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ARTICLE

The diverse club
M.A. Bertolero1,2, B.T.T. Yeo3,4,5,6 & M. D’Esposito1

A complex system can be represented and analyzed as a network, where nodes represent the

units of the network and edges represent connections between those units. For example, a

brain network represents neurons as nodes and axons between neurons as edges. In many

networks, some nodes have a disproportionately high number of edges as well as many edges

between each other and are referred to as the “rich club”. In many different networks, the

nodes of this club are assumed to support global network integration. Here we show that

another set of nodes, which have edges diversely distributed across the network, form a

“diverse club”. The diverse club exhibits, to a greater extent than the rich club, properties

consistent with an integrative network function—these nodes are more highly interconnected

and their edges are more critical for efficient global integration. Finally, these two clubs

potentially evolved via distinct selection pressures.
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Many complex systems—neural, the power grid, and air
traffic—can be analyzed as a network with graph the-
ory, where units (e.g., neurons or airports) and con-

nections (e.g., axons or flight routes) are treated as nodes and
edges in a graph, respectively. These systems all exhibit a com-
munity structure—nodes cluster into communities such that
nodes are more strongly connected to other members of their
community than to members of other communities1–4. Each
node within one of these communities can play a distinct role in
the overall network topology. In many different systems, from
brains to air traffic, calculating two nodal role metrics—strength
and participation coefficient —classifies network nodes based on
each node’s connectivity pattern within the system5–18.

Strength is a nodal metric of the sum of a node’s edges’
weights. While a node’s strength captures its magnitude of con-
nectivity, it does not capture the diversity of the node’s con-
nectivity across communities in the network. The participation
coefficient is a nodal metric of the diversity of each node’s con-
nections across the network’s communities10, 12. A node’s parti-
cipation coefficient is maximal if it has an equal number of edges
to each community in the network. Mathematically, a node’s
participation coefficient is independent of the node’s strength, as
it only measures the diversity of a node’s connections across
communities. Empirically, across a wide range of networks, the
participation coefficient is not correlated with strength, but nodes
can be high in both strength and participation coefficient6.

Across various networks, nodes with a high strength are con-
nected to each other at a rate greater than would be expected in a
randomly organized graph19, 20. This subset of highly inter-
connected nodes is referred to as the “rich club”. The rich club is
thought to be critical for global communication given that these
nodes have high betweenness centrality, in that, if the shortest
paths between all pairs of nodes is found, many of these shortest
paths involve rich club members5, 21. Moreover, in human brain
networks, brain regions within the rich club are more likely to
exhibit pathology in many neurological and psychiatric disorders
compared to other brain regions15. In line with this empirical
finding, in silico “attacks” on networks demonstrate that, when
edges between nodes in the rich club are removed, global effi-
ciency decreases (i.e., the sum of shortest paths between all nodes
increases)5. Given these characteristics, the rich club, which has
been investigated in over 200 published reports to date, is pro-
posed to be an integrative and stable core of brain regions that
coordinates the transmission of information across the network.

However, as opposed to the high magnitude of connectivity
that high strength nodes exhibit, nodes with a high participation
coefficient exhibit diverse connectivity. This connectivity pattern
places these nodes at the topological center of the network22,
which is putatively ideal for integration and coordination. In the
human brain, these nodes are also located in many different
communities and where many communities are within close
physical proximity6. These nodes appear to control or coordinate
which regions are “functionally” connected during cognition, in
that activity in these nodes predicts changes in the connectivity of
other nodes23, 24, particularly the connectivity between nodes in
different communities during cognitive tasks25. In humans, these
nodes have also been implicated in a diverse range of tasks26, 27.
Moreover, damage to these brain regions in humans causes a
decrease in the modular architecture of the human brain net-
work28 and widespread cognitive deficits29. Finally, a recent
analysis showed that, during human cognition, only these brain
regions exhibit increased activity if more communities are
engaged in a cognitive task, which suggests that they are involved
in processes that are more demanding as more communities are
engaged1. A parsimonious explanation of these empirical findings
is that nodes with high participation coefficients integrate

information and coordinate connectivity between communities,
which allows for modular local processing.

In summary, nodes with both a high participation coefficient
(i.e., diverse club) and a high strength (i.e., rich club) have been
proposed to perform integrative and coordinative functions based
on their high interconnectedness, high betweenness centrality,
their membership in many different communities, the impact on
the network’s structure when they are removed, or their activity
profile during cognitive tasks. Here we show that the diverse club
exhibits these putatively integrative or coordinative properties to
a greater extent than the rich club. We demonstrate, with data
from multiple systems, that networks contain a diverse club that
is more highly interconnected than the rich club. Moreover, these
two clubs are largely comprised of different nodes. We report the
anatomical locations of these clubs in the human brain, the
connectivity patterns of these clubs, the functional responses of
both clubs in the human brain during cognitive tasks, and how
damage to nodes in each club impacts the network’s efficiency.
Finally, we present a generative evolutionary network model that
generates graphs with a diverse club but not a rich club. From
these analyses, we conclude that the diverse club exhibits, to a
greater extent than the rich club, properties that likely support
integrative or coordinative functions. They also suggest that the
diverse club and rich club have distinct roles in network com-
munication. While our focus is mostly on human brain networks,
our findings generalize to smaller biological networks and man-
made networks.

Results
Community detection and identification of the clubs. We
analyzed structural and functional networks from multiple spe-
cies—the C. elegans’ structural and functional networks, the
macaque structural network, the human functional network, the
United States power grid network, and the global air traffic net-
work (see Methods section for network construction details). In
the functional networks, edges are weighted by the strength of the
pearson correlation between the two nodes’ time series of activity.
In the structural networks, edges represent axons (C. elegans),
white matter connections (macaque), flight routes, or power lines.

We consider both structural and functional networks, as
strength can be artificially inflated in functional (i.e., correla-
tional) networks6. Graph theory allows for the comparison of
network organization among very different systems. While the
C. elegans networks, the macaque network, and the human brain
networks are clearly different networks, they are all biological
neural networks that were shaped by evolution. Thus, we also
investigated man-made networks to determine if they exhibit
properties similar to biological networks.

The equation for the participation coefficient (Methods section,
Eq. 5) depends on the community structure; if the detected
community structure of the network varies, so will the
participation coefficients. Thus, for each network, we applied
community detection using nine different community detection
algorithms (Methods section). In the Results, we present findings
from the InfoMap algorithm. For the functional networks, each
algorithm was applied at 16 different densities (0.05–0.15), as well
as 16 different resolution parameters (0.4–0.8) for the Louvain
Resolution method and 16 different community sizes for the
Walktrap N method. For the structural networks, each algorithm
was applied 16 times on each structural network, as well as 16
different resolution parameters (0.4–0.8) for the Louvain Resolu-
tion method and 16 different community sizes for the Walktrap
N method. The detected community structure using the Infomap
algorithm for the C. elegans and human networks are presented in
Fig. 1a, d (Supplementary Fig. 1 shows the air traffic network).
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The detected community structure was consistent across algo-
rithms and densities or runs (Methods section; Supplementary
Figs. 2–13). Next, we calculated the strength of each node in every
network and visualized the distribution of those values (Supple-
mentary Figs. 14–16). We then calculated the participation
coefficient of each node in every network and visualized the
distribution of those values (Methods section; Supplementary
Figs. 17–31). The distribution of the participation coefficients was
typically more bimodal than the strength distribution. The
participation coefficients were calculated for every application
of each community detection algorithm (i.e., no averaging across

community detection applications, across densities, resolution
parameters (Louvain), number of communities (Walktrap N), or
runs was done). Overall, the participation coefficients did not
dramatically vary across community detection algorithms (Sup-
plementary Figs. 32–37). We refer to the high (80th percentile
and above) strength nodes as the rich club, and the high (80th
percentile and above) participation coefficient nodes club as the
diverse club. For each network, the diverse club from each
community detection algorithm was analyzed. Moreover, a
diverse club was calculated and then analyzed for each density,
resolution, run, or number of communities. A rich club was
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Fig. 1 Topology of the diverse and rich clubs in the human and C. elegans. a Visualization of a single C. elegans functional network, labeled according to the
community affiliation detected by the Infomap algorithm. b, c The C. elegans’ diverse club and rich club. Nodes in red represent the maximum value for the
given metric (participation coefficient or strength), yellow is median, and blue is the minimum. Edges are colored by the mix between the two nodes each
edge connects. d Visualization of the human resting-state network labeled according to the community affiliation using the InfoMap algorithm. e, f The
human diverse club and the rich club. In both networks, the diverse club clusters in the center of the layout, while the rich club forms clusters on the
periphery. g The rich club and the diverse club (mean participation coefficient and strength across tasks and densities), along with nodes that are members
of both clubs, are shown on the cortical surface of the human brain. h The mean percentage of each human cognitive system that is comprised of nodes
from each club (analyzing all densities and tasks). For ease of interpretation, a canonical division of nodes into cognitive systems and names3 are used in h,
while all other analyses and figures use the community detection calculated here
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calculated and then analyzed for each density, as well as a rich
club that utilized the unthresholded matrix (“dense rich club”).
Unless otherwise stated, each individual rich club (i.e., each
density) and diverse club (i.e., each density or run) is analyzed.
However, we group together results (across network densities,
resolution parameters, number of communities, or runs) from the
same community detection algorithm. For example, the con-
fidence intervals in Fig. 2 represent 95% confidence intervals
across rich and diverse clubs of different densities or community
detection runs.

The diverse club exhibits stronger clubness than the rich club.
We refer to how interconnected a club is as “clubness” (Methods
section). We measure clubness with the normalized club coeffi-
cient, which is the number of intra-club edges the club has
relative to the mean of that value in a large set (here, 1000) of
random graphs. These random graphs are generated based on the
original graph; all nodes maintain the same number of edges and
strengths, but the edges are randomly placed. For every network,
we defined the rich club and its clubness across different ranks. A
rank defines the cutoff for which nodes are in the rich club. For
example, in a network with 100 nodes, a rank of 85 contains
nodes with a strength greater than or equal to the value of the
node with the 15th highest strength. In addition, for every net-
work, we defined the diverse club—the club of high participation
coefficient nodes—and its clubness at each rank. We then used
multiple analyses to characterize, and make distinctions between,

the rich club (i.e., high strength nodes) and the diverse club (i.e.,
high participation coefficient nodes) in each network.

We sought to measure if the diverse club or the rich club is
more interconnected than the other. For each network, we
calculated the clubness for both clubs at every possible rank. For
both clubs, for every network, as the rank increased, clubs with a
clubness >1 (i.e., 1 means equal to random) were detected
(Fig. 2, Supplementary Figs. 38–40). However, in every network,
as the rank increased to only include those nodes with the
highest strength or participation coefficient, the clubness
of the diverse club was, depending on the community
detection algorithm, typically equal to or higher than that of
the rich club.

Results were very similar by additionally normalizing clubness
by the standard deviation of the clubness values in the random
graphs (Supplementary Figs. 41–43). Moreover, in weighted
networks (where edges can have values different from 1) the edge
weights (in the C. elegans functional networks, human functional
networks, and air traffic network; other networks contain only
binary 1 or 0 edge weights) in the random graphs can be shuffled
between nodes with the same number of edges, which accounts
for the contribution of both edge placement and edge weight to
the normalized club coefficient19. Results were also very similar
when additionally shuffling edge weights (Supplementary
Figs. 44–46).

We also observed a positive relationship between (x) the
minimum strength or participation coefficient value in the club
and (y) the club’s clubness value (Supplementary Figs. 47–49).

0 15 30

Percentile cut off for the club

45 60 75 90 0 15 30

Percentile cut off for the club

45 60 75 90
1

2

3

4

5

6

C
lu

bn
es

s

C
lu

bn
es

s

Human

Club
Diverse
Rich

Diverse
Rich

Diverse
Rich

Club
Diverse
Rich

1.0

1.5

3.5

C. elegans (functional)

1.7
1.6
1.5
1.4
1.3
1.2
1.1
1.0

a b

c dUS power grid C. elegans (structural)

Club

Diverse
Rich

Club
Diverse
Rich

Club

MacaqueFlight traffic

Club

e f

3.0

2.5

2.0

0 15 30
Percentile cut off for the club

45 60 75 900 15 30
Percentile cut off for the club

45 60 75 90

0 15 30
Percentile cut off for the club

45 60 75 900 15 30
Percentile cut off for the club

45 60 75 90

C
lu

bn
es

s

C
lu

bn
es

s
C

lu
bn

es
s

C
lu

bn
es

s

1.0

1.5

3.0

2.5

2.0

1.0

1.0

1.2

1.4

1.6

1.8

2.0

1.5

2.5

2.0

Fig. 2 Clubness for the rich and diverse clubs in every network. a–f In each network, the mean across network densities (human, functional C. elegans) or
community detection runs (macaque, structural C. elegans, US power grid, flight traffic) for the clubness is plotted, with 95% confidence intervals shaded.
In every network, as the rank increased and only nodes with a high participation coefficient (blue) or strength (green) are included in the club, the diverse
club is typically higher in clubness than that of the rich club

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-01189-w

4 NATURE COMMUNICATIONS |8:  1277 |DOI: 10.1038/s41467-017-01189-w |www.nature.com/naturecommunications

www.nature.com/naturecommunications


However, the relationship was more logarithmic for the
participation coefficient value. Along with the previous finding
that the participation coefficient distribution is more bimodal
than the strength distribution, this suggests that membership in
the diverse club is more binary than membership in the rich club.
In sum, these results demonstrate that, across a range of
networks, the club of high participation coefficient nodes (the
diverse club) is more strongly interconnected than the club of
high strength nodes (the rich club).

The rich and diverse clubs are mostly non-overlapping. We
further analyzed clubs at the rank that corresponds to the 80th
percentile, as this is the rank, across networks, where the nor-
malized club coefficient increased dramatically (while some net-
works’ rich club did not exhibit above chance clubness at these
ranks, we still analyzed the highest strength nodes, as these nodes
might exhibit other integrative properties besides high clubness).
For example, in the human brain networks, which contain 264
nodes, the clubs contained 53 nodes each. To visualize the
topology of the derived network communities, we used the For-
ceAtlas230 algorithm, which simulates a physical system in which
nodes repel each other like charged particles and edges attract
their nodes like springs, which results in nodes in the same
community pulling together, and different communities pulling
apart from one another. We labeled each node in the graph by
their community affiliation and their membership in a rich or
diverse club (Fig. 1 shows the communities in C. elegans and
human resting-state; Supplementary Fig. 1 shows a non-biological
network, air traffic).

Visual inspection of the C. elegans (Fig. 1a) and human
functional networks (Fig. 1d) suggests that rich club nodes exist
on the periphery of the graph, whereas diverse club nodes are in
the center. There are few nodes that are members of both clubs.
Anatomically in the human brain network, the rich club and
diverse club are differentially represented in different cognitive
systems (Fig. 1g, h). These analyses demonstrate that the clubs
exist at different anatomical locations in the human brain as well
as different topological locations in the graph.

We then quantified how similar the clubs are in each network,
measuring the percentage of possible overlap. Zero
represents that no nodes were members of both clubs, and
100% represents that the clubs are identical. In the human
networks, across all community detection algorithms and both
resting-state and 6 task states, no more than 23% of nodes
were in both clubs (Fig. 3, Supplementary Fig. 50). In the
functional C. elegans networks, across worms and algorithms, the
overlap ranged from 6 to 76% (Supplementary Fig. 51). The
overlap in structural networks (C. elegans, macaque, air traffic,
and US power grid networks) ranged from 18 to 63%
(Supplementary Fig. 52). These analyses demonstrate that, in
general, the diverse and rich clubs are predominately comprised
of different nodes.

The rich and diverse clubs exhibit topological differences.
Given that the diverse club appears to be in the topological center
of complex networks, and an integrative club of nodes should
have members in many different communities, we tested how
many communities has a member of each club. Across all net-
works and algorithms (besides the Louvain (resolution) algo-
rithm), an equal or higher percentage of communities contained a
node from the diverse club than the rich club (Fig. 3, Supple-
mentary Figs. 50–52).

We next tested if the betweenness centrality—the number of
shortest paths between pairs of nodes that pass through a node—
of the diverse club is higher than that of the rich club. Across all
networks we analyzed, the betweenness centrality of the diverse
club was not consistently significantly higher or lower than the
rich club (Supplementary Figs. 53–55). Betweenness centrality,
however, does not capture if the network’s shortest paths traverse
edges between nodes in the rich or diverse club. Thus, we
measured the edge betweenness—how many shortest paths
between pairs of nodes traverse a particular edge—of the edges
between members of the rich club or the diverse club. With this
calculation, across algorithms, in almost all networks, the edge
betweenness was significantly higher for the diverse club than the
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rich club (Supplementary Figs. 56–58). Moreover, in the air traffic
network, until the clubs reached a size of 356 airports (~10% of all
airports), the diverse club had more international airports in it
than the rich club. Furthermore, flights between airports not in
the diverse club are predominately domestic, while international
flights were mainly between diverse club airports; this was not the

case for the rich club and non-rich club airports (Supplementary
Fig. 1). These analyses demonstrate that, relative to the rich club,
the diverse club is represented in more communities and more
shortest paths between nodes pass through the diverse club. These
are two properties that are likely critical for global network
integration and communication.
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Intra-diverse-club connections are more critical. To further
investigate the importance of the diverse and rich clubs for effi-
cient global communication in a network, we simulated lesioning
or damage to intra-club connections. For each network, in 10,000
iterations, we removed between (randomly) 50 and 90% of edges
from either club (skipping edges that disconnected the graph into
two sub-graphs; given that this frequently occurs in sparser net-
works, we used a network density of 0.20 for the functional
C. elegans and human networks). We then calculated the increase
in the sum of shortest paths between all nodes, which indicates
decreased global efficiency. In every network, removing edges
between diverse club nodes increased the sum of shortest paths to
a greater extent than removing edges between rich club nodes
(Supplementary Figs. 59–61). This demonstrates that the edges in
the diverse club are more critical to efficient global communica-
tion than edges in the rich club.

Diverse club activity increases in more complex tasks. Pre-
viously, using the BrainMap database, we demonstrated that the
diverse club (nodes with a high participation coefficient) exhibits
increased activity in tasks that engaged more cognitive compo-
nents or communities (see refs 1, 27 for detailed descriptions).
Using the Human Connectome Database resting-state network
studied here, we replicated these findings—increased activity of
the diverse club was correlated with the number of communities
(mean r= 0.45: Supplementary Fig. 62) or cognitive components
(mean r= 0.395; Supplementary Fig. 63) a task engaged. For the
rich club, nodes exhibited significantly decreased activity as more
communities (mean r= −0.37; Supplementary Fig. 64) or cogni-
tive components were engaged in a task (mean r= −0.45; Sup-
plementary Fig. 65). Thus, the diverse club, not the rich club,
exhibits increased activity when more communities are engaged
in a task, which likely occurs when more integration across and
coordination between communities is required. Note that, for this
analysis (and this analysis only), the rich club and diverse club
were defined based on the average strength or participation
coefficient across densities and a previous canonical division
(shown in Fig. 1d) of nodes into communities was used to esti-
mate the number of communities engaged3.

The clubs potentially evolved via distinct pressures. Evolu-
tionary pressures have selected networks with rich clubs and
diverse clubs. Thus, the final distinction between the diverse club
and the rich club we sought to make is if these clubs were
potentially naturally selected for different reasons. One of the first
observations in neuroscience–Cajal’s conservation principle—was
that the brain is organized by an economic trade-off between
minimizing the number of connections in the network and
adaptive topological patterns31. One topological pattern that
might be adaptive is modularity, which is how sparse the con-
nectivity between communities is relative to the connectivity
within communities. Another potentially adaptive topological
pattern is efficiency, which is the inverse of the sum of shortest
paths between all nodes, and thus measures how efficiently signals
can be integrated across the network. For example, in brain
networks, efficiency is used as a measure of the overall capacity
for parallel information transfer and integrated processing22.
Networks that are modular (i.e., exhibit high clustering) and
efficient are described as “small world”32. Thus, we asked the
question: do evolutionary pressures that select high modularity
and efficiency given a limited number of connections generate a
network topology that contains a rich club or a diverse club? In
other words, is one of the clubs nature’s solution to efficient
integrative processing in a modular network?

To answer this question, we developed a generative graph
model that jointly maximizes modularity, which we define as Q
(see Methods, Eqs. 1–4), and efficiency (E; the inverse of the sum
of shortest paths between all nodes, see Methods, Eq. 6). The
model starts with a graph of 100 nodes that are randomly
connected, with 5% of all possible edges (247 binary edges). To
simulate natural selection of high Q and E, we found individual
edges that, when removed, both increase Q the most and decrease
E the least (Methods section). We remove these edges and then
randomly place them back in the network, thus artificially
selecting edges in the graph that jointly maximize Q and E. We
also ran the same model, except we randomly selected the edges,
removed them, and then randomly placed them in the network.
This allowed us to decipher if the model selects a network with a
diverse club that is more highly interconnected than if random
selection had occurred. Our hypothesis was that, if the diverse
club is nature’s solution to efficient integrative processing in a
modular network, a highly interconnected diverse club, but not a
rich club, will emerge when networks are selected based on
maximizing modularity (Q) and efficient integration (E).

We varied the amount of importance Q or E played in the
selection of edges. A ratio of 0.5 equally maximized both Q and E,
while 1 maximized only Q. We found that, at a ratio of 0.75
(Q)–0.25 (E), a balance was achieved with a high clubness of the
diverse club, high E, high between community efficiency (the
inverse of the sum of shortest paths between nodes in different
communities), high Q, a high correspondence between the degree
distribution of the model network and the human brain network
(resting-state), and a high correspondence between the participa-
tion coefficient distribution of the model network and the human
brain network (resting-state). To measure the correspondence
between the degree and participation coefficient distributions, we
calculated the Kullback–Leibler divergence between the two
binned distributions for the degree or participation coefficient in
the model and in the human resting-state data (see Methods
section, Eq. 9). Figure 4 shows all of these metrics individually
(a–f) and together (g) across different ratios of maximizing Q
versus E.

Using a ratio of 0.75, we ran 1000 iterations of the model and
1000 iterations of the random model. We then calculated the
clubness of the diverse club in the model and the random model.
We found that, at higher ranks, the clubness of the diverse club in
the models that maximize Q and E was higher than the clubness
of the diverse club in the random models (Fig. 4; ratios of 0.70
and 0.8 led to similar results (Supplementary Fig. 66)). This
demonstrates that the diverse club’s high clubness is a not a
mathematically necessity of defining the club based on high
participation coefficients, as randomly selected networks do not
exhibit a highly interconnected diverse club. Thus, the diverse
club’s strong interconnectedness is a non-trivial feature of real
networks. Moreover, we did not find high clubness of the rich
club in the model. Thus, while the diverse club was captured by
the generative model, the rich club was not captured by this
model. These results suggest that the diverse club, but not the rich
club, might be nature’s solution to efficient integrative processing
in a modular network.

Discussion
Nodes in a network with many edges (i.e., high strength nodes) or
with edges that are diversely distributed across communities (i.e.,
high participation coefficient nodes) are both proposed to be
integrative or coordinative hubs5–18. Here, we provided evidence
that high participation coefficient nodes, which we call the diverse
club, have properties that are more characteristic of integrative
hubs, as compared to high strength nodes (i.e., the rich club). The
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diverse club is more interconnected than the rich club in every
network we analyzed—the human brain (in 7 different tasks), the
C. elegans, the macaque brain, the United States power grid, and
global air traffic. In the human brain, diverse club nodes are up to
four times as interconnected as rich club nodes. Importantly, in
all networks examined, few nodes are members of both clubs.

Having established that the diverse club is relatively distinct
from the rich club, we further differentiated the functions of these
two clubs. The diverse club typically spans more communities,
has betweenness centrality equal to the rich club, and higher edge
betweenness than the rich club. This pattern of connectivity,
which is spread across the entire network and exhibits the most
economical route between nodes, is a critical property of nodes
that integrate across network communities. Moreover, across all
networks, edges between diverse club nodes are more critical to
efficient global communication than the edges between rich club
nodes. When diverse club edges were removed, the sum of
shortest paths between nodes increased significantly more than
when rich club edges were removed. Finally, in humans, these two
clubs exhibit different activity patterns as cognitive tasks become
more complex. Unlike rich club nodes, diverse club nodes
increase activity in response to more communities being engaged
by a task, which likely requires more integration across the net-
work’s communities.

We also investigated if the diverse and rich club might have
distinct evolutionary origins. Many of the brain’s network prop-
erties that are related to integration are heritable and impact its
fitness—how likely that brain network architecture is to be
naturally selected. Specifically, the brain network’s cost-efficiency
ratio (high efficiency given a constrained number of connections
—the wiring cost) is heritable. Moreover, the diverse club’s effi-
ciency (the inverse of the sum of the shortest paths between all
nodes) is heritable33. Efficiency is also behaviorally relevant,
making it likely to factor in natural selection. For example,
working memory performance is correlated with network effi-
ciency, and individuals with schizophrenia have lower efficiency
and working memory performance34. Also, higher intelligence
quotient scores are associated with higher network efficiency and
betweenness centrality of the fronto-parietal network (which we
found to have the highest number of diverse club nodes)35–37.
However, brain networks are not purely optimized for efficiency,
given that they exhibit high modularity, with segregated com-
munities performing distinct functions, at the cost of lower effi-
ciency38–40. Modularity likely increases fitness in information
processing systems41–43 and confers robustness to network
dynamics (i.e., information processing) when the connections
between nodes are reconfigured, a process necessary for the
evolution of a network44. Modular networks also outperform (i.e.,
solve tasks faster and more accurately) and evolve faster than
non-modular networks45 with lower wiring costs than non-
modular networks46. Like efficiency, modularity is also behavio-
rally relevant, and thus potentially naturally selectable. For
example, modularity explains intra-individual variation in
working memory capacity47 and predicts how well an individual
will respond to cognitive training48, 49.

As modularity and efficiency are both heritable and impact the
fitness of an organism, we probed the possible evolutionary ori-
gins of the two clubs by asking if the rich or diverse club was
selected to balance efficient global integration without sacrificing
modularity. We found that, if we simulate natural selection for a
balance between modularity and efficient integration, a highly
interconnected diverse club, but not a rich club, emerges. Thus,
the diverse club potentially evolved via selective pressures that
favored both modularity and efficient integration. This provides
further evidence for dissociable functions of these clubs. Addi-
tionally, the evolutionary generative model, compared to the

random null model, produced significantly higher clubness in the
diverse club. This demonstrates that the high clubness of the
diverse club is only a feature of real world networks with a non-
random architecture.

The interpretation of many previous network analyses could be
dramatically altered in light of our findings, as our results provide
a strong motivation for the consideration of both a rich and
diverse club in network function. Contrary to previous proposals,
we propose that the true integrative core of networks is the
diverse club, not the rich club. Thus, we hypothesize that the rich
club likely plays an alternative role in network function. One
possibility that has been previously suggested is that the rich club
maintains the stability of the dynamics of spontaneous activity. In
the macaque structural network, rich club nodes exhibit very high
in-degree—many white matter connections terminate on these
nodes. Thus, autonomous dynamics of the rich club are largely
constrained by the summary of strong rhythmic outputs from the
entire network—rich club nodes stay closer to the summated and
global network oscillations than other nodes and thus promote
stability in the network dynamics at slower time-scales50. An
analogy can be made in social networks where members that
exhibit a high in-degree, like politicians, are “slaves to their own
power”, as they are only able to act in limited, and often slow,
ways that mostly reflect the entire social network50.

The functional connectivity, anatomical location, and cognitive
functions of rich club nodes in humans fit with this proposal. The
default-mode network (which we found has the most rich club
nodes), is equidistant and maximally distant from primary sen-
sory and motor networks based on both functional connectivity
and anatomical geodesic distance51. Moreover, a meta-analysis of
human brain imaging data showed that the default-mode network
is involved in tasks unrelated to immediate stimulus input, such
as daydreaming or mind-wandering51. These empirical findings
suggest that the function of the rich club may predominately be to
maintain stability in the entire network via slow processing,
potentially using its high degree to integrate information at slower
time scales, in contrast to the diverse club, which may act on
shorter time scales. This potential distinction between the rich
and diverse club warrants further investigation.

Methods
C. elegans network data. Four C. elegans worms were imaged while executing
behavior with calcium imaging, and each neuron’s extracted time series of activity
was made publically available52. In this analysis, each neuron was treated as a node,
and the edge weights between nodes i and j represented the Pearson r correlation
(no Fisher transform was applied, as the original paper analyzed raw r values and r
values were not averaged across worms) between the time series of nodes i and j.
The worms had 56, 77, 68, and 57 nodes. Each worms’ graph was thresholded at a
particular cost, retaining 5–20% of possible edges in 1% intervals. The maximum
spanning tree (the set of edges (i.e., path) that connects all nodes with the
maximum sum of edge weights possible) for each graph was calculated, and these
edges were not removed in order to keep the graph connected. Community
detection was applied at every cost separately. We also analyzed the structural
network of the C. elegans53, where we constructed a binary and undirected network
of all 297 neurons and their 2359 axonal connections (i.e., no thresholding).

Human functional MRI (fMRI) data. Human fMRI data from 471 subjects (S500
release) during rest and the performance of six tasks from the Human Connectome
Project54 were used. For the task fMRI data, Analysis of Functional Neuroimages
(AFNI)55 was used to preprocess the images, matching traditional resting-state
functional connectivity studies. The AFNI command 3dTproject was used, passing
the mean signal from the cerebral spinal fluid mask, the mean signal from the white
matter mask, the mean whole-brain signal, and the motion parameters to the “-ort”
options, which remove the signals via linear regression. The options “-automask”,
which generates the mask automatically was used. The “-passband 0.009 0.08”
option, which removes frequencies outside 0.009 and 0.08, was used. Finally, the
“-blur 6”, was used, which smooths the images (inside the mask only) with a filter
that has a width (FWHM) of 6 mm after the time series filtering. We analyzed the
working memory (405 timepoints), relational reasoning (232 timepoints), motor
(284), social cognition (274 timepoints), mixed math and language (316), and
gambling tasks (253 timepoints). Given the short length (176 timepoints, and thus
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low degrees of freedom during preprocessing) of the Emotion task, it was not
included in our analyses. For the resting-state fMRI data (1200 timepoints), we
used the images that were previously preprocessed with ICA-FIX. The AFNI
command 3dBandpass was used to further preprocess these images. We used it to
remove the mean whole-brain signal and frequencies outside 0.009 and 0.08
(explicitly, “-ort whole_brain_signal.1D -band 0.009 0.08 -automask”).

For each state (both LR and RL encoding directions were used), for each subject,
the mean signal from 264 regions in the Power atlas3 was computed. The Pearson r
between all pairs of signals was computed to form a 264 by 264 matrix, which was
then Fisher z transformed. All subjects’ matrices were then averaged. No negative
correlations were included in our analyses. This matrix served as the edge weights
for the graph for that particular state. The same thresholding and analyses across
costs that was applied to the C. elegans functional networks was executed for
human networks.

Macaque structural network. The structural network of the macaque cortex is
publically available56. While the C. elegans is a micro-scale network, with individual
neurons represented as nodes, the macaque network is a macro-level network, with
71 brain regions modeled as nodes and 438 white matter tracts modeled as edges.
Edges were treated as undirected and binary; thus, no thresholding and analyses
across costs is required.

Man-made networks. We analyzed air traffic patterns between 3281 airports and
531 airlines spanning the globe, where a node is an airport, and the edge weight
between nodes is the number of airlines flying between them, resulting in 10,924
edges (data downloaded from OpenFlights.org). We also analyzed the United States
power grid, where a node is either a generator, a transformer, or a substation (n=
4941), and an edge represents a power supply line (n= 6594). No thresholding was
applied to either network. Data was downloaded from: http://konect.uni-koblenz.
de/networks/opsahl-powergrid.

Community detection. Community detection algorithms are meant to group
nodes into sets of nodes, where each set is a putative community. Each algorithm is
essentially a definition of what a community is, and then an implementation that
finds communities in the network based on that definition.

Community detection methods that maximize Q. Two community detection
algorithms we used explicitly maximize Q, which is the fraction of edge weights
within communities minus a constant (resolution parameter) times the expected
fraction of such edges in a randomized null network57, 58. Q is written analytically
as follows. Consider a weighted and undirected graph with n nodes and m edges
represented by an adjacency matrix A with elements

Aij ¼ edge weight between i and j: ð1Þ

Thus, the strength of a node is given by

ki ¼
X

j

Aij ð2Þ

And modularity (Q) can be written as:

Q ¼ 1
2m

X

i≠j
Aij � γpij
� �

δ ci; cj
� �

: ð3Þ

Here, pij is the probability that nodes i and j are connected in a random null
network

Pij ¼
kikj
2m

; ð4Þ

γ is the resolution parameter, and ci is the community to which node i belongs to
and δ α; βð Þ ¼ 1 if α ¼ β and δ α; βð Þ ¼ 0 if α≠β. The spectral59 method is
conceptually similar to principal components analysis. This algorithm computes
the leading eigenvector of the Modularity matrix and divides vertices according to
the signs of the vector elements. The Louvain algorithm60 also maximizes Q with
two steps that are iteratively repeated. To initialize the algorithm, each node is
assigned to its own community. First, each node is placed in the community that
maximizes the increase of Q. This is done until no increase in Q can be achieved for
any node. Next, each community is treated as a node, and the first step is repeated.
The algorithm stops when the second iteration no longer increases Q.

Label propagation. Other algorithms, while they lead to networks with a high Q
value, do not explicitly maximize Q and instead depend on intuitive definitions of
communities and capitalize on local properties of the network. The label propa-
gation61 algorithm has an implementation that is similar to Louvain, but capitalizes
on the fact that neighbors are often in the same community. The algorithm is

initialized with each node given a unique “label”, where the label is simply the
community name (e.g., 0), and the labels are then propagated across the network.
Each node in the network is given the label to which the maximum number of its
neighbors have, which causes densely connected sets of nodes to have the same
label. Labels are propagated in this fashion until every node in the network has a
label to which the maximum number of its neighbors belongs and nodes with the
same label are grouped together as communities.

Edge betweenness. The edge betweenness62 algorithm defines communities by
which sets of nodes are connected after certain edges are removed from the net-
work. The algorithm capitalizes on the assumption that edges that have high edge
betweenness (many shortest paths between nodes cross that edge) are likely to be
edges between communities. The algorithm thus gradually removes the edge with
the highest edge betweenness (recalculating edge betweenness after every removal).
As edges are removed, the graph becomes unconnected (i.e., there exists nodes for
which no path between them can be found). This breaks the network into
unconnected sets of nodes (i.e., no path between nodes in different sets can be
found). Each set of nodes is a community. Note that, for all networks, we used
binary edges for this community detection algorithm, as weighted shortest paths
finds the distance with the smallest sum of edge weights. This is appropriate for
finding short travel routes, but not appropriate for the networks studied here.
While one can implement this algorithm to utilize the inverse of the weights63, we
chose to use binary versions of the graphs for interpretational simplicity. It is not
obvious that a strong connection is more or less important or efficient for path
traversals than a weak one. The binary presence of a connection, on the other hand,
is much easier to interpret in path traversals. This also applies to calculating the
sum of shortest paths and thus efficiency (E, see Eq. 6). Thus, only calculations that
require calculating shortest paths utilize binarized edges.

Spin glass. The spin glass58 method defines the community structure of the
network as the spin configuration that minimizes the energy of the spin glass with
the spin states being the community indices.

Random walk algorithms: Walktrap and InfoMap. The walktrap algorithm64 is
based on random walks—random walks on a graph tend to get “trapped” into
densely connected sets of nodes. The algorithm defines those sets as communities.
Another random walk based algorithm is the InfoMap algorithm65, which is based
on how information randomly flows through the network; thus, a community is a
set of nodes among which information flows quickly and easily.

Resolution parameters: Walktrap N and Louvain (resolution). All of the
algorithms have a resolution limit66, in that smaller communities are not as likely
to be detected. Moreover, for many networks, there likely exists different scales at
which the network’s community structure can be analyzed67. In other words, one
can analyze the network with, e.g., 5 communities, or at a higher resolution of 20
communities. Neither of these scales is necessarily more valid. While manipulating
the density of the network’s connections leads to a variety in the number of
communities in the network, this is not systematic, nor is it possible for the
unweighted networks analyzed here. Moreover, the thresholding of these weighted
networks is arbitrary. Thus, we chose two community detection algorithms that
allow one to specify the scale at which the communities are detected and can utilize
a dense network with no edges removed.

First, we used a version of the Louvain algorithm that maximizes stability, a
measure of the community detection quality that is defined in terms of the
statistical properties of a dynamical process taking place on the network, instead of
Q. Here, the time-scale of the dynamical process acts as an intrinsic parameter that
can uncover more or less communities68.

Next, the Walktrap algorithm first renders the community detection result as a
dendrogram. This dendrogram can be cut at any level. For the desired number of
clusters, merges are replayed from the beginning of the random walk until the
community vector has that many communities, or until there are no more recorded
merges, whichever happens first. This allows one to explicitly specify the number of
communities in the network.

Participation coefficient. Given a particular community assignment, the partici-
pation coefficient of each node can be calculated. The participation coefficient (PC)
of node i is defined as:

PCi ¼ 1�
XNM

s¼1

Kis

Ki

� �2

ð5Þ

where Ki is the sum of i’s edge weights, Kis is the sum of i’s edge weights to
community s, and NM is the total number of communities. Thus, the participation
coefficient is a measure of how evenly distributed a node’s edges are across com-
munities. A node’s participation coefficient is maximal if it has an equal sum of
edge weights to each community in the network. A node’s participation coefficient
is 0 if all of its edges are to a single community.
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Efficiency. Efficiency (E) is the inverse of the sum of shortest paths between all
nodes. As the sum of shortest paths increase, E decreases. Thus, E for network G is
calculated as:

EG ¼ �
X

i<j2G
d i; jð Þ ð6Þ

where d is the shortest path distance between nodes i and j. Note again that, for all
analyses using E or d, we used binary edges while calculating the shortest paths (d),
as weighted shortest paths finds the distance with the smallest sum of edge weights.

Clubs and clubness. Clubs are defined based on rank ordering the nodes based on
the strength or the participation coefficient and taking the nodes with a strength or
participation coefficient above a particular rank. For that club, the clubness coef-
ficient θ is calculated as the ratio between the sum of edge weights between the
club’s nodes, e, and the number of possible connections between them. In undir-
ected networks, this is:

θ ¼ e
n n� 1ð Þ=2 ð7Þ

θ must then be normalized by comparison to the θ observed in randomized net-
works. While normalization can be calculated analytically, normalizing by the θ
across a large number of random networks more accurately discounts structural
correlations due to finite-size effects, as degree–degree correlations and higher-
order effects, such as large cliques, exist in random networks61. Here, the random
networks maintain the same degree and strength distribution, but the edges (and
optionally edge weights) are randomly placed. θrand is simply the mean θ across
these random networks19. The normalized clubness coefficient,θnorm, is thus:

θnorm ¼ θ

θrand
ð8Þ

θnorm, which we simply call clubness, is calculated at each rank. We also further
normalized θnorm by the standard deviation of θ in the random graphs (Supple-
mentary Figs. 41–43). A publically available python module from a previous
publication19 was used for these calculations (github.com/jeffalstott/richclub).

Generative evolutionary model. The model starts with a graph of 100 nodes that
are randomly connected, with 5% of all possible edges (n= 247). Binary edges were
used. No initial community structure is imposed. For each iteration, Q and E are
calculated. Edges are then chosen for removal that, when removed, lead to a
maximal increase in Q and E. To achieve this, the change in Q and E following the
removal of each edge is calculated. These two vectors are then rank ordered
separately. The minimum of the ranks that would have been assigned to all the tied
values is assigned to each value (i.e., “competition” ranking). Next, the two vectors
are z-scored and then weighted according to the Q-ratio parameter. For example, if
the Q-ratio is 0.75, the rank ordered vector of Q changes is multiplied by 0.75, and
the rank ordered vector of shortest path changes is multiplied by 0.25. The sum of
the two vectors is then calculated, giving a weighted sum of the two objectives,
jointly maximizing Q and E for each edge.

These edges are removed and then randomly placed back in the graph,
maintaining a constant density of edges (0.05). At each iteration, 5% of edges (13)
are removed from the graph and then placed randomly back into the network. This
process jointly maximizes Q and E. This procedure is repeated for 150 iterations,
resulting in 1950 edges being shuffled. At this point, the generative model stops. To
ensure the model is stable after 150 iterations, we plotted the mean and 95%
confidence intervals of Q and E at each iteration. At around 80 iterations, both Q
and E remain stable (Supplementary Fig. 67). Next, using the mean value across
model runs (n= 1000), for each iteration, we calculated the absolute percentage
difference between Q or E at that iteration with Q or E in each of the previous 40
iterations. We then take the mean absolute percentage change over those 40
iterations. We then plotted these values for each iteration (Supplementary Fig. 67).
Finally, using those change values, we calculated the mean absolute change over the
last 30 iterations, asserting that it was less than 1% for both Q (0.3%) and E (0.9%).
For a null model, we also ran the generative process, except we randomly selected
the edges, removed them, and then randomly placed them in the network.

The degree and participation coefficient fit was measured by the inverse of
Kullback–Leibler divergence:

KLD P Kkð Þ ¼
X

i

P ið Þlog P ið Þ
K ið Þ ð9Þ

where P is histogram of the model network’s distribution and K is the histogram of
the human brain network’s distribution, both of which have been sorted into 10
bins, where each bin’s value is the proportion of nodes in that bin. This was
implemented in python as scipy.stats.entropy(model_histogram,
human_brain_histogram).

Data availability. A python package was written to run all of the analyses and
make all of the figures. It is available at www.github.com/mb3152/diverse_club.

This package utilizes iGraph for all graph theory analyses. This repository includes
original network data files as well as the final calculated results. The package is
completely object-oriented, which makes recalculating the results from the original
data files, with any parameter adjustments, trivial. The only non-standard libraries
(i.e., does not come installed with the Anaconda distribution of python) it depends
on is iGraph and Seaborn.
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