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Analyzing rare mutations in metagenomes assembled
using long and accurate reads

Marcus W. Fedarko,1,2 Mikhail Kolmogorov,1,2,3 and Pavel A. Pevzner1,2
1Department of Computer Science and Engineering, University of California San Diego, La Jolla, California 92093, USA; 2Center for
Microbiome Innovation, University of California San Diego, La Jolla, California 92093, USA; 3UC Santa Cruz Genomics Institute,
Santa Cruz, California 95064, USA

The advent of long and accurate “HiFi” reads has greatly improved our ability to generate complete metagenome-

assembled genomes (MAGs), enabling “complete metagenomics” studies that were nearly impossible to conduct with short

reads. In particular, HiFi reads simplify the identification and phasing of mutations in MAGs: It is increasingly feasible to

distinguish between positions that are prone to mutations and positions that rarely ever mutate, and to identify co-occur-

ring groups of mutations. However, the problems of identifying rare mutations inMAGs, estimating the false-discovery rate

(FDR) of these identifications, and phasing identified mutations remain open in the context of HiFi data. We present

strainFlye, a pipeline for the FDR-controlled identification and analysis of rare mutations in MAGs assembled using HiFi

reads. We show that deep HiFi sequencing has the potential to reveal and phase tens of thousands of rare mutations in a

single MAG, identify hotspots and coldspots of these mutations, and detail MAGs’ growth dynamics.

[Supplemental material is available for this article.]

Introduction

Deep DNA sequencing and rare mutations

Representing a species using a “reference genome” alone is an in-
herently limited approach, because any population of a species—
even in an isolate (Leyn et al. 2021), let alone a metagenome—
hasmutations with highly variable frequencies throughout the ge-
nome. In the past decade, deep DNA sequencing has enabled stud-
ies of diversity in cell populations that represent a departure from
the “reference genome” concept (Wilm et al. 2012). These studies’
foci span many areas, including viral quasi-species (Henn et al.
2012), bacterial strains (Toprak et al. 2012; Rugbjerg and
Sommer 2019; Leyn et al. 2021), cancer evolution (Gerlinger
et al. 2012; Andor et al. 2016), cell-free DNA (Fan et al. 2008), fo-
rensic applications (Jäger et al. 2017), and somatic mutations
(Schmitt et al. 2012; Jaiswal et al. 2014).

Previous experimental evolution studies have greatly contrib-
uted to our understanding of mutation rates and the emergence of
novel bacterial strains (Barrick et al. 2009). However, they have
mainly focused on relatively frequent mutations (e.g., mutations
with frequency exceeding 1%) in isolates rather than in metage-
nomes. Recent studies have shown the importance of detecting
rare mutations (Toprak et al. 2012; Leyn et al. 2021; Zlamal et al.
2021): The tasks of identifying rare mutations in a microbial pop-
ulation and monitoring how some of them evolve into frequent
mutations are important for understanding the dynamics of the
acquisition of antibiotic resistance in a pathogen. For example,
the presence of a strain with a drug-resistant mutation with a pop-
ulation frequency of 0.1%—a rare, albeit nonzero, frequency—
may lead to faster emergence of drug resistance in this population,
compared with a population without a single microbial cell carry-
ing this mutation. However, sequencing errors in reads often pre-
vent the detection of rare mutations, particularly when the

mutation frequency is less than the error rate in reads (Wilm
et al. 2012).

Short-read DNA sequencing has greatly contributed to the
detection of rare mutations (Salk et al. 2018), but phasing these
mutations using short reads alone remains challenging: Short-
read metagenomic studies rarely result in the complete assembly
of even a single metagenome-assembled genome (MAG) (Nurk
et al. 2017). The recent emergence of the long and accurate
Pacific Biosciences (PacBio) high-fidelity (HiFi) reads (Wenger
et al. 2019) has led to the era of “complete metagenomics” by en-
abling complete or nearly complete assemblies of hundreds of
MAGs from a single HiFi data set (Kolmogorov et al. 2020;
Bickhart et al. 2022; Kim et al. 2022). This shift allows fundamen-
tally new possibilities in the analysis of metagenomes.

Identifying rare mutations in metagenomic data

Any attempt to identify rare mutations must be mindful of their
false-discovery rate (FDR): the fraction of identified mutations
that are false. In general, a sequencing technology’s error rate is
not a single fixed value: Error rates in reads differ depending on
many factors (Wilm et al. 2012), for example nucleotide substitu-
tion types or sequence-specific errors (Nakamura et al. 2011;
Wenger et al. 2019). Identifying rare mutations is therefore a diffi-
cult problem that may result in a large FDR.

LoFreq (Wilm et al. 2012) is a variant caller that has been
shown to perform well for short-read sequencing data (Wilm
et al. 2012; Sandmann et al. 2017; Kille et al. 2021); however, its
usual reliance on Phred quality scores limits its applicability to
HiFi sequencing data, for which Phred scores are not always avail-
able (Fukasawa et al. 2020). If Phred scores are not available,
LoFreq’s “LoFreq-NQ”module attempts to learn error probabilities
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for the 12 nucleotide substitution types (A→C, C→A, A→G, etc.);
these error probabilities are used to inform variant calling in lieu of
Phred scores (Wilm et al. 2012). Although useful, this approach
makes the assumption that the probability of a given substitution
happening owing to sequencing error—rather than real variation
—remains constant for all positions in the genome. This assump-
tion will almost certainly be broken in practice because the effects
of a given single-nucleotide mutation vary depending on the posi-
tion at which this mutation occurs. For example, in the standard
genetic code, the mutation A→C is synonymous for the third po-
sition in the codon CTA, because both CTA and CTC code for leu-
cine; however, this same mutation is nonsynonymous for the
third position in the codon CAA because CAA codes for glutamine
but CAC codes for histidine. The probability with which we as-
sume that A→C could happen owing to sequencing error could
thus be adjusted to account for this biological context; we contend
that knowledge about this sort of “context-dependent” informa-
tion should improve the quality of mutation identifications.

Other technology-agnostic methods besides Lo-Freq NQ,
such as DeepVariant (Poplin et al. 2018), could also be applied to
the problem of identifying mutations in HiFi metagenomic data;
however, there remains potential to take contextual sequence in-
formation into account, as discussed, to further improve the algo-
rithms used by these tools. Additionally, machine-learning-based
methods that have been trained on human sequencing data may
not perform similarly well for metagenomic data (Sapoval et al.
2022).

Simulation models of sequencing data

The MetaSim simulation model of Illumina reads (Richter et al.
2008), which was used in benchmarking LoFreq (Wilm et al.
2012), has proved to be valuable in many applications; however,
it—and other simulation models—still has some limitations. For
example, extant simulationmodels do notmodel the cross talk be-
tweenwells in the patterned systemon Illuminaplates (Wang et al.
2017) or dimness owing to slowly amplifying clusters (affected by
insert size or GC bias). Many bioinformaticians may not be aware
about these small variations in error rates, because they hardly af-
fect base-calling in reference genomes; however, they nonetheless
affect the identification of rare mutations and thus make estimat-
ing the FDR of these identifications challenging.

Developing realistic simulation models for HiFi reads repre-
sents a similar challenge (Ono et al. 2021). There have been recent
developments on this front, including Sim-It (Dierckxsens et al.
2021) and HIsim (Myers 2021; Suzuki and Myers 2022); however,
we will propose an approach for estimating the FDRs of identified
mutations that can bypass the need for a simulation model and
should be applicable to arbitrary long and accurate sequencing
data.

Phasing rare mutations in HiFi metagenomic data

Given a set of identifiedmutations in ametagenome, the next step
in assembling strains of a microbe is phasing—for example, an-
swering the question of whether identified mutations at N posi-
tions within a MAG represent N alternate strains of this MAG
(each with a single mutation), a single alternate strain with Nmu-
tations, or something in between. This strain separation problem
(Vicedomini et al. 2021) is important because strainswith small ge-
nomic differencesmayhave vastly different phenotypes: for exam-
ple, although some Escherichia coli strains are harmless, othersmay
cause disease outbreaks (Frank et al. 2011; Vicedomini et al. 2021).

The detection and phasing of rare mutations are prerequisites for
numerous downstream applications, such as monitoring rare
drug-resistant subpopulations (Leyn et al. 2021). It is therefore im-
portant to identify as many rare mutations as possible—and to
determine which of them are carried together—while simultane-
ously controlling the FDR of these identifications.

We define a strain as a unique haplotype supported by the
available sequencing data, an approach analogous to that taken
by Nicholls et al. (2021) and Vicedomini et al. (2021). The field
of metagenomic phasing is still in its early stages: Although previ-
ous studies have succeeded in separating strains at the level of in-
dividual genes or other “genomic features” (Cleary et al. 2015; Luo
et al. 2015; Quince et al. 2017; Nicholls et al. 2021), strain separa-
tion at the level of a long region or even a complete genome is not
yet a solved problem, especially for high-complexity metage-
nomes (Vicedomini et al. 2021).

Even though long-read technologies promise to resolve com-
plete genomes of strains within a bacterial community (Bertrand
et al. 2019; Bickhart et al. 2022; Feng et al. 2022; Sereika et al.
2022), many long-read assemblers suppress rather than reveal
small variations to achieve high assembly contiguity (Koren
et al. 2017; Kolmogorov et al. 2019; Bickhart et al. 2022).
Exceptions include the metaFlye assembler (Kolmogorov et al.
2020), which includes a “strain mode” (the ‐‐keep-haplotypes
flag) aimed at strain detection, and Strainberry (Vicedomini et al.
2021), which starts from a “strain-oblivious” assembly and itera-
tively phases it to generate a “strain-aware” assembly. A critical fac-
tor for the success of strain separation in both metaFlye and
Strainberry is the amount of variation between strains—these tools
typically succeed when the percent identity between the strains is
below 97%–99% and when there are very few (typically two to
three) strains. Another important concern is the FDR of the iden-
tified rare mutations, because false-positive mutations mislead
strain separation tools. The success of strain separation is thus de-
pendent both on the reliable identification of rare mutations and
on the ability to control their FDR.

The strainFlye pipeline

Here we present strainFlye, a pipeline for the FDR-controlled iden-
tification, phasing, and analysis of rare mutations in MAGs se-
quenced using long and accurate reads. Our approach draws on
seemingly unrelated yet very relevant prior work on estimating
the FDR of peptide identifications in proteomics. The first ap-
proach to peptide identification was proposed in 1994 (Eng et al.
1994) and was followed by many other tools addressing the
same problem. However, it remained unclear how accurate these
tools were and how to benchmark them: The target-decoy ap-
proach (TDA) for computing the FDR of peptide identifications,
which revolutionized the field of proteomics, was introduced years
afterward (Moore et al. 2002; Elias et al. 2005; Elias and Gygi 2007;
Käll et al. 2008). Although FDR evaluation is now the requirement
in proteomics, this is not the case in studies of rare mutations in
metagenomes. As accurate sequencing technologies enable the
identification of thousands of rare mutations within complete
MAGs, more than can be easily investigated manually, we believe
that applying FDR estimation to this process will become a require-
ment. We describe an analog of the TDA for evaluating the FDR of
identified raremutations in ametagenome and further extend this
idea by developing a context-dependent TDA.

We show that deep HiFi-based sequencing can reveal tens of
thousands of mutations (with controlled FDR) in a MAG and that
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these mutations can form hotspots (that may point to selection)
and coldspots (that can be used for designing drugs targeting
such regions), and we present new methods for phasing these
mutations.

Results

Demonstrating strainFlye

Figure1 illustrates the strainFlyepipeline. Theonly two required in-
puts to strainFlye are a HiFi read-set and the contigs (in the case of
metaFlye output, edge sequences) assembled from these reads.
strainFlye can also optionally take as input an assembly graph indi-
cating contigs’ adjacencies for use in adjusting one of the align-
ment filtering steps (Supplemental Material, “Read alignment”).

To benchmark strainFlye, we used aHiFi read-set from a sheep
gut metagenome (Methods) (Kolmogorov et al. 2020; Bickhart
et al. 2022). This read-set is herein referred to as “SheepGut.” We
selected this data set because it resulted in, as of writing and to
our knowledge, the largest number of complete MAGs among all
metagenomic data sets analyzed so far (Bickhart et al. 2022). The
data set includes 22,118,393 reads with total length 255,708,236
kbp and average length 11.6 kbp.

We assembled the SheepGut data set using metaFlye
(Kolmogorov et al. 2020). The resulting assembly graph includes
78,793 edges (468 of which have lengths of at least 1 Mbp) dis-
tributed across 45,988 weakly connected components. The
Supplemental Material, “Assembly graph” (Supplemental Fig. S1),
provides further details about this assembly graph and how we
ran metaFlye.

We classify a contig as high-coverage if its coverage is at least
minCov (default value 1000×) and long if its length is at least
minLength (default value 1 Mbp). We selected three high-coverage
and long contigs fromthe SheepGutmetaFlye assembly graph to il-
lustrate various steps of strainFlye’s pipeline. These three “selected

MAGs” are herein referred to as CAMP, BACT1, and BACT2, as ab-
breviations of their respectiveKaiju (Menzel et al. 2016) taxonomic
classifications:Campylobacter jejuni, Bacteria, and Bacteroidales. The
SupplementalMaterial, “Assemblygraph” (Supplemental Table S1;
Supplemental Fig. S2) and “Coverages and deletion-rich positions”
(Supplemental Figs. S3–S5), provide further information about
these MAGs and their coverages.

The bulk of this paper’s analyses focus on the SheepGut data
set; however, we provide a brief demonstration of strainFlye on
another HiFi metagenomic data set (referred to as “ChickenGut”)
in the Supplemental Material, “Demonstrating strainFlye on the
ChickenGut dataset.”

Computing mutation spectra

We use the termmutation spectrum to refer to the collection of mu-
tation frequencies across all positions in a contig. We found that
applying LoFreq (Wilm et al. 2012) to the large SheepGut read-
set was time-consuming (Supplemental Material, “Applying
LoFreq to the SheepGut dataset”). Below we show that, in the
case of HiFi reads, a simple variant calling method (herein referred
to as NaiveFreq) generates similar sets of rare mutations as LoFreq
in a fraction of the time. We limit our focus to substitution muta-
tions because the substitution-based error rate in HiFi reads is an
order of magnitude smaller than the indel-based error rate
(Wenger et al. 2019).

Given an alignment of reads to contigs (Supplemental
Material, “Read alignment”), for each position pos in a contig, we
consider the number of reads spanning this position with a
match/mismatch operation in the alignment (spelling one of the
four nucleotides A, C, G, or T; we ignore degenerate nucleotides
aligned to a position). We define the sum of the numbers of these
reads as reads(pos). We define the number of reads of the second-
most common nucleotide aligned to pos as alt(pos) (breaking ties
arbitrarily).

Figure 1. strainFlye pipeline. Given ametagenome assembly of HiFi reads, strainFlye identifies raremutations in eachMAG, estimates their FDR, performs
phasing analyses using these mutations, identifies hotspots and coldspots of mutations, produces MAG-specific codon and amino acid mutation matrices,
and computes information about MAGs’ growth dynamics.
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NaiveFreq estimates the mutation frequency of pos as

freq( pos) = alt( pos)
reads( pos)

; this value is constrained to the range [0%,

50%]. Given a frequency threshold percentage p∈ (0%, 50%],
NaiveFreq classifies a position pos as a p-mutation if freq(pos)≥ p
and if alt(pos)≥minAltPos (by default, we setminAltPos=2 because,
in general, a single read with an alternative nucleotide is an unre-
liable indicator of a mutation). For the sake of simplicity, we only
consider single-allelic mutations (i.e., we do not attempt to call
multiple p-mutations at a given position), although the methods
proposed in this paper could be extended to account for multial-
lelic mutations.

NaiveFreq is implemented in strainFlye’s pipeline in the
“strainFlye call p-mutation” command. On its own, NaiveFreq is
not especially useful: p-mutations represent a very primitive way
of defining mutations. NaiveFreq’s utility comes from the ease
with which we can vary p to produce many sets of identified mu-
tations for a contig. As we will show, this property will simplify
the process of generating an FDR curve (Käll et al. 2008) that shows
howan increase in the number of identifiedmutations impacts the
FDR estimate associated with these identifications.

The target-decoy approach for estimating the FDR

of identified mutations

Whether rare mutations are identified by a state-of-the-art algo-
rithm like LoFreq (Wilm et al. 2012) or throughNaiveFreq, it is im-
portant to estimate their FDR. In the absence of widely adopted
realistic simulation models of errors in HiFi reads, we propose an
analog of the target-decoy approach (TDA) commonly used in ar-
eas of bioinformatics without realistic simulation models for data
generation (Elias and Gygi 2007; Gupta et al. 2011).

In proteomics, the key idea of the TDA is to use a decoy protein
database (that has no real matches with observed mass spectra) to
evaluate the FDR of spectral matches against a real protein data-
base (Elias and Gygi 2007; Käll et al. 2008). We contend that the
FDR of identified raremutations in a given contig can be evaluated
similarly, using a contig without any (or with very few) real rare
mutations as our decoy.

Estimating the FDR of identified mutations in a contig using
the TDA necessitates first attempting to select a decoy contigwithin
a metagenome that does not contain any real mutations. We can
then apply a mutation identification tool to this decoy contig
(containing L positions), assume that all M identified mutations
in the decoy contig are false, and compute a mutation rate

ratedecoy = M
3L

. The multiplication by three in the denominator ac-

counts for how there are three possible single-nucleotide muta-
tions at each position. Afterward, if analysis of a different
(“target”) contig using the same mutation identification tool re-
sults in a mutation rate of ratetarget (computed analogously as
Mtarget

3Ltarget
), we can estimate the FDR of the identified mutations in

the target contig as
ratedecoy
ratetarget

. (Wenote that our use of the term “mu-

tation rate,”which represents the ratio of the numbers of observed
and possible mutations, differs somewhat from the commonly
used definition of the mutation rate as the number of mutations
per base pair per generation—e.g., as used by Barrick et al. 2009.)

Applying the TDA in this way faces the immediate challenge
that “ideal” decoy contigs without any real mutations are unlikely

to exist within ametagenome. Therefore, the estimate
ratedecoy
ratetarget

rep-

resents an upper bound for the FDR that, depending on the choice
of decoy contig, may greatly inflate the estimated FDR. However,
because our analysis revealed great variations (by orders of magni-
tude) in mutation rates across various contigs within a metage-
nome, we can simply select the least mutated contig and use it
as a (nonideal but pragmatic) substitute for a decoy (Methods).
We also modify the standard TDA to focus our FDR estimation
on “rare”mutations with frequencies below a configurable thresh-
old and thus limit the effects of “indisputable” mutations on the
estimation of realistic FDRs (Methods).

We note that the TDAwas initially designed to estimate FDRs
in situationswithout an adequatemodel for data generationwhere
many unknown factors affect the fidelity of the data. As such, the
TDA is well-suited for analyzing reads with poorly understood
sources of errors—for example, cross-talk between wells in the
case of Illumina reads, or the complex derivation of accurate HiFi
reads from error-prone CLR reads. We emphasize that the target-
decoy approach results in an empirical FDR estimate, rather than
an exact formula for computing the FDR. Many recent papers
(Gupta et al. 2011; Keich et al. 2015, 2019; Emery et al. 2020) dis-
cuss pros and cons of the TDA and describemodifications of it that
result in even more accurate FDR estimates.

Similar to how the TDA is used in proteomics (in a way that
does not explicitly address complex effects such as internal ions,
etc.), our use of the TDA for analyzing rare mutations does not ex-
plicitly address complex effects such as well–cross talk, dimness,
etc. Instead of attempting to provide some sort of confidence score
for individual mutation identifications, the TDA estimates the
fraction of erroneously identifiedmutations “at bulk”within a tar-
get contig without trying to investigate their specific sources
(Gupta et al. 2011).

Estimating the FDR of identified rare mutations using the TDA

At p=0.5%, NaiveFreq identifies 249, 17,069, and 1632 rare (freq
(pos) < 5%, as described in the Methods) p-mutations in CAMP,
BACT1, and BACT2, respectively. This illustrates that there exists
a difference of nearly two orders of magnitude in mutation rates
across these MAGs (6.4 ×10−5, 2.6 × 10−3, and 1.9 × 10−4 for
CAMP, BACT1, and BACT2, respectively). If CAMP, which has a
relatively low mutation rate, is selected as a decoy, then the FDR

for BACT1 at p=0.5% is estimated as
6.4× 10−5

2.6× 10−3 ≈ 2.4% (Fig. 2).

For comparison, the Supplemental Material, “Applying LoFreq to
the SheepGut dataset,” shows this estimation process using
LoFreq outputs on the three selected MAGs.

The Supplemental Material, “Growth of the number of p-mu-
tations per megabase as p decreases” (Supplemental Fig. S8), illus-
trates how the number of p-mutations in the three selected MAGs
grows as the frequency threshold p decreases. Each value of p we
use to call p-mutations implies a mutation rate for the decoy and
target contig alike; Figure 2 shows multiple FDR curves (Käll et al.
2008) for eight high-diversity-index (Results subsection
“Diversity indices”) target contigs in the SheepGut data set, com-
puted by adjusting the values of p used. The orange curves in this
figure use the entirety of CAMP as a decoy contig; the other curves
use context-dependentdecoy contigs constructed fromCAMP, aswill
be described shortly, to provide different estimates of the FDR.
The Supplemental Material, “Demonstrating strainFlye on the
ChickenGut dataset” (Supplemental Fig. S6), provides an analo-
gous version of this figure for the ChickenGut data set.
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The “strainFlye fdr estimate” command performs decoy con-
tig selection and FDR estimation; furthermore, given the resulting
FDR estimates, the “strainFlye fdr fix” command selects the

“optimal” value of p for each target contig and filters each target
contig’s identified rare mutations to match this threshold value
(Methods).

Figure 2. FDR curves for eight target contigs in SheepGut. We generate each FDR curve by using NaiveFreq to identify p-mutations in a selected decoy
contig (CAMP) as well as the target contig, varying p from 4.99% to 0.15% in increments of 0.01%. (Top) Demonstration of four basic decoy contexts,
resulting in four FDR curves per target contig. The “Full” context considers all mutations in all positions of the decoy contig; the “CP2” context considers all
mutations in only positions located in the second codon position of a single predicted gene in the decoy contig; the “Tv” context only considers trans-
version mutations in all positions of the decoy contig; and the “Nonsense” context only considers single-nucleotide nonsense mutations in only positions
located in a single predicted gene in the decoy contig. (Bottom) Demonstration of 10 decoy contexts, using BACT1 as the target contig. In addition to the
four contexts shown in the above plots, this includes the “Nonsyn” context (corresponding to nonsynonymous mutations) as well as combinations of con-
texts (Supplemental Material, “Nonsynonymous, nonsense, and transversion decoy contexts”). Fixing the estimated FDR to 1% (indicated by the vertical
dashed line shown in all plots) implies a “best” (smallest) value of p for a target contig that allows calling the rarest p-mutations while keeping the estimated
FDR≤1%: For BACT1, these values are listed in the legend for each decoy context. For clarity, we circle and label certain values of p on the “Full” curve.
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Context-dependent TDA

The described approach to FDR estimation, although useful, suf-
fers from the fact that—even in relatively-low-mutation-rate con-
tigs like CAMP—many naïvely called mutations represent real
rather than false variations. To address this, we describe a context-
dependent target-decoy approach based on the observation that cer-
tain types of mutations are rarer than others. Some positions in a
genome are less likely to mutate than other positions, and some
specific mutations at a given position are less likely to occur than
other mutations. Thus, constructing a decoy contig consisting
solely of these relativelymutation-resistant positions and/ormuta-
tion types should result in a more accurate FDR estimate.

Codon positions (CPs) are a simple example of this. Mutation
rates vary sharply across the first, second, and third CPs (CP1, CP2,
and CP3) within protein-coding regions of genomes (Bofkin and
Goldman2007): In general,mutations inCP3 are less likely to chan-
ge the aminoacid encodedbyacodon thanmutations inCP2or, to a
lesser extent, mutations in CP1. Given predicted protein-coding
genes in a data set’s contigs (Methods), we define four “groups” of
positions for each contig: first/second/third positions of codons
(CP1/CP2/CP3) and noncoding positions (positions located outside
of predicted genes). We ignore positions that are located within
multiple predicted genes owing to gene overlap. If we define MP as
the number of mutated positions identified within a group of posi-
tions P, we would expect MCP2<MCP1<MCP3 (Bofkin and Goldman
2007). Figure3 andSupplemental Figure S9 show that, on the three se-
lected MAGs, this property holds for the mutations called by
NaiveFreq at many values of p as well as for the mutations called by
LoFreq.TheSupplementalMaterial,“Codonpositionanalysisdetails,”
presents additional information about the details of this analysis.

This result suggests that computing the decoy contig muta-

tion rate as
MCP2

3LCP2
may yield a more realistic FDR estimate. We refer

to this modification as a decoy context that we apply to the original
decoy contig; Figure 2 shows the use of this “CP2” decoy context
for the CAMP decoy contig, showing that it generally lowers FDR
estimates compared with using all of CAMP as a decoy contig.

Besides CPs, there exist other candidate events that show a
sharp contrast between various mutation types and thus present
promising options for the construction of decoy contigs. Whether
owing to selection or other vagaries of the processes bywhichmuta-
tions occur, we expect nonsynonymous, nonsense, or transversion
mutations to be rarer, respectively, than synonymous, non-non-
sense, or transition mutations (Sonneborn 1965; Vogel 1972). The
SupplementalMaterial, “Nonsynonymous, nonsense, and transver-
sion decoy contexts,” confirms this (Supplemental Fig. S10) and de-
scribes how strainFlye constructs decoy contexts using these “rarer”
types of mutations; Figure 2 includes additional FDR curves pro-
duced usingdecoy contexts of possible nonsynonymous, nonsense,
and transversion mutations, as well as various combinations of
these contexts and the aforementioned CP2 context.

These analyses focus on p-mutations, in which mutation fre-
quencies are used to call a position as mutated or not. Frequencies
are useful for this task because they enable the (imperfect) compar-
ison of positions or contigs with different coverages; the
Supplemental Material, “Identifying mutations based solely on
read counts,” discusses an alternative method for calling muta-
tions based solely on read counts.

Codon and amino acid mutation matrices

Proteins are usually compared using the PAM (Dayhoff et al. 1978)
or BLOSUM (Henikoff and Henikoff 1992) matrices, based on fre-

quencies of amino acid substitutions over large evolutionary dis-
tances (millions of years). It remains unclear whether these
matrices are well suited for comparing proteins encoded by strains
that are separated by short evolutionary distances. The complete
metagenomics approach (Bickhart et al. 2022) provides the poten-
tial to derive MAG-based analogs of these matrices for short evolu-
tionary distances. Moreover, it allows the extension of amino acid
substitution matrices into more informative codon substitution
matrices. To illustrate the potential of this approach, the
Supplemental Material, “Constructing and visualizing mutation
matrices,” describes the construction of these matrices in detail
and shows visualizations of them (Supplemental Figs. S11–S13)
for the three selected MAGs.

Diversity indices

Below we describe the diversity index that quantifies the widely
varying mutation rates across different species within a metage-
nome. Diversity indices are useful as a way to select a decoy contig
for use with the TDA (Methods), and the “strainFlye call p-muta-
tion” command outputs diversity indices for this reason.

We compute diversity indices relative to a given p threshold
for naïvely calling p-mutations. We define a position as sufficiently
covered if its coverage is at leastminSuffCov, a threshold that is com-
puted as a function of p (such that lower values of p generally cor-
respond to a largerminSuffCov).We then define the diversity index
of a contig G as the number of mutations called in the sufficiently
covered positions in G, divided by the total number of sufficiently
covered positions in G (given the selected p threshold value). The
Supplemental Material, “Diversity index details,” provides details
on these definitions and their motivations.

Wenote that computing thediversity indexof a completebac-
terial genome in the context of short-read metagenomics is prob-
lematic, because studies using short reads alone struggle to
assemble complete genomes; however, the emergence of complete
metagenomics (Bickhart et al. 2022) has opened the possibility of
reconstructing many complete MAGs from a microbial sample
and thus analyzing their diversity indices. Figure 4 shows great var-
iation in thediversity indices of theMAGs in the SheepGutdata set.

Genomic locations of mutations

Given a set of identified mutations, strainFlye supports the identi-
fication of basic hotspots and coldspots (Wilm et al. 2012;
Sekowska et al. 2016).

We define themutation rate of a feature (an arbitrary region in
a genome, e.g., a predicted gene) as the fraction of mutated posi-
tions in this region. The “strainFlye spot hot-features” command
takes as input a list of genomic features in contigs and identifies
“hotspot” features given simple user-specified thresholds (the
minimum number of mutations a feature must have to be consid-
ered a hotspot and/or the minimum mutation rate a feature must
have to be considered a hotspot). The Supplemental Material,
“Hotspot genes in the three selected MAGs” (Supplemental Table
S2), provides information about various hotspot genes for each
of the three selected MAGs.

Figure 5 shows themutation spectra of the highest-mutation-
rate genes of the three selected MAGs (using NaiveFreq results at
p =0.5%). The genes shown in Figure 5 (top, bottom) show essen-
tially binary splits between their positions’ mutation frequencies.
However, the gene shown in Figure 5 (middle) offers a less clear in-
terpretation: There exist three main groups of positions with high
mutation frequencies (with frequencies ∼1%–2%, 4%–5%, and
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6%–7%) covering this gene, aswell as a groupofmostly unmutated
positions. The Supplemental Material, “Identifying strains in the
most mutated gene of BACT1” (Supplemental Fig. S15), uses
long reads to inspect the structure of mutations within this gene

and analyzewhether they are indeed associated with four different
strains.

The Supplemental Material, “Plots of mutation locations”
(Supplemental Fig. S16), visualizes the locations of mutations in

Figure 3. Rare mutation frequencies vary across codon positions in the three selected MAGs. This plot includes variant calls from LoFreq (top row) and
results fromNaiveFreq for p∈ {2%, 1%, 0.5%, 0.25%, 0.15%} (bottom rows). The expected “pattern” of codon positionmutation frequencies (MCP2 <MCP1
<MCP3) holds for all plots except for the case of CAMP at p=0.5% (the title for this plot is highlighted in red). As discussed in the Supplemental Material,
“Applying LoFreq to the SheepGut dataset” (Supplemental Fig. S7), LoFreq’s results are similar to NaiveFreq’s at p =2%. To focus this visualization on “rare”
mutations, we limit the mutations included in all rows (including LoFreq’s) to those located in positions at which freq(pos) < 5% (Methods). We also treat
positions where LoFreq called multiple mutations as if only a single mutation were called at this position (Supplemental Material, “Applying LoFreq to the
SheepGut dataset”). The Supplemental Material, “Codon position analysis details” (Supplemental Fig. S9), shows an alternate version of this figure, in
which y-axis values are normalized by the total number of positions considered in order to make plots from different MAGs more easily comparable.
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Figure 4. Diversity indices vary widely across the 468 long contigs in SheepGut. Smaller values of p allow us to “call” increasing amounts of p-mutations
in a MAG, at the cost of requiring higher sequencing coverage to reliably distinguish these mutations from errors (we note that this differs from ordinary
usage of NaiveFreq, which does not explicitly take coverage into account). The Supplemental Material, “Diversity index details,” provides details about
some of the high-diversity-index contigs shown in this figure and about how minimum sufficient coverages are determined for each value of p (we use
minReadNumber=5 here). The diversity index values for the three selected MAGs are highlighted on each row of the histogram as vertical lines.
Although it is shown in Figure 3, we have omitted p =0.15% from this figure because its minimum sufficient coverage is 3333.33×; the only MAG that
is sufficiently covered for this value of p is CAMP.
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CAMP, BACT1, and BACT2; this visualization shows that there ex-
ist clear “coldspot” gaps between mutations, noticeably in BACT1
(Supplemental Table S3). The “strainFlye spot cold-gaps” com-
mand can identify these gaps and compute the probability of
the largest gap in a contig being of at least a certain length
(Supplemental Material, “Investigating coldspots”).

Growth dynamics of a metagenome

Because short-read sequencing rarely results in the assembly of
completeMAGs, methods for analyzing microbes’ growth dynam-
ics using short-read sequencing data (Korem et al. 2015; Joseph

et al. 2022) typically rely on reference databases. By improving ini-
tialMAG completeness, deep HiFi sequencing provides us the abil-
ity to analyze MAGs’ growth dynamics completely de novo; the
Supplemental Material, “Growth dynamics” (Supplemental Fig.
S17), illustrates that this analysis represents yet another benefit
of “complete metagenomics.”

Phasing identified mutations

The ability to call manymutations with controlled FDR in a contig
is essential for phasing the strain-level haplotypes represented in
this contig, because haplotype phasing relies on the presence of

Figure 5. Mutation spectra of highlymutated genes in the three selectedMAGs. Each plot shows freq(pos) for every position poswithin the selected gene;
each of these genes has the highest mutation rate in its parent MAG (for NaiveFreq mutation calls at p=0.5%) and is thus described in the corresponding
MAG’s first row in Supplemental Table S2. We exclude deletions from the denominator of freq(pos) (similar to most of the other analyses in this paper),
which is responsible for some of the “jumps” in themiddle plot (gene 868 in BACT1). Positions are colored by their codon position within the gene, using
colors matching those in Figure 3. These figures are analogous to other plots of variation along a gene sequence in the literature, for example Figure 1 in the
work by Vasileiadis et al. (2012). Supplemental Figure S14 in the Supplemental Material, “Hotspot genes in the three selected MAGs,” visualizes the cov-
erages of each of these genes.
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reads that span multiple mutations (Nicholls et al. 2021).
Fortunately, long and accurate HiFi reads simplify the process
of phasing detected mutations and thus performing strain
separation.

To reveal the conserved and diverged regions in various
strains of a contig, the “strainFlye smooth” module attempts to
construct the de Bruijn graph (Compeau et al. 2011) of these
strains, not unlike the de Bruijn graphs that are used for analyzing
variations among various human genomes (Iqbal et al. 2012).
Because errors in reads make this graph very complex, the first
command in this module, “strainFlye smooth create,” converts
reads aligned to a given contig to “smoothed reads,”which match
the assembled contig at all positions except for those positions in
the read aligned to identified mutations (Methods). In addition to
smoothed reads, “strainFlye smooth create” also constructs “virtu-
al reads” to fill in low-coverage regions in contigs and maintain
contiguity (Methods). The next command, “strainFlye smooth as-
semble,” uses LJA (Bankevich et al. 2022) to construct the multi-
plex de Bruijn graph of the collection of smoothed and virtual
reads for each contig (Methods).

Figure 6 and Supplemental Figure S21 show visualizations of
the multiplex de Bruijn graphs produced by LJA given the
smoothed and virtual reads produced for each of the three selected
MAGs. Ideally, these smoothed reads would have been assembled
perfectly, such that one isolated edge would exist for each unique
haplotype. The graphs shownhere do not reach this ideal, but they
come close: Many regions of these MAGs are now represented as
linear sequences of “bubbles” representing the variation between
haplotypes at a given position in the MAG.

In addition to the “smooth”module, strainFlye also provides
the “link”module for strain analysis. Thismodule constructs a link
graph representing the alleles at each mutated position in a contig,
and the frequencies with which these alleles are linked by reads.
These graphs, described in the Supplemental Material, “The link

graph structure for haplotype visualization” (Supplemental Figs.
S18, S19), can be helpful as a visualization tool of what regions
of a contig can be phased from the available data.

Discussion

We have presented strainFlye, a pipeline for the identification and
analysis of rare mutations within MAGs sequenced using HiFi
reads. We showed variations in the frequencies of mutations be-
tween CPs and mutation types within MAGs, variations in the
numbers ofmutations acrossMAGs in a data set, the identification
of hotspots and coldspots of mutations, and the ability of HiFi
reads to link mutated positions throughout large portions of
MAGs.

These advances set the stage for further improvements in
identifying mutations and phasing using complementary linked
read technologies, such as reads generated using Hi-C (Burton
et al. 2014) or TELL-seq technology (Chen et al. 2020).
Complementary short-read sequencing technologies, as well,
hold promise for further improving our confidence in the identifi-
cation of rare mutations (Bickhart et al. 2022; Mc Cartney et al.
2022).

We note that the methodologies developed here could have
uses not only in isolation but also as extensions to existing tools
for variant calling and metagenomic data analysis. Recent work
on optimizing LoFreq in the context of high-coverage viral data
sets (Kille et al. 2021) has highlighted the potential for the commu-
nity to continue to refine existing methods to handle the ever-in-
creasing challenges associated with new types of data.

Although HiFi reads simplify many tasks in metagenomic
data analysis, there remain countless open problems. One such
problem is the study of lethal positions: A bacterial gene is classi-
fied as lethal (nonlethal) if its deletion allows (does not allow) an or-
ganism to survive under some defined conditions (Winzeler et al.

Figure 6. Multiplex de Bruijn graph produced by LJA for CAMP’s smoothed and virtual reads. We generated smoothed reads based on mutations iden-
tified by NaiveFreq at p =1%. This is a MetagenomeScope visualization (Fedarko et al. 2017) of the GFA file produced by LJA. Gray pentagons (nodes in this
visualization) correspond to “segments” described in this GFA file, which in turn correspond to edges in the de Bruijn graph. Blue regions of the graph
indicate “bubble” patterns MetagenomeScope identified in the graph (Miller et al. 2010), highlighted for clarity. Segments colored in pink represent seg-
ments that are shared betweenmultiple bubbles: MetagenomeScope duplicates segments (creating a link between the two copies of a duplicate segment)
in order to simplify the visualization of adjacent bubbles in the graph. This visualization makes clear that the entire de Bruijn graph can be represented as a
linear sequence of bubbles. This topology is consistent with the expected structure of an assembly graph of multiple strains of a genome, for example, as
shown in Figure 4 of the work of Kolmogorov et al. (2020); the branching paths in these bubbles likely represent strain-level diversity. The rightmost two
bubbles in the graph are shown up in a box below the main drawing of the graph. The five dark-colored segments highlighted in the rightmost bubble
correspond to the segments that overlap gene 1217, the most mutated gene in CAMP (Fig. 5, top). There exist three paths through these segments’ bub-
bles: the top two paths correspond to the “reference” haplotype of gene 1217 and the bottom two paths correspond to the “alternate” haplotype of gene
1217 (Supplemental Material, “Haplotypes of the most mutated gene in CAMP”; Supplemental Fig. S20). The reason for the reference haplotype being
represented by two distinct paths is that these paths cover other mutated positions located earlier in CAMP.
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1999). Although identification of all lethal SNVs in a bacterial ge-
nome provides much more information than identification of all
lethal genes (Xu et al. 2014), finding these mutations remains an
open problem. Moreover, even the simpler problem of identifying
a large set of nonlethalmutations in a bacterial genome remains an
open problem. Information about such sets is valuable because it
can inform various studies, for example, analyses of positions in
a genome that lead to antibiotic resistance (Leyn et al. 2021).

We have shown the possibility of revealing tens of thousands
of putatively nonlethal mutations in multiple MAGs in SheepGut
(Fig. 2) using deepmetagenomic sequencing. Even though this ex-
ample represents—for any of these MAGs alone, to our knowledge
—the largest collection of rare mutations in a bacterial genome re-
ported to date, the true extent of diversity in a bacterial communi-
ty (when the frequency threshold is reduced and the coverage
increases by an order of magnitude) remains unknown. Future
“ultradeep” sequencing projects (e.g., with coverages as large as
100,000×) may shed light on this question and narrow the set of
lethal mutations in bacterial genomes.

Methods

Automatically selecting a decoy contig

In the SheepGut data set, CAMP serves as a long high-coverage
decoy contig with relatively few rare mutations (Figs. 3, 4).
However, there is no guarantee that such a contig will exist in an
arbitrary data set. The “strainFlye fdr estimate” command allows
the user to automatically select (or to specify) a decoy contig.

To automatically select a decoy contig, strainFlye first identi-
fies the set of all long high-coverage contigs (Results subsection
“Demonstrating strainFlye”). If this set is empty, strainFlye will
raise an error explaining the situation to the user; this situation im-
plies that the user will need to lower the minLength and minCov
thresholds in order to find a decoy contig. If this set consists of a
single contig, strainFlye will select it as the decoy.

If there are n long high-coverage contigs, strainFlyemakes use
of diversity index information computed for a setD of various val-
ues of the frequency threshold p (Results subsection “Diversity in-
dices”). Each entry in D implies an n-dimensional vector of
diversity indices computed for this threshold value (with one entry
for each long high-coverage contig). Because the diversity index
can be undefined for low-coverage contigs, depending on themin-
imum sufficient coverage for the corresponding value of p (Fig. 4;
SupplementalMaterial, “Diversity index details”), strainFlye focus-
es only on theDgood⊆D threshold values forwhich at least two long
high-coverage contigs have defined diversity indices. If |Dgood| = 0,
that is, no vector of diversity indices has at least two long high-cov-
erage contigs with defined diversity indices, strainFlye raises an er-
ror explaining the situation to the user.

If |Dgood|≥1, then, for each of the corresponding “good” vec-
tors of diversity indices, strainFlye finds the minimum and maxi-
mum diversity index across the long high-coverage contigs. It
then assigns each of these contigs a score in the range [0, 1] using
linear interpolation: The contig with the lowest diversity index in
this vector is assigned a score of zero, the contig with the highest
diversity index in this vector is assigned a score of one, and all oth-
er contigs with defined diversity indices are scaled in between.
Contigs in this vector with an undefined diversity index are as-
signed a score of one in order to penalize them for not being suffi-
ciently covered.

Finally, strainFlye computes a total score for each long high-
coverage contig by summing its scores for each of the |Dgood| diver-

sity index vectors. The contig with the lowest total score is selected
as the decoy contig, breaking ties arbitrarily.

We note that there is no guarantee that any of the long high-
coverage contigs will have a “low” amount of rare mutations; it
may be the case that all of these contigs have high diversity indi-
ces. In this case, the automatic selection process will select a decoy
contigwith a relatively highmutation rate, and strainFlyewill thus
produce inflated FDR estimates. This is an inherent downside of
the TDA; however, we expect that the rising sizes of sequencing
data sets will increase the likelihood of suitable decoy contigs
existing.

Accounting for indisputable mutations

Weclassify a p-mutation as indisputable if itsmutation rate freq(pos)
(defined in the Results subsection “Computingmutation spectra”)
is greater than or equal to a specified highFrequency threshold (de-
fault value 5%) and as a raremutation otherwise. Although the re-
liable identification of rare mutations (with frequencies below the
error rate in reads) is a challenging task, nearly all indisputablemu-
tations are real, especially in high-coverage MAGs like those stud-
ied in this paper. When computing the mutation rates of a decoy
or target contigG (withMGmutations and length LG), as discussed
in the Results subsection “The target-decoy approach for estimat-
ing the FDR of identified mutations,” we thus redefine

rateG = Mrare

3LG
, where Mrare is the number of rare mutations in the

contig. This modification can lower the computed mutation rates
for a given contig and thus result in more realistic FDR estimates.

Fixing the estimated FDR of identified rare mutations in a target

contig

Wehave described how to use the TDA to estimate the FDR of a set
of identified rare mutations in a contig and to draw an FDR curve
for this contig. Given a user-configurable upper bound f on the es-
timated FDRof raremutation identifications (e.g., f=1%, as shown
in Fig. 2), the “strainFlye fdr fix” command can fix the estimated
FDR for a target contig to be ≤f as follows.

First, we select the lowest value of p at which the estimated
FDR for this contig is ≤f. Because our FDR estimates do not neces-
sarily increase monotonically as p decreases (Fig. 2), the vertical
line implied by fixing the FDR to a given upper bound may be
crossed by a target contig’s FDR curve multiple times (Käll et al.
2008). However, the number of mutations per megabase produced
by a given p value in the target contig does increasemonotonically
as p decreases. Because of this, the lowest threshold value yielding
an acceptable estimated FDR corresponds to the largest set of rare
mutations for this target contig with an acceptable estimated FDR.

Because we have assumed that all “indisputable” mutations
(Methods) are correct, strainFlye outputs—for each target contig
—the set of all rare mutations supported by the “optimal” value
of p selected, as well as the set of all indisputable mutations.
strainFlye also outputs the set of all indisputable mutations within
the decoy contig, although it does not output any rare mutations
from the decoy contig (as of writing, this is performed regardless of
the decoy context used). These mutations can be used as the start-
ing point for downstream analyses (e.g., phasing).

We note that, for p-mutations, the level of granularity used in
varying p can have an impact on the selection of this “optimal”
value. strainFlye’s pipeline adjusts p in increments of 0.01% (Fig.
2; Supplemental Fig. S8), which we expect should be sufficient
for most current data sets.
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Predicting protein-coding genes in contigs

Many of the described “decoy contexts” in the Results subsection
“Context-dependent TDA,” as well as many of the other shown
analyses, rely on the availability of gene predictions: We compute
these using Prodigal (Hyatt et al. 2010). Notably, we use Prodigal’s
-c option in order to disallow the prediction of incomplete genes
that run off the end of a contig; this restriction simplifies these
analyses. For the three selected SheepGut MAGs shown in this pa-
per, we ran Prodigal in its “normal” or “single” mode (processing
one contig at a time): This matches the behavior of “strainFlye
fdr estimate” when the decoy context(s) requested by a user re-
quires gene predictions in the decoy contig.

We note that our use of Prodigal makes the implicit assump-
tion that the contigs on which we run it are prokaryotic. It should
be feasible to extend our analyses to work with alternative gene
prediction tools if desired, although for now we have focused
our efforts on analyzing prokaryotic contigs.

Constructing smoothed reads

Given a set of identified mutations in a contig, and a read aligned
to this contig, we identify all mutated positions in the contig to
which a linear alignment of this read has (mis)match operations.
We then convert each linear alignment of this read to the contig
into a “smoothed read” that completely matches the contig,
with the exception of the read’s nucleotides at all identifiedmutat-
ed positions spanned by the alignment.

This process involves some simplifying assumptions: For one,
it necessarily ignores both indels and non-“identified” single-nu-
cleotide mutations. If a read’s nucleotide at any of the identified
mutated positions to which it has a (mis)match operation does
not match the “reference” or “alternate” nucleotide at this posi-
tion (in the case of mutations identified by NaiveFreq, these two
will always correspond to the first- and second-most common nu-
cleotide at a position), then we discard this alignment of this read
and do not generate a smoothed read from it. This operation im-
plicitly ignores the contig’s “reference” nucleotide at this mutated
position, so there is the (unlikely) possibility for the reference nu-
cleotide at an “unreasonable” position (where the reference and
consensus nucleotide disagree) (for discussion, see Supplemental
Material, “Hotspot genes in the three selected MAGs”) to be
completely unrepresented in the smoothed reads if it is not the
“reference” or “alternate” nucleotide at a mutated position.
Similarly, if a read spans amutated positionwith a deletion,we dis-
card this alignment of this read.

We note that these “discarding” steps are only applied to in-
dividual linear alignments of a read at a time; for example, a read
with two linear alignments (one “representative,” one supplemen-
tary) (https://samtools.github.io/hts-specs/SAMv1.pdf) to a contig
could result in the creation of zero, one, or two smoothed reads for
this contig. The input alignment file should not contain any sec-
ondary alignments or overlapping supplementary alignments on
a contig (Supplemental Material, “Read alignment”) so, even if a
single read is converted to multiple smoothed reads in a contig,
these smoothed reads should all cover disjoint regions within
the contig.

This can lead to the generation of smaller haplotype assembly
graphs thanmay be expected, because we effectively ignore haplo-
types that disagree with any of the identified mutations in a con-
tig. This is a likely factor in why the BACT1 assembly graph
(shown in Supplemental Fig. S21 in Supplemental Material,
“Smoothed haplotype assembly graphs”) is simple compared
with the CAMP and BACT2 assembly graphs: Similar to how
BACT1 has an order of magnitude more p=1% mutations
(22,415) than CAMP (83) and BACT2 (380), BACT1 has an order

of magnitude more p=1% mutations with at least one deletion
in their pileup (8269/22,415) compared with CAMP (57/83) and
BACT2 (274/380). This results in a comparatively large number
of reads being discarded when attempting to generate smoothed
haplotypes for BACT1.

Finally, we note that this process also splits supplementary
alignments of a single read into distinct smoothed reads because
it is unclear how to produce a single smoothed read from a read
that has multiple alignments to a contig. However, because of
the filtering of overlapping supplemental alignments described
in the Supplemental Material, “Read alignment,” these distinct
smoothed reads should not overlap with each other on a contig.

Constructing virtual reads

Assembly and/or alignment artifacts can lead to certain positions
in a MAG having relatively low coverage. These coverage drops—
for example, the drops shown in the Supplemental Material,
“Coverages and deletion-rich positions”—complicate the assem-
bly of haplotypes of these nonetheless already-assembled MAGs.
Positions without any coverage at all will split the resulting de
Bruijn graph, and positionswith low coverage can still result in dis-
contiguous assemblies owing to assemblers treating these regions’
corresponding smoothed reads as erroneous. To address this prob-
lem, we create virtual reads that can span uncovered or low-cover-
age positions in a MAG. We note that the term “virtual reads” is
used in a similar context in the work by Bankevich et al. (2022).

Consider a MAG with average coverage Cm, defining the cov-
erage at each position only based on the number of matching and
mismatching reads in the input alignment (ignoring deletions).
We define a position with coverage (based only on smoothed
reads) Cp in this MAG as low-coverage if Cp<minWellCovFrac ·Cm,
whereminWellCovFrac is a percentage in the range [0%, 100%] (de-
fault value 95%). We chose this default value based on testing LJA
with the smoothed and virtual reads constructed fromCAMP until
the resulting assembly became contiguous, as is shown in Figure 6.
To construct virtual reads, we identify all “runs” of consecutive
low-coverage positions in the MAG. For each of these runs, we
define its average coverage as Cr. We then create a virtual read
that matches the MAG “reference” sequence at all positions
throughout this run, aswell as vrFlank (default value 100) positions
before and after the start and end of the run (clamping to the start
or end of theMAG as needed, in case the run is close to a boundary
of the MAG). Finally, we generate round(Cm−Cr) copies of this vir-
tual read in order to “lift” the coverage throughout this run of low-
coverage positions to roughly match Cm.

Like the construction of smoothed reads, the construction of
virtual reads also involves making some concessions; for example,
in the case in which an identifiedmutation occurs within a virtual
read or its flanking vrFlank positions, we simply set the virtual
read’s nucleotide at this mutated position equal to the MAG refer-
ence. Or, in strange circumstances, the flanking positions in the
virtual reads created for a low-coverage region might overlap the
virtual reads generated for other nearby low-coverage regions.
These artifacts may cause undesirable effects in the haplotype as-
sembly process. We have nonetheless found that using virtual
reads, in addition to just smoothed reads, helps improve the con-
tiguity of the multiplex de Bruijn graphs produced by LJA.

Lastly, we note that we do not construct virtual reads that
connect the end and start of a MAG, even if this MAG is represent-
ed in the original assembly graph as a single circular contig (e.g., as
BACT1 and BACT2 are). Although this can have the effect of line-
arizing circular contigs, we expect that this should notmake a large
difference in downstream analyses using the resulting smoothed
haplotypes.
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Assembling smoothed and virtual reads

After constructing smoothed and virtual reads, the “strainFlye
smooth assemble” command provides these reads as input to
LJA, an assembler designed for HiFi reads (Bankevich et al. 2022).
We run LJAwithout its error correction (mowerDBG) step; instead,
we apply a simple k-mer coverage filter that removes very-low-cov-
erage edges from the initial de Bruijn graph generated by LJA’s
jumboDBG tool. This method of running LJA is compared against
other assembly methods and discussed in detail in the
Supplemental Material, “Haplotypes of the most mutated gene
in CAMP.”

Data sets

The SheepGut read-set is available at the NCBI BioProject database
(https://www.ncbi.nlm.nih.gov/bioproject/) under accession
number PRJNA595610.We used the HiFi sequencing data from ac-
cession IDs SRX7628648 and SRX10647529, in particular.Wenote
that although there exists additional Hi-C and Illumina short-read
sequencing data for SheepGut (Bickhart et al. 2022), we have only
made use of the HiFi data (from the two accession IDs given above)
in this paper.

To simplify reproduction of our analyses, we have also made
the metaFlye assembly graph produced for the SheepGut data set
(Supplemental Material, “Assembly graph”), which represents a
starting point for the analyses shown in this paper, available on
Zenodo (https://doi.org/10.5281/zenodo.6545141).

The chicken gutmetagenome read-set is available at theNCBI
Sequence Read Archive (SRA; https://www.ncbi.nlm.nih.gov/sra)
under accession number SRR15214153. We retrieved the
hifiasm-meta (Feng et al. 2022) assembly of this data set produced
by Feng et al. (2022) from Zenodo (https://doi.org/10.5281/
zenodo.6330282).

Software dependencies

The strainFlye pipeline is implemented as a Python 3 command-
line tool. The pipeline code directly relies on pysam (https
://github.com/pysam-developers/pysam), pysamstats (https
://github.com/alimanfoo/pysamstats), scikit-bio (http://scikit-bio
.org), NetworkX (Hagberg et al. 2008), pandas (McKinney 2010;
https://doi.org/10.5281/zenodo.4572994), click (https://click
.palletsprojects.com/), NumPy (Harris et al. 2020), SciPy
(Virtanen et al. 2020), SAMtools (Li et al. 2009; Danecek et al.
2021), BCFtools (Danecek et al. 2021), minimap2 (Li 2018),
Prodigal (Hyatt et al. 2010), and LJA (Bankevich et al. 2022).

The analyses shown throughout this paper (including Bash
scripts, Python 3 scripts, and Jupyter notebooks) (Kluyver et al.
2016) additionally make use of metaFlye (Kolmogorov et al.
2020), CheckM (Parks et al. 2015), barrnap (T Seemann, https
://github.com/tseemann/barrnap), the SRA toolkit (https
://github.com/ncbi/sra-tools), LoFreq (Wilm et al. 2012), the
Integrative Genomics Viewer (IGV) (Thorvaldsdóttir et al. 2013),
Bandage (Wick et al. 2015), MetagenomeScope (Fedarko et al.
2017), Jupyter (Kluyver et al. 2016), nbconvert (https://
nbconvert.readthedocs.io), scikit-learn (Pedregosa et al. 2011),
Matplotlib (Hunter 2007), Logomaker (Tareen and Kinney 2020),
and the neato (Gansner et al. 2004) and sfdp (Hu 2005) layout
methods inGraphviz (Gansner andNorth 2000).We installed soft-
ware primarily using conda (https://conda.io), mamba (https://
mamba.readthedocs.io), and pip (https://pip.pypa.io).

Finally, we note that we produced Figure 1 using LibreOffice
Draw (https://www.libreoffice.org/discover/draw/) and GIMP
(https://www.gimp.org/). We produced the example link graphs
shown within this figure, in particular, using Graphviz’ (Gansner

and North 2000) neato (Gansner et al. 2004) layout method. We
also modified the MetagenomeScope visualization of a multiplex
de Bruijn graph shown in Figure 6 using LibreOffice Draw in order
to add a box highlighting a region of the graph.

Software availability

strainFlye’s code is available on GitHub (https://github.com/
fedarko/strainFlye) and as Supplemental Code S1. Additional ad
hoc code for performing the analyses shown in this paper is avail-
able on GitHub (https://github.com/fedarko/sheepgut) and as
Supplemental Code S2.
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