1)dµ(θ2). (4.40)

One may apply the spherical rearrangement inequality of Theorem 4.1 to the sets
Ej(s; tj) on Sd−1 for any fixed pair (t1, t2). It is not immediate that one may apply
Theorem 4.2 for dimension d− 1, as there are additional hypotheses which must be
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satisfied. However, it will be shown that these hypotheses hold on a nontrivial subset
S of (h1 − s, h1 + s)× (h2 − s, h2 + s) of size roughly proportional to s2.

To construct S, observe that Vj(s, tj) := |Ej(s; t)| is a continuous function in tj,
taking value 0 at tj = hj − s and |Sd−1| = 1 at tj = hj + s. Thus, we may choose

S = {(t1, t2) ⊂ (h1 − s, h1 + s)× (h2 − s, h2 + s) :(
V1(s, t1), V2(s, t2),

a− t1t2√
1− t21

√
1− t22

)
is strictly admissible} (4.41)

It immediately follows that S is an open subset of (h1−s, h1+s)×(h2−s, h2+s) which
has nontrivial measure. The conclusion that the size of S is roughly proportional to s2

follows from dilating it around (h1, h2), that Vj(λs, hj +λaj) = Vj(s, hj +aj)+O(s2),
and the fact that a−t1t2√

1−t21
√

1−t22
is locally constant near tj = hj.

Next, to get the desired gain from the inductive hypothesis, one must show that
dist(Ej(s; tj),O(Ej(s; tj))) > 0. This follows from the fact that for a degree 2 or
greater spherical harmonic G, the sets {θ : G(θ) > α} are not spherical caps for α
close to 0.
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