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FOREWORD

The development of an effective computer program for structural
analysis requires a knowledge from three scientific disciplines --
structural mechanics, numerical analyses and computer programming. The
selection of accurate and efficient elements requires a modern background
in structural mechanics. Because new elements are continuously being
developed the computer program should have a simple mechanism for the
insertion of new elements. The efficiency of the program depends on the
numerical programming techniques employed. For example, incorrect
techniques for the solution of equations may increase the execution time
for a program by a factor of 1000. The most important aspects of
programming are machine independence and optimum allocation of storage.
If one is careful very efficient programs can be developed utilizing
standard FORTRAN techniques.

In my opinion, all computer programs for structural analysis
are obsolete within a few years after completion. This is because new
structural elements are developed, better numerical procedures are
available, or new computer equipment, which requires new coding
techniques, is produced. Therefore, it is very important that a large
investment is not required for the development of a single program. How-
ever, if a program is small, machine independent, and has the ability to
be easily modified it may have a longer life.

Many computer programs for the analysis of large complex
structures have been developed during the past several years. Each of
these programs represents the result of large expenditures of energy and
money. One of these programs required approximately 75 man-years and

two million dollars before compietion; however, the resulting program



does not have modern structural elements and is not particularly efficient
in operation. Also, it is partially machine dependent.

The computer program presented in this report is the result
of over 10 years of research and development experience. However, the
basic computer code was developed in a three-month period by a few
engineers. In the past several months additional structural elements
and a dynamic option have been added. The total development effort of
the computer code to date has been approximately two man-years. In my
opinion, however, the resulting program is one of the most powerful and
efficient programs for the Tinear elastic analysis of complex structural
systems that has been developed to date. Nevertheless, I am sure it will
be obsolete within five years.

The slang name SAP was selected to remind the user that this
program, like all computer programs, lacks intelligence. It is the
responsibility of the engineer to idealize the structure correctly and

assume responsibility for the resylts.

Berkeley, California E. L. Wilson

September 1970
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I. INTRODUCTION

The purpose of this computer program is to perform linear,
elastic analyses of three dimensional structural systems. The structural
systems to be analysed may be composed of combinations of a number of
structural element types. The present version contains the following
element types:

1) three dimensional truss

2) three dimensional beam

3) plane stress and plane strain

4) two dimensional axisymmetric solid

5) three dimensional solid

6) plate and shell

7) boundary

Since several of these elements have not been published it
will be necessary to present their development in this report. Only
an outline and the unique characteristics of the proagram will be given;

no attempt is made to document the program completely.

Systems composed of large numbers of joints and members may
be analysed. The capacity of the program depends mainly on the total
number of joints in the system. There is practically no restriction on
the number of elements, number of load cases, or the "bandwidth" of the
equations to be solved. Note, that while the program has the capacity
to analyse very large systems, there is no loss of efficiency in the
solution of smaller problems as compared to several special purpose
programs presently available. The program is machine independent and

is coded in standard FORTRAN IV.

-1 -



New elements can be added to the program with a minimum of
new programming; therefore, the nature of the program may change
significantly within the next few years. These new elements will
automatically have a dynamic Joad option since this part of SAP is

element independent.



Pl CQUILIBRIUM EQUATIONS FOR COMPLEX STRUCTURAL SYSTLMS

2.1 The Direct Stiffness Method

The governing joint equilibrium equations for a structural
system can be derived by several different approaches. A1l methods yield

a set of linear equations of the following form:
Kwu =R (2.1)

These equations set the sum of the internal element forces, K u,
expressed in terms of joint displacements, u, to the generalized loads,
R, acting at the joints. The matrix u contains all the joint
displacements (degrees of freedom) of the system. The stiffness matrix

K can be formed by the direct addition of element stiffness matrices; or

K =1 K (2.2)
For a typical element m the element stiffness matrix is
given by
K = aT c a_ dyv (2.3)
-m -m -m -m m )
Vol
The stress-strain relationship for the element is of the form
g = Cc_ e+ T (2.4)

where e, are the element strains produced by the displacements u

and 1 are the initial stresses in the element before deformation.



Within each element the strains are expressed (approximately) by the

following equation:

i
[*7]
=

———
[
(8]

~—

Note that a, appear to be a very large matrix since u contains all
degrees of freedom of the system. However, within the computer program
only the non-zero columns of a, are stored and their column numbers
are stored as a separate identification array. The advantage of this
notation is that the "direct" addition of element stiffness matrices as
implied by equation (2.2) is correct.

The generalized loads, R, are given by
_R_ = E + I_ - _E (2.6)

where P is a matrix of concentrate joint loads and T is a matrix of
generalized loads due to distributed surface stresses and is given by a

summation of boundary element forces, or
T = 0 T (2.7)

in which

Area

The surface stresses are t, and the relationship between surface

displacements and joint displacements is



F is a matrix of generalized loads due to the initial stresses 1_ and

is given by a summation of element forces, or

i
i
™1
-
—
[RS]

in which

Foo- b (2.

=M -m  -m m

The matrix gm is the basic displacement field approximation within

the element:

il

2.2 Boundary Conditions

Equation (2.1) represents the relationship between all joint

forces and all joint displacements and can be rewritten in partitioned

form as:
Kaa Ya * Kop 4y = “a (2
fa Ya T Koo U = Ry (2
where R, = the specified joint loads
R, = the unknown joint reactions
u, = the unknown joint displacements
Uy = the specified joint displacements

u - (x, y, z) = d u (2.

pu—;
o
—

1)

12)

13)

.14)



The normal approach to the solution to this problem is to rewrite
Eq. (2.13) in the following form:
- - = I A
Kaa Y Ra Kab  Yb Ra (2.15)
*

Since R can be calculated directly, Eq. (2.15) can be solved for the
unknown displacement.

In this report another approach is used which has certain
programming advantages. If a displacement component, Up is zero,
the stiffness coefficients Kib> Kpay and Kyp are not added to the
total stiffness matrix and that particular degree of freedom is
disregarded in the equilibrium equations. If, however, a non-zero
displacement is to be specified, u, = x, Eq. (2.14) is modified by

the addition of an equation of the following form:

k ug = kx (2.16)

where k is an arbitrary number. The resulting equation is:

K u. + (K

-ba -a bb + k)

Up = Ry ¥ kx (2.17)
If k 1is selected to be several orders of magnitude greater than the
stiffness coefficient Kbb the solution of this equation will be

Uy = X. This may also be interpreted physically as adding a spring of
large stiffness k to the structure; a large load kx is then applied;

therefore, the relatively flexible structure will move along with the

spring in order to produce the displacement x.



This technique of adding a stiff spring to the structure may also be used
to specify skew boundary conditions. For zero specified displacement the

resulting force in the spring is the support reaction.



ITI. THREE DIMENSIONAL TRUSS ELEMENT

The three-dimensional truss element will be explained in detail
in order to illustrate the calculation of the stiffness matrix for a

typical element,

A typical truss element connected to joints i and J 1s
shown below. All dimensions are assumed positive; however, the

development is correct for elements of different orientation.

Z
4
) -8
i/
I
| l
| |
l
1Zi I
I 1 Z;
| l
| |
. > Y
I /
_____ L7 X : /
Y, | i
I
/
_____________ L
Yj
X
FIGURE 1 TYPICAL TRUSS ELEMENT



The Tength of the element is given by

2 2 2
L—/Lx+Ly+LZ (3.1)
where

L = X, = X

X J 1
L = - 3.
v Y5 ¥; (3.2)
L =z, =- Z

z J i

The axial displacement in the s-direction is assumed to be linear

(constant strain).

o
i
o=
+
[ aaai 172]
—
[
1
s
N
—
w
w
Nt

where s equals zero at joint 1i. Therefore, the axial strain is

; :,S:M(u—.—u.) (3.4)

The axial displacement U is given in terms of the global displacements

u

X uy, and u, by

S
u = T u + 3 u + T u (35)
The evaluation of equation (3.5) at joints i and j and the

substitution into equation (3.4) yields the following expression for

element strain;:



T _ - - h
S 2 TVl W Sy A N I

Yyi

u
zy“)

p—

Therefore, the strain-displacement matrix for the truss element is a

I'x 6 matrix and is given by

-
a = "-2‘[~LX'L

) -LL L, L] (3.7)

Y X'y z

The axial stress is expressed in terms of axial strain by
o = E € (3.8)

Therefore, the stress-strain relationship is a 1 x 1 matrix, or
c = [E] (3.9)

where E is the modulus of elasticity of the truss material.

From equation (2.3) the element stiffness can be calculated
directly. Since the volume of the element is equal to the cross-
sectional area of the element, A, times the Tength of the element, L,

the element stiffness is of the form:

- 10 -



[ oL - -
L (-1, Ly - Lt L]

- L (3.10)

From equations (3.8) and (3.6) the axial stress in terms of global

displacements is

(3.11)

Within the computer program the stress-displacement relationship is
always calculated at the same time as the element stiffness is evaluated;
it is then placed on tape storage and is used later in the determination

of element stresses after the joint displacements are determined.
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IV. THREE DIMENSIONAL BEAM ELEMENT

The beam element included in this program considers torsion,bending
about two axes, axial and shearing deformations. The element is prismatic
and the development of its stiffness properties is standard and is given
in many modern texts on structural analysis. Only the unigue character—

istics will be discussed in this section.

4.1 Definition of Principal Axes

The geometric Tocation of a typical element is defined by joint
numbers i and j. The place which locates the principal axis of the
beam is defined by a third joint number k as shown in Figure 2. The
relationship between the local coordinate system, Sys So and Sq is
most conveniently developed by the use of vector notation. The unit

vectors in the 51 and 5 directions are given by

~

where x, y, and 2z are unit vectors in the X, ¥y and z directions,

respectively. The direction cosines are

S =’L'.2("S Zi—l S :E_Z..
1x L ° 1y L ? 71z L
G G G
= X = L. = £
6k = T 6 & 56 G

- 12 -



1n which

Ly = Xj SRR Ly T YTy L= S
O T KT A Gy Y Ty b =gy - %
L = //L‘ F LS4 L8 and G = J/GZ + G? + 6?

X y z X Y z

The unit vector in the §3 direction is given by the vector product of

3 and g divided by the length of the vector in that direction

- S) % g - - A
3T T I T S Xt Sy v b Sy, z

— R —-
X y z
L\ - -
= a
a x D a}/ y a,
{ b b
L% Y Z_

The unit vector in the s, direction is wiven by the vector product

>

no
L2
a—i
)

N
>
~

<
™
[

The three unit vectors may be summarized by the following matrix

equations:

~ 1 - B P
r~g S S S [
1 Tx ly 1z
- < < C
>2 22X "2y 2z Y
s S S 5 2
3 3% 3 3z



Within the computer program local displacements, forces and moments are

transformed to the global system by this 3 x 3 matrix.

FIGURE 2 THREE DIMENSIONAL BEAM ELEMENT

4.2 Master and Slave Degrees of Freedom

The three dimensional beam elements can be connected to slave
degrees of freedom. Slave degrees of freedom are eliminated from the
formulation and replaced by the degrees of freedom of the master joint.
This technique reduces the total number of joint equilibrium equations,
in the system and greatly reduces the possibility of numerical

sensitivities in many types of structures.

- 14 -



The geometry of the master and slave Jjoints is shown in
Figure 3. Beam elements may be connected directly to either a master or
a slave joint. Any one of the six degrees of freedom of the slave joint
may be eliminated. If all six degrees of freedom are made into slaves
then the physical effect is that the two joints are connected with a
rigid link.

If the x displacement of the slave joint is defined as a
slave of the master joint the displacements will be transformed as

follows:

S (ZS i Zm) 0ym B (ys h ym) %2m
For the y-displacement

Uys 7 Yom ~ (Zs B zm) Osm ¥ <Xs ) Xm) zm
For the z-displacement

Uzs 7 Uzm 7 (ys i ym) Oy = (% - Xm> Oym

0 = 0

XS Xm
0 0_
ys Sl
Y25 Ozm

- 15 -



For the beam elements those transformations automatically take place for
all elements connected to slave degrees of freedom. The computer program
allows a joint to be a slave to more than one master; however, it is

difficult to create a physical system with this property.

Z e

A Bx
DISPLACEMENTS
s
4/27// |
ml I
| I
| |
| |
|zm [Zg
| l
| |
l// | i > Y
N Xm ’ //
Y | 7%,
e 1
YS

FIGURE 3 MASTER AND SLAVE JOINTS
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V. PLANE STRESS ELEMENT

The plane stress element currently included in the program is
a general quadrilateral with a one-point integration of the strain energy.
Recent developments indicate that an improved quadrilateral element for
plane stress can be developed; therefore, the existing plane stress
element will not be described. It is hoped that in the near future it
will be replaced by a new element which would be similar to the
axisymmetric element described in the next section of this report.

The geometry of the quadrilateral element is defined by four
points. The element must lie on a plane; therefore, only joints I, J,
and K are used to define the plane. Joint L 1is assumed to be in the
plane. The basic geometric transformations are of the same form as used
for the three dimensional beam element.

For many plane structures in space there may be zero stiffness
normal to the plane and the stiffness matrix may be singular in that
direction. Therefore, this direction must be restrained by a boundary

condition or a normal "boundary element".

- 17 -



VI. AXISYMMETRIC SOLID QUADRILATERAL ELEMENT

Many different elements for the two dimensional analysis of
plane and axisymmetric solids have been developed during the past several
years. Most of these elements have very poor bending characteristics.
Six point triangles and eight point quadrilaterals are types of higher
order elements which have excellent bending properties; however, elements
of this nature require a large increase in computational effort in both
the element stiffness formation and in the solution of the resulting set
of equations.

The element presented in this section is a four point
quadrilateral which has been modified in order to improve its bending
behavior. This modification involves the addition of extra degrees of
freedom within the elements which causes a violation of interelement
displacement compatibility. The resulting element has good bending
characteristics and for many problems is comparable in accuracy with the
higher order elements.

The general form of the element stiffness matrix is

vol

where ¢ is the relationship between stresses and strains and a is the

strain-displacement matrix.

- 18 -



For the axisymmetric element discussed here there are four components of
strain and 12 element degrees of freedom. The displacement components
are the eight nodal point displacements at the four corners of the
elements and four internal degrees of freedom which will be eliminated
before the element stiffness is added to the total stiffness matrix.
Since this element involves the application of new concepts and
the uses of the "natural" coordinate system the details of its develop-

ment will be given.

6.1 Coordinate Systems

The geometry of the element is defined in global r - z system
by the coordinate of the four nodes as indicated in Figure 4a. Positions
within the element may also be defined in the natural, or local, s - t
system as shown in Figure 4b. The relationship between these two systems

is given by definition as

r (s, t) = 121 hi r; z (s, t) = 121 h1 z (6.3)
where

hyo= (1= =t)/4 hy s (14 s)(T+ 1)/

h, = (1 +s)(1-1t)/4 hy = (1 -s)(1 +t)/4

- 19 .



a GLOBAL SYSTEM

b. LOCAL SYSTEM

FIGURE 4 COORDINATE SYSTEMS
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6.2 Displacement Assumptions

The r and z displacement field approximation within the

element is assumed to be of the following form

4
Y (s, t) = by N Yri * Mg Gy Mg o
4 (6.4)
U (s )= gk hpuyy + ohgay ¢ hea,
where
_ 2 _ 2
h5 = (1 - 5s%) and h6 = (1 -1t

The interpolation functions h5 and h6 are zero at the four nodes;
however, they produce a parabolic incompatibility along the sides of the
quadrilateral. (The amplitude factors Uy Bps  Og and 0 will
be selected to better satisfy microscopic equilibrium by the application
of the principle of minimum potential energy after the element stiffness

is formed.)

6.3 Element Strains

For an axisymmetric solid subjected to axisymmetric loads the

strain displacement equations are

du

£ = —r

T ar

1

4 9z

(6.5)

oo

6 r

) JU N duz

er Az ar



Since the global displacements U, and u, are in terms of s and t,
the appropriate derivatives cannot be calculated directly. Therefore,
the application of the chain rule for differentiation is required. The

chain rule may be written in matrix form as

() [or 2] [
a5 as as ar
= (6.6)
ot ot ot Az
_ L Joued
or inverted
[ o [ au
ar Js
= J (6.7)
u u
3z ot
SR L
where
Zsy - z,S
g = b
— J*
Y Mg
in whiqh the Jacobian Determinant of the transformation is
* - - /(ﬂ
J Pag Zsy Pay Zsg (6.5)

For both r and z displacements their derivatives with respect to the

natural system are

- 29 .
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[f the

global derivatives are expressed in terms of the

-

<

@
[52]

(o3
<

|

@
o+

|

(6.9)

(€.10)

above equation is substituted into the inverted chain rule the

- 23 -
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These equations and the strain-displacement equations are now used to

express the elements strains in terms of the 12 discrete displacements

) (v
Sy 11 12
. 0 0

Z
| o
() Y r
'YrtJ Top Ty
or

E‘
in which

8

T3 Ty 00
00 T, T,
h, h
34y 0
r r
Toz Tog Ty Ty
a (s, t)u
4
rs, t) = ..

This strain-displacement matrix a

the natural coordinates

s and t.

- 24 -
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6.4 Stress-Strain Relationship

form.

[0 7
r

In case of isotropic materials

£
(T + V)1 - 2v)

6.5 Numerical Integration

stiffness can be converted to an area integral since

a one radian segment of the solid

In the natural system

=

= J iTgﬁ.dV

Vol

This is of the form

r~1~v

V)

dA = J% ds dt;

Area

The stress-strain relationship can be

g=c

11
f J r gj caJd¥ ds dt
-1

£

of a general anisotropic

or

\Y

therefore

dv

i8]

()

r

U'rz

dedA.

(6.13)

For an axisymmetric solid the volume integral for the element

For

(6.14)

(6.16)

(6.17)



where Lhe weighting factors and integration points are

J aj Sj tj

1 ] 1/V3  1//3
2 ] -1/Y/3 17/3
3 1 -17V3 0 21473
4 1 1/V3  -1//3

Within the computer program the matrix product r aT c a J¥ s formed

for each of the integration points. Then they are appropriately combined

to form the complete 12 x 12 element stiffness matrix.

6.6 Static Condensation

The displacement amplitudes ¢y o o and a,, can be
eliminated at the element level since displacement compatibility is only
inforced at the nodes for this element. Another interpretation of these
displacement amplitudes is that they are Lagrangian Multipliers and are
selected to improve equilibrium within the element. Also, if they are
assumed to produce additional stress patterns this element may be thought
of as a mixed model.

The forces and displacements associated with the element are

(6.18)

Baal
i
=
[ R
e}
=
i

0 K.

Since there are no external forces associated with the o's they mav be

expressed in terms of the corner displacements or

- 26 -



a = - K ! K

o %b “ba Y1-8 (6.19)

Therefore, the corner forces in terms of corner deformation will be

F - [K - K ! (6.20)

1.8 faa T Kap Bop Kpa]  uig

The resulting 8 x 8 stiffness matrix has excellent bending properties
and has been found to be an effective element for many axisymmetric and

plane problems.

6.7 Stress Evaluation

After the displacements of the system are evaluated the stresses
within the element can be calculated directly from the stress-strain
relationship, C, and the strain-displacement matrix, a. In order to
eliminate the need to recalculate the generalized displacements o, it is
desirable to develop a stress-displacement transformation in terms of the
eight nodal displacements. The stresses at an arbitrary point, s and

t, are given by
g = € a u (6.21)

or if the a matrix is partitioned

O = C o3, U g * 3 o (6.22)

. . -1 : .
Since o = - Ko Eba Ui_g the stresses may be written in terms of

corner displacements

o = ¢ a¥ uy (6.23)

- 27 -



where the effective strain-displacement matrix is

) 1
Ty gy Ky Ky (6.24)

It is convenient to calculate this matrix within the computer program at
the same time as the element stiffness is evaluated; then, it can be

stored on tape for use after the displacements are determined.



VII. THREE-DIMENSIONAL SOLID ELEMENT

The three-dimensional solid element presented in this section
is a eight node hexahedron. It is based on the element developed by
Irons and Zienkiewicz; however, it has been modified by the addition of
incompatible deformation modes which greatly improve the elements bending

behavior.

/.1 Coordinate Systems

A typical hexahedron is shown in Figure 5. The coordinate
system (x, y, z) is refered to as the global system; the x, y, z axes
form an orthogonal, right handed system, and are used to define the
locations of the nodes.

A system of Tocal coordinates (v, &, 2 ) for the element
(sometime called the natural coordinates) is chosen such that n, - and

vary from -1 to 1; (0, 0, 0) is located at the centrcid of the
element. In general, the relationship between the local and the global

Lartesian coordinates is provided by a set of linear interpolation

functions:
8
S E BT
8
y o= 4Ly hooyy (7.1)
8
z = ié] h Zi

- 29 _



a. GLOBAL COORDINATES

b LOCAL COORDINATES

FIGURE 5 THREE DIMENSIONAL COORDINATE SYSTEMS
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where

o=y a0 -0 -0
h, = g 0+ +00 -0
hy = g (-0 +8)0 -0
g =g 0= -a0-0
hg = g (0 r w0 -+ o)
g = oy (14 )+ o)
h, = g -0+ +0)
hg = g (-0 -0+

7.2 Displacement Functions

The displacements within the element are assumed to

following form:

8
Uy T gky hypugg o hg oy F g oy by
8
g =gy hy Uy o hg ey b hygo oy
8
R I T B R R VP AN
where
2
hg = (] = 1 )
i 2
h'IO - (] - E; )
_ 2
hy = (-2

be of the
“x3

(Xy3 (7.2)
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7.3 Element Strains

For a three dimensional solid the six components of strain are

given in terms of the displacements by:

- -
r — auX
EX X
c ou
Y Y
£
z Suz
e = = | °f (7.3)
ny
aux ou
YXZ oy ¥ X
Y ou . Buz
- yz ~J 3z X
au Ju
L+ _Z
&E oy

Since Uy uy and u, are not expressed directly in terms of the
coordinates x, y and z the chain rule must be employed in order to
evaluate the derivatives of the displacements. The chain rule written

in matrix form is

~ N ~\
2 ) [ax oy sz )(a 3
a¢ 35 3L 3 X 39X
.?.__.Z(_@,Y.Q?;J.é. B
an > an  on  on ay ? =[] ay > (7.4)
Do | ek sy sz || 3

] o, 9 0z
Q/J L C s C _J L 3z j

where the square matrix of derivatives is called the Jacobian matrix [J].
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If this matrix is inverted it is possible to express the global

X uy and u, in terms of the derivatives of the

derivatives of wu
displacements with respect to the natural coordinates &, n and ¢.
Therefore, it is possible to express the element strains in terms of the

node displacements.

e (E,n,c) = af{g,n,zc)u (7.5)

A closed form expression for the matrix a is not required since within

the computer program all operations are carried out in a numerical form

for a specific values of the natural coordinates.

7.4 Stress-Strain Transformation

The stress-strain relationship for an elastic solid may be

written as for an isotropic material as

L
& T wz)

1-2v

/.5 Stiffness Matrix

When the strain matrix [a] and the stress matrix [c] have

been evaluate the element stiffness matrix may be formulated from the
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principle of minimum potential energy, with the result that the stiffness

matrix be expressed in the form K = aT ¢ a dV. However, because the

strain matrix is expressed in natural coordinates, it is necessary to

carry out the integration in natural coordinates, using the relationship
dv = dxdy dz = 3] do d dr (7.7)

where |J| the determinant of the Jacobian matrix

1 ] 1
K = f f { jJ] al e a d¢ dn dc (7.¢)
-1 -1 -1

This is intearated numerically by Gaussian quadrature.

/.6 Matrix Condensation and Stress Evaluation

The elimination of the generalized displacements, u, and the
calculation of stresses is identical to the proceeding described in the

section on the Axisymmetric Solid Element.
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VITI. PLATE AND THIN SHELL ELEMENT

The thin shell element included in this report is a quadri-
lateral of arbitrary geometry formed from four compatible triangles. The
bending properties of this element are completely described in the
following paper:

"A Refined Quadrilateral Element For Analysis of Plate
Bending," Proc. (Second) Conf. on Matrix Methods in
Structural Mechanics, Wright-Patterson AFB, Ohio, 1968.

The element employs a partially restrained Tinear strain triangle to
represent the membrane behavior. As shown in Figure 6, the central
node is located at the average of the coordinates of the four corner
nodes. The element has 17 interior degrees of freedom which are
eliminated at the element level prior to assembling; therefore, the
resulting quadrilateral element has 20 degrees of freedom, five per node,
in the local element coordinate system.

For flat plates the stiffness associated with the rotation
normal to the shell surface is not defined; therefore, the appropriate
boundary condition must be enforced. For curved shells, the normal
rotation can be included as an extra degree of freedom; or, it can be
restrained by the addition of a "Boundary Element" which would add

normal vrotational stiffness to the node.
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FIGURE 6 THIN SHELL ELEMENT
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[X. BOUNDARY ELEMENT

The boundary element can be used for the following:

I.In the idealization of an external elastic support at a

joint.
2. In the idealization of an incline roller support.
3. To specify a joint displacement

4. To eliminate the numerical difficulty associated with the

"sixth" degree of freedom in the analysis of shells.

The element is a one dimensional element with an axial and torsional
stiffness. These element stiffness coefficients are added direct to

the total stiffness matrix. If a displacement is to be specified a

Toad must be applied in the direction of the stiffness. If the boundary
element stiffness is large compared to the stiffness of the structures

it is possible to apply a load to produce the desired displacement.
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X. DYNAMIC ANALYSIS

The computer program presented in this report has the following

dynawic options:

1. Mode Shapes and Frequencies
2. Spectrum Analysis

3. Dynamic Response Analysis.

For all three of these options an approximate method for determining the
mode shapes and frequencies is employed. For most structures the
technigue is adequate for the evaluation of the principal dynamic
behavior without the expenditure of a Targe amount of computational

effort.

10.1 Reduction of The Number of Degrees of Freedom

The exact formulation of the dynamic response of a structure
involves an infinite number of degrees of freedom. However, for most
structures the mass and stiffness properties of the structure may be
"Tumped"” at a Vlimited number of points (or joints) within the system.
The advantage of this Tumped parametered idealization 1s that the
equilibrium of the structure is given by a set of second order, ordinary
differential equations. These equations represent the force equilibrium
at the joints of the structural system and may be expressed by the

following matrix equation:

Mu + Cu +

Ku = F (10.1)
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where

M = mass matrix
C = damping matrix
K = stiffness matrix
F = applied force vector
i, u, u = Joint acceleration, velocity,

displacement vectors.

There are three unknown translation displacements and three
rotational displacements for each Joint in a three dimensional Structure,
Therefore, for large structural systems Equation (10.71) may involve
several hundred degrees of freedom. Even on a Targe digital computer the
exact solution of such a large system subjected to dynamic loads is not
possible. However, Equation (10.1) may be reduced in size by certain
approximations which are based on a physical insight into the behavior of
the structure. It is possible to select a set of force patterns which
are associated with the lower frequencies of the structure. By static
analysis, a solution of the following equation is then performed for

these load patterns.

|==

A =P (10.2)

where each column in the P matrix represents a static load pattern and
the corresponding column in the A matrix represents the resulting
static displacement pattern. As a result of the static analysis, a
transformation between all displacements U and a limited number of

generalized displacements is developed. Mathematically,

u = AV (10.3a)
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Also, the velocities and acceleration are given by

U= AV (10.3b)
and

U o= AV (10.3¢)

Physically, the generalized displacements V represent multiplication
factors for the static load displacement patterns A. Or, the true
displacement of the structure is expressed jn terms of a linear combination
of the static displacement patterns. The substitution of Equations (10.3)

into Equation (10.1) and the premultiplication by the transpose of Matrix

A yields:
My + CV + RV = F (10.4)
where
— 7
M ANMA (10.5)
T
C = A CA (10.6)
- T
K = A KA (10.7)
F o= AT[ (10.8)

The premultiplication of the equation by QT represents a transformation
of the real forces to the generalized force system. An alternate form
for the generalized stiffness matrix may be obtained by the combination

of Equations (10.2) and (10.7). Or,

K = A'p (10.9)
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This reduction procedure can be physically interpreted as an
approximation on the mass and damping distribution in the structure.
Since the displacement patterns satisfy static equilibrium there is not
an approximation on the stiffness of the structure which would impose

"Tocked in" constraints on the system.

10.2 Mode Shapes and Frequencies

The first step in solving Equation (10.4) is to determine the
mode shapes and frequencies of the structure for “undamped free
vibrations.” This involves the solution of the following equation for its

characteristic values:

(10.10)

where

frequency of nth mode

=
]

mode shape of nth mode

il

It should be noted that the mode shapes satisfy the

orthogonality conditions

=
-5
"
o

m#£n
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In addition the mode shapes are normalized so that

o = 1 (10.11)

ke
=]
I

¢ K g = u : (10.12)

Where I is the unit matrix and QZ 1s a diagonal matrix of the

frequency squared.

10.3  Uncoupled Dynamic Equilibrium Equations

The displacements V¥, in Equation (10.4), are now expressed in
terms of the mode shapes ¢ and the modal amplitudes X by introducing

the following coordinate transformation:

Vo= 49 X (10.13)
Tnerefore,

Vo= ¢ X (16.14)

Vo= ¢ X (10.15

The substitution of Equations (10.73), (10.14) and (10.15) into

Equation (10.4) yields

MpX « Tk o+

[>=l

t4_s
<

i

-
f—
o]
oy
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This equation is now premultiplied by gT.

MgX + ¢ + ¢'Fox = ¢ F (10.17)

|><e

C¢

Fo

For most structures the exact form of the damping matrix is
unknown. Also, in most cases its effect on the vibration mode shapes of
the structure is small; therefore, an assumption as to the form of this
matrix is justifiable. Specifically, it is assumed that the damping
matrix is selected so that orthogonality of the damping forces is

maintained:

@1 C ¢, = 0 m#n
And so that
91 ¢ by = oy M=
in which a, = 2 A Wy s and An is the ratio of modal damping to

critical damping in the nth mode. Therefore, the following equation

i1s satisfied
¢ C g = a (10.18)

where o is a diagonal matrix. This implies that the damping is

‘uncoupled" with respect to the mode shapes.

The generalized force vector is now defined as

F -9 F (10.19)
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The substitution of Equations (10.11), (10.12), (10.18) and (10.19) 1into
Equation (10.16) yields

IX + ok + f

X = F (10.20)

Equation (10.20) is a set of "uncoupled", second order,
ordinary differential equations which may be evaluated by standard step-
by-step or Duhamel integration techniques. After these generalized
coordinates are found the generalized displacements are determined by the
direct application of Equation (10.13). The actual displacements of the

structure are then calculated from Equation (10.3a).
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XI. EARTHQUAKE SPECTRAL ANALYSIS OF THREE DIMENSIONAL STRUCTURES

In terms of absolute accelerations the equilibrium equations

for a three dimensional structure subjected to ground motions in two

directions are

=
c
4
e}

1
4

1<
[

where
) (e T
-Xa =Xq
= U = U +
-a ~ya Y9
i 0
L:eaJ - -

Therefore,

- < 2y - <r
where
- ' ("“
m 0 0 u
._x _.Xg
= -1 0 m 0 u
2 “yg
0 0 0
_ o) L

U
-Xr
u

_yr

=or

-

The solution of the free vibration problem

m ou_ o+ k u = 0
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yieids the three dimensional mode shapes ¢ and frequencies w.

These are normalized so

o' m ¢ = L (1.
ffaT k ¢ = &12 (11.

The true displacements are now expressed in terms of these

mode shapes
“r

where 7 represents the response of each mode. Substitution of

Eq. (11.8) into Eq. (11.3) yields

meZ + col + koZ =p (11

Premultiplication of Eq. (11.8) by QT produced a set of second order

differential equations of the form

MZ + CZ + KZ =P (1.

where

=
"
e
=
ke

i

¢ = dce = [2ru] (11

(This involves an assumption on the type of damping)

K = ¢ k¢ = [wzj (1

u, = 9% G = ¢l and G = g2 (1.

= I (11.

.9)

10)

11)

.12)

.13)



- - T T .7 —~ e
B ?i. E - [¢X ¢y ¢8] ll\x gxg
By Hyg
0
- .
or
P = P+ P =- olm G - ¢lm i (11.14)
- =X -y X =X =Xg Yy =y -¥g9
Therefore, a typical equation for the nth mode is of the form
. 2 )
Z, + 2xw Lo+ uf Zo= P+ Poy (11.15)

By definition the spectral displacement is the maximum dis-

piacement of a unit mass system governed by the equation

Vo+ 22wV o+ WPy = tig (t) (11.16)
For a given frequency and earthquake this spectral displacement has been

calculated as s (w)

Therefore, for the three dimensional structure subjected to an

acceleration in the x-direction the maximum response of the nth mode

will be

(max) _ T
Zo = g s (w) (11.17)

Or the true three-dimensional maximum displacement of the structure

subjected to an x ground acceleration for the nth mode is
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(max) _ (max)
Uny = ¢, an (11.18)
Note that all components of displacement may exist in a given mode for

this type of loading.

Similarly, for ground acceleration in the y-direction

(max) _ (max)

Uny "= &y Ty (11.19)
where

(max) T

Zoy ¢py W, S, (0)) (11.20)

A good estimation of the maximum displacements and stresses is

determined by calculating the root-mean-square of the maximum modal

values.
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XIT. COMPUTER PROGRAM ORGANIZATION

The computer program is coded in standard FORTRAN IV and is
practically machine independent. A1l storage is allocated at the time of
execution; therefore, thé minimun storage required will depend on the
size of the structure. To increase the capacity of the program it is
necessary to change one number in a dimension statement.

For static analysis the program is divided-into four phases. A
machine dependent overlay system is not used; instead, a COMMON storage
area is used in each phase. These four are executed in the following
sequence:

1. Data Input - Joint coordinates and loads are read or

generated. As element properties are read or generated

the element stiffness matrices are formed and placed on
tape.

2. Formation of total stiffness is accomplished by reading the
element stiffness tape and forming the joint equilibrium
equations in blocks.

3. Equilibrium equations are solved for joint displacements,
all load conditions are treated at the same time.

4. From the joint displacements, element stresses are
calculated for all load conditions.

In the following sections these are explained in greater detail.

The dynamic analysis is very similar to the static analysis.
After the displacements for all the static load patterns are determined,
the mode shapes and frequencies are evaluated by the technique described
in the previous section. The response of each mode is evaluated. The
specified joint displacement and member stresses are then calculated. An
unique printer plot subroutine allows time-dependent results to be

presented in a compact form.
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12.1 Solution of Equations

“ .
The computer program is built around a large capacity linear

equation solver, USOL. The procedure used to solve the equations 1is not
significantly different from the method developed by Gauss in 1827. The
banded characteristics of the equations are recognized. Operations with
zero coefficients are skipped. Data is transferred in and out of high
speed storage in large blocks; therefore, a small amount of time is lost
in the transfer of data.

The equilibrium equations (the stiffness matrix and Toads) are
stored in blocks on tape (or other low speed storage units). During the
solution phase two blocks must be .in high speed storage at any time.
Therefore, the physical storage restriction is that there must be high
speed storage available for at least two equations. For example, if the
stiffness matrix has a band width of 250 and if there are 20,000 high
speed storage locations available, the number of equations in a block
will bejgal Hence, for this example all data transfer will be in blocks
of 10,000. The block size is automatically determined at the time of
solution. Therefore, storage js utilized in the most efficient manner

for a particular structure.

12.2 Formation of Equilibrium Equations

Before the total stiffness matrix is formed the element Stiff-
ness matrices are calculated and stored in sequence on low speed storage.
The total stiffness matrix is formed two blocks at a time by making a
pass through the element stiffness matrices and adding in the appropriate
coefficients. 1In order to minimize the effort in searching through all
the element stiffnesses the element stiffness matrices for several blocks

are transferred to another storage unit; therefore, in the formation of
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the next several blocks the time to search for the contributions to

these blocks is reduced significantly,

12.3 Joint Input Data and Degrees of Freedom

The capacity of the program is controlied by the number of
joint (nodal points) of the structural system. A1l joint data is
retained in high speed storage during the formation of the element stiff-
ness matrices. For each joint three coordinates and six boundary
condition codes are required; therefore, the minimum required storage
for a given problem is nine times the number of joints in the system.

Immediately after the joint data is supplied to the program a
relationship between each joint degree of freedom and the corresponding
equation number is established. Each of the six boundary condition codes
for a given joint is replaced by the equation number for that degree of
freedom. Restrained boundary conditions are identified by a zero
equation number. Slave degrees of freedom (for beam elements) are

identified by a negative joint number of the master node.

12.4 Calculation of Element Stiffness Matrices

After the coordinate of the joints are supplied and the
equation numbers of the degrees of freedom established the stiffness and
stress-displacement transformation matrices are calculated for each
structural element in the system. Very 1ittle additional high speed
storage is required for this phase since these matrices can be formed
and placed on tape storage as the element properties are read. In
addition to the element matrices the corresponding eguation numbers are
written on tape. After all element matrices are formed the joint

coordinates and boundary condition information is not required; hence,
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this storage area can be used subsequently for storage for the two blocks
of the equilibrium equations. It is now possible to form and solve these

equations as previously described.

12.5 Evaluation of Element Stresses

After the joint displacements are evaluated a pass is made
through the element stress-displacement matrix tape and the element

stresses are calculated and printed.
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APPENDIX - DESCRIPTION OF INPUT DATA

The purpose of this computer program is to perform linear,
elastic analyses of three dimensional structural systems. The structural
systems to be analysed may be composed of combinations of a number of
structural element types. The present version contains the following
element types:

1) three dimensional truss

2) three dimensional beam

3) plane stress and plane strain

4) two dimensional axisymmetric solid
5) three dimensional solid

6) plate and shell

7) boundary

Systems composed of large numbers of Joints and members may be
analysed. The capacity of the program depends mainly on the total
number of joints in the system. There is practically no restriction on
the number of elements, number of load cases, or the "bandwidth" of the
equations to be solved. Note, that while the program has the capacity to
analyse very large systems, there is no loss of efficiency in the solution
of smaller problems as compared to several special purpose programs
presently available.

A general outline of the main features of the program is given
here, followed by a more detailed user-manual.

JOINTS

Each joint in the system may have from 0 to 6 degrees of
freedom as required. The user must ensure that the degrees of freedom
specified for a given joint are compatible with the element-types which
are adjacent to it.

Optimum solution efficiency is obtained by minimizing the
number of degrees of freedom of the system. Also, joints connected only
to Beam elements may use a special Slave-Master geometric constraint
option to eliminate unnecessary degrees of freedom. (see Beam section)
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A right-handed orthogonal co-ordinate system, shown below, is
used to describe the geometry of the structure. All joint loads and
displacements are defined with reference to this system. A local
co-ordinate system is used for each elemént type.

LOADING

Loads may be applied by means of both point lToads acting at the
joints and by element loading (e.q. gravity, temperature). Each element
may have up to four different load cases called A, B, C, D. Loading for
one solution consists of joint loads plus a linear combination of element
load cases A, B, C and D. The types of loading which make up the element
Toad cases are determined by each individual element type.

(N.B. The current version of the plane stress element is not
standard in this regard (see description of the element) and care must
be exercised when using this element in combination with other types.)

Imposed displacement loading is possible by means of a special
boundary element.

X X

GLOBAL COORDINATE SYSTEM



'ROGRAM CAPACITY

The capacity of the program can be changed depending on the

size of the problem to be solved. This is done by changing the two

Fortran statements at the start of SAP, 1i.e.

COMMON  A(n)
MTOT

]

n

The minimum value of n needed is computed as follows:

where

n = 9% (number of joints) + M

M = the maximum value of each of the following:

Note:

(1)

(2)

(7)

Truss elements
M = 5% NMAT NMAT = number of material types

Beam elements
M = 3*NMAT+12*NFIX+6*NPROP
NFIX = number of fixed end force sets
NPROP = number of different beam
properties
Plane stress and plane strain elements.
M = 4*NMAT+11*NMAT*NTC
NTC = number of material temperatures

Axisymmetric quadrilateral
M = 4*NMAT
Three-dimensional solid elements

M = 4*NMAT+4*NLD+2475 NLD = number of element load setc

Plate and shell elements
M = 12*NMAT

Boundary elements
M=90

A convenient general rule for computing a minimum value of n

(except for 3-D solid) is:

n = 10* (number of joints)

e



(2)

(3)

For optimum efficiency, however, a value of n, considerably
greater than the minimum, should be used.

If the value of n 1is set too small an error message is
printed and program execution is terminated.

ELEMENT TYPES

included:

(1)

(2)

The following is a brief outline of the elements currently

Three-dimensional Truss Elements.

A uniform temperature change and inertia loads in three
directions can be considered as the basic element loads. Axial
forces and stresses are computed.

Three-dimensional Beam Elements.

(3)

(4)

Beam elements are straight, prismatic beam members. Inertia
loading (e.g. gravity) in three directions and specified fixed
end forces form the element load cases. Forces (axial and shear)
and moments (bending and torsion) are calculated in the beam
local co-ordinate system.

Plane Stress and Plane Strain Elements.

An arbitrary quadrilateral (or triangular) element is used.
The plane of the element may lie in any direction. Gravity,
inertia, and temperature loadings may be considered. Stresses
are computed at the center of the element.

Axisymmetric Quadrilateral Elements.

(5)

An arbitrary quadrilateral (or triangular) element is used.
The element is axisymmetric about the global Z-axis and the Y
direction is considered radial. Temperature, surface pressure
and inertia (Z direction) loading are included. Stresses are
computed at the center of the element.

Three-dimensional Solid Element.

A general 8 nodal point "brick" element, with 3 translational
degrees of freedom per nodal point, is used. Isotropic material
properties are assumed, and element loading consists of
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(6)

temperature, surface pressure and inertia loads in three
directions. Stresses (6 components) are computed at the
center of the element and at the center of each face.

Plate and Shell Elements.

An arbitrary quadrilateral element is used. Gravity, inertia,
pressure and temperature loadings may be considered. Stresses
are computed at the center of the element.

Boundary Element,

This element is used to impose displacement boundary

conditions and to compute support reactions.
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INPUT DATA ASSOCIATED WITH JOINTS

The geometry of the joints, the boundary conditions, and the
joint concentrated loads are numerically defined by a sequence of punched
cards. The properties of the different structural members are described

separately.

I. Heading Card (12A6)

Columns 1 - 72 Contain information to be printed with output

IT. Control Card (415)

Columns 1 - 5 Number of joints in system
6 - 10 Number of element groups
11 - 15 Number of load conditions
16 - 20 Number of frequencies (= 0 for static analysis)

[TI. Joint Data (715,3F10.0,15)
The following information must be given for each joint in the system:
Columns 1 - 5 Joint Number

6 - 10 X-direction .
Zero or blank indicates
1T - 15 Y-direction that the joint is free to
16 - 20 Z-direction meve in that direction and
Toads may be applied.
21 - 25 Rotation about X-axis One indicates that the

26 - 30 Rotation about Y-axis Joint is fixed in that

Boundary Condition Codes:

31 - 35 Rotation about Z-axis direction.

36 - 45 X-ordinate

46 - 55 Y-ordinate

56 - 65 Z-ordinate

66 - 70 KN -- Joint cards need not be in joint-order sequence.

If cards are omitted, the joint data for a series of
joints is generated. KN is a mesh generation
parameter on the last card of a mesh generation
sequence. KN is the increment to be added to the
previous nodal point number. The intermediate joints
are located at equal intervals along the straight
line. The boundary condition codes for the generated
Jjoint data are set equal to the boundary condition

codes on the first joint card in the series.
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Iv.

VI.

If a particular degree of freedom is fixed for a series of cards,
this may be indicated by a boundary condition code of -1 on the
first joint card in the series and + 1 on the last joint card in
the series.

Element Data

A sequence of cards is required for each type of element in the
structure. The form of this data for each type is described later.

Concentrated Load Data (215,6F10.0)

One card per load case for each joint which has non-zero concentrated
loads or moments applied. The cards must be in Jjoint-number
sequence.

Columns 1 - 5 Joint number
6 - 10 Load condition number
11 - 20 Load X-direction
21 - 30 Load Y-direction
31 - 40 Load Z-direction
41 - 50 Moment X-axis
51 - 60 Moment Y-axis
61 - 70 Moment Z-axis
This sequence of cards must be terminated with one blank card.

Element Load Multipliers (4F10.0)

Four different types of loads associated with the element are
possible. These element loads are referred to as load cases A, B,

C, and D. By the use of "Element Load Multipliers," it is possible

to add fractions of the basic element Toads to any of the concentrated
load conditions.

One card must be supplied for each load condition which contains the
following information:

Columns 1 - 10 Multiplier for element load A
1T - 20 Multiplier for element load B
21 - 30 Multiplier for element load C
31 - 40 Multiplier for element load D
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These cards must be in load-order sequence. The definitions of the
element loads associated with a particular element type are
discussed in detail under the section "Element Data".
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ELEMENT DATA

THREE-DIMENSIONAL TRUSS MEMBERS

Truss elements are identified by the number 1. Axial forces and

stresses are calculated for each member. A uniform temperature

change and inertia loads in three directions can be considered as the

basic member load conditions. The truss members are described by the

following sequence of cards:

A. Control Card (3I5)

Columns 1

- 5

The number 1

6 - 10 Number of truss members

11 - 15 Number of members with different properties

B. Member Property Cards (15,5F10.0)

One card is required for each member which has a different cross-

section or different material properties.

Columns 1
6
16
26
36
46

- 5
- 15
- 25
- 35
- 45
- 55

Material identification number
Modulus of elasticity
Coefficient of thermal expansion
Mass density (mass/volume)
Cross-sectional area

Weight per unit length

C. Element Load Factors (4F10.0) Four cards

Three cards specifying the fraction of gravity (in each of the

three global coordinate directions) to be added to each element

load case.

Card 1: Multiplier of gravity load in the +X direction

Columns 1

11
21
31
Card 2: As
Card 3: As

- 10
- 20
- 30
- 40

above

above

Element load case A
Element load case B
Element load case C
Element load case D

for gravity in the +Y direction

for gravity in the +Z direction

Card 4: This indicates the fraction of the thermal load to be
added to each of the element load cases.
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Member Data Cards (415,F10,0,15)

One card per member 1in increasing numerical order starting with
one.
Columns 1 - 5 Member number (n)

6 - 10 Joint number I

11 - 15 Joint number J

16 - 20 Member identification number

21 - 30 Temperature change

31 - 35 Optional parameter K causing automatic

generation of number data.

If a series of elements exist such that the member number, Ni’ is
one greater than the previous member number (i.e. Ni = Ni~1 + 1)
and the joint number can be given by

I. = 1.

1 i-1 oK

Then only the first element in the series need be provided. The
member identification number and the temperature for the generated
elements are set equal to the values on the first card. If K is
input as zero it is set to 1 by the program.
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THREE-DIMENSTONAL BEAM ELEMENTS

Beam elements are identified by the number 2. Forces (axial and
shear) and moments (bending and torsion) are calculated (in the beam
Tocal coordinate system) for each beam. Inertia Toadings in each
coordinate direction form the basic member load conditions.

The beam members are described by the following sequence of cards:

A. Control Card (5I5)

]

5 The number 2
6 - 10 Number of beam elements

Columns 1

11 - 15 Number of geometric property cards
16 - 20 Number of fixed end moment sets
21 - 25 Number of different materials

B. Material Property Cards (I5,3F10.0)

Columns 1 5 Material identification - any number from 1 to 10

6 - 15 Young's modulus
16 - 25 Poisson's ratio
26 - 35 Mass density (mass/unit volume)

C. Geometric Property Cards (I15,6F10.0)

Columns 1

i

5 Identification - any integer number

6 - 15 Axial area

16 25 Shear area associated with shear forces in
local 2-direction

26 - 35 Shear area associated with shear forces in
lTocal 3-direction

36 - 45 Torsional inertia
46 - 55 Flexural inertia about local Z-axis
56 - 65 Flexural inertia about local 3-axis

One card is required for each unique set of properties. Shear
area is included only if shear deformations are to be included in
the analysis.
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/ M
R 3
3
J
NOTE:

K 1S ANY NODAL POINT
WHICH LIES IN THE LOCAL
1-2 PLANE (NOT ON THE I-AXIS)

LOCAL COORDINATE SYSTEM FOR BEAM ELEMENT
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Element Load Factors (4F10.0)

Three cards specifying the fraction of gravity (in each of the

three global coordinate directions) to be added to each element

load case.

Card 1: Multiplier of gravity load in the +X direction

Columns 1
11

21
31
Card 2: As
Card 3: As

above

above

10
20
30
40

Element load case A
Element Toad case B
Element load case C

D

Element load case
for gravity in the +Y direction

for gravity in the +Z direction

Fixed-End Forces (15,6F10.0/15,6F10.0)

Two cards are required for each unique set of fixed-end forces

occurring in the analysis.

Card 1:

Columns 1

16
26
36
46
56

Card 2:

Cotumns ]

16
26
36
46

15
25
35
45
55
65

Identification - any number from 1 to 99

Fixed-end force in Tocal 1-direction at Node I
Fixed-end force in local 2-direction at Node I
Fixed-end force in local 3-direction at Node I
Fixed-end moment about Tocal 1-direction at Node I
Fixed-end moment about local 2-direction at Node I
Fixed-end moment about local 3-direction at Node I

Blank

Fixed-end force in local 1-direction at Node J
Fixed-end force in local 2-direction at Node J
Fixed-end force in local 3-direction at Node J
Fixed-end moment about local 1-direction at Node J
Fixed-end moment about local 2-direction at Node J
Fixed-end moment about Tocal 3-direction at Node J

- 65 -



Note that values input are literally fixed-end values.
Corrections due to hinges and rollers are performed within the
program. Directions 1, 2 and 3 indicate principal directions in
the Tocal beam coordinates

F. Beam Data Cards (1015,216,I8)

Columns 1 - 5 Identification - beam number
6 - 10 Node I number
1T - 15 Node J number
16 - 20 Node K number - see below

i

21 - 25 Material number
26 - 30 Geometric property number

31 -35 A Fixed-end force identification for
36 - 40 B element load cases A, B, C, and

41 - 45 C D respectively

46 - 50 D

51 - 56 End release code - Node I
57 - 62 End release code - Node J

63 - 70 Optional parameter k used for automatic
generation of element data. This option is
described below under a separate heading. If
the option is not used, the field is left blank.

The end release code at each node is a six digit number of ones
and/or zeros. The 1st, 2nd, . . . . 6th digits respectively
correspond to the force components R1, R2, R3, M1, M2, M3 at

each node.

If any one of the above member end forces is known to be zero
(hinge or roller), the digit corresponding to that component is

a one.

Automatic Element Data Generation

If a series of elements occurs in which each element number NEi is one

greater than the previous number NEi—]

i.e., NE. = NE. + ]
i i-1
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only the element data card for the first element in the series need be
given as input.

i

IF The end nodal point numbers NI_i NI + k

i-1

NJ. = NJ, 1+ k

AND THE  a) material identification number

b) geometric property identification number

c) fixed-end force identification numbers for each
element Toad case

d) element code
e) orientation of local 2-axis

are the same for each element in the series.

The generator option is the value of k and if left blank is taken to be
one. The element data card for the last element in the structure must
always be given.

*Where successive beam elements have the same stiffness, orientation and
element loading, the program automatically skips recomputation of the
stiffness. Note this when numbering the beams to obtain maximum
efficiency.
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3.

PLANL STRESS AND PLANE STRAIN LLEMENTS

A.

LOCAL ELEMENT COORDINATE SYSTEM

Control Card (5I5)

Columns 1 - 5 The number 3

6 - 10 Total number of plane stress and plane strain
elements.

11 - 15 Number of different materials.
16 - 20 Maximum number of temperatures for any material.
21 - 25 Identification for u-v plane:
Blank or 0 X-Y plane
1 Otherwise

[T some elements do not lie in the X-Y plane, then a 1 is placed in
column 25 and the u axis is assumed to coincide with side IJ of the

element. v is normal to u and lies in the plane of the element.

Material Property Information

Orthotropic, temperature dependent material properties are possible.

For each different material the following group of cards must be

supplied.

Material Identification Card (215,3F10.0)

Columns 1 - 5 Material identification -- any number from 1 to 6.

6 - 10 Number of different temperatures for which
properties are given. If this field is Jeft blank
the number is taken as one.
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Columns 11 - 20 Weight density of material
21 - 30 Mass density of material.

31 - 40 Angle B in Degrees measured counter-clockwise
from the u-axis to the n-axis.

<

> U

PRINCIPAL MATERIAL AXES

The u-v axes are defined by the identification in column 25 of the
CONTROL CARD for Plane Stress and Plane Strain elements.

The n-s axes are the principal axes for the orthotropic material.

Weight and mass densities are listed only if gravity and inertia
loads are to be considered.

2. Material Property Cards - Two cards for each temperature.

Card 1: (8F10.0)

Columns 1 - 10 Temperature

11 - 20 Modulus of Elasticity - En
21 - 30 Modulus of Elasticity - Es
31 - 40 Modulus of Elasticity - Et*
41 - 50 Strain Ratio - uns
51 - 60 Strain Ratio - unt*
61 - 70 Strain Ratio - ust*
71 - 80 Shear Modulus - Gns
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Columns 1 - 10 Coefficient of Thermal expansion - an
11 - 20 Coefficient of Thermal expansion - as

21 - 30 Coefficient of Thermal expansion - at*
=0

* Plane stress is characterized by Et = vnt = vst = qt

Plane strain is assumed for non-zero Et, vnt, vst.

Listing of the coefficients of thermal expansion is necessary only for

thermal stress analysis.

A blank second card would be used if thermal

lToads are not to be included.

C. Element Load Card (7F10.0)

Element Toad case A:

T - 10 X
1T - 20 Y
21 - 30 Z

Element load case B:

31 - 40 X
41 - 50 Y
51 - 60 Z

Llement load case C:

Gravity Load

portion of gravity load
portion of gravity load
portion of gravity load

Inertia load

component of acceleration
component of acceleration

component of acceleration

Thermal load

61 - 70 Reference Temperature (Stress free temperature)

No element loads are acting on plane stress or plane strain

elements during element load case D.

0. Element Cards (615,2F10.0,3F5.0,15)
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One Card per element.
Nodal points should be ordered counter-clockwise around the element.

Columns 1 - 5 Element Number
6 - 10 Node I
1T - 15 Node J
16 - 20 Node K
21 - 25 Node L*

26 - 30 Material Identification (If left blank taken as
one)

31 - 40 Temperature

41 - 50 Thickness (Blank for plane strain)

o1 - 55 Load factor for element load case A: gravity load
56 - 60 Load factor for element load case B: inertia load
61 - 65 Load factor for element ]oad case C: thermal load

66 - 70 Element data generator K described below under the
heading ELEMENT DATA GENERATION. [f this option
is not used, then the field should be blank.

* Triangular elements are assumed when columns K
21 - 25 are blank.

I .
J
Material properties versus temperature are input in tabular form

for each different material. The properties for a particular
element are evaluated by interpolation.

LLEMENT DATA GENERATION FOR PLANE STRESS OR PLANE STRAIN ELEMENTS

is

[f a series of elements occurs such that each element number NE1~

one greater than the previous number NE§W1

fe. NE, = NEL L+ ]

and the nodal point numbers belong to the following sequence:
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NI, = NI, + &

NJi = NJi~] + k

NK., = NK. . + k
1 1-1

NL. = NL. + k
1 i-]

then only the element card for the first element in the series need by
input provided the following restrictions are satisfied,

(i) material identification number
(i1) temperature
(iii) thickness

(iv) element load factors must be the same for all elements in
the series.



AXISYMMETRIC QUADRILATERAL ELEMENTS

Quadrilateral solid elements symmetrical about the Z-axis are
identified by the number 4. The Y nodal point coordinate is
interpreted as the radius R. Stresses are calculated at the center

of each element. A-uniform element temperature change, surface
pressures, and inertia loads in the Z-direction are considered as the
basic element Toad conditions. The axisymmetric elements are described
by the following sequence of cards:

A. Control Card (315)

Columns 1 - 5 The number 4
6 - 10 Number of axisymmetric elements
11 - 15 Number of different materials

B. Material Property Cards (15,4F10.0)

One card for each different material

Cotumns 1 - 5 Material identification number
6 - 15 Modulus of elasticity
16 - 25 Poisson's ratio
26 - 35 Mass density
36 - 45 Coefficient of thermal expansion

C. Element Load Factors (4F10.0) Three cards

Card 1: Multipliers for element thermal load

Columns 1 - 10 Element load case A
11 - 20 Element load case B
21 - 30 Element load case C
31 - 40 Element load case D

Card 2: Multipliers for element pressure loads

Card 3: Acceleration multipliers for the calculation of loads
in the Z-direction.

D. Element Cards (615,2F10.0)

One card per element in increasing numerical order
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Columns 1 - 5
6 - 10
11 - 15
16 - 20
21 - 25
26 - 30
31 - 40
41 - 50

For a right hand
K, and L must be

Element number

Nodal point I | The maximum difference “b" between
Nodal point J | these numbers is an indication of
Nodal point K | the band width. The execution time
Nodal point L | for the program will be proportional
Material identification number this number squaret
Temperature change within element

Normal pressure acting on I-J surface

coordinate system, the nodal point numbers I, J,
in sequence in a counter-clockwise direction

around the element. Element cards must be in element number

sequence. If element cards are omitted, the program automatically

generates the omitted information by incrementing by one the

preceding I, J, K and L. The material identification for the

generated cards is set equal to the corresponding value on the

last card. The last element card must always be supplied

Triangular elements are also permissible; they are identified by

repeating the last nodal point number (i.e., I, J, K, L).
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THREE-DIMENSIONAL SOLID ELEMENT: 8 NODAL BRICK

Al

.

-

Control Card (415)--

Columns 1 -
6 -
11 -
16 -

Material Property

5
10
15
20

The number 5

Total number of solid (8-node) elements
Number of different materials (NMAT)

Number of element distributed load sets (NLD)

Cards (15,4F10)--

Columns 1 -

16 -
26 -
36 -

5

15

25
35
45

Material identification--any integer from 1 to
NMAT

Modulus of elasticity, E (only elastic, isotropic
materials are considered)

Poisson's Ratio, v
Weight density of material
Coefficient of thermal expansion, O

Element Distributed Load Set Cards (215,2F10,15)--

Columns 1 -
6 -

11 -

21 -

31 -

5

10

20

30

35

Load set identification--any integer from 1 to NLD
Load Type (KTYPE)
KTYPE = 1 for constant surface pressure (normal)
KTYPE = 2 for hydrostatic pressure
PR = pressure for KTYPE = ]

= specific gravity for KTYPE = 2

YREF = Reference water level (hydrostatic
pressure varies in Global Y direction): is
ignored if KTYPE = 1]

Element face which pressure acts upon

See Note B for element face details and pressure sign convention.

Reference Temperature (2F10)--

Columns 1 - 10 Stress free temperature

17 -

21

Acceleration due to gravity

Element Load Case Factors (5 cards of 4F10)--Pressure and thermal

Toad factors on the element load cases are scaling factors in

order to provide flexibility in modifying applied loads.



Card 1: Columns

11
21

3]

10 Pressure Load

20 Factors for
30 Element Load
40 Case

Card 2: As card 1 but for thermal effects; see note £

[O9}

Card

Columne

Card 4-

As card 3 but for + Y and + Z directions

Card 5;

Element Cards

Gravity Factors for + X direction

10 Percentage of Gravity
20 Acting in + X

30 Direction in Element
40 Load Case

(1215,412,211,F10)

Columns 1
6 -
11 -
16 -
21 -
26 -
31 -
36 -
41 -
46 -
51 -
56 -
61 -
63 -
65 -
67 -
69 -
71 -

5 Element number

107
15
20
25
30
35

40
i

Global Node Point
Numbers Corresponding
to Element Nodes

(See Note A)

50 Integration Order (NINT)
55 Material Number

60 Generation Parameter (INC)

62
64
656
68

Distributed Load Set
Number for
Elenient Load Cases

(Zero implies no load)

/0 Face Numbers for Stress Output

80 Element Temperature
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N. B. 1. Element cards must be in ascending order

2. Generation is possible as follows:

If a series of element cards are omitted

a. Nodal point numbers are generated by adding INC to
those of preceding element. (If omitted, INC is
set equal to 1.)

b. Same material properties are used as for the
preceding element.,

C. Same temperature is used for succeeding elements.

d. If on first card for the series the integration
order NINT is;

> 0 Same value is used for succeeding elements

i

0 A new element stiffness is not formed. Element
stiffness is assumed to be identical to that
of the preceding element.

< 0 [NINT| is used for the first element of the

series, and the same element stiffness is used

for succeeding elements.

e. If on first card for the series, the distributed
load number (for any load case) is:

> 0 Same load is applied to succeeding elements

< 0 The load case is applied to this element but
not to succeeding elements in the serijes.

3. Llement Card for the last element must be supplied.

Integration Order

Computation time (for element stiffness) increases with the cube
of the integration order. Therefore, the smallest satisfactory
order should be used. This is found to be:

2. for rectangular element
3. for skewed element

4. may be used if element is extremely distorted in shape, but
not recommended,

Mesh should be selected to give "regular" elements as far as
possible,
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H. Element Coordinate System

Local element coordinate system is a natural system for this
element in which the element maps as a unit cube. Local element

numbering is shown in Figure 1.

} 7
)
/
!
!
} 6
5 ]
!
f b
}[ ———f 3
k-
s
7
7

L. Identification of [lement Faces
LTement faces are nunbered as follows:

Face 1 corresponds to + a direction

a
2 corresponds to - a direction
3 corresponds to + b direction
4 b

corresponds to - b direction

(Sal

corresponds to + ¢ direction
& corresponds to - ¢ direction
0 corresponds to the center of the element
Sign Convention: A positive distributed load acts in the

positive (local) axis direction associated
with each face.
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Element Stresses are Output as Follows

1. At the centroid of the element stresses are referred to the
global axes. Three principal stresses are also presented.

2. At the centroid of an element face stresses are refereed to a
set of local axes (x, y, z). These local axes are individually
defined for each face in such a way: Let nodal points 1, J,

K and L are the four corners of the element face. Then

x Specified by LI - JK, where LI and JK are midpoints
of sides L-I and J-K

z Normal to x and to the line joining midpoints IJ and
KL.

y Normal to x and z to complete the right handed system.

The corresponding nodal points I, J, K and L 1in each face are
given in the table.
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NODAL POINTS -

FACE
I J K L
] 1 2 6 5
2 4 3 7 8
3 3 7 6 2
4 4 8 5 1
5 8 5 6 7
6 4 1 Z 3

fwo surface principal stresses and the angle of the direction of
the bigger stress to the local x axis are presented.

t is optional to choose whether one or two locations of an
element where stresses are to be computed. In the output face

zero designates the centroid of the element.



6.

PLATE AND SHELL ELEMENTS (QUADRILATERAL)

A.

Control Card (315)

Columns

1

- 5

The number 6

6 - 10 Total number of shell elements
11 - 15 Number of different materials

Material Property Information

Anisotropic material properties are possible.

material, two cards must be supplied.

Card 1:

Columns

Card 2:

Columns

C

For each different

material matrix [C]

-

C £
Xy TXs XX

C

C
Tyyi = xy Cyy Cys | 35y

G Y

(110,20%,4F10.0)

1 - 10 Material identification
31 - 40 Mass density
41 - 50 Thermal expansion coefficient o
51 - 60 Thermal expansion coefficient o
61 - 70 Thermal expansion coefficient o,
(6F10.0)

1 - 10 Elasticity element CX;\ Elements in plane stress
11 - 20 Elasticity element Cx

.. "

21 - 30 Elasticity element st> Tyx Cxx
31 - 40 Elasticity element ny ~
41 - 50 Elasticity element Cyg
51 - 60 Elasticity element ny xxy st

Element Load Multiplers (5 cards)

Card 1:

Columns

Card 2:

(4F10.0)

T-10
11 - 20
21 - 30
31 - 40

(4F10.0)

C
ys xy |

Xy

Distributed lateral load multiplier for load case

Distributed Tateral load multiplier
Distributed lateral load multiplier
Distributed lateral load multiplier
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Columns 1 - 10 Temperature multiplier for load case

A
11 - 20 Temperature multiplier for load case B
21 - 30 Temperature multiplier for load case C

D

31 - 40 Temperature multiplier for load case
Card 3: (4F10.0)

Columns 1 - 10 X-direction acceleration for load case
11 - 20 X-direction acceleration for load case
21 - 30 X-direction acceleration for load case

Lo 2 o B w s B o

31 - 40 X-direction acceleration for load case
Card 4: (4F10.0) Same as Card 3 for Y-direction
Card 5: (4F10.0) Same as Card 3 for Z-direction

D. Element Cards (8I5,F10.0)

One card for each element

Columns 1 5 Element number
6 - 10 Node 1
11 - 15 Node J
16 - 20 Node K
21 - 25 Node L
26 - 30 Node O*

31 - 35 Material identification (If left blank, taken
as one)

36 - 40 Element data generator Kn**
41 - 50 Element thickness
51 - 60 Distributed lateral load (pressure)

61 - 70 Mean temperature variation T from the reference
level in undeformed position

71 - 80 Mean temperature gradient 8T/3z across the shell
thickness {(a positive temperature gradient
produces a negative curvature).

* When columns 26 - 30 are left blank, mid-node properties are computed
by averaging the four nodes.

** Element cards must be in element number sequence. If element cards

are omitted, the program autcmatically generates the omitted
information as follows:
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The increment for element number is one

ie. NE;,p = NE, + 1

The corresponding increment for nodal number is Kn

i.e. NIip = NI o+ K
NJi+] = Ndi + Kn
NK1+] = NKi + Kn
NLi+] = NLi + Kn

Material identification, element thickness, distributed lateral
load, temperature and temperature gradient for generated elements
are the same as the first element in the series. The last
element card is always needed.

NOTE

The nodal point numbers I, J, K and L are in sequence in a counter-
clockwise direction around the element. The local element coovdinate

system (x, y, z) is defined as follows:

x  Specified by LI - JK, where LI and JK are midpoints of sides
L-1 and J-K.

z  Normal to x and to the line joining midpoints IJ and KL.
y Normal to x and z to complete the right-handed system.
This system is used to express all physical and kinematic shell

properties (stresses, strains, material law, etc.), except that the
body force density is referred to the global conrdinate system (X, Y, Z).
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For the analyses of smooth shells, rotational constraints

normal to the surface may be imposed by the addition of Boundary elements
at the nodes (element type #7).
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7. BOUNDARY ELEMENT

This element can be used to constrain displacements to specified
values and to compute support reactions. A large stiffness spring is used
as the element.

The direction of the constraint is defined in either of two ways:
(1) A second node point (I) defines the direction

(2) The direction is defined as normal to two Tines specified
by nodes IJ and KL.

A. Control Card (2I5)

Columns 1 - 5 The number 7.
6 - 10 Total number of boundary elements

B. Element Load Multipliers ( 4F10.0 )

Columns 1 - 10 Multiplier for load case A
1T - 20 Multiplier for load case B
21 - 30 Multiplier for load case C
31 - 40 Multiplier for load case D

C. Element Cards (815,3F10.0)

One card per element (in ascending order) except where automatic
element generation is used.

Columns 1 - 5 Node N, at which the element is placed
6 - 10 Node 1
1T - 15 Node J Leave columns 11 - 25 blank
16 - 20 Node K if only node I is needed.

21 - 25 Node L
26 - 30 Code for displacement l 0 - free
31 - 35 Code for rotation ] 1 - constrained

36 - 40 Data generator Kn. When a series of nodes are
subject to the same kind of
constraint, only the first and
Tast cards in the series are
needed. Kn on the first card is
the increment added to the
previous node number. the same
constraint direction is used for
each element generated.
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Columns 41 - 50 Specified normal displacement
51 - 60 Specified rotation about normal
61 - 70 Spring stiffness (set to 10'C if Teft blank)
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DYNAMIC ANALYSIS

Three types of dynamic analysis can be performed by SAP. The

type of analysis is indicated by a number, NDYN, in columns 21 to 25 of

the control card for the joint input data. If

NDYN

i

0 Static Analysis
= 1 Mode Shapes and Frequencies

= 2 Dynamic Response Analysis for Arbitrary
Time Dependent Loads

= 3 Response Spectrum Analysis

Concentrated joint masses are supplied with the Concentrated

Load Data and are identified by a zero load condition number. They must

be in joint number sequence and are punched in the same format as the

joint loads.

IT.

Mode Shapes and Frequencies NDYN = 1|

The number of frequencies desired is specified in columns 16 - 20
of the joint data control card. Of course, the number of load
conditions must be greater than the number of frequencies since a
Rayleigh-Ritz method is used.

Dynamic Response Analysis NDYN = 2

This option uses the mode shapes and frequencies calculated by the

Rayleigh-Ritz technique. Dynamic loads may be applied as

1) ground motion in any of 3 directions
and/or
2) time varying loads applied to any point on the
structure (except "slave" degrees of freedom).

A set of time functions are specified by a set of discrete points.
Linear interpolation is used within the program to evaluate inter-
mediate points. A particular force at any point on the structure
is then described by a scalar multiplier and one of the time
functions. A delay time may also be specified for the force.
Ground motion is specified by specifying that a particular function
describes ground acceleration in a given (X, Y, or Z) direction.
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The following input data is required (to be supplied after element
load multipliers).

1. Control Card (515,2F10)

Columns 1 - 5 Number of different time functions
6 - 10 Ground motion indicator: 0 - no ground motion
1 - some ground motion
11 - 15 Number of different delay times (NAT)
16 - 20 Total Number of time steps of interval DT
21 - 25 Output interval for displacement and stresses
26 - 35 Time step DT
36 - 45 Damping factor fraction of critical

* If any period is less than 5 x DT it is not used in the solution.

2. Arbitrary Time Varying Loads. (415,F10)

One card for each degree of freedom of structure that loads are
applied to. (In ascending node point number order.)

Columns ]

Node point number where load is applied

6 - 10 Displacement component (= 1 to 6 for X, Y, Z,
XX, YY, ZZ)

11 - 15 Time function number
16 - 20 Delay time number
21 - 30 Scalar multiplier for time function

This sequence of cards must terminate with a blank card; this
card must be supplied even if arbitrary time varying loads are
not applied.

3. Ground Motion Control Card. (615)

Required if and only if ground motions are to be included.

Columns 1 - 5) Time function number X
6 - 10 ¢ corresponding to ground Y¢ direction
11 - 15§ acceleration in |z
16 - 20 ) Delay time number for functions inf{X
21 - 257 if blank - delay time Y; direction
26 - 30}) is zero Z
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Zero time function number indicates no ground motion for the
particular direction.

Delay Time Cards (8F10.0)

As many cards as required at 8 times per card - in order. If no
1 bla

r
delays supply 1 blank card.

Time Function Definition Cards

One set for each time function.
Card I (I5,F10,12A5)

Columns 1 - 5 Number of definition points

6 - 15 Scale factor: set to 1.0 if blank (for
changing units, etc.

16 - 75 Heading
Cards 2: As many as required at 6 points per card (12F6.0)

Columns 1 6 Time
7 - 12 Function value

13 - 18 Time
19 - 24 Function value

etc.

Output Definition Cards

To minimize output - values for which histories are required

must be specified.
A. Displacement OQutput.
Control Card (215)

Columns 1 - 5 OQutput type indicator
= 1 - Printed histories and maximums
2 - Printer plotted histories and maximums
3 - Maximums only
6 - 10 Plot spacing indicator* (ISP)

* Horizontal width of printer plot is constant (10"). Vertical
spacing may be varied -- Output values are printed on every
(ISP + 1)th line.
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ITI.

Node Cards (715)
As many cards as required (in node point order)

Cotumns 1 - 5 Node point required
6 - 10 {As many as required the numbers 1
11 - 15 jto 6 for displacement component X, Y, Z, XX,
31 - 35 YY, Z7.
etc.

The displacement components for a joint may be specified in any
order. The first blank or zero number will terminate the
information on the card. The sequence must be terminate with

a blank card.

B. Element Stress Qutput
One set for each element type -- in same order as element cards.

Each set is the same as the displacement output except node cards
become element cards (format 13I5) and last 12 integers specify
the desired stress components as appropriate for individual
elements. See static output for the given stress components for
each element. Stress component number corresponds to the number
in order of printing.

Response Spectrum NDYN = 3

After Element Load Multipliers the following information must be

supplied:

1.

Control Card (15)

1, 2, or 3 for Analysis in X, Y, or Z direction

Acceleration Spectrum Cards (12A6/15,F10/(2F10))

Card 1: Heading (12A6)
Card 2: (15,F10.0)

Columns 1 - 5 Number of Definition points
6 - 15 Scale factor

Card 3: (2F10.0) One card per point

Columns 1 - 10 Period
11 - 20 Acceleration value
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