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COMMON FEATURES AND DIFFERENCES BE-TWEEN FISSION AND HEAVY ION PHYSICS<*> 

W, J. Swiatecki 

Lawrence Berkeley Laboratory. University of California 
Berkeley. California 94720. USA 

Abstract - The macroscopic approach to fission and fusion physics is formulated. 
A minimum set of three degrees of freedom is described qualitatively .. The gross 
features of the potential energy in this configuration space are discussed. The 
problem of nuclear viscosity is mentioned and comparisons with liquid He3 are 
made. Some effects of large angular momenta are described. 

I - INTRODUCTION 

We are entering a new stage in nuclear 

physics. characterized by the availability of very 

heavy nuclear projectiles. It is a good time to re­

flect on the place of the developing field of heavy 

ion physics in relation to nuclear fission and. more 

generally. in relation to nuclear physics as a 

whole. 

During the 60 years of its history nu­
clear physics has had to contend with two limita­

tions and the historic role of heavy ion physics 

will be to relax them. These limitations have been 

so pervasive that we have almost stopped being 

aware of them. 

The se limitations are: 

1. The restriction of atomic numbers to less than 

about 100. 

2. The almost exclusive restriction of nuclear 

shapes to those close to a sphere. 

The introduction of accelerators for 

very heavy ions will relax both limitations. First. 

it will be possible to study at least transient nu­

clea·r systems with atomic numbers up to about 

<*>Supported by the U. S. Atomic Energy 
Commission. 

two hundred. Second, the enormous centrifugal 

forces created in off-center collisions of heavy 

nuclei will be sufficient to deform a nuclear sys­

tem away from its customary near-spherical 

shape into more or les s stretched-out configura­

tions. sometimes resembling even a dumb-bell. 

The extension of atomic numbers be­

yond a hundred may result in the discovery of 

superheavy elements in the vicinity of Z =: 114. 

Z r::: 154 - 164. and perhaps in some other regions. 

The consequences of these anticipated 

discoveries are already beginning to be .felt in 

theoretical chemistry and atomic physics. An 

even more fundamental consequence of the exten­

sion of the limit of nuclear systems from atomic 

numbers near 100 to atomic numbers near 200 has 

to do with the circumstance that the most intense 

electric fields occurring anywhere in the universe 

are to be found in the vicinity of heavy nuclei. 'The 

increase in atomic number from 100 to 200 in­

creases this highest field only moderately. but it 

so happens that it is in this range of atomic num­

bers that an atomic electron becomes highly rela­

tivistic and the atomic properties of very heavy 

nuclei will test the limits of quantum electrody­

namics under unusual conditions. 
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The advent of very-heavy-ion accelera­

tors will thus have an effect on chemistry, atomic 

physics and quantum electrodynamics, as well as 

on nuclear physics itself, to which I will now re­

turn. 

II - THE MACROSCOPIC APPROACH 

To me the distinguishing feature of 

heavy ion physics is its macroscopic nature. For 

the first time we will have nuclear reactions where 

both the target and projectile satisfy well the cri­

terion for a macroscopic approximation, namely 

A > > 1. A kind of nuclear macro-physics, based 

. on this approximation as a starting point~ will 

come into its own. 

This is to be contrasted with convention­

al nuclear reaction theory which, historically, has 

its roots in an idealization where the projectile is 

a structureless mass point. On the other hand it is 

the same nuclear macro-physics that is used in the 

theory of nuclear fission, and this is why nuclear 

fission may be used as a guide in formulating the 

frcunework of heavy ion physics. 

What are the central features of the 

macroscopic approach and what are the principal 

unsolved problems? 

In trying to answer these questions I 

would like to remind you that many problems in 

physics in general (not just nuclear physics) are 

solved according to a standard canonical scheme, 

which goes something like this: 

First then, what are the. relevant de­

grees of freedom in a macroscopic treatment of 

heavy ion and fission physics? 

The characteristic feature of a macro­

scopic approach is that collective rather than 

single-particle degrees of freedom become con-

. venient and relevant. This is saying no more than 

that if you have tens or hundreds of nucleons you 

will try to formulate your problem in terms of a 

few intelligently chosen groupings of the nucleon 

coordinates rather than of the whole set. This is 

a great simplification. 

A further simplification immediately sug­

gests itself in virtue of the relative thinness of the 

nuclear surface (the "leptodermous" character of 

most nuclei). Insofar as a nuclear system has a 

well-defined surface. that grouping of the nucleon 

coordinates which corresponds to the nuclear sur­

face is the most relevant set of degrees of free­

dom. Thus one will try to describe the state of 

the system in terms of the shape of its sur£ace 

and the development in time of this shape. 

In general many degrees of freedom are 

needed to specify accurately·the shape of a di­

viding or fusing nuclear system. There is a rule 

which suggests that for the fission of a nucleus in.;. 

to n parts, or in-the simultaneous fusion of n 

nuclei, about 9n - 4 collective degrees of freedom 

should be adequate for many purposes. (If each 

fragment is thought of as an approximate ellipsoid, 

three axes describe its size and shape, three 

TABLE I 

Guidelines for Solving Many Problems in Applied Physics: 

1. Isolate relevant degrees of freedom to be retained explicitly. 

2. Write down Equations of Motion (Schrodinger Equation) for these degrees of freedom. 

(a) Potential Energy Terms. 

(b) Dissipative Terms (representing the coupling to degrees of freedom not retained explicitly). 

(c) Inertial Terms. 

3. Solve the Equations of Motion, using whatever techniques are applicable (e. g. statistical, semi­

classical, or what have you). 

4. Compare with Experiment and re-cycle. 

,.-
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coordinates its location in space, and three Euler 

angles its orientation. This gives 9n degrees of 

freedom for n fragments. The minus four con­

strains the total volume of the system to a stand­

ard value, and the center of mass of the ·system to 

a standard location. ) 

For a binary process of ffssion'or 'fusion 

(n = Z) this rule gives about 14 degrees of freedom. 

One may surely go below this number without 

making gross qualitative errors, but I believe 

~ degrees of freedom is the barest minimum 

necessary to give the roughest qualitatively ade­

quate description of nuclear shapes relevant for 

binary fis sion or two -ion fusion. 

These degrees of freedom are some­

thing like this 

\ 

1. A separation coordinate, sayaZ' 

Z. A necking or neck-healing coordinate, say 

a 4• 
3. A mass asymmetry coordinate, say a 3• 

(The a's may be related. to but are not to be thought 

of as identical with the coefficients in a Legendre 

Polynomial expansion of the shape. ) 

The nuclear shapes described by these 

degrees of freedom can be displayed in a three­

dimensional space, of which Fig. 1 attempts to 

represent a two-dimensional section at constant 

a
3

. The asymmetry coordinate a 3 would stick 

out of the plane of the paper and would correspond 

to changing the mass ratio of the left and right 

sides of the shapes. 
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I. I • • I , 
Fig. 1. An illustration of fission and fusion shapes described by an elongation coordinate aZ and a 
necking or 'heck-healing coordinate a4' The asymmetry coordinate a3 (which would point into the plane 
of the paper) is held fixed. The scission lines for binary and ternary divisions are indicated. 
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The time' ~evelopm.ent of a collision be­

tween two heavy ions would be represented by a 

path starting som.ewhere on the right and pro­

ceeding to the contact (or scission) line. followed 

either by re -separation. fusion. or ternary di­

vision. depending on the conditions of the collision 

and other factors. Conversely. in nuclear fission 

one starts som.ewhere in the vicinity of the sphere 

and goes to the right. usually into the two-frag­

m.ent valley. but som.etim.es. perhaps. into the 

three -fragm.ent valley. 

If the problem. is treated quantum. m.e­

chanically then instead of paths we shall be dis-

cussing the solution of a Schrodinger equation in 

the a
Z

a
3

a
4 

space. with i4J(aZa 3a4 ) I Z repre­

senting the probability of the system. being in a con-
!!~ = Hoi. figuration specified by a Za 3a4 • and i dt 't' 

giving the tim.e developm.ent of the wave function 1jJ. 

In order to construct a dynarn.ical theory 

of the paths in a
Z
a 3a4 space. or to solve the 

Schrc5dinger equation. we shall need inform.ation 

about certain basic properties of the nuclear sys­

tems considered. This brings us to the second 

item. in the " Guideline s" in T able I: writing doWn 

the Equations of Motion. There will be three types 

of term.s to consider: 

Term.s 

Associated with 
tirn.e derivatives 
of the degrees of 
freedom. Relevant Quantitie s 

1. Potential Energy Term.s ZEROTH 

Z.· Friction. Dam.ping or 
Dissipative Terms 

FIRST Rayleigh's Dissipation 
Functionor iW(aZa 3a 4 - •. ) 

3. Inertial Term.s SECOND Inertia Tensor 
Ma.a.(aZa3a4··· ) 

1 J 

[The nurn.ber three of different term.s is no acci­

dent: it is associated with the fact that (m.acro­

scopic) equations of m.otion contain zeroth. first 

and second time derivatives of the degrees of free­

dom.. but no highe r. ] 

In classical mechanics the dissipative 

term.s m.ay be described by a quantity called the 

Rayleigh dissipation function (a generalized fric­

tion). In quantum. m.echanics the potential energy 

and the dam.ping te rm.s are som.etim.e s com.bined in 

a com.plex potential V(a Za 3a4 ) + iW(a
2

a
3

a
4

). The 

inertialterm,s in classical as well as quantum. me­

chanics give rise to a so-called inertia matrix or 

tensor Ma.a.(a2a3a4)' which describes the inertial 
1 J 

response of the system. to tim.e variations of the 

degrees of freedom.. In any case there are ~ 

pieces of physics to consider in m.aking a dynam.ical 

theory: 

1. Potential 

2. Damping 

3. Inertia. 

In the case of nuclear macro-physics the 

situation today is that we have a good understanding 

of 1. a little of 3. and very little of 2. I believe 

that in the future we will have to concentrate on . 

pulling up the inform.ation in Inertia and Dam.p~ng 

to a level thatm.atches our understanding of the 

Potential Energy. 

As regards our understanding of the nu­

clear potential energy. great progress has been 

.-
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made in the last few years, principally as a result 

of the success of Strutinsky's prescription for com­

bining macroscopic and microscopic theories. We 

are today in a position where we can calculate the 

potential energy of a nuclear system as a function 

of N, Z and the nuclear shape, with an accuracy 

of about ±1 MeV. This is 1 MeV out of a total 

binding energy of some 2000 MeV. 

What have we learned? The potential 

energy as a function of Cl'
2

Cl'3Cl'4 is given by a pock­

marked surface, consisting of a smooth part and 

shell effect pock-marks. The characteristic un­

dulations of the smooth part are generally of the 

order 'of tens of MeV, the pock-marks are of the 

order of a few MeV. The theory underlying the 

smooth part is well understood. The pock-marks, 

though not so well under.stood, are also beginning 

to be related to simple features of the nuclear 

shape. In particular the last year or two have 

brought the realization that major shell effects in 

the nuclear potential energy are closely related to 

certain features of clas sical orbits in a potential 

well. For example if the well is such that a classi­

cal orbit closes up on itself, then major magic 

numbers are to be expected. In any case I feel 

that the first step in building up a theory of heavy­

ion reactions is quite clear: to construct the po­

tential-energy surface as a function of suitable def­

ormation coordinates describing.colliding and 

fusing nuclei, using the Strutinsky method (im­

proved and refined where necessary). 

There will, of course, be a wealth of 

structure in the resulting potential energy maps, 

especially in the pock-marks. Let me just point 

out some of the most primitive features to be ex­

pected in the gross structure of the maps. 

There are four important features I wish 

to mention: 

1. The equilibration of the neutron-proton 

ratio. 

2. The existence of a critical mass asymmetry. 

3. The existence of two misaligned valleys. 

4. The effect of angular momentum. 

Equilibration of N:Z ratio 

The first point is rather trivial and I 

want to dispose of it quickly. It is that if two 

nuclei with widely differing N:Z ratios are 

brought into contact, a re -distribution of neutron 

and proton densities will take place such that an 

approximately uniform value of N:Z will obtain 

throughout the system. There will be slight devia­

tions from uniformity, and slight fluctuations 

around it, ,but it is a fair approximation to dis re­

gard these at first. For example, for tangent 

spheres of radii R 1 , R2 one may work out in a 

closed form an expression for the Z1 :A1 ratio 

of one of the nuclei divided by the Z:A ratio of 

the whole system: 

where e is the proton charge, r 0 is the nuclear 
. 2/ radius constant (with e r 0 equal to about 

1.2 MeV). "coeff" is the nuclear symmetry energy 

coefficient (about 30 MeV), and F is the following 

function 

According to this formula the smaller of 

two tangent nuclei will have a slightly higher N:Z 

ratio. but only by at most a few percent. (The 

greatest deviation of ~:I i from unity occurs 

near R1 :R2 = 0.3 and is about 6"/0 for A = 216. ) 

For some purpose s this charge re -distribution 

may be of importance, and there is experimental 

evidence for it both in fis sion and perhaps in heavy 

ion transfer reactions, but in my survey of gross 

properties I will not say more about it. 

Existence of a critical mass asymmetry. 

As regards the dependence of the gross 

potential energy on the asymmetry coordinate Cl'3' 

the most important thing to bear in mind is that 

there exists a critical ratio of masses of target 

and projectile. For mass asymmetries more ex­

treme than the critical (i. e. for a relatively light 

heavy ion and a heavy target) the target nucleus 

tends to suck up the projectile. For asymmetries 

less extreme than the critical {Le. for heavy ions 
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more neariy comparable with the target) the pro­

jectile will tend to grow towards equality with the 

target (see Fig. 2). Most heavy ion experiments 

.. 

Low Zo/A 
,~ 

.. 
ASV'MMETRY 

.Fig. z. An illustration of the dependence of the 
relative deformation energy on asymmetry. For 
light systems (low Z2/ A) asymmetric configura­
tions tend to become even more asymmetric. For 
high Z2 / A this is still true for very asymmetric 
configurations. but moderately asymmetric con­
figurations tend toward symmetry. 

_done to date lie on one side of the critical asym­

metry. Most heavy ion experiments of the future. 

in particular those aiming at super-heavy nuclei. 

will lie on the other side of the critical asymmetry. 

The critical asymmetry is therefore an important 

feature to bear in mind when extrapolating from 

past experience to future experiments with heavy 

ions. The existence of a critical mass asymmetry 

is a result of the competition between the electric 

forces and the short-range nuclear forces (ideal­

ized as a surface energy). and may be understood 

with reference to configurations of tangent nuclei. 

For a sufficiently small nucleus in contact with a 

larger one the large pressure caused by the sur­

face energy of the smaller nucleus tends to squirt 

matter out of the small nucleuf! into the big one. If the 

electrostatic energy were negligible this would always 

be the case: the larger partner would tend to suck up 

up the smaller one. For heavy systems. however. 

when the electrostatic energy is appreciable. the tend­

ency is reversed. except for extreme asymmetries, 

when the pressure from the surface energy eventually 

begins to dominate. 

There is more to this problem than I have 

indicated, in particular an inadequatelyurtderstood 

. qualitative· change ne ar Z 2 / Ao:40, but I will now go on 

to the third item. 

Misaligned Valleys 

The third important feature of the Nu­

clear Potential Energy maps in 1l'21l'31l'4 space is 

the existence of two (or more) valleys. similarly 

oriented but mis -aligned. Let me explain. Again 

think of a fixed mass-asymmetry, i. e •• a section 

through the Il'
Z

Il'31l'4 space along a fixed 1l'3. The 

nuclear shapes as functions of 1l'2 and 1l'4 are 

shown in Fig. 1. 

The simplest way to summarize the 

findings of many people who have investigated·the 

potential energy in spaces like the 1l'21l'4 space is 

to say that there are two principal valleys. as 

shown. One valley starts from the vicinity of the 

sphere. After a saddle. the energy goes down. 

but there is stability against changes of the necking 

coordinate for a fixed elongation coordinate. Be­

low this valley is a roughly parallel two-fragment 

valley corresponding to approaching or separating 

fragments. 

(Farther up there is a third valley. the 

Three-Fragment Valley. about which I will not say 

much more. ) 

How do the valleys fit together? I have 

shown an oversimplified sketch to give. you a hint 

of what the situation looks like. A plan and an end 

view of the potential energy surface as functions of 

Il'Z and 1l'4 are shown in Figs. 3a and 3b. 

I hope you can see the fission valley with 

its saddle and stable sphe rical shape and the mis­

aligned two-fragment valley. Between the two is a 

ridge running from A to C.· Remember also that 

on top of what I described are shell-effect pock­

marks. (One of these is shown: the magic hole H. 

.. 

• 
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• 

• Fig. 3a. A sketch of the potential energy landscape in aZ - a4 space, for a super-heavy nucleus. A few 
shapes are shown for orientation. The portion BC of the fission valley is separated from the portion 
AD of the binary valley by a ridge running from A to C. 

responsible for the stability of a super-heavy nu­

cleus. ) 

With this potential energy surface as 

background we can now sketch in a fission or a 
"... 

fusion path corresponding to a dividing or fusing 

system. In fission the nucleus deforms, goes over 

the saddle and rolls down the fission valley. In the 

neighborhood of point C equilibrium against 

necking-in is lost and the system is injected into 

the two-fragment valley. Because of the misalign­

ment of the valleys the injection is off-axis and the 

representative point will vibrate around the axis 

as it descends the two-fragment valley (or creep 

toward the bottom of the valley if there is appreci-

able damping). This vibration corresponds to 

changes in eccentricity of the fragments, i. e. ,.to 

fragment excitation. The excitation energy is 

roughly the difference in energy between points C 

and D. Experimentally it is typically ZO - 40 MeV 

and is eventually dissipated in neutron evaporation 

from the fission fragments. 

Now about fusion. The situation is anal­

ogous. We proceed up the Two Fragment Valley 

corresponding to approaching nuclei. At the point 

A, corresponding to tangency, equilibrium against 

an increaSing eccentricity of the fragments is lost 

and the system is injected into the fission valley. 

Because of the off-center injection there is 
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TE~NARY 
VALLEY' 

Fig. 3b. A view of the potential energy landscape 
in az - a4 space looking up the three valleys in the 
direction of the spherical system in the hollow H. 
Corning out of H one goes over the saddle S and 
rolls down the fis sion valley along BC. At C in­
jection into the binary valley takes place. 

vibration about (or creep toward) the axis of the 

fis sion valley. which would eventually lead to ex­

citation of the fused system. The amount of excita­

tion is roughly the difference between the energy at 

A and at B. 

An analogy to these fission and fusion 

paths may be constructed in terms of the path of a 

beam particle in a linear accelerator. Iznagine a 

linear accelerator consisting of two misaligned 

segments. Each segment has radial focusing (e. g .• 

quadrupole lenses). A short pre -accelerator (the 

fission valley) injects a particle into the main 

accelerating tube. which. however. is misaligned. 

Conversely, in fusion. a particle is sent back up 

the main accelerator and is then injected up-hill 

into the pre-accelerator. Because of the misalign­

ment. transverse oscillations are set up in the 

'beam at injection. These oscillations correspond 

to fission fragment excitations in the case of fis­

sion. or to the excitation of the fused nucleus in the 

case of fusion. 

The question of estimating the amount of 

excitation following a fusion reaction is one of the 

outstanding problems of heavy ion physics. especi­

ally when one is trying to make super-heavy nu­

clei. (If there is too much excitation one will not 

be able to make them.) Using the picture of mis­

aligned valleys one estimates excitations ranging 

from perhaps ZO to 60 MeV for a typical case like 

that of Z3Z Th + 76Ge (which is one of the most 

promising candidates for making superheavies). 

These estimates are, however. extremely uncer­

tain because of a crucial missing piece of iziforma­

tion--narnely. how large is nuclear viscosity. In 

other words. how strong is the coupling of the col­

lective degrees of freedom to the single particle 

degrees of freedom that are not displayed explicitly 

in a macroscopic treatment. You can probably see 

at once that too much damping, too much viscosity. 

will make fusion difficult or impossible. This is 

because two nuclei like Th and Ge. when brought 

into contact. do not in general feel a driving force 

tending to fuse them into a spherical shape. On the 

contrary. even though the nuclear forces tend to 

fill in the neck region. the strong electric forces 

tend to push the bulks of the two nuclei apart and 

cause re-disintegration. In terms of the Potential 

energy map in Fig. 3 this means that in the vicin­

ity of point B one is still some 10-15 MeV below 

the saddle at S and one is on a sloping part of the 

landscape. with a slope to the right. towards re­

diSintegration. In order to achieve fusion one 

would increase the bombarding energy above the 

contact energy (the coulomb barrier) hoping that 

this additional collective energy will carry, the sys­

tem ove r the s addle at S. If the re we re no vis cos -

ity--no conversion.of collective into internal en­

ergy--an additional 15 MeV might be enough. But 

.' 
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if the viscosity is large--if say nine tenths of the 

extra energy goes into internal excitation. then 

one might have to go to bombarding energies 

- 150 MeV above contact energy (coulomb barries). 

It would be like trying to make two charged drops 

of honey coalesce by banging them together with 

high energy. Most of the collision velocity would 

go into .heat. and after making partial contact the 

hot. charged honey drops would be torn apart 

again without ever reaching the spherical configura­

tion. 

So here we come across a central unan­

swered problem in heavy-ion physics. Are nuclei 

viscous like honey or mobile like water or mer­

cury? 

In hydrodynamics the distinction between 

extremely viscous and extremely nonviscous types 

of flow may be made quantitative in terms of the 

relative magnitude of the second and third term~ 

in the equations of motion. For large viscosity the 

dissipative terms dominate over the inertial terms 

(which may then be neglected). For small viscosity 

the damping terms are neglected compared to the 

inertial terms. A textbook illustration is the case 

of small oscillations of a viscous liquid drop of 

radius R. density p. surface tension '{ and co­

efficient of viscosity 1]. Such a drop. if distorted 

into a spherical shape. will either vibrate with a 

circular frequency w determined by '{ and p (if 

. viscosity is negligible). or creep back to the 

spherical shape with an e-folding time determined 

by '{ and 1] (if inertia is negligible). The ratio of 

the e-folding time to the circular period 1/w is 

given by 

e -folding time = .!2. 
1/W 5,,[2 

1) 

This ratio (or the 11 creep parameter" 1]/.J '(pR 

itself) may be used as a measure of the relative 

importance of viscosity. Here 1].,{. p are given 

numbers. and the dependence on the size of the 

system enters through R. If for R we put 
R - A 1/3 ( ·th -13 - 1'0 W1 1'0:::: 1.2 X 10 cmfor nuclei. 

or 1.93 X 10-8 cm fo~ water) we find that T1/T2 is 

proportional to A -1/6. For water at O°C one 
. Tt 40 24 

fmds T::: 1'6' If we put A = 10 molecules 
2 A~I 0 .• T1 

(R = 1.93 em). we fmd Tz = 0.004. and for such 

large drop's viscosity is negligible. But for 
T1 

A = 300, T2 ::: 15 and now we are in the extreme 

viscous or creepy limit. This seems to be the case 

for all ordinary liquids. The ratio is less for ether, 

and is considerably less for water at 100°C 
T1 

(T2 = 2.5). but we have here a. somewhat ominous 

result: as is well known in hydrodynamics viscos­

ity becomes dominant for sufficiently small sys­

tems. and for all ordinary liquids A = 300 is in­

deed small in this sense. There would be great 

difficulties in the way of making a superheavy ( !) 

drop of water with A :::: 300 out of two droplets with 

A = 232 and A::: 76 respectively (simulating the 
232 76 . Th + Ge reactlOn). Viscosity would in all 

likelihood prevent fusion of the drops before re­

disintegration caused by the coulomb repulsion. 

Now water may be an entirelymisleading 

guide to the properties of a quantum fluid like nu­

clear matter. We should be able to get a better 

order of magnitude estimate by considering another 

quantum fluid. namely liquid He 3. Inserting the 

density. surface tension and radius constant of He 3 

at low temperatures we find.· for A::: 300. 

~1 = 60.000 1]. where 1] is in poises. The viscos­

it¥ of He
3 

increases rapidly with decreasing tem­

perature, and one finds that T 1/T2 is 120. 24. 

1.4 at teniperatures of 0.04°K, 0.1°K, 10 K. respec­

tively. Nuclear temperatures of 1 or 2 MeV ·are ex­

pected to correspond to the lower range (0.04°K to 

0.1°K) and we again come out with the indication that 

viscosity would be dominant for systems with A=300. 

Table II summarizes these estimates. 

These estimates suggest extremely high 

viscosity £01' nuclear matter (except at very high 

temperatures of many MeV), but they have to be 

taken with reservations. First of all it is possible 

that at a sufficiently low temperature a Fermi 

liquid like He
3 

would become superfluid, with very 

low viscosity. and the above estimates should at 

best be used as a guide at not too low temperatures 

(corresponding to nuclear excitations at which 

pairing effects are destroyed). Secondly the vis­

cosities ordinarily calculated and measured for 
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TABLE II 

Ratios of e -folding Time to Vibrational Times for 
Drops of Water and He 3. 

Water 

p=1 g/cm3 • "(=75 dynes/cm. rO=1. 93X10-
8 

em 

at 
T1 

6=0·C: ,,=0.0179poise. T = 15 
2 

T1 
6=100·C: ,,=0.002S4poise. T =2.5 

2 

He 3 

p=0.OS2 g/cm
3

• ,,(=0.15 dynes/cm. 

at 

-S r
O

=2.43X10 em 

. * 6=0.04°K (correspondmg to 0.26 or O.S MeV) : 

T1 
,,=0.002 poise. T = 120 

2 
. * 6=0.1°K (correspondmg to 0.65 or 2 MeV) : 

T1 
,,=0.0004 poise. - = 24 TZ 

6=1°K (corresponding to 6.5 or 20 MeV)*: 

Tl 
,,=0.000023 poise. T =1.4 

Z 

*The conversion of the Kelvin temperatures for 
He3 to equivalent nuclear temperatures is not un­
ambiguous. The first figure uses the mass of He3 

as mass of the Fermion in the Fermi fluid repre­
senting He 3 • the second uses the mass of a quasi­
particle with an experimental effective mass equal 
to 3.0S times the mass of He 3. 

3 
He refer to very large systems. in which the 

mean free path of the. particle s (or quasi -particle s) 

is small compared to the dimensions of the system. 

For small droplets. when this condition is not 

satisfied. a discussion of damping in terms of the 

usual viscosity coefficient may be grossly inade­

quate. An extreme case that illustrates this point 

is the damping of a first vibrational level of a nu­

cleus. If this level happens to be the first excited 

state 'in the energy spectrum. then (in the absence 

of electromagnetic decays) the system would go on 

vibrating indefinitely in that state. with no damping 

at all. Thus for small systems at low temper­

atures. where level spacings are large and indi­

vidual levels stand out. the damping is no longer 

described by a viscosity coefficient and. in partic­

ular. may be very small. I wonder if one could 

throw some more light on the question of damping 

in small Fermi fluid systems by experiments on 

the properties of a mist of He3• consisting of 

droplets with A:"values of tens or hundred of mole­

cules. 

What else can we do to fill in the gaps in 

our understanding of the viscosity problem? 

BjJ6'rnholm has r~cently discussed the question of 

damping in relation to the presence or absence of 

vibrational levels in heavy nuclei (especially those 

with a spontaneously fissioning isomeric state). 

There will also soon be many heavy-ion experi­

ments which in one way or another will depend on 

viscosity. and from these we shall gradually un­

ravel the answer. However. there exists already 

a mass of relevant experimental data in the allied 

field of fission. which could be used to estimate 

the nuclear .visco~ity. These data are measure­

ments of fission fragment kinetic energies. especi­

ally in their dependence on Z 2/ A. For the heavier. 

nuclei in particular (i. e., for high Z2 / A) the sad­

dle point shape for fission is cylinder-like. or.even 

spheroidal. and this means that there is a consider­

able saddle-to-scission stage for which the dynamics 

will surely depend on the size of the viscosity. Thus 

if the descent from saddle to scission is creepy. 

little kinetic energy will be accumulated by the frag­

ments during this stage. and the observed fragment 

kinetic energies ought to be less than if the descent 

were free and mobile. Why then hasn't the theory 

of fission already provided us with the answer as 

regards viscosity? Because the relevant calcula­

tions for the viscous descent from saddle t~ sei's­

sion have not been made. Calculations for a non­

viscous descent of an idealized drop are ·available. 

and the results do agree fairly well with experi­

ment. One might take this as an indication that 

viscosity is small. but one cannot be sure. since 

one doesn't know how much viscosity the theory 

could $tand before a discrepancy with experiment 

would begin to emerge. 

..... 
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The calculation of the viscous descent 

from saddle to scis sion remains thus an out­

standing problem of direct relevance to heavy ion 

physics. 

Before leaving the subject of viscosity 

let me mention a related problem on which progress 

appears to be possible. This is the question of the 

drag or friction experienced by two nuclei passing 

each other in a grazing collision., hnagine two 

Fermi gases passing each other with a relative 

velocity Av. hnagine there is an area of contact 

1Tr2 (a neck or "window"). lasting for a time of 

the order of 2r/ Av. 

During the time this window is open par­

tic1es will.move to and fro between the two Fermi 

gases. Because there is a velocity mismatch there 

. will be a transfer of linear momentum equal to 

MAv every time a particle of mass M from one 

nucleus is captured by the other. The flux of par­

ticles across unit area in a Fermi gas with Fermi 

momentum P is 1Tp4/Mh
3

• and this leads to a 

drag force of (1TP
4
/h

3
) Av per unit area of contact 

between the nuclei, or to 1TP4/h3 as the "drag co­

efficient" per unit area. per unit velocity differen­

tial. The change in linear momentum of one of the. 

nuclei (equal to the change in the other) is (force) 

X ( . 1Tp4 2 2r 1 r 3 
tune) = ~ Av. 1Tr . Av = 41T (J\.F) P, where 

~"F = flip. These simple predictions disregard 

the fact that the exclusion principle may inhibit the 

transfer of nucleons from one nucleus to the other. 

It would be interesting to compare the properly 

generalized formulae for the grazing drag with 

suitable experiments. The relation of this to the 

problem of viscosity is that. as in the calculation 

of viscosity. this is a problem in the transport of 

momentum across a plane in a (nuclear) fluid. The 

difference is that the velocity field, instead of 

being characterized by a uniform velocity gradient 

(as in standard viscosity problems) is characterized 

by a velocity discontinuity. But it is the latter 

velocity field which. though rare in ordinary hydro'­

dynamics, is the standard initial condition for 

heavy ion collisions. 

In the meantime the problem of nuclear 

viacosity remains very unclear. Can one do any 

dynamical calculations at all before this question 

is cleared up? Not really--but there is a sort of 

half-dynamic. half-static stage which doesn't re­

quire a knowledge of damping terms. This is the 

problem of a steady rotation of a system without 

intrinsic change of shape. In this case the only 

. dynamical te rm, 

ergy of rotation. 

the only kinetic energy. is the en­

This brings me to the fourth item 

I wanted to discuss, that of the effect of angular 

momentum on the potential energy surface. 

Effect of Angular Momentum. 

We all know that if you spin a deformable 

object. say a fluid mass. it tends to flatten, and if 

you spin it too hard it will fly apart (fission). Some 

of you may be aware of a finer point, namely that 

usually. as you increase the angular monlentum, a 

fluid mass will go from a flat, exially symmetric 

equilibrium shape to a triaxial equilibrium shape -­

like an oval piece of soap--for a range of angular 

momenta before fission. What do we expect to 

happen to a nucleus as it is made to spin faster and 

faster? 

To discuss the equilibrium shapes of a 

rotating nucleus in a macroscopic theory we set up 

an effective potential energy (PE)eff(a2a 3a
4

' •• ), 

and look for configurations that make the effective 

potential ene rgy stationary: 

(PE) ff = PE + E t e ro 

= Ecoulomb + Esurface + Erotation + shells. 

The rotational energy E
rot 

(a2a
3

a 4 · .. ) that is 

added to the usual PE may be written as 

fl 21(1+1) 

where t:J is some effective moment of inertia of 

the shape in question~ As usual the problem of 

exploring (FE)eff may be split into first looking at 

a smooth background and then adding shell struc­

ture wiggles. Little is known as yet about the full 

problem with shells. On the Qther hand the smooth 

background has been explored more thoroughly 

(although many of the results remain unpUblished). 

I shall present a few of the results of making sta­

tionary the smooth part 
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(PE)eff = Ec.oul.omb + Esurface + Er.otati.on 

where in E t the m.oment .of inertia oJ is taken as r.o 
the rigid b.ody m.oment. 

1·0 

I W.ould like t.o give y.oU a bird' s eye view 100 \ 

.of what happens t.o this sm.o.oth part of the energy 

f.or a nucleus anywhere in th&-periedic table and f.or 

any ameunt .of angular mementum. Fer this pur­

pese it is c.onvenient te intr.oduce tw.o dimensionless 

numbers specifying the relative sizes .of the three 

energy cemp.onents: coul.omb, surface and rota­

tional. We pick the surface energy .of the spheri-

cal shape E(O) f as a unit and specify the 
sur ace 

am.ount .of charge on the nucleus by the usual fis-

sility parameter x 

x= 

.! E (0) 
Z c 
E (0) 

s 

where E (0) is the coul.omb energy of the spherical 
c 

shape. 

We specify the am.ount of angular mo­

mentum by y 

E(O) 
r.ot 

y= 
E (0) 

s 

where E~~t is the r.otati.onal energy .of a rigid 

sphere with the given angular momentum. 

N.oW I shall discuss the results in an x-y 

diagram, Fig. 4. This diagram says the foll.owing 

things: U you take any nucleus in the periodic 

table then, if there were no shell effects and if the 

m.oment of inertia were rigid, the nucleus would at 

first deform into a flat shape. The fissi.on barrier 

decreases with increasing angular motnentum and 

vanishes along the upper curve in Fig. 4. The 

middle curve shows the critical angular momentum 

at which the flat gr.ound state shape goes over into 

a triaxial shape. (S.ome .of these shapes are like 

slightly indented flattened dumbbells.) The dashed 

curve divides the x-yplane into tW.o regi.ons. T.o 

the right the saddle P.oint shape f.or the fissi.on .of 

the rotating dr.oP is stable against asymmetry, t.o 

the left it is unstable. N.ote that beyond x = 0.81 

the re are no triaxial shape s. 

o N ~ 

F'SSIL./TV 'f'AAAMIiTeft )( 

LllillT NUCLII SU .... WIIAVIES 

Fig. 4. A classificatien of rotating systems ac­
cording to the fissility parameter x and the rota­
ti.on parameter y. Triaxial equilibrium shapes 
disappear alt.ogether at x = 0.81, but are almost 
gone at x = 0.6. 

Let me illustrate the practical predic­

ti.ons that foll.oW fr.om this kind .of calculation. 

C.onsider a collision .of a heavy ion of 

mass M1 and a nucleus of mass MZ at impact pa­

rameter b and center-.of-mass energy Ecm' 

Fr.om c.onservati.on of energy and momentum it 

readily follows that the cl.osest distance .of approach 

.of pr.ojectile and target is given by rmin :-vhere 

(_b_-)Z = 1,. V(rm ) 
r . E 
mIn cm 

Here VCr) is the interaction potential between the 

nuclei. For a given value of rmin this is a 

. Z 
hyperb.ola when b is plotted vs E . (In such 

Z . . cm 
plets 1Tb IS pr.oP.ortIonal to a cr.oss secti.on.) U, 

f.or example, rm is ch.osen to be the sum of the 

radii .of the tw.o nuclei, rm = R1 + R Z' thec.orre-

sP.onding hyperb.ola divides the b Z vs E plane 
cm 

int.o tw.o regi.ons: distant c.ollisi.ons where the nU-

clei pass each ether with.out appreciable nuclear 

interacti.ons, and close C.ollisi.ons where nuclear 

interacti.ons take place (the c.orresP.onding 1Tb2 

\-' '~. 

i-· 
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gives then the reaction cross section). Because 

of the diffuseness of the nuclear surface and the 

finite range of nuclear forces, there is an inter­

mediate diffuse transition region of grazing col­

lisions. (See Fig. 5.) 

\ 

\ 

.t 
\ 

\ 

\ 

Fc«M&1I) "'LL 

Fig. 5. A classification of nuclear collisions in 
the b Z vs Ecm plane. Distant collisions give place 
to close collisions along a diffuse region of grazing 
collisions. Close collisions are subdivided into 
three regions, as shown. 

Z 
The b vs Ecm plane can be further sub-

divided by curves corresponding to loci of fixed 

angular momentum L. (Here L = fl.l.) Since L 

is given by 

L=b I 2E M 
'" cm reduced' 

we have 

1 
r-

cm 

For a given L this is again a hyperbola in a plot 

of b Z vs E . If now from the upper curve in cm 
Fig. 4 we read off the value of y "t (or L "t) crl crl 
at which the fis sion barrier has vanished, and in-

sert this in the above equation for b2., the re-

sulting hyperbola will divide the b 2 vs E plant 
cm 

into two regions, as shown in Fig. 5. To th~ right 

of the line marked B
f 

= 0 (where the fission bar­

rier B
f 

vanishes) the system.has too much angular 

momentum to stay together and collisions corre­

sponding to those values of b
Z 

and Ecm would lead 

to redisintegration without the possibility of com­

pound nucleus formation. 

To the left of the hyperbola marked 

B
f 

= 0 there exists a fission barrier and a com­

pound nucleus is in principle possible. This is 

because a finite fission barrier ensures the ex­

istence in configuration space of a potential energy 

hollow, which can keep an excited system confined 

in its neighborhood (for times which decrease ex­

ponentially with decreasing height of the barrier). 

Thus if the system gets captured in the hollow. a 

compound nucleus will be formed. (Its lifetime is 

an exponentially decreasing fuction of the distance 

from the critica.l. hyperbola marked B f :: 0.) But 

whether a more or less short-lived compound nu­

cleus would, in fact, be formed for collisions to 

the left of B f '" 0 isa different matter. It is a dy­

namical question of whether the colliding nuclei, 

starting off at the moment of tangency in some 

part of configuration space, would be captured in 

the potential energy hollow, or, on the contrary, 

whether they would miss it altogether or perhaps 

only pass through it without being captured. 

Also shown in Fig. 5 is the hyperbola 

corresponding to the angular momentum at which 

the fission barrier has become equal to the binding 

energy of a neutron (or proton, whichever is lower). 

In this general neighborhood the de-excitation mode 

of a compound nucleus (if one were formed) would 

change from fission to particle emission and the 

compound nucleus. having survived the l"isk of fi 5-

sion. could be detected as such. There are indica­

tions that in some cases (e. g., ZONe + 27 AI) the 

curve ABC does indeed predict the approximate 

energy-dependence of the cross section for- the 

formation and survival of a compound nucleus. 

One should, however, remember that, as pOinted' 

out above, the prediction of the formation of a 

compound systeln is outside the scope of thecon.­

siderations on which Fig. 5 is based. There is, 

in fact, a further curve, or family of curves, in 
2. 

the b vs E cm plot. yet to be worked out on the 
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basis of the dynamics of fusion. which will de­

scribe the compound nucleus formation cross sec­

tion. Only if this critical curve happens to be en­

tirely above the curve ABC (i. e .• if formation 

imposes no limitation) can the latter curve be ex­

pected to represent the cross section for the for­

mation and survival of a compound nucleus. About 

the as yet undetermined critical curve (or curves) 

for compound nucleus formation we only know that 

it must lie below the B
f 

= 0 hyperbola (and that in 
20 27 . 

some cases. such as Ne + AI. It seems to 

lie above the B
f

:::: Bn hyperbola). But the calcu­

lation of the critical condition in a general case 

remains. as far as I know. an unsolved problem 

in fusion dynamics. 

Let me sUIYlmarize the main points of 

my talk. 

1. Heavy Ion research is expected to have an 

impact on chemistry. atomic physics and 

quantum electrodynamics. as well as on 

nuclear physics. 

l. Within nuclear physics heavy ion experi­

ments will relax two age -old limitations: 

atomic nUIYlbers less than about 100. and 

near-spherical nuclear shapes. 

3. Nuclear macro-physics based on exploiting 

A > > 1 should come into its own. 

4. The first step in the new field is obvious: 

the working out of potential energy sur­

faces as functions of the degrees of free­

dom (three or more in number). 

5. More difficult but essential steps are: 

understanding damping effects (viscosity) 

and effective inertias in dynamical prob­

lems. 

I have been able to mention only a few 

of the outstanding problems in fis sion and fusion 

physics. I have biased my talk toward macro­

scopic aspects which I believe are the distin­

guishing features of heavy ion physics. I hope 

other speakers will complement the picture by 

stressing the microscopic approach which is. in 

principle at least. the more fundamental one. 
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