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\ 
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June 30, 1969 

ABSTRACT 

A simple N-point beta-function model (generalized 

Veneziano model) of the hadron bootstrap is assumed and the 

properties of vector currents consistent with it are 

investigated. We find·that this hadron bootstrap admits 

conserved vector currents satisfying the Gell-Mann 

current algebra in a first approximation which assumes 

single vector-meson poles in the form factors and requires 

factorization only at resonances on leading Regge trajec-

tories. We believe the techniques employed in this 

simplified model will be useful in constructing current 

amplitudes in more general dual zero-wi~th models. In 

addition,a model for a Pomeranchon contribution which 

does not falloff at large 2 
q is proposed. Throughout 

we treat amplitudes for one or two vector currents and 

an arbitrary number N of spinless hadrons. 
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I. INTRODUCTION 

In this paper we make the first step in a study of currents 

consistent with the N-point beta~function model (generalized Veneziano model) 

1 2 of the meson bootstrap.' A number of general properties of currents 

in such Reggeized zero-width models with duality have been discussed in 

the preceding paper. 3 Here we explicitly consider the question of the 

existence of vector current amplitudes tnat are compatible with current 

algebra and consistent with this particuiar hadron bootstrap. 

h h th t 'th . ' t fu t· d 1 4:-6 
We s all s ow a e N-po~nt be a- nc ~on mo e to first 

approximation admits current amplitudes for one or two conserved vector 

currents (eVC) and N rresons,where the two~urrent amplitudes satisfy-

the constraints given by the time-time and time-space current-density 

commutation relations of the Gell-Mahn algebra.? Our results are a 

first approximation, since we assume single vector-meson poles in the 

"masses," 2 
qi-' of the currents and satisfy the factorization (unitarity) 

constraints in all chann~ls for leading trajectories only. 

We believe that these two restrictions are intimately related and 

that the lack of factorization on nonleading trajectories can be remedied only 

by inCluding more vector-meson poles in the q.2.Factorization will no 
~ 

doubt gi veconstraints on the form factors (i. e., the vector meson-

current coupling constants). The factorization of nonleading trajectories 

in the hadron problemS determines the vector-meson spectrum and thus will 

have important consequences for current amplitudes. Indeed, we feel 

that the factorization of lo.wer trajectories and the introduction of 

further poles in the 2 q. 
~ 

represent a qualitativelY,more intricate 
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problem than the present \-lOrk. For example, one can see in Ref. 1 how 

involved the parameterization of arbitrary form factors becomes. 

Most of this paper is devoted to a study of the "arbi tal factor" 

of the arrrpli tudes, i.e., the space-time part which contains the poles 

and Regge behavior. We also investigate the "internal sYJili"lletry factor" 

of the amplitudes,assuming the Chan-Paton9 interqal symmetry factors 

for the hadron amplitudes. We note here that recently a very interesting 

model has been proposed by MandelstamlO which includes also a "spin 

factor." In his model the lowest-mass vector mesons have orbital angular 

momentum zero and spin angular momentum one, wherea~ in the simple model 

we discuss, they have orbital angular momentum one and spin angular 

momentum zero. We remark that, of course, this simple model has a spin­

zero ghost with imaginary mass on the leading (vector meson) trajectory, 

since its intercept is positive, and ghosts on lower trajectories \-lith 

imaginary coupling constants. Mandelstam's model removes the spin-zero 

ghost with imaginary mass at the expense of having leading trajectories 

with imaginary coupling constants· ("repulsive trajectories") and 

masses for the p meson and the pion. However, in general 

Mandelstam's model'has a better particle spectrum. For example, the 

simple model has no nonzero three-particle vertices with an odd number of . 

unnatural spin-parity particles (i.e., w 4pn, A2 4pn, etc. are 

excluded). Clearly our current amplitudes must inherit all these bad 

features of the hadron amplitudes, but we feel that our general approach 

to the consistency problem will apply to more realistic models for the 

hadrons. 
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As a very useful technical aid in our construction,we expand 

~l • .uv, the single current amplitudes, V, and the two-current amplitudes, lVI 

in terms of essentially all the available momenta. When there 

iue more than five external lines this will be a dependent set. However, 

in the construction of amplitudes this causes no problem and allows one 

to make the invariant amplitudes free of kinematic singularities. This 

is analogous to the use of a dependent set of invariants in the cOhstruc­

.4· tion of the hadronic amplitudes. As discussed in I, we always deal 

with amplitudes with N spinless hadrons and the covariant tensor 

amplitudes for currents. Throughout we attempt to present the basic 

kinematics and techniques in a manner that might be naturally extended 

to treat the important problems of (i) arbitrary form factors and 

(ii) axial currents. 

In Sec. II we construct single-current amplitudes, V~, with N 

. hadrons which satisfy CVC and have single vector-meson (V) poles in the mass, 

2 q , of the current. The orbital factor is first discussed in Sec. II.A. 

Factorization for it directly follows from factorization of the corre-

sponding vector-meson N -hadron amplitude. Moreover, if further vector 

mesons (V) 
n 

are similarly included, it is evident that factoriza-

tionwill not determine their couplings, fV ' to the current. In 
n 

Sec. II. B internal symmetries are easily incorporated following Chan 

andPaton. 9 The result is a factorizable single-current amplitude with 

no exotic resonances or currents. 

In Sec. III we construct the two-current amplitudes, #v, with 

singlevectot-meson poles in 2 
q. 

l 
and with divergences given exactly 
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by the single current amplitude VU of Sec. II,as demanded by current 

algebra. Factorization at poles in subenergies that overlap both currents 

is again a trivial consequence of factorization for the hadronic ampli-

tude, VV -7 N mesons,. but factorization at poles in subenergies over-

lapping only one current is satisfied only for leading trajectories. 

In Sec. III.B,the isospin symmetry factors of .Chan and Paton are again 

employed to obtain a factorizable internal symmetry factor with no 

exotic resonances or currents. 

In Sec. IV we present an interesting parameterization for the 

Pomeranchuk trajectory which cannot have form factors (poles in 

and requires exotic resonances. Such a Pomeranchon with little damping 

for 2 q -7 - 00 has been suggested on the basis of electroproduction 

II data. 

In Sec .. V we discuss possible modifications of the 

solution of Sees. II and III within the single 'vector dominance approxi-

mation. We shall give terms which allow one to modify the space-spa.ce 

commutators-~2 without, affecting the others. We also show how to 

construct amplitudes that violate CVC and current algebra. Although such 

flexibility may be useful in a more complete implementation of factoriza-

tion, it may also indicate a lack of uniqueness of the consistent 

currents in our model without co~siderable input from current algebra. 



-5- UCRL-19222 

II. SINGLE -CURRENT. AMPLITUDES 

In this section, we give an explicit construction ,of the single­

current amplitude V~l( q) with N-hadrons consistent with the N-point 

beta-function meson bootstrap. This provides a simple solution to the 

full set of properties discussed in I for a single vector current in 

the zero-width approximation: 

(i) Divergence Gondition: qV~ ~ 0, {.e., CVC. 
~ .' 

(iiY Generalized Vector-Meson Dominance: The only singularities 

in 2 q are simple poles 

(no subtractions in 
2 

q 

that completely determine V~ 

dispers,ion relations). The residues 

of the poles at . q2 = ~. 2 are products of the vector­
n 

meson (Vn ) scatteringarrrplitudes and current-vector-

meson coupling constants (fV ). 
n 

(iii) ReggeAsymptotics: V~ has Regge behavior in all subenergies 

2 
s (p + p + ••• ' +, . p k) . 

(iv) 

ij· .• k = ij 

Particle Spectrum: The only singularities in s. . are 
lJ·· ·k 

simple poles with polynomi~l residues in overlapping 

variables .. They occur at. fixed po~i tions (masses) in 

particular channels (with given quantum numbers), as deter-

mined by the hadron amplitudes. 

(v) Factorization: At any pole in V~ the residue factorizes 

into a current amplitude and a purely hadronic ,amplitude. 

As discussed in I, we can always project out the conserved 

part ofa tensor T~(q) with the projection operator 
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.-plJ.V(q) = glJ.v _ qlJ.qVjq2 to satisfy condition (i). However, condition 

(ii) demands that VlJ. have fixed singularities only at the masses of 

2 
the vector mesons (~), and not at q = O. Indeed, the central 

'n ; 2 2 
problem is to introduce a vector meson singularity at q = ~ and 

to continue off mass shell at fixed spin, J = 1, without introducing 

unwanted singularities in 2 
q . In our model (andprobabiy in general), 

once condition (ii) is satisfied, the remaining conditions (iii-v) 

follow trivially from the corresponding properties of the hadron 

amplitudes. 

Through condition (ii), our current amplitude inherits the 

pathologies of theN-point beta~function meson bootstrap. These inclllde 

ghosts on the leading vector meson trajectory at 0: = 0 (imaginary 

mass states) and on lower trajectories8 (imaginary coupling constants), 

as well as numerous'difficulties with the quantum numbers of the particle 

spectrum. However, we are optimistic that many of the methods presented 

here can be adapted to more realistic dual, zero-width hadron models. 

Our present discussion is based on the simple meson bootstrap 

which consists of producfs of the orbital factors, B(Pl,P2'" ·,PN) (N-point 

fclnction's),and the internal symmetry factors,9.~ Tr(A,1A,2" . "-N) , which are 

summed over all permutations (except cyclic and ,anticyclic) of the 

particles. The single beta function for each term in the sum yields 

a nondegenerate factorized spectrum on the leading trajectory and the 

isospin factor achieves the exclusion of all exotic resonances. It is 

sufficient to consider one particular term with given ordering of the 

hadrons, which we choose to be PI,P2 ' .• 'JPN for definiteness. 
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Corresponding to this ordering of the hadrons, there will be N terms in 

the single current amplitude. The orbital factors for these terms are 

designated by vY(q) 
l 

for the ordering 

have their external lin.e insertions (ELI), i. e., poles which dominate 

for q ~O, normalized as described in I (Eq. 3.3). After constructing 
fl 

a single term V. fl , in Sec. II.A, we show in Sec. II.B how to take the 
. l 

appropriate sum over i for the Chan-Paton internal symmetry scheme. 

Some general features of such sums are discussed in I (see Sec. III). 

The resulting amplitudes satisfy all the conditions (i) - (v), with the 

exception of some violations of (iv) due to the pathologies of the 

purely hadronic bootstrap. 

In Appendix B we show that, for N = 3 and physical 2 (q = 0) 

phot6ns, the amplitude given here is the same as the photop:roduction 
, 

amplitude given in J;\ef. 1. Hence our results may be considered as a 

2 generalization of the results of Ref. 1 to arbitraryq and N 

although the techniques used are different. 

A. Orbital Factor 

The first step is to calculate the amplitude for a vector meson 

and Nspinless hadrons. To do this, we start from the (N + 2)-point 

beta-function amplitude. 4-6 For the particular ordering of the particles, 

'a,b,1,2,"',N, it is convenient to choose the integration variables 

appropriate to themulti-Regge diagram of Fig. 1. Hence, we find6 

~+2 (2.1) 
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where the integrand is defined recursi velyby 

x ... (1 - u .. 'u.~_ fL\ N-l 
o l~ -2 '-

(2.2) 

and where 

2 
0:.. a .. +b(p. +-p + ... +p.) - a .. +bs .. , 
lJ lJ 1.i+l J - lJ 1.J 

(2.3) 

6 .. ::= (0: .. - 0:. 1 .) -(0: .. 1 - 0:'+1 . 1) • (2.4) 1.J l,J 1.+ ,J l,J- 1. ,J-

In (2.4) the relation 

o 2 
0:..- a .. + bm. 1.1. 1.l 1. 

is to be understood. From now on we choose our units so that b == 1. 

We now take 
2 2 

0: == 1 + [q - ID.. J, ab v 

the pole at O:ab == 1, and extract the coefficient of the relative 

momentum (r == Pa + Pb) in the residue. Thus we consider6 

1 -

1 du" ·du.. 
1 1~-2 

o 

go to 

(2.6) 



-9- UCRL-19222 

corresponding to the vector meson amplitude of Fig. 2. In ~+l' 

CX. now becomes . a~ 
We shall sometimes 

write (2.6) 13 in the alternative'form 

N-l 

B/'(q) = ql-l ~+l + 2 LR pml-l ~+l (CXv;.e<m - 1) . 
m=l 

Only the trajectories which are displaced relative to their usual values 

have been explicitly indicated. The symbol Ci.v,.e<m means all 

for 1 < .e < m, and the subscriptR is.explained in 

. Appendix A. The trajectory displacements are just those required to 

compensate for the momentum factors so as to yield the correct asyrnp-

totic behavior. The correct asymptotic behavior is assured, since we 

started with a R_ wi th the correct behavior. -N+2 

The obvious way to construct the amplitude for a single 

conserved vector current from the purely hadronic amplitude BI-l is 

to take 

2 
C(q ) 2 2 

~ ... q [ 

ql-lq ] 
gil _ __v B v ( q) 

v 2 1 
q 

, (2.8) 

where C(O) = 1. However, as seen in I, BI-l must be 8.. function of 

2 q if property (iv) is to be satisfied. Equation (2.6) clearly has a.. 
( 

natural continuation in 2 
q satisfying this property; it can be 

regarded as a function of all the Pi with q determined by energy 

momentum conservation. 
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In addition we must assure that the apparent singularity at 

2 
q = 0 in (2.8) does not occur in ~. Since 

2 2 
C(q ) = O(q ) would 

eliminate the ELI pole~ it. is not permitte~ and we must have 

Fortunately this condition can be satisfied if the trajectories are 

restricted so that 

(2.10) 

or equivalently, 

These restrictions mean that the trajectory corresponding to the massive 

photon and k adjacent hadrons must be the same as the trajectory for 

the k hadrons alone. We call the soft-photon poles due to resonances 

on such trajectories IIReggeized internal::'line insertions" --see Fig. 3. 

These are a natural generalization of the insertion of a soft photon into 

an internal line of a tree graph .. When (2.10) holds we find that not 

only does (2.9) hold, but in fact o (the proof is given 

" th· A· d") 14 ln e ppen lX . We note that in our simple model with its restricted 
<. 

spectrum (2.10) always holds. 

The continuation in <q2 described above and the restriction 
2 . 2 

C(q ) = 1 introduce minimal q dependence into (2.8). In fact we 

have explicitly verified that this corresponds to no subtractions in 
. '-
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the 2 
q dispersion relation for the single term !l V. , 

l 

t . ( i .) 15 assump lon ll. Therefore our final. result is 

vY(q) l F(q2) Bt(q) , 

where 

2 
2 illy 

F(q ) 2 2 
, 

Irly - q 

and the "off-mCj.ss-shell" vector meson aIIplitude BY 
l 

. 16 
p .. 

l 
with the appropriate cyclic permutation of the 

UCRL-19222 

as required by 

(2.11) 

(2.12) 

is given by (2.6) 

We note that the factorization property (v) follows from the 

factorization of the N-point beta functions. This is obvious for 

leading trajectories,and one can verify that the continuation in 

does not affect the spectrum of the lower trajectories either. 17 

2 
q 

We have not yet investigated the divergence proper:ties of the 

B !l 
V 

n 
lying on nonleading trajectories. In considering these 

vector mesops the degeneracy of nonleading trajecto~ies8 must be taken 

into account. We believe that further vector meson poles can be included 

in a manner analogous to the above which satisfies factorization and 

leads to no constraints on the couplings fV (except 
n 

B.. Internal Symmetries 

We now show how to incorporateSU(3) symmetTY without obtaining 

exotic resonances [SU(n) for n t 3 can be treated in the same 

manner J. In I we noted that the absence of exotic resonances 
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implies that only one quark line (o-function contraction) is permitted 

. . 9 10 18 
between each adjacent pa1r of external momenta." When octets and 

singlets of external particles are projected out one obtains the internal 

symmetry factor9 

, 

for the ordering of particles Pl,P2,"',PN in the hadrbnic amplitude. 

The matrices ~a are the usual SU(3) matrices, a. = 0,1,"',8. The 
1 . . 

factorization of the internal symmetry factor is clear from the 0-

function construction and is explicitly exhibited by the identity 

1 - Tr(~ ... ~ ) 
2 . a a.~ 

1 ill 

1 . 1 
[- Tr(~ ... ~ ~ )][- Tr(~ ~ ... ~ )J 
2al ak a 2 a ak+l ~ 

(2.14) 

Specifically, weehoose the external particles to be members of 

the pseudoscalar nonet p(Tl, rr, K, "'). (Roughly speaking this is a 

spinless quark model.) Among the internal trajectories we then have 

the vector nonet V(w, p, K*, ¢) and the tensor nonet 

T(' .. , A
2

, "KN *, f o)· When exotic resonances are excluded the V and T 

trajectories become exchange degeneratE; which is not a bad approximation. 

With this elegant, but very approximate, model of the hadron 

bootstrap, the symmetry factors for vY 
1 

are obviously 

! Tr[~ ... ~ (! ~)~ ... ~ ] F(q2) B.~(q) 
2 al a. 1 2 a a. 8.._ 1 

1- 1 ill 

= 

;" 
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and 

= (2.16) : 

for the single ordering Pl"",PN of the hadrons and 

'19 = 0,1,' ··8. Thus the absence of exotic resonances'has allowed 

u,s to introduce precisely the nonet of conserved currents whose charges 

can gerterate SU(3). 

As in I, the internal symmetry solution can be represented by a 

duality diagram, Fig. 4. Moreover, one can give a further interpretation 

of the diagram for the orbital part which has considerable heuristic 

appeal, varticularly for the two-current amplitudes. 

The current is regarded as a no-quark ol)ject that couples to,th~ two 

quark system that has, vector meson (bound state) poles. Hence the 

, current-quark-quark vertex is always' to be thought of as a form factor 

in 2 q • 
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III " TWO- CURRENT AMPLITUDES AND CURRENT ALGEBRA 

In this section we discuss the construction of amplitudes for 

two vector currents (covariant correlation functions), 

properties (See I for normalization conventions): 

(i) Divergence Conditions: 

(a) Charge-Current Density Algebra: 

for ql ~ 0 ; 
~ . 

( b) Photon Correspondence: 

and similarly for q~v" 

(ii) Generalized Vector Dominance: There are only simple,poles 

in 2 and q2 ' and the residues of the poles at 

(or 
2 2 

q - ll._ ) 2 - V are products of single-current 
n 

amplitudes for the production of a vector meson of mass 

and coupling constants fV" 
n 

(iii) Regge Asymptotics: M ~v has Regge behavior in all subenergies 
± 

except those subenergies (ql"Pk) that overlap the two-

2 
current channel [( ql + q2) = tJ" 

~. 
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(iv) Particle Spectrum: The onlY,singularities in the subenergies 

are simple poles with polynomial res'id~es in overlapping 

variables. The locations (masses) and quantum numbers of the 

poles are determined by the hadron and single-current 

amplitudes. 

(v) Fact6rization (see Fig. 6 of I) 

(a) "Hadronic f'acto:rization" at poles in subenergies not 

overlapping t, 

(b) "Currentfastorization" at poles in subenergies over-

lapping t: 

As these conditions indicate, the single-current amplitude ViJ. 

will be a basic input in th~ construction of the two-current amplitudes 

M(±tv, just as the hadronic amplitude was the input for the construction 

of the single -current amplitude. However, the new features presented by 

the nonvanishing divergence (ia) and the "current factorization" 

(vb) make the conn:ections of far less trivial to 

satisfy. As demonstrated in I, these two conditions [( ,ia) and (vb)] 
" 

require the existence of fixed poles and the extension of the divergence 

condition (la) to the kinematical region 2 
ql = 0, and 2 

q2= t ,(to within 

terms that vanish at qliJ. = 0). 

In spite of the strength of the above assumptions it may be 

necessary to impose the full strength of the current-density commutatfon 

relations,which are 
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(i *) Divergence Conditions of Current Algebra: 

== 

== 

for all Our construction procedure will avoid the direct 

use 0 f (1' *) so that it may be regarded as a heuristic argument for 

the power of the conditions (i)-(v) in a possible eventual proof of the 

curren t algebra condit ion (i *) , 

Our 'construction of is limited to the single vector-

meson (w, p, K*, etc.) approximation for the form factor F(q2) 

(2.12), and the resultant single current amplitudes Vl.l(q) '(2.16), which we 

constructed in Sec. II. We find it encouraging that in this approxima-

tion we can satisfy 'hac,lronic factorization' completely (va) and 

current factorization (Vb) on all leading trajectories with exact 

current algebra (i*); The isospin factor for this first-order current 

algebra solution is presented in Sec. III. B'. In Appendix B we show that for 

physical Compton scattering (N"== 2) the amplitudes obtained here are 

in general the same as those given in Ref. 1. 

A. Orbital Factor 

The first step is to calculate the amplitude for two vector mesons and 

Nhadrons. We can construct this amplitude from the amplitude BI.l for 

one vector meson and N + 2 additional particles. As before,we go to 

a pole at a == 1 and extract the coefficient of the relative momentum 
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in the residue. The expression for the resulting tensor amplitude 

B~v is more symmetrical if we sum over momenta to the right for one 
. , 

meson (ql' Yl) and momenta to the left for the other (q2' V2)· We 

then find (for the fixed ordering of the hadrons 

p .~ 
m 

1 2 .•. N) " , 

Comparing (3.1) with (A.l) and (A.2),one sees that the only really new 

feature is the ~v g term. 

We now discuss a few features of this lengthy expression in 

order to clarrfy its structure. The indices i and j indicate that 



-18- UCRL-19222 

Vl is just to the left of i and V2 is just to the left of j. To 

avoid ambiguities for adjacent mesons (i = j), we adopt the convention 

that BiifJ. V(ql,q2) and BiiVfJ.(Q2,ql) refer to the ordering with Ql 

to the left and to the right of Q2 respectively. If the same trajec-

tory--which can only be a.._ --occurs 
V1V2 " 

in both sets of arguments in 

the third term, it is lowered by two units. The summations and the 

inequalities for the lowered trajectories are understood to include the 

momenta and in the appropriate position. The reader may find 

it helpful to draw diagrams such as Fig. 5 in order to keep track of 

the lowered trajectories. 

The divergences fJ.V Ql B .. fJ. lJ 
and fJ.V 

B.. Q2 lJ v 
behave rather 

differently for nonadjacent, (i f j) and adjacent (i = j) vector mesons. 

For nonadjacent mesons, the conditions (2.10) for the Reggeized internal-

line insertions can be satisfied independently for both meson~ and the 

presence of a second meson does not ,affect the vanishing of the diver-

gence for the first. The reader should thus find very plausible the 

identities 

q B.Yv 
, lfJ. lJ 0, B. yv q \ 

lJ 2v ° (for, i l j) , 

which follow directly from (3.1), (A.6), and identities similar to (A.4). 

As pointed out in I, the nonadjacent-current terms cannot 

contribute to the divergence (i*) due to its pole structure. Hence 

the orbital factors for nonadjacent current terms can be represented by 

the divergenceless tensors 
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(for i 1= j) 

The justification of this construction is essentially the same as for 

the single-current amplitude vY(q) . 
l 

The adjacent-current terms pose 

the only essentially new problem and the remainder of this subsection is 

devoted to them. 

For adjacent vector mesons, the condition (2.10) can also be 

satisfied except when the two vector-meson channel (designated t-channel) 

is involved. The difficulty,arises because the spins of the mesons are 

fixed at one while the qi
2 

vary in the off-shell continuation (see 

Sec. II.A). Therefore a· 
V1Vi 

but are ~elatedby (2.10) to 

and depend upon 2 
and q2 ' 

av V ' which should be independent of 
1 2 

2 2 
ql and q2 . This gives a nonvanishing divergence which we may 

calculate by using (A.9) and (A.10) and assuming 

. 2 OV
1

V
2
(t) = at = 1 + t - ffiy : 

where 
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+ 4 LL PnV[BN+2(Cin<£,v2 - 1; CXt - 2) - BN+2 (CXn<£'V
2 

- 1; CXt - l)JJ. 
n 

Similar expressions hold for Bii
V!-L(Q2,ql) and Q2 divergences. 

We note that for Ql!-L ~ ° one may explicitly verify that (3.4) 

reduces to the (correctly normalized) contribution from the ELI of Vl 

on Pi - l . This is expected, since the B. yv 
lJ 

have the correct soft 

poles even for i = j. 

The B .. !-LV 
II 

are useful as basic building blocks even though they 

are not di vergenceless and hence not pure spin one even for 

2 
=~. In a moment we shall show how to construct appropriate 

spin one tensors for or equal to 2 
~ , but,we first discuss 

the divergence conditions for the adjacent-current terms. 

As we demonstrated in I, the divergence condition can be applied 

to a single adjacent-current term. The divergence condition on 

. which, by the, theorem of I, hold for = 0, 

t respectively, or,by current algebra, hold for all 

2 q2. From now on we choose for definiteness i = 1, corresponding to 

the brderin<:q q q p p .. n , l' ':~.' l' ;~,. H'N 

subscript .labels. 
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The, decomposition of the adjacent"current term into two 

"signature" amplitudes is a great simplification in constructing the 

Chan-Paton type solution of this section. In such a solution, one has 

degeneracy between singlet and octet trajectories (for example, f and" 
, 0 

are the even and odd parts of the ~ solution to 

However, more general solutions can be found by adding 

to 

these equations for 

(3.7) and then finding separate solutions to 

IlV 
and M( _) . The Pomeranchuk solution 

in Sec. IV is an example of such a procedure and it necessarily liES 

outside Chan-Paton models. 

1. Hadronic Part 

We now discuss the part of which contains the 

vector-meson poles (hadronic part). As remarked above, 

F( q12) F( q22) BlillV has the correct divergences at qlll ~o 

and q2v ,~o. 
'2 

= ~ (or 

However, the residue of this tensor at 

2 
~) should yield a suitable single current 

amplitude for a vector meson and N spinless hadrons by condition (ii). 

Consequently, the divergence with respect to qlll (pure spin-one vector 

meson) and (CVC) should be zero at 2 2 for all 2 q ql ~ q2 2v 
2 2 2 and similarly at q2 =ffiy for all ql . Clearly we can get 'zero 

divergences with the use of the projection operator 

Illl' g 
I 2 

qllqll /q, but this destroys the good divergence 

qlll ~ 0 and q2v ~-o and introduces unwanted singularities at 

, 
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2 2 
ql = 0 and q2 = 0, violating (ii). Fortunately the nonsingular 

-IJ.IJ." 1J.J.l' IJ. IJ.' 2 proj ection operator.-p : ;(g) g - q q /~ yields all these 

divergence conditions. 

It is easy to show that the divergence of the tensor 

with respect to qllJ.' (or,Q2) is unchanged at qllJ. -70 (or q2v -70). 

For example, at qllJ. -70, P (ql) IJ..Y becomes glJ.'lJ. and the divergence 

of BlJ.v is' vV which is unaffected by fJ (q2)v' v because of CVC. 

Moreover, the conditions 

for == 0, 

for 

required by assumption (ii) and CVC, follow, immediately from the 

divergence fbrmulae for , J.lV B , 

Since we are interested in divergences at 

the other current, the precise ,forms 

are inessential. 

2 q. 
l. 

of 

(3·9) 

2 
=~ with respect to 

v CL 
and C IJ. 

R 
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To simplify the general divergence eq~ation_forBflV,we add 

two terms that give no contributions at the vector meson poles [or to 

the right-hand sides of (3.6) and (3.7) for qlfl ~O and q2v ~oJ. 

We give an explicit expression for this new function ~flV, which we 

call the hadronic part because it has the correct vector meson poles 

2 2 
at qi = ~ and is purely'Regge behaved: 

q flq v 
+ 21 - 2 

2 
~ 

In addition to the divergence condition (3.9),wehave used the double 

divergence 

+ 
2 22 2 

(m..- q)(m.. - q )[B(O: - 2) - 2B(O: - 1) + B(CX ) ] 
V 1 V 2 t t "t· 



j. 
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q I-Lq v 
1 2 

precisely cancels the second term in (3.11). 

the simple divergence 

UCRL-19222 

term added.to Bl-Lv 

This hadronic amplitude has 

+ 2 m..2 \' Pnv[B(at - 2, a - 1) - B(a
t 

- 1, a - 1) ] , v ~L n<£,V2 n<£,V2 

as computed by using the identities in Appendix A. 

What are the pathologies of this function? It satisfies 

conditions (i)-(v) with only two important exceptions: (1) the 

symmetric part of . ~I-LV is unsuitable for Mriv, since 

ql M( )I-LV f O(q 2), and (2) the function does not satisfy "current 
I-L + ·1. 

factorization" on the trajectories below the leading trajectory. In 

. view of the theorem in I it is a little surprising that such a 

function exists, but we notice that the divergence does have poles in 

the overlapping variables on the nonleading trajec-

tories. Clearly the absence of these poles in the divergence, which 

is a consequence of CVC and current factorization for all trajectories, 

plays the crucial role in forcing the fixed-power behavior into 

2. Current Algebra Construction 

Aside from the immediate interest in obtaining·a solution 

consistent with current algebra * (i ), we find that such a solution gives 

the simplest and most elegant means of ,satisfying the properties (i)-(v). 
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We must introduce a fixed pole term .~pJ.l.V to satisfy the divergence 

,conditions (3.b) and (3.7), whicb follow from these properties, so we 

try an amplitude of the form 

where the correction term MCJ.l.V cancels the divergence introduced by 

2 2 
. qi= ~ Remarkably, we shall MBJ.l.V, but does not affect the poles at 

discover a correlation between M J.l.V 
C 

and ~pJ.l.V that is necessary to 

cancel nonsense poles in at. There are two equivalent approaches. 

Either one is le"d to the correlation by insisting that ~J.l.V obey 

current algebr~ or, by demanding the correlation one is led to the 

current algebra fixed pole. Although the latter suggests a derivation of 

the current algebra condition, we remind the reader that it is possible 

that the correction M J.l.V 
C 

could be made i l1 an entirely different 

manner. Also addi tionC!.l terms as discussed in Sec .. V can b,e added to 

the divergence. Only the imposition of factorization can remove these 

ambiguities. 

The reader who wishes to follow closely our construction 

procedure should expand each of our tensors as follows : 

#v J.l. v M + P J.l.q v Mm(l) + 
J.l. v 

M(2)n 
J.l. v 

M(2) (1) = Pm Pn q2 Pn + q2 ql mn m 1 

+ gl-lvM J.l. v + P J.l.q v + q J.l.q v 
M(1)(2) 0 + ql Pn M(l)n n 2 Mm(2) 1 2 

+ J.l. v 
M(l)(l) + 

J.l. v 
M(2) (2) (3.1~") ql ql q2 q2 , 

, .' 
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and n is summed over 

N ,N-l, ·:·2.. By equating the coefficients of each tensor (Pnl-lPn v, 

qll-lPn v, etc.), one .will discover that our equations reduce to the 

identities proven in Appendix A. In the discussion below, for each 

divergence condition we refer only to appropriate identity for the 

coefficient of v 
p' .. ' 

n 

Let us consider constructing the solution to the current algebra 

condition. In terms of the "physical" amplitudes (the first five terms 

of the expansion), these conditions become 

M 
o 

2 
- q .p M (' ) ~F(t)B + O(q ) 1 m m l' . ·N+l ,1 

M(2) (1) is arbitrary 

The fundamental difficulty is to find a form for the double 

flip amplitudes,20 M , that does not intr.oduce a kinematical singular~ty mn 

(ql' q2 rl into the single-flip a!IIplitudes .• M(2)n and Mm(l),through 
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(3.14a) and (3.14b). The unphysical amplitudes are of no help in this 

'2 2 problem, since they are of order ql (or q2)' We first consider 

the divergenceless Regge part (~_J.l.V + M J.l.v)that satisfies (3.14a) 
-~ C· 

to (3.14e) with F(t) set to zero. We take the hint from Ref. 1 that 

the double-flip amplitudes might be proportional to 2 2 
F(ql ) F(q2 ) - F(t). 

For the single vector dominated form factor (2.12) we have the expansion 

2 2 
F(ql ) F(q2 ) - F(t) 

2 2 
F(t)F(ql )F(q2 ), = 

(3. 15), 

The idea is to let the term in this expansion proportiOnal to ql' q2 

. satisfy' 2 (3.l4a) to o( ql) with a nonsingular single -flip ampli-

tude and match the remainder with the "unphysical" amplitudes to give 

preciselY,zero divergence; To carry out these manipulations in a 

compact manner we employ the identities (A.9)to (A.ll). 

From the divergence (3.12) of the hadronic term ~J.l.V we 

obtain, from the coefficient ofp v, 
n 

+ 
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where any number of trajectories a£V may be displaced. This 
2 

formula can also be derived from (A.ll) with the aid of the identity 

From another form of (A. 11 ), obtained by adding 

1 2 
(2" ql + qiq2)[B(at - 2)- B(at - 1)] to both sides, we have 

2 

- ; F-l(t) [B(at - 2) - B(at - 1)] 

In this form, we can see that F( t ) BC!-LV (at - 2) has the same 

divergence as ~!-LV, where B !-LV(a - 2) 
C t is identical to B!-LV 

tha t all the 
~lV2 arguments are set to at - 2 and the g!-Lv 

is omitted. Consequently the difference of these two tensors, 
\: 

is aepure Regge function with no divergence. 

(A.10), 

except 

term 

The only difficulty with the correction piece is that it 

introduces vector-meson poles at 2 
t = ~ into nonsense amplitudes 

M .20 An obvious way to cancel the poles in the nonsense amplitudes mn 

is to add a fixed-pole term,21 F{t)BC!-LV (-1). With the additional term, 
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-F(t) ~+lg~V, this fixed-power contribution yields precisely the 

divergences required by current algebra [(3.6) and (3.7)·for arbitrary 

q.2J. The reader may verify this by the use of identity (A.12). 
1 

Consequently a solution to the current algebra problem. (i*) is the 

symmetric and antisymmetric part of 

where ~V() . ~V( ) ~V B
F
· P .. -1 = BC ... .. -1 - R_ 1 g . 

,11 ,11 -N+ 
The external momenta in 

are 

In addition to (i *) this solution satisfies conditions (ii) - (v) 

except current factorization (vb) for nonleading trajectories. That 

(vb) is satisfied for all resonances on leading trajectories is most 

easily seen by examining (:/.19) as t ~ 00 for fixed Sv k. In this 
1 

Regge limit, the part proportional toF(t) has one less power of t 

than normal and hence contributes only to nonleading trajectories. 

Further, from (3.10), one sees that all terms in except 

contribute only to nonleading trajectories. Since B~v factorizes 

into B~Bv, M . . ~V factorizes 
11 

for leading trajectories av k· 
1 
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B. Internal Symmetries 

From I and Sec. II.B it is clear that the proper internal 

symmetry factor for MijIJ.V(Ql,q2) with the absence of exotic resonances 

is 

To illustrate some of the properties of this solution,we 

consider the contribution of the adjacent current terms to MabIJ.V(Ql,Q2), 

+ 

U · th 1 t" 22 slng e re a lon 

r obtain 

{~abc }' 
lfabc 

\'! Tr[1-. ... 1-. (!I-. )(!~)I-. .001-. ]M. yV(Q ,Q ) 
~ 2al a. 1 2 a 2'b a. ~_ 11 1 2 

i 1-' 1 W 

we easily 



" 

-31- UCRL-19222 

From the divergence c.onditions (3.6) and (3.7) and (2.15) and (2.16) 

we obtain 

: M P,V 
qlll (-)ab 

" 

which are precisely the required divergence conditions of current 

1 b (1· *). a ge ra 

The degeneracy of the V and T nonets (for example, w, p, 

fo' A2 ) is crucial for the success of this construction. In the 

construction of the orbital factor in Sec. III.A it was necessary to have 

2 1 - at = ~ , the mass occurring'in '(; 2) F q '. Since from two currents in 

V, one can obtain some,configurations with V leading trajectories 
~f 

and some with T leading trajectories, V and T must be degenerate. 

In SU(2) this corresponds to 

= , 

, 

(the' numbers are I G). In other words a consistent non~t of trajec-

tories'can be constructed by our methods (and perhaps generally) if 

and ~nly if the V an~ T nonets are degenerate. 

Nonvanishing current commutators imply nonvanishing divergences 

for the, M( _ rv. This in turn implies fixed poles with residues singu­

lar in t and the necessity of Regge trajectories with singular resi-

dues to eliminate these singularities in nonsense amplitudes. Now,if 
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the solution of the hadron.bootstrap has no exotic trajectories,we see 

immediately that the commutator of two currents can· only be another 

current of the same type (i.e., there is no 10 or 10 part in the 

octet-octet commutator). The foregoing .. simple observations point out 

some effects of the hadron solution on the currents and current 

algebra. 

Finally, we merition the duality diagrams for the adjacent-current 

amplitudes. As before the current-quark-quark vertex is to be regarded 

as a form factor 2 F(q ). In Fig. 6 we have represented the current 

algebra solution of the adjacent-current amplitude as the sum of Regge 

2 2 exchange with fbrmfactors [F(ql) F(q2)J and a fixed pole piece which 

has an ffexchanged ff current~ As the diagram indicates, there are no 

form factors in q/ [F( q12) F(q22 )J for.the current exchange piece, 

but there is a form factor F(t) where the ffexchanged"current attaches 

to the quark line. 
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IV. POMERANCHON SOLUTION 

There is a solution ~or the symmetric amplitude M f.lV 
(+) that 

cannot have form factors 
2 2 

[F(ql )F(q2)J and therefore has no counter 

part in purely hadronic or single-current processes. For the Pomeranchuk 

trajectory such a solution is particularly interesting for several 

reasons. (1) It allows a Pomeranchon with ap(O) = 1 to couple in 

double-helicity-flip (nonsense) amplitudes at the forward direction 

(t= 0), as required to yield a constant total photoproduction cross 

section. (2) The existence of a Pomeranch'on contribution that does 

not fall rapidly for 2 q ~-oo (i.e., has no form factors) has some 

eXperimental support in recent electroproduction data. 12 (3) For 

~(O) = 1, this solution gives no right signature fixed poles (e.g., 

2 
J = 0,-2,"') for physical (qi = 0) Compton scattering. We remark, 

however, that the solution given below can be used for any trajectory 

in a symmetric amplitude. 

In this solution, the possible kinematical singularity 

in single-flip amplitudes is avoided by directly intro-

ducing th~factor 

1 -

2 - m ' 
P (4.1) 

where at = t - m/ + 1.' This is just the term proportional to ql' q2 

in the fador 
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222 
ql· + q2 - ~ 

1 - -'---------, 
2 

t - ~ 

(4.2) 

2 2/ 2 
CJ1 q2 . r~ 

which we introduced in Sec. III. . In both cases, the leading asymptotic 

behavior is unaffected. In the symmetric amplitudes ·(CX
t

- 1)-1. is 

cancelled by the signature factor in leading order; and fixed poles at 

J = 0,-2,··· are introduced to cancel the singularity in lower orders. 

By comparing the two expansions, one can see how similar this problem 

is to the current-algebra problem. 

This time, we use the identity (A.9) in the form 

2 
tIL.. )[B(CX - 2) - B.(CX - 1) ] 

j;J t . t (4.3) 

The resulting parameterlzationfor M( + tv is the symmetric part of 

~ !J.v : 
--Pom 

222 
q + q2· - ID...... .. 

B !J. v _ -::;.1 ___ ---;:.,--._ I' 
Pom . 2 

t - ~ 

(4.4) 

, .I _ 
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where 

and as in Sec. III, 

The first two terms in M.... !J.V 
---Pam cancel in the divergence and the fixed 

pole piece gives a divergence which cancels in the symmetric amplitude. 

From (4.4) and (4.5) one sees that M.... !J.V 
---Pam has the same ELI 

poles as B!J.v • Therefore, as discussed in I, the symmetric function 

(4.6) 

has no ELI poles. Hence the Pomeranchon can be introduced with arbitrary 

coupling strength, c , 
o 

into I = 0 symmetric amplitudes. 

the above amplitude cannot be multiplied by the form factors 

We note that 

2 . 2 
F(ql )F(q2 ) 

. because this would introduce an unpermitted J = 0 fixed pole. (and 

Kronecker delta singularities) at a right signature point in the purely 

hadronic process, ' vv -7 N . hadrons. 
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For 
222 

ql =q2 = ~ = 0, the fixed pole contribution to (4.4) 

vanishes. Furthe~ from (4.5) one sees that only the 'Lmphysical" terms 

in BJ.lv are modified. Therefore in this case BJ.lv leads to perfectly 

acceptable photon amplitudes. This can also be seen directly from 

(3.4). We also note that for N = 2, (4.6) is precisely the form of 

the Pomeranchon contributiOn suggested in Ref. 1. 

Since one cannot have an I == 1 trajectory degenerate with the 

Pomeranchon, this solution necessarily lies outside the Chan-Paton 

scheme and involves exotic resonances incross channels. However, 

unlike the Pomeranchon for purely hadronic amplitudes, we do not require 

exotic trajectories entering into the same term as the Pomeranchon. 

Such a "hadronic" Pomeranchon contribution may also be present in the 

two-current -amplitude, with form factors F( q12)F( q22), but it will 

not contribute to forward elastic Compton scattering, if ~(O) =1. 

A diagrammatic representation of the abovePomeranchon solution 

is given in Fig. 7(a). The fixed ... pole part of (4.4) is represented by 

a "contact" term with no form factors in 'q.2, similarly to the fixed-
1. 

pole piece of the current algebra solution. We also see that our 

23 Pomera.nchon (like currents) should be thought of a.s a no-quark object. 

The "hadronic" Pomeranchon contribution can be represented as in 

Fig. 7(b)--without ELI terms, but with form factors 

and exotic resonances (four quark states) in crossed channels. 23 The 

'close analogy between the Pomeranchon solution and the current.;.algebra" 

solution is apparent both in our construction and in the diagrammatic 

representations. 

" 
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V. CONCLUSION '. 

First we would like to mention several ways of modifying our 

basic amplitudes [(2~11), (3.3), (3.19), and (4.4)J by adding 

additional terms. Since the tensor 

q • q gl-lv 
1 2 

is divergenceless, it can be multiplied by a suitable invariant amplitude 

and added to #v without affecting the divergences (Le., the time-

time and time-space commutators). In fact our basic amplitudes have 

zero space-space commutators, and these terms can be use.d to make them 

11 2 .L) 2' I-l' v' iLJ v 2 2 
nonzero. Any term of the form ql rr (ql ); I-l' T TF v' (q2 )q2 ' 

or a similar term for single-current amplitudes, is clearly acceptable 

and does not change the divergences (TI-lv should be chosen so as not 

to effect the ELI poles or leadin,g order factorization). 

The condition (2.io) on the trajectories is crucial to our 

,construction and has been assumed throughout this paper. In our simple 

model it holds, but in more general models .where it may not hold one 

apparently must resort to brute force methods of satisfying the divergence 

conditions. For example, for single-current amplitudes, one could add 

to Vl-l . invariant amplitudes parameterized by beta funCtions multiplied 

by tensors [(q. p.)pY - (q. p.)pYJ--note that su<;h terms do 
J ~ , ,~ ,J_ 

'contri.bute at ql-l ~O. 

There are also terms which affect the divergences .. Terms 

2 proportional to q and '. 22 cart be added to . Vl-l ql q2 

'" ,.1 

• .!.lV, and - M' 

not 
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respectively, without violating the requirements 'for physical photons. 

It is more difficult to modify the divergences in other ways, but, for 

example, terms proportional to BN+l can be added to, say, M2(n)' 

where ql + q2' Pl"" ,PN are the external momenta in ~+l' This 

adds a term proportional to ql' q2 to the ql divergence. This 

is completely consistent with the theorem of I, .since it does not 

introduce poles in variables overlapping the t-channel into the 

divergence. 

'More importantly, we should introduce form factors with arbitrary 

numbers of vector.-meson poles consistent'with the v;ector mesons on 

the lower trajectories inthe factorized hadron solution. As we see from 

Ref. l,the problem of arbitrary form factors becomes q1J.ite involved 

due to the necessity of avoiding ancestor trajectories. However, the 

essential point that 
2 2 . 

F(ql )F(q2 ) - F(i) can be expanded into two 

terms, one prop'ortional to ql' q2 and another proportional to 

still holds, as one can demonstrate by a Taylor series expansion. We 

feel that 'this will permit general form factors to be introduced in 
\. 
much the same manner as in Ref. 1. But this construction procedure 

should be developed simultaneously with the implementation of the 

correct correspondence to vector -meson processes [condition (i v] and 

factorization (vb) on lower trajectories. 

Work is proceeding on the successive introduction of higher-mass 

vE;ctor-meson poles and factorization on lower trajec-

tories. Clearly, at some stage our brute force methods must be replaced 

• 

j, 
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by a more elegant technique to obtain a fully factorized solution in 

the N-point beta-function model. 

The axial-vector currents should also be studied in this model. 

In the special case of one axial current and three pions (N = 3), 

PCAC leads to the well-known condition on the trajectories 

2 a (m ) 
p n. 

= 
2 1 24 

an (m
n
,) + 2' . We are investigating the problem of intro-

ducing axial currents with pion-poie-dominated divergences into the 

N-hadron amplitude. 

Beyond the scope of theN-point beta-function model with the 

Chan-Paton isospin factor are the problems of baryon 

trajectories, exotic resonances, and the Pomeranchuk. Mandelstam has 

discussed these problems for the hadronic amplitude from the point of 

view of a relativistic quark model. 23 Here the form of the hadronic 

solution is far less clear; and the attempt to introduce currents may 

help to develop this more realistic zero-width model. Clearly, one 

must replace the su(6) symmetry of the present Mandelstam modellO ,23 

by a chiral symmetry scheme that allows the pion mass to be zero with a 

finite p-meson mass, if there is any hope of introducing both 

reasonable vector and axial vector currents. 
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. APPENDIX A 

We first give several alternative expressions for 

prove the identity q B/ ~ 0.' 
I-l ' 

From (2.7) we have 

qfl~+l + 2 LR 
m 

BY(q) 
1 

and 

(A.l) 

corresponding to the orde:r'ing of momenta Pl"" ,P( .. l;Ci,Pi'··· 'P
N 

and the choice of variables similar to Fig. 2. The subscript R of 

the summation indicates a sum over momenta to the right of q excluding 

the momentum immediately to its left, Pi - l ' We may obtain directly 

a sum L over momenta to the left of q by following the steps 

leading to (2.7) but with the anticyclic permutation of the momenta 

(which leaves 

BY(q) 
1, , 

R_ - unchanged) ! 
-:-N+2 

= LL (A.2) 

m 

Comparing (A.l) and (A.2) and using momentum conservation yields the 

identity 

~+l (A.,) 

for all, m. This can also be derived directly from the integral 

representation (2.1) and the trivial relation 

1 u u .. 'u + (1 - u u "'u .) , 1 2 ' m-l 1 2 m-l (A.4) 
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A further expression can be obtained by converting the integral 

representation (2.6) into one corresponding to the multi-Regge diagram 

with the momenta cyclically permuted one position to the right. This 

procedure yields ' (for i == 1) 

du .. ·dlL 
,11\j-2 

, j..L (i -.tll)ul, . • ·~-2} + 2 P "" -----~--
N..,2 l' - u l ·· ·~-2 

(1 ~ ul )ul u2 
1 - u l u2 

+ .... 

,This expression is actually most easily obtained by beginning anew fram 

R_ cyclically permuted one position to the right from Fig.L ' The -N+2 

expression (A.5) has the advantage of exhibiting explicitly 

both soft photon pole terms. 

The result, qj..LBlj..L = ~ may now be easily shown by using the 

identity 

o -f 
• (1 - , -Av2 -.tvN;"2~ u u) , '... (1 - u ... 11.. ) , 

1 2' 1 ~~2 
, , ' 

, 

.. 

'. 
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which is trivially true when the ul integral is defined and is true 

by analytic '~ontinuation elsewhere. Carrying out the differentiation 

yields 

o = 

+ ••• (A.6) 

From (2.3), (2.4), (,~.5), and (2.10) we obtain' 

,CWT = 
2 ' 

(q + PN) + ~ 

1 
2q. (2" q + P

N
) , 

1 
2~(- q + P + ••. + P ) 

2 1 k , 

and 

Notice that (2.10) was crucial in deriving (A.7a) and (A.7b). Substi­

tuting (A.7) in (A.6) and comparing ,with (A.5) immediately yields 

q B.~ ;;: O. 
~ l 

We now discuss identities useful for two current amplitudes. 

Corresponding to the choice of variables of Fig. 8, we consider 
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o -f 
r . 

d j -~l -a 
du ... du... - tu (1 - u ,) o ~-2 du 0 0 o . 

. , .' -Lv N-2 1 . 
1 . 

- u . "u..~) 1 o IIl-2 

(A .8) 

where Lv 1 = Cay 1 - av 1) - a. Differentiating and using equations 
112 

like (A.7) then gives 

o· 1 ). 0 0 ~ 
1 - u ~ . (1 - u )u ul' 

+ a 1 - ::---- + 2q l' (?l2 1 + q2 + Pl ' 1 - u u + ... 
1 - uou} 0 1 

( 1 - u ) u ... u... } o 0 IIl-2 
1 - u ... u... 
. 0 IIJ-2 

Comparing with (A.5), we obtairl 

1 2 (- q + q . q ) B (a - 1) + 
2 1 1 2 N+2 

(A·9) 

Several useful formulae may be obtained from (A, 9). 
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For example, choosing 

gives 

2 
,- ~'V + (ql + q2) - 1 ::: 

1 2 

2 
t - ~ 

1 2 
Rearranging of terms and using ,t ::: 2ql . (2" ql' + q2) + q2 gives 

,m 

, 22 ' 
Note that for q2 ::: ~ we recover the identity ~ q B ::: o. 

u 
Finally 

the current algebra identity, 

m 

1 
::: 2" ~+l ' (A.12) 
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is obtained by taking the limit ex --> O. This identity is particularly 

interesting because it relates B N+2 to BN+l . If one returris to (A.S), 

one sees that the right-hand side of (A.12) can be viewed as a surface 

term at u 
a 

1 occurring for ex = ~ which is the first nonsense point 

in the left-hand side. 
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APPENDIX B j 

We demonstrate here that, for N = 3 and 
2 

q = 0, the single-

current amplitude given here is the same as the photoproduction ampli-

tude of Ref. 1. For simplicity we neglect internal symmetries and use 

the simplified formalism of I [Eqs. (3.4)-(3.7)J for physical 

photons. 

For N 3 there is just one independent hadron ordering. We 

may choose 

and hence 

We take 

1 . 
- -3 (e. - e. 1) + C 

1 1-
, 

+ g (e - e ) B ~(q) + C B~(~)(q) 
3 3 2 3 

2 
s = (q + Pl) , 

2 
and u = (q + P2) and 

(B.l) 

compute Hl s, the s -chanrl.'el physical helicity-one amplitude. Us ing 

0, we readily find for thekinematic-singu-

larity-free amplitude, 
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-0: ) 
t 

where ~ . is the usual Kibble function. For 2 
q = 0, 

1 222 2 2 2 ~ 
/\.2 - [ s -2 (ffi

l
. + q ) s + (~ - q ) ] 2 

and we find, 

where 

r(-o:x) r(-o:y) 
r(l -0: - 0: ) x· y 

-0: ) ] 
u 

UCRL-19222 

." 

, 
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and 

<'V <'V 

: S (-o:X' = B(~x' -0: ) +B(~ , Y . Y 
0: ) + B(~, - 0: ) • z . z x 

Equation (B.3) is equivalent to the result of Ref. 1 written in terms of 

the charges. 

Similarly, for the two·current case, we calculate the helicity 

amplitudes for N = 2 and and compare our results with 

the Compton scattering amplitudes of Ref. 1. The resultant parameteriZa­

tion for the nonadjacent-currents term (contributing to I = 0 and 2 

in the t-channel) are 

, 
(B.4) 

H t,,_ 
11 

ri. 2 ~ 2 
Et 2e B{-O: (s), - 0: (u)] ~ 2e B[l - 0: (s), 1- 0: (u)] 

n n n n 

which agree with Ref. 1 only for the double helicity-flip amplitude. 

, 

In Ref. 1, tqe nonflipamplitude was given by -2t m 2 e2B[~ (s), ~ (u)], 
n n Jl 

which resulted in an M = 1 pion. Here an M = 0 pion is obtained, 

simply because in the N-point beta function, all leading trajectories 

are parity singlets and hence M = 0 trajectories. All other aspects 

of Ref. 1, including the current algebra amplitude, are equivalent to 

the appropriate special cases of our general solution. 
/' 
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FIGURE CAPTIONS 

Choice of variables for R_' -N+2' 
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Fig. 2. Choice of variables for BI-L. 

Fig. 3. A Reggeized internal-line insertion. The double lines indicate 

any resonances in the family, generated by the trajectory cx. 

Fig. 4. Duality diagram for currents. The current (no-quark state) 

. couples to vector mesons (two-quark states). 

Fig. 5. The last ~+2 in Eq. (3.1). The trajectories lowered by 

one unit have their corresponding subenergies indicated. 

'Fig. 6. Vector-meson exchange with form factors [F(q12) F(q22 )] 

plus a current-algebra fixed (J:::: 1) singularitywith F(t) 

'2 2 
and no F(ql) F(q2 ). 

Fig. 7. Pomeranchuk as no-quark state:(a) with no form factors and 

. J :::: 0 singularity, (b )wi th form factors and exotic resonances 

in the crossed channels,but with'no ELI poles. 

Fig. 8. Choice of variables for Eq. (A.8). 
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