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"VECTOR CURRENTS AND CURRENT ALGEBRA.

: , %
II. AN N-POINT BETA-FUNCTION MODEL

. _ o\ . ‘
Richard C. Brower and J. H. weist
. Lawrence Radiation Laboratory

- University of California
Berkeley, California

June 30, 1969

ABSTRACT
A simple N-point beta-functibn model (generalized

Veneziano model) of the hadron bootstrap is éssumed and the

properties of vector currents consistent with it are

invéstigated._ We find that this hadron bootstrap admits
conserved vector currents safisfying the Gell-Mann
current algebra in a first apbfoximatibn-which assumes

single vector-meson poles in the form factors and requires

. factorization only at resonances on leading Regge trajec-

tories. We believe the.techniques employed in this
simplified model will be useful in constructing current
amplitudes in more genefal dual zero-width mbdelé. ‘In

addition;'a model for a Pomeranchon contribution which

'dges-not fall off at large q2 is proposed. Throughout

we treat amplitudes for one or two vector currents and

an arbitrary number N of spinless hadrons.
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I -INTﬁODUCTION . : ‘i
viIn this papef we make‘fhe first step in a study of currénts
‘consistent'with’the N-poinf beta -function model (genéraiized Veneziano model)
of the meson bootstiap.l’? A numbéf of general pfOpertiés of‘cufrents

in such Reggeized zero-width models with duality have been‘discusséd.in_

the preceding. _pa.per_.’3 Here we explicitly coﬁsidef thé question of the
existence of vector current amplitudes thét' are'oompatiblé Wifh current
aléebra and consistent wifh this barticﬁlar.hadron'bootétrap;

We shall shoﬁ that‘the N—poiot beta~function m.ode]».u'-6 to first’
approximation admits currentbamplitudes for one or'two cooserved.vector
ourrenté (CVC)'and N ﬁbsoné,hhere the two -current amplitudes satisfy
the constraints given by the time-time and time-space current-density

7

commutationvrelationo of the Geii-Méhn algebrg. Our reéults are a
first,approximation,sincé we assume single vector-meson poles in the
b”massés;f qig,_of the currents and Satiéfy the‘facforization (unitarity)
constraints in gli‘channéis fof iéadihg frojectofios only.

We believe that these fwo restricﬁions arevintimately related and
that the lack of factorization on nonleading trajectories can be remedied oniy
by including more vectorAmogon poles in tho qig. .Factorization will no.
doubt give conétraints on the form factors (i.e., the vector meson-
‘eurrent coupliog constants). The factorization of nonieading trajectories
vin-the hadroh problem8 determines the vector-meson sﬁectruﬁ and thﬁsowill'
.- have important consequences for curfent amplitudes: Indeed, we feel
that the fgpforiéafion of lQWer'trajectories and the iﬁtroduction of

further polesfiﬁ the qi? represent a qualitativelylmore intricate



o UCRL-19222

problem than the pregent work.  For example,vone can see in Ref. 1 how
involved the parameterization of arbitrary form factors becomeé.

 Most of this paper is devoted to a study of the "orbital factor”
of the amplitudes, i.e., the space;timé part which contains the poles

\

_ and Reggevbehaviér. We also investigate the "internal symmetry factor!

9

of the ampiitudes,assuming the Chan—Path intérqal symmetry factors

for the hadron amplitudes. We note here that rgcently a very_iﬁtefesﬁingb
model has Eeen proposed by Mandélstamlo which includes alsb a "spin
factorf'iln ﬁis model ﬁhe lowest-mass végtér mesons“have orbital angular
momenﬁum.zerb and spin angular,momentﬁm one,vﬁhereag.in the simple model
we discuss,they ﬁavé ofbital angular momentum oné and spin angulaf
momentum zero. ‘wé remark that, of course, this simple model has a spine
zero ghost with imaginary mass on- the leédingv(vécfbr meson)rtrajéctory,
since its intercept is positive,and~ghosts on lower ﬁrajectories with
imaginary coupling constants. Mandelsfam’s model removes the spin—zero
ghost with imaginary mass atxtﬁe'expense-of having leading trajectories
ﬁith imaginary coupliﬁgvconstantsf("repulsi§é trajectories”)vand

equal massesvfor the p méson and‘the pion. Hoﬁever, in general
Mandelstam's model has a better parﬁicle spectrum. ‘for example,‘the
gsimple model has no nonzero threefparticle vertices with an odd number of .
unnatural‘spin—éarity ﬁarticles (i.e., w _;pn,. A2 - pn, etc. are
excluded). Clearly our current amplitudes mus£ inherit all these bad
features of the hadron amplitudes, ﬁut we feel that our general approach
to the consistency problem will apply to more reélistic models for the

hadrons.
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As a very useful technical aid in our construétion,we expand
the éingle currenflamplitudes,v V“, and the two~current amplitudes, M“?,
in terms of ess;ntially ail the availlable mqmenta.. When there
are more fhan five external lines this will be a dependent set. However,
in the~conétructioﬁ of amplitudeS'ﬁhis cahses no broblem and allows one
to make the'invariant amplitudes free of kinematic singﬁlarifies. This

is analogous to the use of a dependent set of invariants in the construc-
s .

“tion of the hadronic amplitudes.u As discussed in I, we always deal

with amplitudés with XN .spinless hadroné and the covariant tensor.
ampl?tudeé for currents. Thfoughout we attempt to present the basic
kinematicé and £echniques in a manner that might be néturally‘extended
fo treat the important probléms of (i) arbiﬁrary form factors and
(ii) éxial currents.

In Sec. IT we conétruct'single-current ampiitudes, V“, with N

fhédrons which satisfy CVC and have single vector-meson (V) poles in the mass,

2

‘q , of the current. The orbital factor is first discussed in Sec. II.A.

Factorization for it directly follows from factorization of the corre-
sponding vector-meson N-hadron amplitude. Moreover, if further vector
mesons' (Vn) ‘ are similarly included, it is evident that factoriza-

tionfwill not determine their couplings, fV ,.to the current. 1In

.Sec.YII.B_infernal symmetries are‘easily incorporated following Chan

9

~The result is a factorizable single-current ampiitude with

mo exotic resonances or currents.

In Sec. III we coﬁstruct the two-current amplitudes, Muv, with
single -vector-mescn poles in qig and with divergences given exactly
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by the single current amplitude v oof Sec.'II,as demanded by current
algebra. Factorization at poles in subenergies that overlap both currents
is again a trivial consequence of factorization for the hadronic ampli- . v
tude, VV =N mésons;, but-factorizatioh at poles in subenergies over-
lapping only oﬁé éurreﬁt is satisfied only for leadiﬁg’trajectories.
In Séc. III;B;,the isospin symmetfy factdrs of Chan and Paton ére agaiﬁ
employed fo obtain a factorizable internal symmetry factor with_no
exotic resonances or puffeﬁts.
In Sec. IVv'we éresent anrintefestihg paraméterization for the
Pomerénchuk trajectory which cannot ha#e form facﬁors‘(polés in qig)'
and réquires exotié resonanées; Such a Pomeranchon With‘little damping
for q2 — ~. o has been suggested‘on the basis of eleétroprdduction
data.ll “ |
In Sec. V we discuss pOséible.modifications_of the
splution of Secs. II andvIII-Within the siﬁgle‘vector dominance.approxi-
mation. We shall give terms which allow one to modify the space-space
ccﬁmmuta‘c-ors‘JT2 without affecting the others. Wé also-show.how to |
construct amplitUdés_that violate CVC and current algebra. Although such
.flexibility mayAbe useful in a more compiete'implementation of féctoriza-
tion, it @ay also indicate a lack of uniéueness of the consistent

currenté in our model without considerable.input from current algebra. ®
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1. . SINGLE-CURRENT AMPLITUDES

# _ o i  Im thié éection, we glve an explicit constructidn;pf‘the single-

'7curreﬁt amplitude V"(q) with N-hadrons consistent with the N-point
béta-function meson bootstrap,“ This provides a simple solution to the
full set'dfvprOPérties 'discussed'in I foria single Vectof current in
‘the zero-width approximation: |

(1)  Divergence Condition: ¢ V' = 0, i.e., CVC.
, %, ) ,

(ii) Generalized Vector-Meson Dominance: The only singularities-
. in q2 are simplé poles that' completely detérmine VM

(nb:subtractionSin‘ q2 -dispeféion relations). The residues
of the poles'at'”q2 = MV 2 are products of the vector-
meson (Vn) scattering amplitudes and current-vector=
meson coupling constants (fv').'
'n
(iii) Régge.Asymptotics: V" has Regge behavior in all subenergies
s, = (p. +p, + ey D )2;
. BEESA L P Tk
(iv) Particle Spectrum: - The only singularities in Sij-~~k' are

simple poles with polynomial residues in overlapping
:variables. - They occur at . fixedpoéitions(masses) in .
-particular channels (with given quantﬁm numbers),és\deter-

-mined by the hadron amplitudes.

v

'(v).v :Faqtorization: At any pole in V¢ the residue factorizes
w o o ~ into a current amplitude and a purely hadronic .amplitude.

- As discussed in I, we can always project out the conserved .

part of a tensor Tu(q) with the projection operator -
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~f@uv(q) =g - q“qv/q2 to satisfy condition (i). However, condition
(ii) demands that v have,fixed singularities only at the masses of

the vector mesons (mv ), and not at q2 = 0. Indeed, the central
- '~n N ) . .

problem is to introduce.a vector meson éingularity'aﬁ »q2 = mV2 and
to continue off mass shell at fixed spin, J = l,_withdut introducing
unwanted sihgularities in qe. In our model (énd?robabiy in geﬁeral),
once condition (ii) is saﬁiéfied, the remaining cpnditions'(iii-v)"
folLOW‘ﬁrivially from the corresponding properties of the hadfon
‘amplitudes. , o | |

Thrdugh condiﬁion (ii),_our current amplitude inherits the
pathologies of the N-point befaefunction_meson boOtstrap.'.These iﬁclude
ghosts on the ieadiﬁg veétor‘meson tfajectéry at a‘: 0 (imaginary
mass stétes)and on lower trajectories8 (imaginary coupling conéianfs),_
.as well as numerqus:difficulties with the quahtum numbers of the particle
spectrum. However, we are'optimistic that many of the methods presented.
here can be adapted to mo?e realistic dual, zero-width hadron'modéls.

Our present discussion is based'on the simple meson bootstrap
which consists of products. of the orbital factoré, B(pl,pg,-'w,pN)b(N-point
vfﬁnctioné);;and the infernal symmetry factgrs,g-élir(xlxe-w-xN); which are
summed over all_permutations(except cyclic and .anticyclic) of the
particles. The singlé Beta-function for each term in the sﬁm' yields
a'nondegenerate factorized spectfum on the leading'trajectory and the
igsospin factor achieves the excluéioﬁ of all exotic resonances. It is
sufficient to consider one particular term with giVen ordering of the

hadrons, which we choose to bejpl,pe ,--upN. for definiteness.

.
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Corresponding to this ordering of the hadrons, there will be N terms in

the single current amplitudé; The orbital factors for these terms are

'designatgd by Vip(q) for the ordering Pl’PE’...?pi—l’q’pi’°"pN’ and

have their external line insertions (ELI), i.e., poles which dominate

for q, 50, normalized as described in I (Eq. 3.3). After constructing

" a single term V.. in Séc. IT.A, we show in Sec. IT.B how to take the

appropriate sum over 1 for the Chan-Patdn internal symmetry scheme.

Some general features of such sums are discussed in I (see Sec. III).

V,The:resulting amplitudes satisfy all the conditions (i)-(v), with the

exception of some violations of (iv) due to the pathologies of the
purely hadronic bobtstrap,-  |

In Appendix B wé ShOW’that; for N = 3 and.physical (q2 = 0)
photéns, the‘amplitude given here_isvthe séme as the photoproduction

amplitude given in Ref. 1. Hence our results may be considered as a

~generalization of the results of Ref. 1 to arbitrary ,q2 and N

Valﬁhough the -techniques usgd'are different.

A. Ofbital Factor

The firstvstep is'to_éalculate the ampiitude'for a vector meson
and N spinless hadrons.' To do this, we start from the (N + 2)-point

beta-function amplitude.h_é For the particular ordering of the particles,

'a,b,l,Q,Q--,N,~_it is convenient to choose the integration variables

appropriate to the'mﬁlti-Regge diagram of Fig. 1. Hence, we find6,

(2.1)
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Where the integrand is defined recursiﬁely,by

-, -1 o1 AL
IN+2(uO,...’uN_2) = ug ab (1 -_uo)vakl (1 - uoul)Ab-2

X (1 ;uo';.uN—E)'-AD’NT'l I’l\I+1(_u1:‘."b,uN_2‘) ’ . | '(‘2,2)
and where

aij = aij + b(pi PPt t D) %- 313 + bsij ,

(2.3)

- (o . - 2.1)

A5 1,5 7 %41, 3) f'(ai,j-i"'ai+1,j-1) -

In (2.4) the relation -

0 = o, .= &, + bmi . L (2.5)
is to be understood. From now on we éhoose,our units so that b = 1.
' ' | 2 2 9 S
We now take o, =1+ [q7 - mv_], Where. q =P, +P, 80 to

the pole at a,

, = 1, and extract the coefficient of the relative

momentum (r = P, * pb) in the residue.  Thué we consider

Mgy - e
B a) = dug "t diy o

T u B L “ [N o ....
*o LT w2py T 2pytuy e 2py Ty ey o)) Ty (g0 sy o)

(2.6) .
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correspondlng to the vector meson amplitude of Fig. 2. 1In 'IN+1’

‘ — ‘ | .
qai now becomes avl -?Vi + (q + Pl h--- + pi) . We ghall sometimes
write (2.6) in the alternative form™> v : o

N-1

R pm BN+l( V; 4<m v-) DR (2.7)

H T :
Bl,(q) = 9q BN+1 *e
R . m:l

Only the tragectorles which are dlsplaced relative to their usual Values

. have "’ been e 11c1tl 1nd1cated The symbol means all
} - xp y e sym %y, s<m
%y g for 1 <4 <m,and the'subscript R is.explained in

LAppeﬁdix A. - The trajectory displacements are Just those required to

cdmpehsate for the momenfum factors‘sQ_as 6 yield the correct asymp—‘
totig‘behaviof;_ The correct aéyﬁptotic béhaviér\is_assured;since we
started with a By, Qith‘the correct behavior.

The obvious way to construct the amplitﬁde fof a single
véénserved veétor cﬁrrent from the‘pUrély hadronié_amplitude " s

to take

2 . M
v ST

@) = ele®) —— |8 - 4B Y@, (2.8)

moa 7

‘where C(0) = 1. 'However, as seen in I, B" must be & function of

q2 if property (iv) is to be satisfied. Equation (2.6) clearly has a

C

_ natﬁral.conﬁinuation in q2 satisfying this prdperty; it can be

. regarded.aé'a function of all the Py with q"determined by energy

momentum conservation.
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. In addifﬁop we must assure that the apparent singularity at
qg': 0 in (2.8) does not occur in V. gince C(qe) = O(q2) would

eliminate the ELI poles;it.is,not permitted,and we must have
2, M@ = o(d) ' (2.9)
TR , : , : A

Fortunately this condition can be satisfied if the trajectories are

restricted so that
a. = a. , , : - (2.10)

or equivaléﬁtly;v'u
aK+i,N»ﬂ? BV

These restrictibns mean?that_the tfajeétory'corresponding tQ‘the massive
photon and k - adjacent hédfons ﬁﬁSt be fhé éame'as the trajectory for
the k hadrons aléne. We‘call'the softéphoton poles due to resonances
on suéh'trajécfories "Réggeized internai;liﬁe insertions" ;-see Fig. 3.
These are a natﬁral generalizatioﬁAof the insertion of a soft photon in£o
‘an internal line of a tree graph. - When (2.10) holds we fiﬁd that not
onhly does (2,9) hold, but in fact tuE(q) .E.;O (ﬁherproof is given
in-the.ApPendix).lu We néfe that ih ourvsimpi§ model with its restrictéd :
speCtrum..(E.lC) always holds. - B

‘vThglconfihﬁation in ‘q2 described aﬁove'and thé reStriction
2) =vl’kintroduce minimal‘ q2 dependence into (2;8)._ In fact we

cla

have explicitly verified that this corresponds . to no- subtractions in

- ~ .
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the q2* dispersion relation for the single term _Vi“, as required by‘

assumption (ii).l5v Therefore our final result is

vhMe) = F@D) 3@ (2.22)

where

,F(q2) = (2.12)

and the "off-mass-shell" vector meson amplitude Bi“v is given by (2.6)
with the éppropfiate cyclic permutatioh of the 'pi.l6
We note that the factorization property (v) follows;from the

factorization of the N-point beta functions. This is obvious for

leading trajsctories,and one can verify that the continuation in q2

17

" does not affect the spectrum of the lower trajectories either.
‘We have not yet investigated the divergence properties of the

BV B for_'Vn lying on'nonleading'trajectories; in coﬁsidering'these
n , ) v

vector mésons the degeneracy of nonleading trajecto}'ies8 must be taken
~into account. We beiieve that further véctor'meson poles can be included

in a manner analogous to the above which satisfies factorization and .

vV

ieads»to no constraints on the couplings f (except -E: £, = 1).
: S n : n n

B;_ Internal Symmetries-‘
We now show how to incorporate .SU(3) symmetry without obtaining
exoficvresonances [sU(n) for n # 3. can be treated in the ‘same

manner . ~ In I we noted that the absence of exotic resonances
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implies that only one quark llne (8-function contraction) is permitted

9,10,18"

between each adjacent pair of external momenta When octets and

singlets of external particles .are projected out one obtains the internal

symmetry factorg'

1 e N |
STr(h, A, cooh, ) - | - (2.13)
2 a ey Ay _ . - v
for the ordering of particles pl;p2,--°,pN in the hadronic amplitude.
The matrices A, are the usual SU(B) matrlces, ai =‘O,l,'--,8. The
factorlzatlon of the 1nternal symmetry factor is clear from the ©&-
functlon constructlon and is expllc1tly exhlblted by the 1dent1ty
L 8 B SR
1 1 \arl o
5 Tr(n, «+on, ) = (5 Tr(n, ==oa, A )IS TN, --on_ )]
27 A eyt C L 27 aganTe e, ey
(2.1&)

| Spec1flcally, we choose the external partlcles to be members of
the fseudoscalar nonet P(m, =, K;."'). (Roughly speaklng this is a
splmless quark model ) Among the lnternal trajectories we then have
the vector nonet V(w, D s ¢) and the tensor nonet

T( Tty Ag) }S\T

trajectories become exchange degenerate which is ﬁot a bad approximation;

*

Wlth this elegant but very approx1mate, model of the hadron
bootstrap, the symmetry factors for V “ are obv1ously
W = T 1 | -
v {a) = zoeln, oon,  E A, coon, 1 F(Q7) B.M(a)
1 aa, --aN 2 al ai_l 2 "a a; aN i
(2.15)

5 fb). When.exotic regonances are exclﬁded the V and T -
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{ER . and

® o (q)

| S - L (2.16)1
Py ’ B 1 aN

1}
<.
b E
Q) .
o
;f\
<

::forvtﬁebéiﬁgle §rdéring pl,.-;;pN of the hadrons and

; ‘ oA, ap = O,i,-;J8;19 Thus the abéence of exoticvresoﬁances'has allowéd )
us to introduce:preciseiy the nonet of cdnsérved currents whose charges

.icahwgeﬁéréte - SU(3)-

._Asfiﬁ'I, the'intérnal symmetry solufion canvbe fepresented by.a

duality diagram, Fig. L. -Moreover, one can give a further intérpretaﬁion v
of fhe’diagram.fbf the Qrbital part which has édnsidérable heuristic
appéal, particularly for the two—currént amplitudes.

~ The current is regarded as é no-qﬁark object that couples to.the two

quark system that has vectdr meson (bound state) poles. Hence the

’current4quark-quark vertex is always'to be thought of aé a form factor

| '. ‘ . 2
| S in q".

W
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IIT. TWO-CURRENT AMPLITUDES AND CURRENT ALGEBRA

In this section we discuss the construction of amplitudes for -

two vector currents (covariant correlation functions), -

Mgy

properties .

(1)

(ii).

(iii)

_ L vy . vy o .y .
9159) = M (aa,) £ M (ql,qg)J, with the following

(See I for normalization conventions):
Divergence Conditions:

(a) Charge-Current Density Algebra: -

‘ My, 1 n v '
for - qlu -0 ;.
(b) Photon Correspondence:
2

4, Mo (e,e) = ,O<ql

)

and similarly for q2v'

‘Generalized Vector Dominance: There are only simple poles

in q12 and q22, and the residues of the poles at

2 2 2 2 . |
-ql = mV (or- Ay = mV ) are products of s;ngle-current

n n
amplitudes for the production of a veétqr meson of mass m;
, ‘ v _ n

and coupling constants fV‘.
n

Regge Asymptotics: M+MV has Regge behavior in all subenergies

except those subenergies (ql-pk) that overlap the two-
E— - : A
)

current channel '[(ql +q,)" = t].
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(iv) Particle Spectrum: The only, singularities in the subenergies

are simple poles with polynomial residues in overlapping

Y ' ’ variables. The locations (masses) and quantum numbers of the

© . poles are determined by the hadron and single-current
amplitﬁdes.
(v)‘ Faétdrization (see'Fig. 6 of I)
(a) ”Hadrénic factorization" at poles in subenergies not

overlapping %,

(b) "Current factorization" at poles in subenergies over-

lapping 't? -

As these conditions indi¢ate, the singlé-currént amplitude Vu 
will Ee a basic input iﬁ the construction of the two-current amplitudes
M(isuv’ jﬁst as the hadfonic amplitudevwas the input for thé constructiqn
of the single-current aﬁplitude, Howeﬁer, the new features presented by
the nonvanishing divergence (ia) and the "current factbrization”

’(vb_)‘ make the connections of M( i)“" with V" far le‘,ssv trivial to
satisfy.. ,As demonstrated in I, these two cdndiﬁions[(ia) and (vb)]
' require the existence;oéAfixed polesdénd the extension ofvthe divergence

condition (la) to the kinematical region 'ql2 = 0. and"- qgg‘;:t -(to-within

- » ' terms o that vanish at ql” =0).

In spite of the strength of thevabové assumptions 1t may be

necessary-to impose the full strength of the current-density commutation

~

relations, which are
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1 DivergenceConditionsof'Currént Algebra:

(171) V(g +a,),

il

S T

qlu M(i) (ql’q2)

M(i)“v(ql,qg)qgv = % (1 % 1) V(g + 1)
for all qle; q22L Our constructibn'précedure ﬁill'aﬁoid the direct
use of (i*) S0 that it may be regarded as a heuristic arguﬁént fof _
the poﬁer of tHe'conditioné (i)-(v) in a possible eventuai proof of the
cuirent algeb?d donditién'(i*). . |

Oﬁr Eonstructionfof M(i)uv is limited to ﬁhe'single vector- .
meson (w, P, K*; etc.) approximation for the form faéfof F(qg)

(2.12), and the resultant single currént amplitudes 'V“(é) "(2;16),uwhich we.

constructed in Sec. II. We find it encouraging thdt in this approxima—
tion we can satisfy ‘hadronic factorization"completely (va) ‘and
vcurrentvfactorizatioh (vb) on éll léading trajéctories_with éEEEE
| current algebra (i*):_ The . isospin factor.for this first-order currenti
algebra solution is preseﬁtéd in Sec. III.B. . In Appendix B we'shQW'tﬁat for
physical COmptbn scattefiﬁg (N = 2) the amplifudéé ébtéined here are

in general the same as those given in Ref. 1.-

A.,_Orbital Factor _ S .
The first step is to calculate therémplitude,for two Vvector mesons and
N-hadrbns. We can conStrﬁct this amplitude fromvthe amplitudev B*  for
one vector meson and N + 2 additional particles. Aé before,wé go to

!

“a pole at « = 1 and extract the coefficient of the relative momen tum

A
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in the residue. The ekpressibn for the resulting tensor amplitude
8"V is more symmetrical if we sum over momenta to the right for one
meson (ql,'Vl)‘ and momenta to the left for the other (qg, V2). We

then find (for the fixed orderihg of the hadrons 1,2,--+,N)

J+1

B Y I T T v s
Biy (dp%) = -9 9 By, -y |2 E L Pn By, v, 1)
o n=j-1 : .

i-p
u |
- 2 . 1.
g m N+2(“vl,z<m )%
m=1
| S | |
j+1 - o ,
v :
, . i
E : jz::: Py BN+2(?vl,z<m > %n<e, v, 1)

=1 h=j-1
{BN+2(av S | % 1<, V, -1

- BN+2(aV L 2<j f =39y, Vy s av v, "l)]

(3.1)

Comparing (3.1) with (A.1) and‘(A.E);one sees that the only really new
feature is the g"’ term.
We now discuss a few features of this lengthy expression . in

order to clarify_its structure. The indices ‘i and j indicate that
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Vl is just to the left of i and V2 is Just to the left of J. To
avoid ambiguities for adjacent mesons (i = j), we adopt the convention
1Y v » VH ’ , . .

that B, (ql,qe) and B, (qg,ql) refer to the ordering with q,

to the left and to the right of e respectively. If the same trajec-

tory--which can only-be aV v --occurs 'in both sets of arguments in
) ViV :

the third term, it is Lowered by twb'uﬁitsu' The summations and the
inequalities for tﬁé lowered trajectories are undérstood‘to include the
momenta, q and qs in the approp?iate poéition. The feader may find
it helpful to draW‘diagrams such as Fig. 5 in order to keep frack of
the lowered trajectories. |

The divergences qlpBijuV and Bijuvq2V> behave rather

differently for nonadjacent . (i # j) and adjacent (i = j) vector mesons.

For nonadjacent mesons, the conditiéns'(2.10)>for the Reggeized internal -
line insertions can be satisfied independently . for bofh mesons, and_thg
presence of a'Secbndbmeson does not affect the vanishing of the di&er—
. gence for the first.l The reader shouid thus find very plausible the‘ 

identities

v HV o _ ; 129% (- ..f i £ ] | 2)
9, Byt = 0 By =0 (for 1 43), (3.2)
which follow directly from (3.1),(A.6), and identities similar to (A.4).
As pointed out in I, the nonadjacent-current terms cannot
contribute to the divergence (i”) due to its pole structure. Hence
the 5rbital factors for nonadjaceht current terms can be represented by

the divergenceless tensors

»
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M P aay) = e ) Fa)) By (e ae,)  (for 149)

(3.3)

The justification of thie construction is‘esSentially ﬁhe same as for
the single-current amplitude : “(q) Tne adjacent-current terms pose
the only essentially new problem and the remainder of this subsection lS.
devoted to them. ’ !

dFor édjacent vector mesons, the condition: (2.10) can also be
satisfiedlexcept when the two vector-meson channel (designated t-channel)
is involved. The difficultyLariees because'the’spins of the mesons are

fixed at one while the’ qig vary in the_bff-shell continuation (see

Sec. II.A). Therefore a.. and a depend upon g 2 and q 2,
. VlVI V2V2 1 2
but are related by (2.10) to ay y ,  which should be independent of
: 12
ql2 and qgg. This gives a nonvanishing divergence which we may
calculate by using (A.9) and (A.10) and assuming
- . . 2 :
(t) =a, =1+t -m,
RASNE | R
4y B M(ay,a,) = - 4 (B (0, - 1) - B )+ (m 2 - o?) o)
1P (Gdp) = dp Bl veet t Ay Lo’
(3.4)

where
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v

Q
Il

L (q2 * 2qlv)[BN+2(af - 1) _-BN+2]
. E:L p};IBN+2(a;<z,vé - 150y - 2)-E‘BN+2(dngﬂ,V2 T o - DI
’ (3.5)
Similar expressions hoid for Biivu(qg,ql) and g, divérgencés;
We note that for qlg 50 .one may explicitly verify that (3.4)
reduces to the (correctly normalized) contribution from ?hé.ELI of Vv,
on p, ,. This is expected, since the Bijuv “have the correct soft
poles eveh for i‘= J.
- The Bii“V are useful as basic building blocks even thopgh they
are not divergencelesséﬁd'hencenot pure.spinvone even for

2 :'qgg,:~mvg. In a moment we shall show how to construct appropriate

spin one tensors for q12

or q22 equal to mvg,vbut‘we‘first discuss
the divergence conditions for the adjacent~-current terms.
As we demonstrated in I, the divergence condition can be applied.
to a single adjacent-current term. The divergence condition on
Bwvy, .
M7 (ag,0,) is

Ty
M5

i

(a,,a,) = F(t) B;'(a, +ay) (5.6)

Miiev(ql’qe)gev = - F(t) Bi“(ql +a,) (3.7)

" which, by the theorem of I, hold for ql2 = 0, q22 =t and qég = 0,

ql2 =t respectively, or,by‘¢urreﬁt algebra, hold for all qu “and:

q22. From now on we choose fdr-definiteness i = 1, corresponding to
the ordering Qy,4,,P;,Pp, " *sby for M llV(ql,qg)_, and drop the

subscript labels.
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The - decomposition of the adjacent-cufrent term into two
"signature" amplitudes is a great simplification in constructing the
Chan-Paton type solution of this section. In such a selutioni one has
degeneracy between éinglet and octet frajectories (for ekample,‘fo andi

v

p) and M(+)u are the even and edd»parts of the same solution to

(5.6).and (3.7). However, more general solutions can be found by adding
. v b ca

any function D(i) (gl + Qs Pys ,pN) to the right-hand side of

(5.6) and_eib(t)“ to (3.7) and then finding separate solutions to

Hv The Pomeranchuk solution

these equations for M(+)uv and M(_)
in Sec. IV 1s an example of :such a procedure and it necessafily lies

outside Chan—Paton models.

1. Hadronic Part

We now discuss the part of Miiuv(ql;qg)v which contains the

vector-meson poles (hadronic part). As remarked above,

2 24 Ry : , o
,_F(ql/) F(q2 ) B, has ﬁhe correct divergences at %, =0

1

and 4o, - 0. < However, the residue of this tensor at

2 _ 102 (or 0.%-m?) should yield itable singl &
9" =m” Ay = oy s og yield a sultable single curren
amplitude for a vector meson and N spinless hadrons by condition (ii).
Consequently, the divergence With'respect to qlu (pure spin-one vector

| 2 2
L ' 2 2 ' 2 - , ~

and similarly at q2 = mV -for all ql . Clearly we can get zero

divergences with the use of the projection operator

EEPRVITAR !
_19 =

g™ - g"q" /4%, but this destroys the good divergence

qlu -0 and q2v - 0 and introduces unwanted singularities at
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qu = 0 and q22 = 0, violating (ii). Fortunately the nonsingular
— i A 1 12

projection operator 19““*¢p = gu“ - uqu /mV2 yields all: these

divergence. conditions.

It is easy to show that the divergence of the tensor
: 2 2y UV, : 2. 2y By §) u'v' O Q
Pla;7) Flay) B"(ay,05) = Fla,") Plap) Plap) w 87 £Aay),,
o S - (3.8)

with respect to g (or:-.q, ) is unchanged at q,: -0 .(or a, =—0).
pNTRY L2y : 1u 2v

For example, at qlu —aO, ‘f?(ql)u,u becomes gu,LL and the divergence

of B is VY which is unaffected by 'fa(qg)v,v because of CVC.
Moreover, the conditions

a; 7(aja,) = 0, for o, =m 5 BV(a,a)e,, = O

1n 1%2’ ’ 2 =~y 179%2/%, = %

5 .
for 9y = My,

required by assumption (ii) and CVC, follow immediately from the

divergence formulae for B,

R P S _ 2 2y, v
4B = 7 1Bloy - 1) - BL o (mym - apT)e T,
(3.9)
Qv 4k _ _ 2 2\ M
B 4o, ~ ql‘[B(at 1) B] + (mV q2 )CR
. _ . - . . ' 2 2 . .
Since we are interested in divergences at qi = mV with respect to
the other current, the precise forms = = of ci“ (3.5) and CR“

are inessential.
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Tobsimplify the general divergence eqﬁation_for 'EMV,Awe add

two terms that give nd contributions at the vector meson poles [or to.
"the right-hand sides of (3.6) and (3.7) for qlu -0 and Ay, —=0].

We give an explicit expression for this new function MH“V, which we

call the hadronic part because it has the cofrect vector meson poles

at qu = mV2 and - . is purely Regge behaved;

M ay,a,) = Fla”) Fla”) B

LR

F(a,%) F(a,%) B

+ [éﬁ&gg””'- ql“qg"][B(at - 2) - 2B(ey, - 1) } B] -

(%.10)

i

‘ yoHv 2y Ba Vo oy TR
Flay )F(a,)B"" - Fay")ayCp F(q2 Jeg ay”

SRR
9 95
5

mv

+ 2 F(qlg) F(qégj[B(at.- 1) - B]

+ 2mV2guv [B(at -2) - 2B(at - 1) + B]

In addition to the divergence condition (5.9),we’haVe used the double

divergence

it

‘qluBu.quV mvg[B(at - l) - B(at)] |

2

,(mvz;- q12>(mV - qgg)[B(at f'z) - EB(at‘-‘l) +-B(at)3’

+

- (3.11)
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to expand '00 B“ﬁg. Note that the ql“qgv term added to B"Y
precisely cancels the second term in (B.li). This hadronic amplitude has

the simple divergence ' : _ e

v

4y, 17 (ay00,) = m (e + 20 M)IB(a - 2) - B(ay - 1)]

2 v : ' v o _
toemy ZL p, [Bloy - gf.an<z,v2 1) - Bloy - 1, gy, ~ 1)

as computed. by ﬁsing the didentities in Appendix A.
What are the pathologies of this function? It satisfies

¢onditions (i)-(v) with only two important exceptions: (1) the

uy
r

9, M(+)“V # O(qlg), and (2) the function does not satisfy "current

-symmetric part of Mﬁ“v i1s unsuitable for M ,. since
factorization" on the trajectories belOW'thévleading‘trajectory.',In
‘view of the theorem in I it is a little surprising that such a
function exists, but we notice that the divergence does have poles in

the overlapping variables (or ) on the nonleading tfajec—
] A A |

tories. Clearly the.absence of these poles in the divergence, which

b : :
is a consequence of CVC and current factorization for all trajectories, -

plays the crucial role in forcing the fixed-power behavior into M(_)“V.

2. Current Algebra Construction
Aside from the immediate interest'in obtaining -a solution
consistent with current algebra (i), we find that such a solution gives

the simplest and most elegant means of satisfying the properties (i)-(v).
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We must introduce a fixed pole term . Mfé“v .to_éatisfy the divergence

try an amplitude_of the form

M) = wMY e e B . (3.13)

where the correction term MC“V cancels the divergence introduced by

MHHV, but does not affect the poles at .qi2_= mvg. Remarkably, we shall

'discover a correlation between M Y and MFPuV that is necessary to

C

cancel nonsense poles in «,. There are two equivalent approaches.

t

bEithér One'isklea to the correlation by insisting that MFPHV obey

current algebr@'or,by demanding the correlatioﬁ one 1s led to the

‘ currentvalgebra'fixed pole. Although thé latter suggests a derivatidn‘éf

the current algebra condition, we remind the reader that it is possible

M MY

that the correction o

could be made in an entirely different

manner. Alsoadditional terms as diSGussed'in Sec. 'V can be added to

the divergence; Only the imposition of factorization'can remove these
ambiguitiés.

| The reader whovﬁiShes to follow‘cloéely our construction
proceduré shOuld‘expand.eaéh of our tensors as follows :

uvo v T _ Lov 0o '
W = Pp Py Min * Py 91 Mm(l) T Py M(Q)n T % 9 M(Q)(l),

Hv MV ! Vo ooV
e TPy Mg yn TPl Myo) Y 4% Migy(o)

+

Wl M)t Meye) (5.24)
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where m is summed over 1,2,-:+N+1" and n is summed ovei
N,N-1,-:»2.. By equating the coefficients of,each tensor (pnupnv,
qlupnv, etp.), one  will discovér - that our equations.feduce tQ the
identities proven in Appendik A. In the discussion below, for each
divergence céndition we refer only to éppropriate.identity for the
coefficienf of .pﬁV.. |

Let us>c¢nsider constructing the solution to the current algebra
conditipﬁ.' In,terms of the "physiéal" amplitudes (the firét five terms

.of the expansion), these conditions become S ' -

i

' : N ) ‘ 7. 2 . . - )
ql-.pmMﬁn + 4, - ng(g)n = -F(t) N+1(ah<z,v' 1) + o(gl ), 3 (3-1ka)

1.

Aot P M+ dge ngm(l) = - F(t) BN+l(aV’ﬂ<m- 1) + o(q2 ) 5 (3.1Lp)
Moo= oMo+ 4y - @M,y = - a-p M .\ &F(t)B, . +0(q %)
) o "1 2 (2)(1) 1 mm(1) - VUONHL - UL (3.1ke)

I}

: o , ' -2
TG My, - F(8)B, + 0l );(3 .

M(E)(l) is arbitrary . - | _ v(ﬁ.lhg)

The fundamental difficulty is to find a form for the double

o 20 . : s e
flip amplitudes, N%m?-that does not introduce a-kinematical singularity

S s . . ' v :
(ql qg) into the 'single-flip agplltude& M( and  Mﬁ(l)’ through

2)n
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(3.1ka) and (3.14b). The unphysical amplitudes are of no help in this

problem, since they are of order ql2 (or q22). We-first consider

the divergenceless Regge part (MHuV + MCHV) that satisfies (%.1lka)
to (3.1ke) with F(ﬁ) set to zero. We take the hint from Ref. 1 that
the double-flip amplitudes might be proportional to F(qlg) F(q22) - F(t).

For the single vector dominated form factor (2.12) we have the expansion

2 2
29,9, - 4, g
Pla,%) P(a7) - F(t) = -|—252 + 2 | R()r(e;")F(a,”)

Wy

(3.15),

The idea is to let the term in this. expans1on proportlonal to qi 45

' sat1sfy . (3 lha) t0 O(ql ) ‘with a non51ngular s1ngle-fllp ampli-

tude and match the remalnder' w;th'the unphys1cal" amplitudes to give
precisely zero divergence. To carry out thése manipﬁlations in a
cbmpaqt manner we employ.the identities (A}9).to (A.11).

From the dlvergence (3.12) of the hadronic term MH“? we

_obtaln, from the coeff1c1ent of p

5 9" (79, *)F(a,")B(ey - 1) + (e, *)IB(a - 2) - B - 1)

+ ay - a,F(a, )F(a,)B(oy - 1)

3 oy 2y o
i R ‘ -
o » v ' \

= - ~my§-— [B(a, - 2) - B(\at -1)] (3.16)
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where any number of trajectories aﬂV " may be displaced. This

formula can also be derived from (A.11) with the aid of the identity

2
4

F(q,7) = 1+ —~§'F(q12),

From another form of (A.1l), obtained by adding
1 2

(59" + qiqg)[B(Q% -2) - B(o% - 1)] to,both‘s;des, we have (A.10),

(5 9,° + R %) B(a - 2) %ﬂ2:f< 9 Py Blog - 2, % o<~ L
. : m - .

2

Myl i ' oo -
= - — F () [B(a, - 2) - Bla, -1)] . (3.17)
In this form, we can see that F(t);Bcuv(at - 2) ‘hasvthe_same
divergence as MHHV, where B HV(OA -2) 'is-identical to_ e except
that all the aV V arguments are set to . at - 2 “and the g“v . term

is omitted. Consequently the difference of these two tensors,

e,®) R0 3 - F0) 3oy ), (5.18)

is a. pure Regge function with no divergence.
The only difficulty with the correction piece is that it
introduces vector-meson poles at t = mV2 into nonsense amplitﬁdés

20

an. An obvious way to cancel the poles in the nonsense amplitudes

is to add a fixed-pole term,°r F@)Bcuv(fl). With the additional term,
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t) BN+lguV,‘this fixed—pdwer contributiqn yields precisely the

divergences required by current algebra [(3.6) and (3.7).for arbitrary

" q."]. The réader;may verifylthis by the use of identity (A.lE).

Consequently a solution to the current algebra problem ,(i*ﬁ is the

symmetric and .antisymmetfic part of

VAV, - 2, wv _ _ 2%
(5.19)
, [VRY _ - L ‘ .
where FP ll( -1) = Bc ll( -1) BN 1 gV The external momenta in

Bysy %€ PpstttuPy 1,0y + dpsPy,ctt,Pys Just as in Bi”(ql +a,)-
 In addition to (1%) this solution'satisfiés'éonaitions (ii)-(v)

except curreﬁt factorization (vb). forvnonleading frajectories. ‘That

(vb) is satisfied for all resoﬁances on leading trajectories is most

easily seen by examining (3.19) as t -« for fixed In this

S.. e
| - ’ | Vlk_
Regge limit, the part proportional to F(t) has one less power of t

than normal and hénce contributes only to nonleading trajectories.

Further, from (3.10), one sees that all terms in BHHV ~except e

contribute only to nonleading‘tfajectories. Since B“y' factorizes

. SRRV REAY - . v : : . . .
;nto B"B "Mii vfactorlze§ ; for leading tragector;es av k'
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B. Internal Symmetries -
From I and Sec. II.B it is élear that the proper internal
symmetry factor for Mijuv(ql,qg) .with théAabsence of exotic resonances
is |

1 ’ 1 ' o _
= Trln, -« =0 IV SRR (Z A )n, --on_ 1 . (3.20)
2 aq as_1 a; aj-l 2 Xb aj aN _

To illustrate some of the properties of this solution, we

-

consider the contribution of the adjacent current terms to Mébuv(ql,qg),

N1 ' | By '
ab (qqu2 L '2' Tr[)& "')\a. >\ )( >\'b)>\' _"'. a.N]Mii (ql)qe)
. T 1-1
Ny L ;;} | QQ. LT
+ E: sTrln, = a. ekb)(ex )x : KaN]Mii (a5,95)
3 1 -
20 1 1 dabe L 2 -
Using the relation '[(§'Ka)"(§ xb)Jt = i _(§ Xc), w§ easily
» obtain I
MY uv COHVy
My (M M)

. S .
abe E: 1 ' 1 . 1
= ¢ 5 Tr[xai.f-x . (2 S a;” X, Lo

abce -1

1 Y : vuv -
X M5 (ag,0,) + My (9p59;)]

*
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From the divergence‘qgnditions (3.6) and (3.7) and (2.15) and (2.16)
we obtain |

: v _]; "_ o _
A, M_yap = 51+ 1) i Ve

which are precisely the required divergence conditions of current

algebra (i¥).

The degeneracy. of the .V and T nonets (for example, w, p,
fo, A2) is crucial for the success of this construcfion~ In the
construction of the orbital factor in,S¢Cu ITI.A it was necessary to have
1-a, = mvz, the mass 0ccurringfinv F(QQ). Since from two currents in
V, one can obtain Somejconfigﬁrations with v .leading trajectories
and: some with T-\leaging tréjectories, 'V apd"T ‘must be‘degénerate.

In 8SuU(2) .this corresponds ‘to

il

(@}
+

—
H
o>
N

o

0 (w) @ 0 (w)

07(0) @ 17(o)

11
l—J
—
=
no
~
-

i

0%(g,) + 17(p) + 2"

17(0) ® 17(p)

(the numbers are IG).v In other words a consistent nonet of trajec-

tories ‘can be constructed by ourimethods (and pérhaps generally) if
aﬁd'qnly if the Vv an@ T nonets are degenerate.

Nonvanishing curreht cqmmutators»imply nonvanishing di#ergenceé
for the . M(;J{V. This in turn impl?es fixed poles with residues singu~--
1ar in t and_the necessity of Regge trajectories with singular resi-

dues to eliminate these singularities in nonsense amplitudes. Now,if’
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the solution of the hadron.boofstrap‘has-no_exoticVtrajectories,we see
imﬁediately that thé‘commutator of two currents cén-bnly bejanqthéf
current of the same type (i.e., there is’no le' or 10 part in the
voctet-octet'cémmutator). The.foregoing; simbie.obsérvéiidns poin£ out
some effegts'of the hadron solution on the currents and current,‘
algebfa. |
 Finally, we méntion the duality diagféms'for the adjaceﬁt—current
amplitudes. As before the currént—quark-qﬁark vertex ié fo be_regarded
as.a;form factor F(qg);v In-Fig. 6 we have repfésehted the.cﬁfrent
algebra;solﬁtion offfhe>adjacent-current amplitﬁdé as the sum of Regge
exchange with fOrm'factors [F(ng) F(qgg)j and a fixed bolé piece which
"has an’ "exchanged”‘current, As the diégram ihdicates;there are noi
form factors in tizv [F(qlg) F(qgg)] forhtﬁe cufrent exchange piece;
but theré;is_a form factor F(t) where the "ékchaﬁged"~current'attachés

to the quark line.
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v. POMERANCHON_SOLUTION
: There is a solution’fof the;symmétric amplitude M(+)“? that
cannot have form factors [F(qlg)F(qég)} and therefore has no counter
ﬁart in purely hadronic or_éingle-currenf proceésses. For the Pomeranchuk
@rajectory sﬁch‘a solution is pérticularl& interesting for‘several

reasons. (1) It allows a Pomeranchon with aP(O) =1 to couple in

doublefhélicity-flip (nonsense) amplitudes at the forward direction

- (t = 0), as required to-yiéld a constant total photoproduction cross
,seétibn. (2) The existence of a Pomeranchon contribution that does

‘not fall rapidly for q2 — - (i.e., has no form factors) has some

2 (3) For
aP(O) =1, this solution gives no righ£ signature fixed poles (e.g.,

J = 0,-2,-++) for physical (qi2'= 0) Compton scattering. We remark,

- however, that.the_solution given below can be used forbany trajectory

in a symmetric amplitude.

In this solution, the possiblie kinematical éingularity

[(ql» qg);l] in single-flip amplitudes is avoided_by directly intro-

2q,+ q g2 4+qP-n?
1 2 _ 4. 2 2 — ' (1)
at -1 t - mP .

-where @, =1 - m, + 1.. This is just the term proportional to ql- s

t

in the factor

T
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- | , | 2 2 o
iy oy, 2a; - q a, 79, |
[F(a,2)F(a,?) - F(t)1/F(a, D)F(a®) = - —=—2 - L2 L
1 2.7 1 2 o -1 2( _ ]_)
‘ B - (N |
(4.2)

n
=

w22 : q.20.%/m. 2
- A - e A

=t L mV2,

which we introduced in Sec. III. In both cases, the leading asymptotié
behavior is unaffected. fn the symmetric afnplitudeg.(o&t - l)—l"is |
cancelled By the3signatufe factor in leading brdeg ahd fixed poles ;t

J = O,—2,-;- Aafe intro@uééd fo cancel the singularityvin loﬁer:orders.
By comparing the two expanéioné, one can see how.similar:this probleﬁ
is_tq the cﬁrrent—algebra problem. |

This time, we use the identity (A.9) in the form ‘

s e o : | R
zq,” Bla, -2 cq, Bla, - 1)+ ¥ - p_Bla, -2, -1
2% (at )+ 9 2. (o = 1) + 2;5{91 ?m .(at 1<n )

The resulting parameteriZatidn for M( )”V is the symmetric part of

+ .
By, o
MPom ) o
q2+q-2._'mP2 S . . )
v o pv _ 1 2 . “rn MV - _ My,
Mpom (912%) = Bpoy . . sz — B oy - 2) - By (-1

. e
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where.

v v,
B .

v ) v
Pom c

- g M -

_b’ boov v 2 2 2 _ ) L .
la)"a," +2¢77(a)" + ay" - mp")1[B(ay - 2) - 2By - 1) + B],
(4.5)
and -as in Sec. III,
. o |
BFP“?(-;) = B (L) - By, &

The first two terms in Mpomuv cancel_in the divergence and theffixedﬂ
pole piece gives a divergence which cahcels in the symmetric amplitude.
* From (k.4) and (L.5) one sees that"MPomuV has the same ELI

poles as BHV. Therefore, as discussed in I, the symﬁetric'function

MPémHV(Z? = j;: B; 5" (ay59,) - EE: [M?Omf;i(ql,qg) " MPomfgi(qngl)]
| N 1 |

(4.6)

has no ELI poles. Hence the Pomeranchon can be introduced with arbitrary
coupling strength, Co’ into I ; 0 Symmetric ampiitudes.‘ We note that
the above amplitude cannot be multipiied by the form factors F(qle)F(qgg)
: bécéuse~this wou}d introduce an unpermitted J = 0 fixed pole. (and -
Kronecker delta Singularities) at a right sigﬁature point in the purely

 hadronic process, VV - N . hadrons.
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For qle :.q22 - mP2 = 0, the fixed pole contribution to (k.k4)
vanishes. Furthex, from (4.5) one sees that only the 'lnphysical” terms
in B"Y are modified. Therefore in this caée B“V leads to-perfectly
'acceptable phofon amplitudes. This can also be seen directly from -

(3.4). We also note‘that;for N =2, (4L.6) is precisely the form of
the Pomeranchon céntributidn suggested iﬁvRef. 1.

Since one cannot have an I = 1 trajectory degenerate with the
Pomeranchon, this sblution necessariiy lies.outside the Chan-Paton
scheme and involves exotig resonances in cross channéls; Héwever,
unlike the Pomeianchon for pureiy hadronic amplitudes, we do not require
exotic trajectories entering into fhé same term as tﬁe_Pomerénchon.

Such a "hadronic" Pomeranchon contriﬁution-ﬁay alsb be present in the
two—current:amplitudé? with form'factors F(qlz)F(qgg), but it will
not contribute to forwa%d elastic Compton scattering, if aP(O) = 1.

A.diagrammaticrepreééntation of the.above-Pomeranchon solution
is given iﬁ Fig. 7(@). The fixed=pole part of (L.L) is represénted by
a "contact™ term with no form factors in 'qi2, similarly to the fixed—.
poie piece of the current algebra solution. We also see that our
Pomeranchon (like currents) should be thought of as a no;quark obt_]'ect.a5
The "hadronic" Pomeranchon. contribution can be represenfed as in
Fig. 7(b)--without ELI terms, but with form factors F(qlg)F(qgg)

and exotic resonances (four quark states) in crossed channels.23 The

‘close analogy between the‘Pomeranchon solution and thé current-algebra .

solution is apparent both in our construction and in the diagrammatié

representations.
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V. CONCLUSION.
First'we‘would like to mention several ways of modifying our
basic amplitudes - [(2.11), (3.3), (3.19), and'(u.h)] by adding

additional termsf ‘Since'the'tensor -

BV GV
a5y 9, 4, 8

' is'diyergenceless,kit can be multiplied by a suitable invariant.amplifude
and added to MY without affecting the diﬁergénces (i.e., the time-
time and tiﬁefspace commutators). In fact our basic amplitudeé have
zérovspaéé-space'commutat@rs,and‘these.tefﬁs can be uSéd to make them
‘nonzero.ll Any‘term 6f the form“ql2 #D(qlg)?u; ijv' falﬂv(qgg)qgg,
or a similar term for single-cﬁfrenﬁ amplitudes, 1s clearlyxaéceptable
and does not changé the divefgeﬁpes‘ (Tuv “should be:chosen'so as not
tﬁbaffect the ELI pdleé or leading ofdér factofization); |

The cogaition (2;10) on. the traﬁectories‘is crucial to our
construction and hasBeen assuméd througﬁout‘fhis paper. In our simple
model it holds, but in moré general modelsywﬁerelit may not hold one
apparently mﬁst resort fb brute force methods of satisfying the divergenée
'qoqditions. For examplé, for singlé;current amplitudes, one could édd
o V“ 'invarianf'amplitgdesvparameterized.by EetavfunCtions multiplied
’by‘tensors [(q- pj)piH - (q-,p;)pj“]?—noté that such férmg do  not .
fgontfibute‘at' a, -0 | | | | |

There ére‘aISO terms which affeét fheidivergenpes.. Terms

proportional td”'qg and ‘ql?q52  can be added to V" and. MY,
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respectively, without violating the requirements for physical photons.
It is more difficult to modify the divergences in other ways, but, for

example, terms proportional to B can be added to,-say, Mg(n):

TN+
where 9y * Aos Pys* Py are the external momenta in BN+l' .This,
adds a term proportibnal to qi- a5 to the 9 divergence. This
is completely consistent with the theorem of i,,since it does not
inﬁroduce poles in variébles bverlapping the tfchanﬁel into the
divergence.: | |

'More importantly,‘we should intrdduce'férﬁ'facforé‘with arbitrary
numbers of vectorfmeéoﬁ‘ ' pdlgs cbnsiétent“With ﬁhe vector mesons on.b
;he‘lowér trajectories inthe faCtorrzedbhédrén'solUtion. As we see from
Ref. 1,-the pr§blem of arbitrary fprm factors becomes quite inVolved
due to the neceésity of ayéiding anqéstor trajectbries. }Hoﬁever, the
?ssential point that F(ql?)F(qu).— F(t) can.be expanded into two
terms, one préportional to qi. ég and angther proportional to qlgqgg,

still holds, as one can demonstrate by a Taylor series ekpansibn. We

feel that this will permit general form faétoré_to-behintroduced in

Y

1.

mich the same manner as in Ref. 1. BUtvthis‘¢Onstruction_procedure.
should Ee‘develﬁped simultaneously with the implementation of the
correct corresbondénce to vector—meéonﬁprocesses [condition (iv)l and
factorizatiqn» (vb) on lower-trajectories.: | |

| Work is proéeeding én the sﬁcéessivé introduction of higher-mass
vector-meson pbles and factorization on lower trajec-

tories. . Cleariy, at some stage our brute force Methods must be'replaéed
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by a more elegant technique to obtain a. fully factorized solution in
the N-point beta-function model,

The_akial4veétor currents should also be studied in this model.

In the'special case of one axial current and three pions (N = %),

PCAC leads to the well-known condition on the trajectories

2 124
) + 3

5 We are investigating the problem of intro-

prm o

- ducing axial cUrrentsvwith pion-pole-dominated divergences into the

N—hédron @mplitude.

Beyond the scope of the N-point beta-function model with the
Chan-Paton iéospin factorA  vare the probléms of 5aryon
trajectdries, exotic resonances, and the Pomeranchuk. Mandélstam has
.discussédvthese ﬁroblems for the hadronic amplitude from the point of
view of a relativistic quark model.25 Here the form of the hadronic |
solution is far less cleay and the_attempt.to introduce currents may
help,tobdevelop this more realistic.zerq-width model. Clearly, one
musf replace the 8U(6) symmefry ofvthebpreseht Mandelstam modellO’2§

by a chiral symmeﬁry scheme that allows the pion mass to be zero with a

 finite' p-meson mass; if there is any hope of introducing both

reasonable vector and axial vector currents.
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" APPENDIX A -

We first give several alternative expressions for"Biu(q) and

' préve'the identity tuiH = 0.

From (2;7) we have
M) - MR e § o M o |
D I Ne P CHy S B )
correspond?ng to ‘the QrQering_of momenta pl’j."Pi;l;q’pi’i.f’pN
and the'choice'of variables similar to Fig. 2. The subscript R of -

the summafion indicates a sum over momenta ﬁo the right of q excluding

the momentum immediately to its left, Py 1 " . We may obtain directly

" a sum .L over momenta to the left of q by folldwing the steps

leading to (2.7) but with the anticyclic permutation of thé momenta

~ (which leaves BN%2: unchanged) :

\ _Biu_(q)_  = - qu“B_l‘\Iﬁ-l-f 2:‘;# pmM Bya1 Gmeg,y = 1) - | (a.2)

 Comparing (A.1) and (A.2) and using momentum conservation yields the

identity -

Bua = B (% pcn ~ D) P B Gy - 1) (4.3)
for all -m. This can alsovbe‘derived'direcfly from the integral
representation (2.1) and the ffivial relation

 +.(1 - U Uyt tu

u,t 195 m-l)

m-1

'(A.h)
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A further expreSsion can be obtainéd by converting the integrai
representatlon (2 6) into one correspondlng to the multi-Regge dlagram
with the momenta cycllcally permuted.one position to the right. This

procedure yields . (for i'= 1)

,l-

M) =
B () = - duy iy

0
: : o . S G g Ju.u

- (oM M . (T M oo « 1% .

(@7 + 20y ") (Lo-wy ) + (a7 + 2pyTJuy + 2py7 - T -, *
(1. __‘u;-,_)’u uN '
Y BBy T w uN " Ty (g0 oy )

This expfess1on is actually ﬁost ea51ly obtalned by beglnnlﬁg anew from
BN;E cycllcally permuted one position to- the right- from Flg 1. - The
expression (A.5) has the advantage of exhibiting eXplieitly . |
both soft pheton pole'tefms. | ‘

The tesﬁlt, qul“ = 0, may now be easily shown by uéingsthe

identity
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which.is trivially true'when the ul integraiﬁié’défined and is true

by analytic7gontinﬁation.elsewhere. Carrying out the -differentiation

yields
1

0

o 7 Quy - eduy o €Oy (l - wy) o+ Ay

(1 - vy )uguy

ulu2

(1 = uyJuy ey

+

e Mee TT TR, et iy) (a.6)

From (2.3), (2.4), (2.5); and (2.10) we obtain’

(q + pN)2

o 1 .
O oy = Pa(Fa et

and

' (A.7a) |

IR NN )

(A.7e) -

»

Notice that (2.10) was crucial in deriving (A,?a) and (A.7b)? Substi-

tuting (A.7) in (A.6) and comparing with (A.5) immediaﬁely yields

q B.* =o0.

poi

_ We now discuss identities uSeful for two current amplitudes.

_ Corresponding to the choicé of variables of Fig. 8, we consider
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0 = - du_-+-duy agé-iuo %(l‘; ﬁo)-a
| A o 'Av N~ 24] S
« (1 - u ul) <. (1 - u uN 2 B . }' N+l( -.{’uN-Q) ,

(A.8)

- where AVll = (QVil - avgl)_f a. D}fferentlatlng and using equat1§ns'

like (A.7) then gives
~1

o 1 S
j_ dugeeduy oo 4020y (9 + ) (1 - ug)
0 . , . : :

. O
it

L-u) ' 1 (1 -_uo)uoui'
ol o)t (Bt ) Ty

o I o1

Q- uo)uo"'PNQz,

a. * P - T (u ,;;., ) )
b Py I By [ W20 | 2’

+

2

Comparing with (A.5), we obtain

L. | | L
Ga” * 9 o) Byple - 1)+ }:I{ 9 Py N+2( A= L
- % a‘[B (¢ -1) -B_ 1 = - Las (o 4-1) ; (A.9)

_ 2 N+2 N+2- . -2 TN+2 1<z,vl_ D

 Several useful formulae may be obtained from (A.9).



s - UCRL-19222

. For example, éhoosing

. ‘v.‘ . : . . » 2 v ) 2
o = -1 = . ‘+(Q, +Q.) -1 = t-
| ~°‘le2 avlv2 G T ny
gives
Galra a)Bloy g -2) + Y a-p B (G =250 - 1)
29 T ) Py g, £ % Pn P\, TSN g

/

, : %(t' B r“ve)[1.31\1+‘2(°‘vl’\/2 - 2.") a .]SN+2(QV1V2 ;.l)] - (a.10) B

Rearranging of terms and using  t = 2ql -(§~ql,+ qe) + q22 gives

s . | .
Gap *q- ‘12)131\1+2(O‘vl'\f2 -1 z 9 Py BN+2(_O‘vlv2‘ 2%, b<m L)

12 oy '
= E(qz T )[BN+2(O‘le2 -2 - BN+2<%1V2- L o ()

‘Note that fdr »q22 = mvg we recover the identity tup = 0, TFinally
the current algebra identity,
2

1 <o | |
(Fag * 9y 9p) Byp(-1) + Z a7 By Bl AR 1)
‘ m- , ‘

- %Blm. T  (a.12)
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is obtained by taking the limit @ — 0. This identity is particularly
interesting because ;t‘relgtesv Brso vto_ By, - If one returns to.(A.B);
one sees that the right-hand side'of'(A.lQ) can be viewed as a surface

term at u, = 1 occurring for o = 0, which is the first nonsense point

in the left-hand gide. -
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APPENDix B - y
We demonstrate here that, for N =f3 and q2 = 0, the single-
current amplitﬁde.given heré is the saﬁe as the photoproduction.ampli-
tude of Ref. 1. FOrvsimplicity we neglect internal syﬁmetries and use
fhe simplified:fofmalism of I [Egs. (3.4%)-(3.7)] for physical
'phqtons. | | | |
| For N = 3 there isvjust one indépendent hadron ordering. We

- may choose

and hence

n

i

@) = 2oy - o) BH@) + 2 (e, - o)) BH()

Wi

no

+ oz (eg - ep) BM(a) +C ) . | , '» (B.1)

W

: 2 . - 2 '
We take s'= (g + pl) s b= (q + pB)-, and u = (g + P2)2 and

compute. Hls, the s-chanﬁél physical helicity-one amplitude. Using
e(l)-q = (1) p, = 0, we readily find for the kinematic-singu—

larity-free amblitude,
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R 1 "
A= gEH" = ¢2e (1) V() =
H ..
1 e, | :
- = (e, - B(1 ~a., =-a,)
T2 5 2 (e) - e5) s? T
22 3%(s,m " ,a7) | ° E :
+§(e -'->eA)B'('—Ot l—d)—‘g(e--e').]é(-o.c"-a')
3 v 2 17 i s’ 3 '3 2 t? Tu
+ ‘C[B(l - o at) +B(-a, 1 - qs)-- B(-ay, -o)] , (3.2). :
where ¢ is the usual Kibble function.  For q2 = 0,
)\% = '[sg - 2(n 24 qg)s + (i 2:_ q2)2]%. |
1 S ,
- s -m° = Q .=-(oc ‘+O£‘)
e 1 - s t u’
and we find,
A = 2—%[g(e' -e ) g(—a - a,) + g(e '- e )']“34(-01. o)
v v 31 3 s? t 3o 1/ s
+ E(e - e )]g(—oz ';oz') +CS(-oz" - .v‘-oz)]' | (B.3)
- 33 2 v Tw “s? t? Tu ’ :
where
~ ' ' -, o)
o, < o Do Tl
x? Ty’ ['(l -.axfa7 ?

y
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amplitudes for N =2 and q
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énd

S0y, =0y 0,) = Bl-oy, =o) + B(-oy, - a ) + B(0, - .

Equation (B.3) is equivalent to the result of Ref. 1 written in terms of

the charges.

\

Similarly, for the two current case. we calculate the'helicity

2. q22i= O and compare our results with

the Compton scattering amplitudes of Ref. 1.  The resultant parameteriza-

tionhfof the nonadjacent-currents term (contributing to I = 0 and 2

_in-thé t-channel) are

t

1-1 - § 2 Bl (s), - (W] ,

i

(B.k4)

Hllt5 f . % 2e2v§['aﬂ(5); f'aﬁ(u)]“‘?eg B[l - an(s), - qﬂ(u)] ‘,

which agree with Ref. 1 only for the double helicity-flip amplitude..

2 2%

Tn Ref. 1, the nonflip amplitude was given by -2t m " e B[—aﬂ(s), —aﬂ(u)],

Whiéh'résulted in an M =1 pion. Here an M =0 pion is obtained,

simply becéuse in the N-point beta function, all leading trajectories -

‘afe.parity singiets and hence M =0 trajéctories.' All other aspects

of Ref. 1, including the current algebra-amplitu&e, are equivalent to

the appropriate special’caées of our general solution.
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FIGURE CAPTIONS
Ch01ce‘9f varlgbles for _BN+2.
Choice of variables for B":
A Reggeized internal-line insertion. The double lines indicate
ény resonances in ﬁhe»familyzgenerated by the'trajectory a.

Duality diagram for currents. The current (no-quark sﬁate)

- couples tovector mesons (two-quark states).

The last By , 1in Eq. (3.1). The trajectories lowered by

one unithave their corresponding subenergies indicated.

Vector-meson exchange. with form factors [F(qlg) F(qgg)]

plus a current-algebra fixed (J = 1) singularity with F(t)
2 2

and no F(ql ) F(q2 ).

Pomeranchuk as no-quark state:(a) with no form factors and

J'=0 singularity;(b)”with form factors and exotic resonances

in the' crossed c¢hannels, but with'no ELI poles.

Choice of variables for Eq. (A.8).
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