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Records of relative paleointensity are subject to several sources of error. Temporal averaging due to grad-
ual acquisition of magnetization removes high-frequency fluctuations, whereas random errors introduce
fluctuations at high frequency. Both sources of error limit our ability to construct stochastic models from
paleomagnetic observations. We partially circumvent these difficulties by recognizing that the largest
affects occur at high frequency. To illustrate we construct a stochastic model from two recent inversions
of paleomagnetic observations for the axial dipole moment. An estimate of the noise term in the stochas-
tic model is recovered from a high-resolution inversion (CALS10k.2), while the drift term is estimated
from the low-frequency part of the power spectrum for a long, but lower-resolution inversion
(PADM2M). Realizations of the resulting stochastic model yield a composite, broadband power spectrum
that agrees well with the spectra from both PADM2M and CALS10k.2. A simple generalization of the
stochastic model permits predictions for the mean rate of magnetic reversals. We show that the reversal
rate depends on the time-averaged dipole moment, the variance of the dipole moment and a slow time-
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scale that characterizes the adjustment of the dipole toward the time-averaged value. Predictions of the

stochastic model give a mean rate of 4.2 Myr~

ine magnetic anomalies.

1 which is in good agreement with observations from mar-

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

The spectrum of fluctuations in the geomagnetic dipole offers
insights into the origin of the magnetic field and the dynamics of
Earth’s core (Constable and Johnson, 2005). Each distinct timescale
bears the fingerprints of the underlying physical processes (e.g.
Sakuraba and Hamano, 2007. Paleomagnetic observations are
essential for characterizing the long-term behavior, yet no single
source of information is sufficient to capture the full range of
dynamics. Instead, we require an integrated approach to combine
different types of measurements into a composite record that
spans a broad range of timescales.

One important source of information comes from measure-
ments of relative paleointensity in marine sediments (Valet,
2003). Records are stacked and calibrated using independent esti-
mates of absolute paleointensity to produce models for the virtual
axial dipole moment (VADM) over the past two million years
(Valet et al., 2005; Ziegler et al., 2011). Sediments acquire a magne-
tization over several thousand years (Roberts and Winkholfer,

* Corresponding author.
E-mail address: bbuffett@berkeley.edu (B. Buffett).

http://dx.doi.org/10.1016/j.pepi.2017.09.001
0031-9201/© 2017 Elsevier B.V. All rights reserved.

2004), so the true signal is averaged in time. Uncertainties in dat-
ing can have a similar affect because paleomagnetic records from
different times may be stacked together.

Higher resolution records have been obtained for the past
10 kyr using a combination of archeomagnetic and lake sediment
data. These data have improved spatial resolution, so the geomag-
netic field can be expanded in low-degree spherical harmonics (e.g.
Korte and Constable, 2011). Even higher resolution records are
available from historical observations (Jackson et al., 2000). Taken
together these records provide a comprehensive description of
fluctuations in the dipole field, but the task of combining these
results into a single coherent model is a challenge.

Stochastic models are a useful tool because they enable quanti-
tative predictions over a range of timescales. This facility is impor-
tant for combining different types of data with different levels of
temporal resolution. There is also good reason to think that
stochastic models can represent the relevant processes in the core.
Stochastic models have been constructed from geodynamo simula-
tions with only a few model parameters, yet these models are cap-
able of reproducing most of the variability in these simulations
(Kuipers et al., 2009; Buffett et al., 2014; Bouligand et al., 2016).
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Synthetic studies using geodynamo simulations are an ideal test
of the general approach because the simulations have relatively
low numerical error and we can control the temporal resolution
of the output. None of these advantages apply when we use pale-
omagnetic observations to construct stochastic models. Significant
errors are present in the estimates of the dipole field, which affect
the construction of the stochastic model. We also need to deal with
temporal averaging because it limits our ability to sample the
stochastic process. The goal of this study is to address the practical
limitations of dealing with paleomagnetic observations and to
devise a strategy for constructing models that can explain both
paleomagnetic and historical records. We focus primarily on the
power spectrum of dipole fluctuations, although we find that the
resulting stochastic models can also account for the observed
reversal rate and the duration of polarity transitions.

2. Stochastic description of dipole fluctuations

Stochastic models were introduced by Langevin (1908) to
describe Brownian motion. A small particle in water was assumed
to move under the combined influence of viscous resistance and a
random force due to collision with (unseen) water molecules. The
viscous force was treated as a slowly varying deterministic quan-
tity, whereas the force due to collisions with water molecules
was treated as a rapidly fluctuating random process.

Brownian motion serves as a loose analogy for the evolution of
the geomagnetic dipole moment. The deterministic part of the
dipole moment represents the opposing influences of dipole decay
and the time-averaged dipole generation. Rapid fluctuations in
dipole generation about the time average can be attributed to
(unseen) turbulent flow, which we treat as a random process. We
denote the axial dipole moment by x(t) and describe its time evo-
lution using a stochastic differential equation (Van Kampen, 1992)

% = v(x) + VDXL (1), (1)

where the drift term, v(x), describes the deterministic part of the
evolution and the noise term, D(x), defines the amplitude of the ran-
dom part. The time dependence of the random process, I'(t), is
assumed to be Gaussian with a vanishing time average

<T(t) >=0. (2)

We also assume that the correlation time of the noise source is
short compared with the sampling of x(t). In this case the autoco-
variance function of I'(t) can be approximated by a Dirac delta
function,

< T(t)T(ty) >=25(t; — t,), (3)

where the factor of two is a common convention (e.g. Risken, 1989).

Estimates for »(x) and D(x) can be extracted from a realization
of the stochastic process (e.g. Friedrich et al., 2011). The drift term
is defined by

< X(t 4 At) — x(t) >= v(X)At + O(At?) (4)
and the noise term can be approximated by
< [X(t + At) — x(1)]* >= 2D(x)At + O(At?), (5)

where the time averages are taken for a specific value of x = x(t). In
practice, the dipole moment is divided into a finite number of bins
and a time average is evaluated for each bin. The time increment,
At, is chosen to be long enough that I'(t) and I'(t + At) are uncorre-
lated, but short enough that higher order terms in At are small
enough to neglect.

Applying (4) and (5) to the output of a geodynamo model
(Buffett et al., 2014; Meduri and Wicht, 2016) shows that the drift
term, v(x), is well represented by

v(X) = —pP(x— < x>), (6)

where < x > denotes the time average and ) is a constant that
defines the inverse timescale for slow adjustments of the dipole.
A similar representation for v(x) has been recovered from VADM
estimates (Brendel et al., 2007; Buffett et al., 2013). Very similar val-
ues for the constant, y ~ 0.034 kyr', were reported for the SINT-
2000 model of Valet et al. (2005) and the PADM2M model of
Ziegler et al. (2011). By comparison, the noise term, D(x), has a
weaker dependence on x. It suffices for our purposes to treat D as
a constant and denote its value by De,.

Simple representations for the drift and noise terms permit
closed-form solutions for the power spectrum of fluctuations about
the time average (e.g. €(t) = x(t)— < x >). Defining the Fourier
transform of €(t) by

€(f) = / e(t)e 2™ dt, (7)
the power spectrum becomes (Buffett and Matsui, 2015)

D,
Se(f) =——
D= vamp
where the power spectrum for a white noise source (with a variance
of 2)is

Sr(f) =2. 9)

The theoretical spectrum in (8) agrees well with a direct calcu-
lation of the power spectrum from a geodynamo model (see Fig. 1).
Departures at high frequency can be improved by allowing for the
influence of correlated noise (Buffett and Matsui, 2015; Bouligand
et al., 2016). The spectrum for €(t) with correlated noise (denoted
by Sc(f)) reduces the power at high frequencies, but it does not
change the behavior at low frequencies. It is important to note that
the drift and noise terms are recovered from the geodynamo model
using (4) and (5) with a time difference of At =1 kyr. No long-
period information goes into the estimation of »(x) and D(x), yet

Sr(f), 8)

Power (1 O44A2 m4 Myr)

—— Geodynamo model (Calypso)
— theoretical spectrum S.(f) (white noise)

= theoretical spectrum S:(f) (correlated noise)

10° 102 10" 10

Frequency (cycles/kyr)

Fig. 1. A power spectrum of dipole fluctuations from a numerical geodynamo
simulation (Matsui et al., 2014), compared to predictions from two stochastic
models. One stochastic model assumes a white noise source and the other assumes
correlated noise. Both models are capable of predicting the low-frequency
fluctuations even though the drift and diffusion terms are constructed from
short-period information.
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the resulting predictions are in good agreement with the low-
frequency part of the spectrum. This result suggests that a simple
stochastic model offers a good description of long-period dipole
fluctuations.

3. Recovering the drift and noise from paleomagnetic models

Several complications arise when the drift and noise terms are
computed from paleomagnetic models of the dipole moment.
One complication is due to random error and the other is due to
temporal averaging of the fluctuations. We explore both of these
complications before proposing a possible solution.

3.1. Influence of random error

Random error alters the estimates of the dipole moment, so the
drift and noise terms are computed from
y(t) = x(t) +n(t) (10)
which includes a time-dependent error #(t). The drift term becomes

) = < y(t+ AAti —y(t) >

or

(11)

oY) = Z}(X)+<11(t+AAtzfr](t)> (12)

on substituting for y(t) from (10). The presence of random error
alters »(y) but the time average of the error in (12) is expected to
vanish. The same is not true for the noise term. Using y(t) to evalu-
ate D(y) gives

2
D(y) = < [y(t+ Aztgt—y(t)] > (13)

which can be rearranged into the form

_ < AXAN > < Ap? >
Dy) = D(x) + ==+ (14)

on introducing Ax = x(t + At) — x(t) and Ay = 5(t + At) — y(t). Even
when Ax and Ay are uncorrelated, and 7(t) represents the effects of
white noise, we are left with (Hoze and Holeman, 2015)

o
D(y) _D(x)+H (15)
where 6,27 is the variance of the error. Thus the influence of random
error becomes acute when At is small. On the other hand, larger At
causes the higher order terms in (4) and (5) to become more
important.

We illustrate the problem using a synthetic example. Consider a
stochastic model with a linear drift term (y = 0.034 kyr™') and a
constant noise term (D, = 0.069 x 10** A2 m?* kyr™'). These
numerical values were recovered by Buffett et al. (2013) from
model PADM2M of Ziegler et al. (2011). A numerical realization
of the stochastic model is run for 2 Myr with values of x(t) recorded
at 1 kyr intervals. Next we add uncorrelated and normally dis-
tributed random error to produce a noisy record, y(t), where the
standard deviation of the error is o, = 0.5 x 10> Am?. Finally,
we recover a constant value for both D(x) and D(y) from x(t) and
y(t); we denote these constants by D:q and ng to explicitly identify
the input time series.

Fig. 2 shows the estimates for D; and D} as a function
of At. At the shortest time difference, At =1 kyr, we obtain

D}, = 0.068 £ 0.002 x 10* A> m* kyr ' and D}, = 0.297 + 0.010x
10* A2 m* kyr !, where the uncertainties represent one standard

0.35 : , ; :
y
b L T ¥ ]
- 03 ¥ Deq(At)
2 X
D (At) =
e o2sf ) J
[aV]
<
3
S 02 * |
=
g
0" o0.15- % .
£ £ s
o) ¥
= o1 E 3 E .
)
Q * * *
o *
Z o005} * * ® * . -
0 L ! I I I ! I I I L
0 1 2 3 4 5 6 7 8 9 10

Sampling Time At (kyr)

Fig. 2. Estimates for the noise term, D.q(At), computed from exact x(t) and noisy
y(t) time series. Addition of random error to y(t) causes ng to depart from the
known value D,, = 0.069 x 10* A> m* kyr~'. Calculations using x(t) reproduce the
known value to within the uncertainties at At =1 kyr. Discrepancies in Dy, (At)
increase slowly with At due to unmodelled contributions from higher-order powers
in At.

deviation. These results are consistent with expectations from
(15). Large deviations from the true value of D, are found with
the noisy record when At is small. Smaller deviations occur as At
increases, although these errors remain relatively large. On the
other hand, the value recovered from the error-free record, x(t),
is reliable at small At but slowly departs from the known value
as At becomes larger. Consequently, we cannot deal with the influ-
ence of random error by arbitrarily increasing At.

3.2. Influence of temporal averaging

Temporal averaging of the paleomagnetic record can arise in
several ways. Errors in dating allows measurements at different
times to be stacked. In addition, magnetization is acquired in sed-
iments over several thousand years (Roberts and Winkholfer,
2004). A prolonged acquisition time removes high-frequency vari-
ations and affects our ability to sample the stochastic process at
short At. One way to deal with the problem of averaging is to treat
the measured record as a filtered version of the true signal (e.g.
Leonard, 1974). We define the measured signal, x(t), as

X(t) = / x(tg(t—t)dt (16)
where the filter function, g(t), smooths the true signal, x(t), over
some prescribed averaging time (denoted by T). Two popular filter
functions are the box-car and gaussian filters (see Fig. 3). The true
signal is convolved with a suitable filter function to produce the
measured record.

The paleomagnetic record, x(t), still obeys a stochastic differen-
tial equation, but it is not the same as the differential equation in
(1). Applying the filter to (1) gives

dx_
dt
where we have adopted a constant noise term and a linear drift
term. The only difference in (17) is that the random process is dri-
ven by T'(t) rather than I'(t). A power spectrum for € = X— < x > is

defined by taking the Fourier transform of (17). Solving for €(f)
gives

—P(E— < x>) + 1/DegL(£) (17)
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Fig. 3. (A) Two
g(t) = (6/n1%)"”

commonly  used filters are

the Gaussian,

exp(—6t2/T?), and the box car, g(t) = 1/T for |t| < T/2, where T

is the averaging time. (B) Fourier transforms are given by g(f) = exp(—4m2f>T?/24)

and g(f) = sin(nfT)/nfT, respectively.

(v + 2mif)
and the power spectrum becomes (Rice, 1954)
D
Se(f) = T —-Se(f)

(7> + 4m2f)
where

Sr(f)=2g(Hg(f)

(18)

(19)

(20)

and g(f) is the Fourier transform of the filter function. Eq. (20) fol-
lows from the convolution theorem (e.g. Bracewell, 1999) because

convolution in the time domain

() = /jc [(thg(t —t)dt

(21)

corresponds to multiplication in the frequency domain

L(f) =T ()g(f).

(22)

Power spectra for x(t) and X(t) are the same at low frequencies

because g(f) — 1 as f — 0 (see Fig. 3).

We illustrate the consequences of time averaging using the
stochastic model from Section 3.1. A 2-Myr realization is sampled
at 1-kyr intervals and a smoothed version is produced using a box-
car filter with an averaging time of T = 3 kyr. Fig. 4 shows the
power spectrum of the filtered signal, x(t), compared with the the-
oretical spectrum from (19). We also show the power spectrum for
the original (unfiltered) time series, x(t), versus the theoretical
spectrum from (8). Both theoretical spectra are in good agreement
with the direct calculations from x(t) and X(t). Undulations in the
spectrum of X(t) is a consequence of the box-car filter, which is
oscillatory in the Fourier domain. The main conclusion from this
example is that temporal averaging affects only the high-
frequency behavior of the record. The filtered dipole moment still
obeys a stochastic differential equation and the spectrum is still
reliably predicted at low frequencies from the drift and noise
terms. Conversely, the low-frequency part of the spectrum con-
strains the drift and noise terms of the stochastic model.

Fig. 5 shows the noise term, Dq, recovered from x(t) and X(t) as
a function of At. The most reliable estimate for D., comes from x(t)
at the shortest possible At (1 kyr in this case). Temporal filtering
substantially reduces the estimate of D,, at low At, although the
recovered value approaches a constant once At exceeds the filter
width T. A rule of thumb based on the spectrum of the filter (say
g(f) > 0.9) is that At should be roughly twice T. Sampling the pro-
cess at At = 6 kyr gives an estimate for D, that is nearly indepen-
dent of At. Unfortunately, this estimate is well below the known
value (e.g. 0.044 versus 0.069). A similar departure in D, at
At = 6 kyr is inferred from x(t) (e.g. 0.063 versus 0.069), although
the error from the unfiltered time series is much smaller.

The preceding results show that temporal averaging can affect
the amplitude of the noise term, particularly when At is smaller
than the duration of the averaging. Estimates for D,, appear to
approach a constant value once At > 2T, although this constant
can be significantly less than the true value. On the other hand,
random noise causes the recovered estimate of D,, to exceed the
known value by an amount (7,27 /At, where 0,27 is the variance of
the error. Both temporal averaging and random noise have the lar-
gest affect on the high-frequency part of the spectrum. Averaging
removes power at high frequency, whereas random error intro-
duces power across all frequencies, although it is most evident at
high frequency. Consequently, the low-frequency part of the spec-
trum is relatively unaffected by both sources of error. We exploit
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©
= 107 1
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% 103 1
o
10 theoretical spectrum S¢(f) (unfiltered) e
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108 L L .
107 107 1072 107! 10°
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Fig. 4. Power spectra of x(t) (blue) and x(t) (green) compared with theoretical
spectra S¢(f) and S¢(f) (see text). Undulations in the filtered spectrum arise from the
box-car filter, which is oscillatory in the frequency domain.
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X(t) time series. Temporal averaging substantially reduces the noise term when At is
less than the averaging time T = 3 kyr. Estimates for D’;‘q(At) approach a constant
value once At > 2T.

this result to construct a broadband paleomagnetic power
spectrum.

4. A composite paleomagnetic power spectrum

We use two sources of information to construct the paleomag-
netic spectrum. Model PADM2M of Ziegler et al. (2011) gives the
axial dipole moment over the past 2 Myr at intervals of 1 kyr,
whereas CALS10k.2 (Constable et al., 2016) gives the axial dipole
moment (and other low-degree components of the magnetic field)
over the past 10 kyr at 50-year intervals. Fig. 6 shows the power
spectrum for each model, calculated using a multi-taper method
(function pmtm in Matlab). We also show two theoretical spectra.
One spectrum is predicted using the parameters of a simple
stochastic model derived from PADM2M (Buffett et al., 2013),

5
7 4
e, PADM2M
10
& CALS10k.2
3
o 10'F E
E 20 N i
: 10 \‘
8 3 “‘
103k E

4 theoretical spectrum S, (f) ——

filtered spectrum Se(f) +----

10
(gaussian T = 2.4 kyr)

-6 1 1 Il 1
10 !
107 107 10"

Frequency (cycles/kyr)

Fig. 6. Power spectra computed from PADM2M and CALS10k.2 using a multi-taper
method. Theoretical spectra S.(f) and Se(f) are based on the stochastic model
derived from PADM2M and a filtered version of the stochastic model. We apply a
Gaussian filter with an averaging time of T = 2.4 kyr to account for the abrupt
decrease in power of PADM2M at high frequency.

which gave 7 =0.034kyr™' and D, = 0.069 x 10** A> m* kyr™".
The second spectrum is obtained by applying a gaussian filter to
the stochastic model, using an averaging time of T = 2.4 kyr. The
sampling used to construct the stochastic model from PADM2M
was At = 5 kyr, so the filter required to account for the power spec-
trum of PADM2M is broadly compatible with the proposed rule of
thumb At ~ 2T.

CALS10k.2 possesses more power than PADM2M at overlapping
frequencies. One interpretation is that temporal averaging has a
greater influence on PADM2M, which acts to reduce the power at
high frequencies. We might remedy this problem by seeking an
independent estimate for D, using the higher resolution record
from CALS10k.2. Fig. 7 shows the resulting estimate for D.q as a
function of At. The noise term initially increases with At, implying
temporal averaging and/or correlated noise in the stochastic
model. A simple parametric fit of the form

Deg(At) = Deg(00)(1 — e~4/T) (23)

gives Dy(c0) = 0.34 x 10* A> m* kyr ' for the asymptotic value of
the noise term. We fit (23) through the lower limit of the estimates
in Fig. 7 to account for the possible influence of random error
(which tends to increase D). A correlation time of T = 120 years
suggests that the sampling of the stochastic process should be
restricted to At > 240 years. (We adopt At = 300 years as a lower
limit in our subsequent discussion.)

Even though the noise term from CALS10k.2 is more than four
times larger than that from PADM2M, there are several reasons
to think that the estimate from CALS10k.2 is more reliable. First,
the random error in CALS10k.2 is lower than that in PADM2M
(Ziegler et al., 2011). Second, the short correlation time for
CALS10k.2 implies much less temporal averaging. Both of these
factors should reduce the errors described in the previous section.
An independent assessment of the combined influence of random
error and temporal averaging for CALS10k.2 suggests that the net
contribution to D, is less than 25% (see Appendix). On the other
hand, CALS10k.2 is too short to reliably recover the drift term,
v(x), because we require sampling over a range of x. Instead, we
must rely on the longer record from PADM2M to estimate the slope
of the drift term.
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Fig. 7. Estimates for the noise term, D, recovered from CALS10k.2 as a function of
sampling time At. A simple parametric fit to De(At) in (23) gives
Deg(00) = 0.34 x 10* A2 m* kyr™". The effective correlation time of the noise source
is T = 120 years.
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Recovering a direct estimate of »(x) from PADM2M using (4) is
not an optimal approach. Increasing the value of D.; without any
change in y predicts more power at low frequencies, which is
incompatible with the low-frequency part of the PADM2M spec-
trum. Since we expect random error and temporal averaging to
have less affect at low frequencies, we choose to alter y to maintain
agreement with PADM2M at low frequencies. In effect, we are
using the low-frequency spectrum of PADM2M to estimate 7y once
Deq is inferred from CALS10k.2. The predicted power at low fre-

quency is 2D./y?, so we take 7y=0.075 kyr™'  with
Dey = 0.34 x 10* A2 m* kyr ™' to retain consistency with the low-

frequency power in PADM2M. While the slope of the drift term
is more than twice the value recovered from PAD2M using (4), it

is in rough agreement with the value y = 0.07 kyr™' estimated
for the PISO-1500 model (Channell et al., 2009). (The noise term

for PISO-1500 near x =< x > is 0.54 x 10* A m* kyr !, which is
somewhat higher than the value recovered from CALS10k.2. Inter-
estingly, the preferred sampling interval for PISO-1500 is 4-5 kyr,
which is close to the sampling interval adopted previously for
PADM2M and SINT-2000 (Buffett et al., 2013). Thus the time aver-
aging in all three VADM models is roughly the same and may
reflect the gradual acquisition of magnetization in sediments).

Selective use PADM2M and CALS10k.2 may seem ad hoc, but
the underlying motivation is to leverage the relative strengths of
these two models. Alternative strategies are possible, such as the
maximum likelihood approach of Kleinhans (2012), although we
are not aware of applications where these methods have been
applied to multiple data sets with different resolutions, durations
and accuracies. We now test the stochastic model by assessing
the internal consistency and by making predictions for the reversal
rate, which can be compared against geological observations.

Internal consistency is tested by running a series of 100 real-
izations of the stochastic model. The model parameters are held
fixed but the initial conditions and random component differ
between realizations. These realizations are run for 2 Myr and
the value of the dipole moment is recorded every 300 years, cor-
responding to the sampling interval inferred from CALS10k.2. This
choice ensures that the noise source, I'(t), can be approximated
as uncorrelated. The origin of correlation at shorter time steps
might reflect the lifetime of convective eddies in the core or pos-
sibly the time required to sweep normal and reversed patches of
magnetic flux across the surface of the core (Metman et al., 2017).
While we could account for correlated noise in the stochastic
model (Buffett and Matsui, 2015; Bouligand et al., 2016), we
avoid this complication in the realizations by choosing a suffi-
ciently large time step.

A power spectrum is computed for each realization and the
results are superimposed on the power spectra computed from
PADM2M and CALS10k.2 (see Fig. 8a). We also show a theoretical
composite spectrum, based on the parameters of the stochastic
model and now including the influences of correlated noise with
a correlation time of T =120 years (e.g. Buffett and Matsui,
2015). A cloud of power spectra for the realizations overlap the
low-frequency part of the PADM2M power spectrum and the the-
oretical spectrum. Comparison of the realizations in Fig. 8a with
the power spectrum for CALS10k.2 is not appropriate because the
CALS10k.2 spectrum is computed from a 10-kyr time series. A bet-
ter comparison would rely on 10-kyr realizations (see Fig8b). A ser-
ies of shorter realizations produces a cloud of power spectra that
overlap the computed power spectrum for CALS10k.2, suggesting
that the revised stochastic model is broadly consistent with the
CALS10k.2 model.

We also test the stochastic model against historical observa-
tions (Jackson et al., 2000). A steady decrease in the dipole field

has lowered the dipole moment by Ax = 0.68 x 10** A m? over a
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Fig. 8. (A) Power spectra from 100 realizations of the stochastic model (light gray)
compared with the power spectra computed from PADM2M (blue) and CALS10k.2
(green). A theoretical spectrum (dark gray) is based on the parameters of the
revised stochastic model and the influences of correlated noise with a correlation
time of T = 120 years. The ensemble of realizations is compatible with PADM2M at
low frequencies. (B) Power spectra of 100 shorter (10-kyr) realizations of the
stochastic model agree well with the power spectrum for CALS10k.2.

150-year interval between 1860 and 2010 (Gillet et al., 2013). Such
a change is too large to be caused by the drift term, so it must be
associated with the noise term. The root-mean-square (rms) varia-
tion in the dipole moment due to the noise term is
< Ax?>>12 = | /2DgAt. Using the revised estimate of D,, and

At = 0.15 kyr, we find < Ax2>1/2 = 0.32 x 10> A m2. Thus the his-
torical variation is larger than the expected variation, but it is not
implausible. A realization of the noise process is described by
Risken (1989)

Ax = V2DAtw (24)

where w is a random variable drawn from a standard normal distri-
bution (mean of zero and variance of 1). We require w = 2.13 to
account for the recent variation in the dipole field, which would
occur about 1.7% of the time. The actual probability could be some-
what lower if the noise source is correlated at At = 0.15 kyr (a likely
case given our estimate of the correlation time from CALS10k.2).
The preceding estimate would then represent a modest overesti-
mate of the probability of occurrence. By comparison, the original

value of D =0.069 x 10* A% m* kyr’1 from PADM2M would
require w =4.73 to account for the historical variation. Such an
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event would occur less than 0.0001% of the time, so the historical
record lends support to the larger value for the noise term.

Another useful prediction of the stochastic model is the vari-
ance of the dipole moment. We obtain an expression for the vari-
ance, 02, by integrating the power spectrum over frequency

o= [ s =2
The revised values for D, = 0.34 x 10** A? m* kyr™' and y = 0.075
kyr ' give o, = 2.13 x 10*2 A m2. While this value exceeds the esti-
mate g, = 1.48 x 10*2 A m? for PADM2M (Ziegler et al., 2011), it is
not too far from the estimate g, = 1.97 x 10> A m? for SINT-2000
(Valet et al., 2005) and somewhat smaller than the estimate

oy = 2.68 x 102 Am? for PISO-1500 (Channell et al., 2009). Thus
the predicted variance lies within the range of estimates from
recent VADM models.

(25)

5. Geomagnetic polarity reversals

A more general representation of the drift term is needed to
describe geomagnetic polarity reversals. The linear approximation
in (6) is useful when x varies about < x >, but its utility ceases
when x approaches zero during a reversal. The invariance of the
magnetic induction equation to a change in the sign of the mag-
netic field suggests that z(x) is an odd function of x. We expect
the drift term to adjust x toward the negative value of the time
average once x changes sign. One simple extension of the linear
approximation is
VX

Z/()():7<>c>

(x—<x>) forx >0, (26)
where the expected symmetry is obtained by taking v(—x) = —v(x).
The gradient of z(x) at x =< x> is consistent with the linear
approximation in (6), but the value of the drift now vanishes at
x = 0. It is convenient to represent the drift as the negative gradient
of a potential U(x). Integrating (26) for the U(x) gives

2
U(x) = 1 yx

T2<x>

Exf <X >} forx >0 (27)
where the integration constant is chosen to make U(0) = 0. A com-
parison of U(x) with the potential recovered from the PADM2M
model of Ziegler et al. (2011) is shown in Fig. 9. The barrier at
x =0 is comparable for both potentials, but the amplitudes of
U(x) differ at large |x| This is mainly a consequence of increasing y
in the revised stochastic model. A larger y produces a narrower
potential well and limits the variability of x at a fixed level of noise,
consistent with the predicted standard deviation o, = \/D¢/y. We
now use the generalization of the drift in (26) to predict the rate
of magnetic reversals and the duration of polarity transitions.

5.1. Rates of reversals

Random fluctuations in x enable the dipole to jump from one
potential well to the other, leading to a magnetic reversal. The
average frequency of this transition can be predicted using the
stochastic model. Kramers (1940) derived an approximation
expression for the reversal rate, r, when the barrier
AU = U(0) — U(< x >) is large compared with the noise D. Kramers’
formula in our notation gives

— 7 eaup
r= 271_6 . (28)

Substituting for

AU = %y < x>? (29)

600
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Fig. 9. Potential U(x) computed from (27) compared with a potential recovered
from PADM2M. Both potentials have comparable barriers, AU, but different
amplitudes at large |x|. The width of the potential well is defined by the second
derivative U"(x) = —y at x = + < x >. We use 7 = 0.075 kyr ' for the potential in
(27).

from (27) and using the definition of the variance from (25) gives

r—= ﬁe—<x>2/(60§). (30)

Remarkably, the rate of reversal depends on the time average,
< x >, the variance, ¢2, and the timescale for slow adjustments
of the dipole field, y-'; the slow timescale is thought to reflect
the decay time of dipole fluctuations (e.g. Gubbins and Roberts,
1987). Geodynamo simulations suggest that the dipole fluctuations
can be represented by the first few decay modes (Buffett et al.,

2014). Using <x >=5.3 x 102 Am?, o, =2.13 x 102 Am? and

vy =0.075 kyr ! (75 Myr') gives r = 4.2 reversals per Myr, which
is comparable to the observed rate over the past 30 Myr (Lowrie
and Kent, 2004). By comparison, a 60-Myr realization of the
stochastic process yields 3.9 reversals per Myr when the realiza-
tion is filtered to a resolution of 30 kyr, comparable to the resolu-
tion of marine magnetic anomalies (Gee and Kent, 2015). The need
to filter the realization is connected to the complexity of polarity
transitions when the noise term is large. We explore this question
in the next section.

5.2. Duration of polarity transitions

The duration of polarity transitions depends on how the transi-
tions are defined. A definition based on magnetic intensity might
depend on the time required for the dipole to recover to the
long-term average after a change in sign (i.e. a recovery time). This
particular definition is useful for our purposes because it can be
computed from the stochastic model. We expect the drift term to
be small near x ~ 0, so the evolution of the dipole during the tran-
sition is dominated by the noise term. A useful approximation for
the time required for the field to rise above a particular threshold,
X, is (Buffett, 2015)

2
4x;

“bow

31

where D(0) refers to the value of the noise term at x = 0. The gen-
eral form of (31) is characteristic of a diffusive process, which
includes no contribution from the drift term. A more exact treat-
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ment of the problem accounts for the drift term as x rises toward
the threshold x;. Fig. 10 shows a comparison of the approximation
in (31) with the value computed from a numerical solution of the
Fokker-Planck equation (e.g. Risken, 1989). Including the drift term
shortens the recovery, but the difference is relatively small when
we adopt the revised value for D.q. This implies that the recovery
of the magnetic field following a reversal is driven mainly by noise
(e.g. random turbulent fluctuations in the field generation).

We can compute a recovery time from the PADM2M model by
interpolating the time when x rises above the time average after
a reversal. Each reversal gives a different value for 7, but the aver-
age and its standard deviation are shown in Fig. 10. The agreement
with theory is surprisingly good. We also show the time required
for the field to drop from the time-averaged value into a reversal
(i.e. a decline time). The mean decline time from PADM2M is
41 kyr, whereas the mean recovery time is 27 kyr. This asymmetry
is consistent with previous observations (Valet and Meynadier,
1993). (The decline time was incorrectly reported as the recovery
time in Buffett (2015), although the main point in that study was
that these short durations require a noise term in excess of
D =0.30 x 10* A? m# kyr ).

The difference between the recovery and decline times can be
attributed to the role of the drift term. The recovery time is shorter
than the approximation in (31) because the drift term drives the
dipole moment toward the time average, increasing the rate of
adjustment after a reversal. Conversely, the dipole must work
against the drift term during the decline phase. The approximation
in (31) lies roughly midway between the estimates from PADM2M,
which suggests that the drift lengthens and shortens the adjust-
ment by comparable amounts, relative to a purely diffusive process
with no drift term.

It is reasonable to question whether the PADM2M model can
adequately resolve the recovery time when the short-period
behavior is not sufficient to compute D.,. A transition that lasts
T ~ 30 kyr would correspond to a frequency of f = 1/27, assuming
the transition represents half a cycle. A nominal frequency of 0.017

50 T T T T T

- recovery time (theory)
------- approximation in (31)
401 A recovery time (PADM2M) /A

v decline time (PADM2M) /s
351
301

25

20+

Reversal Duration (kyr)

Dipole Moment (1022A m? )

Fig. 10. Mean recovery time for the dipole moment following a reversal. A
numerical solution of the Fokker-Planck equation (theory) is compared with the
approximation in (31), where the drift term is assumed to vanish. Discrete
estimates from PADM2M are shown for the recovery and decline times. The
recovery time agrees well with the theoretical estimate for recovery, whereas the
decline time exceeds the recovery time due to contributions from the drift term.

cycles kyr ! lies in the part of the spectrum where PADM2M and
the stochastic model are broadly consistent (see Fig. 8). Conse-
quently, there is internal consistency in our argument that the
stochastic model is in agreement with both the transition duration
and low-frequency power spectrum from PADM2M. It is encourag-
ing that the same stochastic model gives a reasonable estimate for
the reversal rate, particularly when no information about the
reversal rate is used in the construction of the stochastic model.

The dominance of the noise term during a polarity transition
has interesting consequences for the complexity of reversals. A
process that is driven solely by the noise term is analogous to a
random walk. The probability of stepping back and forth across
x = 0 increases with the number of steps n during the transition.
Dasgupta and Rubin (1998) show that the expected number of
zero-crossings is proportional to \/n. As we decrease the step size
in a numerical realization, we take a large number of steps through
the transition and produce a large number of zero-crossings during
a single transition. In practice the time step is limited by the corre-
lation time of the noise source to ensure that realizations of the
noise are effectively uncorrelated. Consequently, the number of
steps through a transition is not arbitrarily, and a representative
number is liable to produce several zero crossings.

Numerical realizations with D(0) = 0.30 x 10** A*> m* kyr ™'

(close to the value D =0.34 x 10* A’ m* kyr ' proposed here)
produced multiple zero-crossings in about 50% of the polarity tran-
sitions when At =1 kyr (Buffett, 2015). The average number of
zero crossings is 2.8, but this number would go up if At = 0.3 kyr.
We could expect 3x more time steps through a transition and

roughly v/3x more zero crossings (on average), corresponding to
a total of 5 changes in sign during a transition. To make meaningful
comparisons with geological observations we would want to
remove these short-period polarity changes by filtering the numer-
ical realization to the resolution of the observations. In the previ-
ous section we used T = 30 kyr to compare the reversal rate with
estimates from marine magnetic anomalies.

6. Conclusions

Stochastic models have been successfully tested using geody-
namo simulations, but their use with paleomagnetic observations
requires departures from the standard approach. Two main diffi-
culties are identified. The first is due to random error in the esti-
mates of the dipole moment, which cause the noise term to be
over-estimated. The significance of this problem depends on the
sampling interval, At, and the largest affects occur at short At. A
second difficulty arises from temporal averaging of dipole fluctua-
tions, either due to errors in dating or gradual acquisition of mag-
netization in sediment. In either case, temporal averaging reduces
the noise term at short At, although estimates for D often converge
to a constant value as At increases. Unfortunately, the noise term
does not necessarily converge to the correct value.

An important feature of both random error and temporal aver-
aging is that the largest affects are predicted at high frequency.
Because the low-frequency behavior is nearly unaltered, we can
use the low-frequency part of the observed power spectrum as a
constraint on the stochastic model. We illustrate the approach
using the PADM2M model of Ziegler et al. (2011) and the
CALS10k.2 model of Constable et al. (2016). An estimate of the
noise term is recovered from the high-resolution CALS10k.2 model,
while the slope of the drift term, ), is estimated from the low-
frequency part of the spectrum for PADM2M. Realizations of the
stochastic model yield a composite power spectrum that agrees
reasonably well with both PADM2M and CALS10k.2.

A simple generalization of the stochastic model is needed to
allow large deviations from the time-averaged moment. This
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modification enables predictions for the mean rate of reversal. A
reversal in the stochastic model occurs when a realization jumps
between the minima in a double-well potential. Application of Kra-
mers’ formula (Kramers, 1940) gives a surprisingly simple expres-
sion for the reversal rate. We find that the reversal rate can be
defined in terms of the time-averaged dipole moment, the variance
of the dipole moment and a slow timescale that characterizes the
adjustment of the dipole toward the time-averaged value. Using
values from the stochastic model gives a mean rate of 4.2 Myr ™',
which is good agreement with observations (Lowrie and Kent,
2004). Comparable rates are obtained from realizations of the
stochastic process, provided we filter the realization to the same
resolution as the observations. The need for temporal filtering
arises from the importance of noise in driving polarity transitions.
Multiple polarity changes can occur within a single transition field,
SO a quantitative comparison with observations depends on the
temporal resolution of those observations.
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Appendix A. Combined influence of random error and time
averaging

Random error and time averaging have opposite effects on esti-
mates for the noise term in a stochastic model. Random error
increases the noise term, whereas time averaging tends to reduce
Dy when At is less than roughly twice the averaging time. The
combined influence of both error sources depends on their relative
magnitude. As an example, we consider a realization that approx-
imates the CALS10k.2 model. We adopt y = 0.075 kyr ' and

Doy = 0.34 x 10** A m* kyr™' for the parameters of the stochastic
model and run a 10-kyr realization with time steps at a 50-year
interval. Random error with a standard deviation of
6, = 0.4 x 10°* A m? is added to the realization and a box-car filter
is applied with an averaging time of T = 150 years. All of these val-
ues are chosen to approximate the statistical properties of
CALS10k.2.

Fig. A.1 shows the recovered estimates for D.q as a function of
the sampling time At for both the time-averaged process and
the time-averaged process with random error. Estimates for D,
from the time-averaged process increase with At and approach a
constant value at large At. We would obtain Dg; = 0.32x

10 A2 m* kyr ' for the recommended sampling interval of
At = 2T = 300 years. Addition of random error to the process
produces much higher estimates for D.,, at small At
consistent with expectations for random errors. We obtain

Dy = 0.42 x 10* A m* kyr™' at At =300years and somewhat
lower values if we fit a curve through the lower limit of estimates
(as done in the text). The discrepancy from the known value is
about 24% or less.

The time-averaged process with random error looks qualita-
tively different than the estimates recovered from CALS10k.2 (see
Fig. 7). In particular, the estimates from CALS10k.2 are much lower
at small At. One interpretation is that the actual random errors in
CALS10k.2 are lower than g, = 0.4 x 10?> A m?. Alternatively, we
might appeal to a longer effective time-averaging (i.e. larger T),
which would lower the amplitude of the time-averaged error. On
the other hand, it would be difficult to account for the observed
dependence of D,, on At in CALS10k.2 when T was much larger
than 150 years. It is possible that the reported error for CALS10k.2
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Fig. A.1. Recovery of noise term D, from a 10-kyr realization of the preferred
stochastic model. A box-car filter is applied to the realization with and without the
addition of random error. Sampling the process at At = 2T = 300 years gives a
reasonable estimate for D.q, even when a realistic level of random error is added to
the process.

includes offsets or biases, which would not affect the recovered
estimates for D.y. Assessing the error in paleomagnetic models is
a difficult challenge, and it is likely that the error in CALS10Kk.2 is
more complicated than the simple representation considered here.
Still, the preceding example suggests reasonable estimates for Deq
can be recovered from a shorter, high-resolution model.
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