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How shear increments affect the flow production branching ratio in CSDX

J. C. Li and P. H. Diamond
CASS, University of California, San Diego, California 92093, USA

(Received 6 April 2018; accepted 23 May 2018; published online 7 June 2018)

The coupling of turbulence-driven azimuthal and axial flows in a linear device absent magnetic

shear (Controlled Shear Decorrelation Experiment) is investigated. In particular, we examine the

apportionment of Reynolds power between azimuthal and axial flows, and how the azimuthal flow

shear affects axial flow generation and saturation by drift wave turbulence. We study the response

of the energy branching ratio, i.e., ratio of axial and azimuthal Reynolds powers, PR
z =PR

y , to incre-

mental changes of azimuthal and axial flow shears. We show that increasing azimuthal flow shear

decreases the energy branching ratio. When axial flow shear increases, this ratio first increases but

then decreases to zero. The axial flow shear saturates below the threshold for parallel shear flow

instability. The effects of azimuthal flow shear on the generation and saturation of intrinsic axial

flows are analyzed. Azimuthal flow shear slows down the modulational growth of the seed axial

flow shear, and thus reduces intrinsic axial flow production. Azimuthal flow shear reduces both the

residual Reynolds stress (of axial flow, i.e., PRes
xz ) and turbulent viscosity (vDW

z ) by the same factor

jhvyi0j�2D�2
x L�2

n q2
s c2

s , where Dx is the distance relative to the reference point where hvyi ¼ 0 in the

plasma frame. Therefore, the stationary state axial flow shear is not affected by azimuthal flow

shear to leading order since hvzi0 � PRes
xz =v

DW
z . Published by AIP Publishing.

https://doi.org/10.1063/1.5033911

I. INTRODUCTION

Intrinsic flows of plasmas are beneficial to magnetic

confinement and MHD control.1,2 Intrinsic flows occur both

parallel to the magnetic field (e.g., toroidal rotations in toka-

maks3 and axial flows in linear devices4) and perpendicular

to the magnetic field (e.g., zonal flows5–7). In particular, the

combination of intrinsic parallel flow and weak magnetic

shear is required for the formation of enhanced confinement

states, such as states with de-stiffened heat flux profiles vs.

rT.2 Zonal flows are mesoscopic and can lead to the sup-

pression of micro-turbulence.8 Therefore, turbulence-driven

flows at zero to weak magnetic shear are of interest.

Controlled Shear Decorrelation Experiment (CSDX) is a lin-

ear device with comprehensive fluctuation and flow diagnos-

tics and uniform axial magnetic fields, i.e., zero magnetic

shear. In addition, the axial and azimuthal flows in CSDX

are both driven by turbulence.4,9,10 Thus, CSDX is an ideal

venue to study the physics of turbulence-driven flows in uni-

form magnetic fields.

The generation of axial and zonal flows in CSDX can be

viewed as a heat engine model,11 as illustrated by Fig. 1.

Initially driven by profile gradients (e.g., rne in CSDX), the

turbulence energy is coupled to both axial and zonal flows.

Both flows are accelerated by Reynolds force, which is the

gradient of Reynolds stress. The branching ratio of turbulent

flow production is then the ratio of axial to azimuthal

Reynolds powers. The Reynolds power is the product of

Reynolds force and flow velocity, i.e., the axial Reynolds

power is PR
z � �h~vr~vzi0hvzi and the azimuthal Reynolds

power is PR
h � �h~vr~vhi0hvhi. The branching ratio is then

PR
z =PR

h . In CSDX, the coupling of intrinsic axial and azi-

muthal (zonal) flows is weak because jkzhvzi0j=khhvhi0 � 1.4

The turbulence energy is primarily coupled to zonal flows,

i.e., PR
z =PR

h � 1. In return, zonal flows regulate drift wave

turbulence through shearing. The axial flow is parasitic,

riding on the drift wave–zonal flow system. Indeed, in the

regime of intrinsic axial flows, the regulating effect of zonal

flow is expected to be stronger than that of axial flow, due to

weak axial flow shears, i.e., jkzhvzi0j=khhvhi0 � 1.

Intrinsic axial flows are driven by the axial Reynolds

force, i.e., �h~vr~vzi0. The axial Reynolds stress contains a dif-

fusive component and a residual stress, i.e., h~vr~vzi ¼ �vzhvzi0
þPRes

rz . The residual stress does not depend on flow magni-

tude or shear, so the gradient of �@rP
Res
rz accelerates the axial

flow from rest. The residual stress requires spectral asymmetry

in the kh–kz space because it is determined by the correlator

hkhkzi �
P

k khkzj/kj2. In CSDX, a seed axial flow shear

breaks the spectral symmetry12 without requiring the well-

studied geometrical mechanisms.13,14 The residual stress

then induces a negative viscosity increment, i.e., dPRes
rz

¼ �vRes
z dhvzi0, where vRes

z < 0. When jvRes
z j exceeds the tur-

bulent viscosity driven by drift waves—such that the total

viscosity is negative—the seed flow shear is amplified by the

modulational instability. The axial flow shear can saturate by

two mechanisms. When the turbulent diffusion of axial momen-

tum is equal to the residual stress in magnitude, the Reynolds

stress and thus the axial Reynolds power are then zero, i.e.,

h~vr~vzi ¼ 0 and PR
z ¼ 0. As a result, the axial flow shear satu-

rates. The saturated axial flow shear is determined by the bal-

ance between residual stress and the turbulent viscosity driven

by drift waves, i.e., hvzi0 ¼ PRes
rz =v

DW
z . When the axial flow

shear exceeds the linear threshold of parallel shear flow instabil-

ity (PSFI),15,16 the strong, nonlinear turbulent viscosity induced

by PSFI saturates the axial flow shear. The flow shear then satu-

rates near and below the PSFI threshold,12 i.e., jhvzi0j�jhvzi0jcrit.

Zonal flows are driven by vorticity flux. This is because

the perpendicular Reynolds force is equivalent to vorticity
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flux, by the Taylor identity,17,18 i.e., �h~vr~vhi0 ¼ �h~vr~qi
where ~q � r2

?
~/ is the vorticity. Consequently, the perpendic-

ular Reynolds power is PR
h ¼ �h~vr~qihvhi. Similar to the axial

Reynolds stress, the vorticity flux contains a diffusive compo-

nent and a residual flux, i.e., h~vr~qi ¼ �vhhvhi00 þ CRes
q .7,19

While the generation of zonal flows is well-studied,5,6 the

question of what saturates the flow in the collisionless regime

is seldom addressed. Recently, it has been shown that turbu-

lent diffusion of vorticity saturates zonal flows, in the absence

of frictional drag.20,21 This new mechanism departs from the

often-quoted saturation by tertiary instability of zonal flows.22

The relevance of tertiary instability to zonal flow saturation in

confinement devices is debatable.

The goal of this paper is to understand the evolution of

fluctuation–flow ecology (including both hvki and hvhi).23,24

This has not been addressed by previous experiments or sim-

ulations. The question of what couples the parallel and per-

pendicular flows in the absence of geometrical mechanisms

is open. Magnetic shear allows perpendicular flow shears to

break the symmetry of the kk spectrum of turbulence, leading

to the generation of intrinsic parallel flows.13 However, this

geometrical mechanism is not relevant for low or zero mag-

netic shear, such as in the flat-q regime in tokamaks and lin-

ear devices with uniform magnetic fields, e.g., CSDX. The

coupling of potential vorticity and parallel compression

(rk~vk) can convert parallel flows into zonal flows.25 But,

this coupling is weak in the regime of intrinsic parallel flows

due to kkLn � 1 in CSDX.

In this paper, we address the following questions:

(1) What is the branching ratio, i.e., the fraction of turbu-

lence energy coupled to axial flows, relative to that cou-

pled to zonal flows, in CSDX? In particular, we study

how the increments of azimuthal and axial flow shears

affect the branching ratio PR
z =PR

h .

(2) How do zonal flow shears affect the generation and satu-

ration of intrinsic axial flows, absent magnetic shear? In

the context of CSDX, we study how the zonal flow shear

affects the modulational instability of seed axial flow

shear and the saturated axial flow shear.

We study the change of branching ratio in response to

incremental changes of azimuthal and axial flow shears. We

increase one of the azimuthal and axial flow shears, while

fixing the other, and calculate the resulting branching ratio

PR
z =PR

h for each combination of axial and azimuthal flow

shears. For each case, the flow profiles are fixed, i.e., we

ignore the feedback of turbulence-generated flows on the

flow profiles. By increasing the azimuthal flow shear, the

change of PR
z =PR

h reflects the competition between

turbulence-driven axial and azimuthal flows. Increasing the

axial flow shear allows us to explore the saturation of intrin-

sic axial flows. Particularly, we investigate whether the

intrinsic axial flow shear saturates due to the turbulent vis-

cosity driven by drift waves (vDW
z ) or due to PSFI. This study

addresses the regime where drift wave is the dominant insta-

bility population. Perpendicular Kelvin–Helmholtz (KH)

instability driven by the azimuthal flow curvature is negligi-

ble19 because KH drive is much weaker than the rn0 drive,

i.e., jkhq2
s hvhi00j � x�e. Here, x�e � kyqscs=Ln is the electron

drift frequency and Ln � n0=jdn0=dxj is the density gradient

scale. As a result, we are interested in the regime where

jhvhij=cs � L2
Vh
=qsLn, and LVh is the scale length of azi-

muthal flow shear.

In addition, we study how azimuthal flow shears affect

the generation and saturation of axial flows by turbulence.

The axial residual stress is calculated including a strong azi-

muthal flow shear. We analyze the effect of azimuthal flow

shears on the modulational instability of a seed axial flow

shear. Moreover, study how the azimuthal flow shear affects

the saturated axial flow shear, which is calculated using

hvzi0 ¼ PRes
rz =v

DW
z . Here, we consider the regime where PSFI

is stable, i.e., jhvzi0j � jhvzi0jcrit. Though the wave–flow reso-

nance can be prominent in linear devices, here we consider

the regime where the resonance is weak. In CSDX, where

jkzj=kh � 1, the main resonance is between drift wave and

azimuthal flow, i.e., xk � khhvhi � kzhvzi ffi xk � khhvhi
ffi xk � khhvhi0Dx. Dx is the distance relative to the reference

position. The Doppler-shifted drift wave frequency is

approximately xk � x�e=ð1þ k2
?q

2
s Þ. Thus, when the value

of jkhhvhi0Dxj is close to x�e, the resonance is strong. In this

work, we consider the regime where jkhhvhi0Dxj � x�e, i.e.,

jhvhij=cs � qsLVh=DxLn. Hence, resonance is neglected. In

addition, the KH drive is negligible compared to the drift

wave drive, yielding jhvhij=cs � L2
Vh
=qsLn. Taken together,

we focus on the regime where the azimuthal flow shear satis-

fies qsLVh=DxLn � jhvhij=cs � L2
Vh
=qsLn.

The rest of this paper is organized as follows: Sec. II

presents how increments of azimuthal and axial flow shears

affect the turbulence energy branching ratio. Section III stud-

ies the effects of azimuthal flow shear on the generation and

saturation of intrinsic axial flows in CSDX. Section IV sum-

marizes the main results. Section V discusses the results and

future directions.

II. TURBULENCE ENERGY BRANCHING RATIO

We study the apportionment of turbulence energy

between azimuthal and axial flows through a modulational

study. We incrementally change the azimuthal or axial flow

shear, while fixing the other, and study how the Reynolds

work branching ratio PR
z =PR

h changes, respectively. Note in

this study, we ignore the feedback of turbulence-driven flows

on the flow profiles. Thus, the flow profiles are determined

by external input, which is adjusted to match profiles from

CSDX. In particular, we seek to answer the following

questions:

(1) How do azimutha21 flows compete for turbulence energy

with axial flows?

FIG. 1. Schematic of turbulence-driven axial and azimuthal (zonal) flows in

CSDX. PR
z and PR

h are axial and azimuthal Reynolds powers, respectively.
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(2) How do turbulence-driven axial flows saturate?

In the following, we present the results of this study.

We study the Hasegawa–Wakatani drift wave system

coupled with parallel flow fluctuations in slab geometry in

the presence of a mean perpendicular (azimuthal) flow hvyi
and a mean parallel (axial) flow hvzi, both of which vary in

the x̂ (radial) direction

d

dt
~n þ ~vx

rn0

n0

¼ Dk@
2
z ð~n � ~/Þ þ Dcr2~n; (1)

d

dt
~q þ ~vxhqi0 ¼ Dk@

2
z ð~n � ~/Þ þ vcr2~q; (2)

d

dt
~vz þ ~vxhvzi0 ¼ �@z~n; (3)

where we define Dk � v2
The=�ei and d=dt � @t þ hvyi@y

þhvzi@z. �ei is the electron–ion collision frequency and vThe

the is electron thermal speed. We have normalized electric

potential fluctuation as ~/ � ed/=Te and density fluctuation

as ~n � dn=n0, where n0 is the equilibrium density. The mag-

netic field is uniform and lies in the ẑ direction. Both n0 and

hvyi vary only in the x̂ direction. ~q � q2
sr2
?

~/ is the vorticity

fluctuation, where qs is the ion Larmor radius at electron

temperature, and hqi � hvyi0qs=cs is the zonal vorticity

where cs is the ion sound speed. ~vE � csẑ 	r~/ is the E	B
velocity fluctuation. Dc and vc are the collisional particle dif-

fusivity and vorticity diffusivity (i.e., viscosity).

Collisional drift waves are the dominant instability. The vor-

ticity gradient may drive the perpendicular Kelvin–Helmholtz

(KH) instability. But the vorticity gradient drive is quantita-

tively weaker than the rn0 drive,19 i.e., jkyq2
s hvyi00j=x�e � 1

where x�e � kyqscs=Ln is the electron drift frequency and

Ln � n0=jdn0=dxj is the density gradient scale. Also, jhvzi0j is
well below the PSFI threshold, such that PSFI is strongly

damped.

The azimuthal and axial flows are both externally

imposed and fixed. We denote them as Vy and Vz to distin-

guish them from the intrinsic flows. As a result, the disper-

sion relation follows from the eigenmode equation for /

q2
s

d2/
dx2
¼
�

k2
yq

2
s �

kyq2
s V00y

Xk
þ iaðXk � x�eÞ

XkðXk þ iaÞ þ
kykzqscsV

0
z

X2
k

� k2
z c2

s ðx�e þ iaÞ
X2

kðXk þ iaÞ

�
/; (4)

where a � k2
z v

2
The=�ei and Xk � xk � kyVy � kzVz þ ick. We

obtain the / profile by using an eigenvalue solver. Here, we

set the extent of the radial direction to be 0 
 x 
 Lx, where

Lx ¼ 5qs. We set the parameters in the range relevant to

CSDX, which are qs ¼ 1 cm; Ln ¼ 1:5 cm; kyqs ¼ 0:7; Lz

¼ 300 cm; kz ¼ �2p=Lz. The adiabaticity parameter is

k2
z Dk=x�e ¼ 3. The flow profiles are Vy ¼ Vy;max sin ½pðx=Lx

�0:5Þ� and Vz ¼ Vz;max cos ðpx=LxÞ. The boundary condition

is /ð0Þ ¼ /ðLxÞ ¼ 0. Then, we can obtain the drift wave fre-

quency xk, growth rate ck, and / profile.

Using the / profile, we determine the average Reynolds

powers, which are PR
y ¼ �L�1

x

Ð Lx

0
dx@xh~vx~vyiVy and

PR
z ¼ �L�1

x

Ð Lx

0
dxh~vx~vzi0Vz. By Taylor identity,17,18 the azi-

muthal Reynolds force is identical to the vorticity flux, i.e.,

�@xh~vx~vyi ¼ �h~vx~qi. Hence, the azimuthal Reynolds power

becomes PR
y ¼ �L�1

x

Ð Lx

0
dxh~vx~qiVy. The vorticity flux con-

tains a diffusive flux and a residual flux, i.e., h~vx~qi
¼ �vyV00y þ CRes

q . The azimuthal Reynolds power is then

PR
y � L�1

x

Ð Lx

0
dx½�vyðV0yÞ

2 � CRes
q Vy�. Therefore, the turbu-

lent diffusion of vorticity dissipates the azimuthal flow shear

because its contribution to PR
y is negative definite. The residual

vorticity flux can convert the turbulence energy to azimuthal

flows when CRes
q Vy < 0. Similar to the vorticity flux, the axial

Reynolds stress contains a diffusive momentum flux and a

residual stress, i.e., h~vx~vzi ¼ �vzV
0
z þPRes

xz . Consequently, the

axial Reynolds power is PR
z � L�1

x

Ð Lx

0
dx½�vzðV0zÞ

2 þPRes
xz V0z�.

Thus, the residual stress can couple the turbulence energy to the

axial flow if PRes
xz V0z > 0. The turbulent diffusion of axial

momentum dissipates the axial flow.

The turbulent fluxes are calculated using the quasilinear

theory. Here, we ignore the resonance between drift wave

and the azimuthal and axial flows. Effects of resonance on

regulating drift waves and zonal flow saturation are dis-

cussed in Refs. 20 and 21. As a result, the non-resonant tur-

bulent diffusivity of vorticity is

vy ¼
X

xk 6¼kyVy

jckj
jXkj2

k2
yq

2
s c2

s j/kj2: (5)

The residual vorticity flux is

CRes
q ¼

X
k

kyc2
s j/kj2

"
jckjx�e þ aðx�e �<XkÞ

jXk þ iaj2

� jckjx�e
jXkj2

þ < i

X2
k

kzkyqscsV
0
z �<

ik2
z c2

s ðx�e þ iaÞ
X2

kðXk þ iaÞ

#
:

(6)

The turbulent diffusivity of axial momentum is

vz ¼
X

k

jckj
jXkj2

k2
yq

2
s c2

s j/kj2: (7)

The residual stress is

PRes
xz ¼ <

X
k

ikykzðx�e þ iaÞ
XkðXk þ iaÞ qsc

3
s j/kj2: (8)

We study the changes of branching ratio of flow produc-

tion by Reynolds work in response to incremental changes of

azimuthal and axial flow shears. The branching ratio is the

ratio of axial to azimuthal Reynolds powers PR
z =PR

y . It mea-

sures the turbulence energy apportionment between axial

and azimuthal flows. Figure 2 shows that azimuthal flow

shear impedes the turbulent production of axial flow. When

increasing the azimuthal flow shear, while fixing the axial

flow, the ratio PR
z =PR

y decreases. This follows because the

azimuthal flow shear reduces the magnitude of axial residual

stress, i.e., jPRes
xz j decreases. Because PR

z > 0, the residual
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stress makes a positive contribution to PR
z , i.e., PRes

xz V0z > 0,

in order to overcome the dissipation set by turbulent diffu-

sion of axial momentum. Therefore, the axial Reynolds

power decreases, as jV0yjmax increases.

Figure 3 shows that the turbulent production of axial

flow saturates below the PSFI threshold. We increase the

axial flow magnitude Vz;max, with the azimuthal flow fixed.

The ratio PR
z =PR

y first rises. For larger Vz;max, the ratio satu-

rates and starts to decrease. Note that the saturation is

below the PSFI threshold! Fig. 4 shows the drift wave

growth rate vs. the axial flow shear. The onset of PSFI

requires jV0zjmax > 2cs=qs. The axial flow production satu-

rates at jV0zjmax ffi 0:1cs=qs, as given by Fig. 3, which is far
below the PSFI threshold. This occurs because at

jV0zjmax ffi 0:1cs=qs, the turbulent diffusion of axial momen-

tum is comparable to the residual stress in magnitude. This

makes the axial Reynolds power close to zero, meaning

that the net production of axial flows by turbulence

approaches zero. As a result, the intrinsic axial flow shear

saturates at jV0zjmax ffi 0:1cs=qs, which is well below the

PSFI threshold.

III. AZIMUTHAL FLOW EFFECTS ON INTRINSIC AXIAL
FLOW

The intrinsic axial flow in CSDX is driven by drift wave

turbulence, via a dynamical symmetry breaking mecha-

nism.12 In response to a seed axial flow shear, the residual

Reynolds stress induces a negative viscosity increment.

When this negative viscosity increment exceeds the turbulent

viscosity driven by drift waves (i.e., such that the total vis-

cosity is negative), the seed shear amplifies itself through a

modulational instability.

When the axial flow shear steepens, a finite residual stress

forms due to the spectral asymmetry of drift wave turbulence.

The stationary profile of axial flow shear is then determined

by the balance of residual stress with turbulent diffusion of

axial momentum by drift waves, i.e., hvzi0 � PRes
xz =v

DW
z .

In the rest of this section, we study the effects of azi-

muthal flow shear on the generation and saturation of axial

flows. We first study how the azimuthal flow affects the sta-

bility of drift waves in CSDX. Then, we focus on how the

azimuthal flow shear regulates the modulational instability

of the seed axial flow shear. Also, we investigate how the

azimuthal flow shear regulates the stationary axial flow shear

profile determined by hvzi0 � PRes
xz =v

DW
z .

A. Azimuthal flow effects on drift wave instability

We study the drift wave system described by Eqs.

(1)–(3). Electrons are weakly adiabatic, i.e., ~n ¼ ð1� idÞ~/,

where the non-adiabatic electron response d < 1. d is deter-

mined by the frequency shift, i.e., d ¼ ðx�e � xk � kyhvyi
�kzhvziÞ=k2

z Dk. The eigenmode equation is

q2
s

@2/
@x2
¼
�

1þ k2
yq

2
s � id

� �
� x�e þ kyq2

s hvyi00

Xk

þ kykzqscshvzi0

X2
k

� ð1� idÞ k
2
z c2

s

X2
k

�
/: (9)

Multiplying both sides of Eq. (9) with /� and integrating

over the radial direction, we obtain the linear dispersion rela-

tion, which is

FIG. 3. Change of branching ratio PR
z =PR

y in response to incremental changes

of axial flow shear. The axial flow profile is given by Vz ¼ Vz;max cos ðpx=LxÞ.
The azimuthal flow profile is given by Vy ¼ Vy;max sin ½pðx=Lx � 0:5Þ�, where

Vy;max ¼ 0:13cs.

FIG. 4. Growth rate of drift wave instability for various axial flow shears. The

axial flow profile is given by Vz ¼ Vz;max cos ðpx=LxÞ. The azimuthal flow pro-

file is given by Vy ¼ Vy;max sin ½pðx=Lx � 0:5Þ�, where Vy;max ¼ 0:13cs.

FIG. 2. Change of branching ratio PR
z =PR

y in response to incremental

changes of azimuthal flow shear. The axial flow profile is given by

Vz ¼ Vz;max cos ðpx=LxÞ, where Vz;max ¼ 0:13cs. The azimuthal flow profile

is given by Vy ¼ Vy;max sin ½pðx=Lx � 0:5Þ�.
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1þ k2
?q

2
s � id

� �
� x�e þ kyq2

s hvyi00

Xk

þ kykzqscshvzi0

X2
k

� ð1� idÞ k
2
z c2

s

X2
k

¼ 0: (10)

Here, we define the effective radial wavenumber k2
xq

2
s

� q2
s

Ð Lx

0
dxj@x/j2=

Ð Lx

0
dxj/j2. Hence, the perpendicular

wavenumber is k2
?q

2
s � k2

xq
2
s þ k2

yq
2
s .

Azimuthal flows stabilize drift waves by reducing the

effective electron drift frequency, which is x�e � x�e
þ kyq2

s hvyi00 in the presence of azimuthal flows. When the

curvature of azimuthal flow satisfies kyq2
s hvyi00=x�e < 0, the

flow curvature weakens the effective electron drift fre-

quency, and thus stabilizes. In CSDX, the condition

kyq2
s hvyi00=x�e < 0 holds true, and thus the azimuthal flow

curvature stabilizes drift waves. In the following analysis,

we consider the case where kyq2
s hvhi00=x�e < 0. The

Doppler-shifted frequency and linear growth rate of drift

wave are calculated using the dispersion relation Eq. (10),

which are

xk ffi
x�e

1þ k2
?q

2
s

� kykzqscshvzi0

x�e
; (11)

ck ffi
1

k2
z Dk

x�e 2

ð1þ k2
?q

2
s Þ

2

	 k2
?q

2
s

1þ k2
?q

2
s

� kyq2
s hvyi00

x�e
þ kykzqscshvzi0

x�e 2

 !
: (12)

The PSFI threshold for axial flow shear is

jhvzi0jcrit ¼
1

jkykzqscsj
x�e 2ð1þ k2

?q
2
s Þ

4 ð1þ k2
?q

2
s Þ

2 þ d2
h iþ k2

z c2
s

2
4

3
5: (13)

When exceeding the threshold given by Eq. (13), axial flow

shear drives turbulence as a free energy source. Note that in

the regime relevant to CSDX where kyq2
s hvyi00=x�e < 0, the

azimuthal flow lowers the PSFI threshold.

B. Azimuthal flow effects on axial residual stress

In this subsection, we show that azimuthal flow shear

slows the modulational growth of the seed axial flow shear.

Moreover, azimuthal flow shear reduces the magnitudes of

both residual stress and turbulent viscosity. Consequently, the

axial Reynolds power is reduced by azimuthal flow shear.

Note this agrees with the trend shown in Fig. 2. However, azi-

muthal flow does not affect the stationary axial flow shear, to

leading order. This follows because the axial flow is saturated

by the turbulent viscosity. The effects of azimuthal flow shear

cancels, to leading order, in determining the stationary axial

flow shear, which is given by hvzi0 � PRes
xz =v

DW
z .

First, we calculate the axial Reynolds stress with azi-

muthal flow effects included, following the same procedures

presented in Ref. 12. The axial Reynolds stress can be writ-

ten as a diffusive momentum flux plus a residual stress,

which is

h~vx~vzi ¼ �vz

@hvzi
@x
þPRes

xz : (14)

From Eq. (3), we obtain that

~vz ffi
jckj

xk � kyhvyi0Dx

� �2
kzc

2
s
~/ ffi 1

V0 � 1ð Þ2
jckj
x2

k

kzc
2
s
~/:

Here, V0 � kyhvyi0Dx=xk � hvyiDxLn=csqsLVy
. Thus, in the

non-resonant regime (i.e., jhvyij=cs � DxLn=qsLVy
, so

jV0j � 1), we obtain that

~vz �
1

jV0j2
jckj
x2

k

kzc
2
s
~/: (15)

As a result, the turbulent viscosity and residual stress are

vDW
z ffi

X
k

1

jV0j2
1

k2
z Dk

k2
?q

2
s

1þ k2
?q

2
s

þ jkyq2
s hvyi00j
x�e

" #
k2

yq
2
s j/kj2;

(16)

PRes
xz ffi

X
k

1

jV0j2
1

k2
z Dk
ð2þ k2

?q
2
s Þ
�

k2
?q

2
s

1þ k2
?q

2
s

þ jkyq2
s hvyi00j
x�e

þ kykzqscshvzi0

x�e 2

�
kykzqscsj/kj2: (17)

The residual stress requires symmetry breaking in the

ky–kz space. Note the ‘negative viscosity piece in Eq. (17)

(i.e., the third term in brackets, which is proportional to

kykzqscshvzi0) is negligible compared to the term proportional

to k2
?q

2
s=ð1þ k2

?q
2
s Þ (i.e., the first term in brackets).

Therefore, symmetry breaking in the ky–kz space is necessary

for a nonzero PRes
xz . Absent magnetic shear, a seed axial flow

shear breaks the symmetry and is self-amplified through a

modulational instability. As a result, the broken symmetry in

the ky–kz space emerges, along with a finite axial flow shear

profile. Hence, with this spectral asymmetry, the residual

stress, to leading order, is

PRes
xz ffi

X
kykzhvzi0>0

1

jV0j2
2þ k2

?q
2
s

k2
z Dk

k2
?q

2
s

1þ k2
?q

2
s

kykzqscsIk; (18)

where Ik¼j/kj2ðkykzhvzi0>0Þ�j/kj2ðkykzhvzi0<0Þ accounts

for the spectral imbalance. Therefore, both the residual stress

and turbulent viscosity driven by drift waves are reduced by

azimuthal flow shear. Consequently, the axial Reynolds

power is reduced by azimuthal flow shear, yielding

PR
z �jV0j

�2
. This agrees with the trend shown by Fig. 2.

Next, we show that the azimuthal flow shear also

impedes the self-amplification of seed flow shear, i.e., azi-

muthal flow shear slows down the modulational growth of

seed flow shear. In response to a seed axial flow shear dhvzi0,
the residual stress induces a negative diffusion of momentum

flux, i.e.,

dPRes
xz ffi jvRes

z jdhvzi0; (19)

where the negative viscosity increment is
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vRes
z ffi � 1

jV0j2
1

Dk

k2
yq

2
s c2

s

x�e 2

X
k

ð1þ k2
?q

2
s Þð4þ k2

?q
2
s Þj/kj2:

(20)

The growth rate of the flow shear modulation is determined

by the difference between jvRes
z j and vz, i.e.,

cq ¼ q2
r ðjvRes

z j � vDW
z Þ

ffi q2
r

X
k

j/kj2

jV0j2
k2

yq
2
s c2

s

k2
z Dk

K � k2
?q

2
s

1þ k2
?q

2
s

 !

	 1þ b
jkyq2

s hvyi00j
x�e

 !
; (21)

where qr is the radial mode number of the shear modulation,

K � ð1þ k2
?q

2
s Þð4þ k2

?q
2
s Þk2

z c2
s=x

2
�e, and b � ð2K � 1Þ=

K � k2
?q2

s

1þk2
?q2

s

� �
. When the negative viscosity induced by the

residual stress exceeds the turbulent viscosity due to drift

waves, the test flow shear is reinforced via modulational

instability. This means K > k2
?q

2
s=ð1þ k2

?q
2
s Þ is required for

modulational growth (i.e., cq > 0) of the test shear. For

drift waves, we obtain kyqs � 1, and thus K � ð2þ k2
xq

2
s Þð5

þ k2
xq

2
s Þ > 10k2

z L2
n and 0:5 < k2

?q
2
s=ð1þ k2

?q
2
s Þ < 1.

Modulational instability requires K > k2
?q2

s=ð1þ k2
?q

2
s Þ

> 0:5, which is possible for drift waves. As shown by Eq.

(21), the modulational growth rate of the seed flow shear

decreases when the azimuthal flow shear increases.

C. Azimuthal flow effects on stationary flow shear
profile

The evolution of mean axial flow is described by

@hvzi
@t
þ @

@x
h~vx~vzi ¼ �

@P

@z
� �ni hvzi � Vnð Þ: (22)

The pressure drop in the axial direction is due to the heating

on one end of the linear device. In CSDX, this pressure drop

is weaker than the Reynolds force (�@xh~vx~vzi) by an order of

magnitude.4 Frictions between plasma and neutral flows

damp the axial flow in the edge region, where neutral par-

ticles concentrate. Hence, neutral damping sets the boundary

condition for the axial flow profile. Therefore, in the central

region of CSDX, the axial flow is generated and saturated by

the axial Reynolds stress. The stationary state flow is then

determined by h~vx~vzi ¼ 0. As a result, the stationary axial

flow shear, to leading order, is

hvzi0 ¼
PRes

xz

vDW
z

� ð2þ k2
?q

2
s Þkzcs=kyqs: (23)

The azimuthal flow shear reduces both PRes
xz and vDW

z by the

same factor jV0j�2
. Hence, this reduction effect cancels out

to leading order in the stationary axial flow shear, which is

determined by the ratio PRes
xz =v

DW
z . Therefore, the azimuthal

flow shear does not affect the saturated axial flow shear to

leading order. Note the relation dPRes
xz / dhvzi0 is valid only

for weak dhvzi0. As the axial flow shear grows larger, due to

modulational instability, the residual stress is no longer line-

arly proportional to hvzi0. As shown by Fig. 3, when

hvzi0 > 0:05cs=qs, the axial Reynolds power decreases with

hvzi0, which means the residual stress is not linearly propor-

tional to hvzi0. Therefore, hvzi0 ¼ PRes
xz =v

DW
z can be used to

calculate the saturated flow shear.

IV. SUMMARY OF MAIN RESULTS

In this work, we study the coupling of azimuthal and

axial flows in CSDX, absent magnetic shear. We consider

the regime of weak axial flow shear, such that V0z is far below

the PSFI threshold, i.e., V0z � jV0zjcrit. In particular, we study

how incremental changes of flow shears affect the produc-

tion branching ratio PR
z =PR

y . Also, we investigate the effects

of azimuthal flow shear on intrinsic axial flow generation

and saturation, absent magnetic shear. The main results are:

• Increasing azimuthal flow shear reduces the branching

ratio, which is measured by the ratio of axial to azimuthal

Reynolds powers, i.e., PR
z =PR

y .
• When axial flow shear increases, PR

z =PR
y first increases but

then decreases to zero. PR
z =PR

y decreases because as axial

flow shear increases, the turbulent diffusion of axial

momentum approaches the axial residual stress in magni-

tude, such that the axial Reynolds stress decreases to zero.

The intrinsic axial flow shear saturates at

jV0zjmax ffi 0:1cs=qs, which is far below the PSFI threshold.
• When kyq2

s hvyi00=x�e < 0, azimuthal flows stabilize drift

waves by weakening the effective electron drift frequency

x�e � x�e þ kyq2
s hvyi00, so the drift wave growth rate is

reduced by the azimuthal flow curvature.
• Azimuthal flow shear slows modulational growth of seed

axial flow shear, and thus reduces the production of intrin-

sic axial flow, by shear suppression.
• Azimuthal flow shear reduces both axial residual stress

(PRes
xz ) and turbulent viscosity driven by drift waves (vDW

z )

by the same factor, i.e., both PRes
xz and vDW

z scale with the

azimuthal flow shear as jV0j�2 � jhvyi0j�2D�2
x L�2

n q2
s c2

s . So

does the axial Reynolds power, i.e., PR
z � jV0j

�2
, which

agrees with the trend that PR
z =PR

y decreases as azimuthal

flow shear increases.
• Azimuthal flow shear does not affect the saturated axial

flow shear to leading order, because hvzi0 ¼ PRes
xz =v

DW
z and

the reduction by hvyi0 cancels.

V. DISCUSSION

The results in this work can be used to develop testable

predictions for simulation and experimental studies on inter-

action of parallel and perpendicular flows. This study is

developed upon the regime with straight magnetic fields.

This makes the results relevant to linear devices and flat-q

regions in tokamaks. In tokamaks, the combination of weak

magnetic shear (i.e., flat q profile) and strong toroidal rota-

tion is required for the formation of enhanced confinement

states,2 such as internal transport barriers. Thus, the turbu-

lence energy apportionment between poloidal (i.e., zonal)

and toroidal flows absent magnetic shear is of interest.
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Further study on turbulence and flows in CSDX could

include:

• Effects of extrinsic axial flows driven by axial momentum

source on turbulence and intrinsic flows.
• Physics of transport barrier formation.

In the regime of intrinsic parallel flows, the feedback of

axial flow shear on the turbulence–flow system is weaker

than that of azimuthal flow shear in CSDX because

jkzV
0
z=khV0hj � 1. As a result, the turbulence is regulated pri-

marily by V0h, and axial flow is parasitic. A non-parasitic

axial flow regime is achievable with an external axial

momentum source. Of course, when the enhanced axial flow

shear exceeds the PSFI threshold, the resulting PSFI turbu-

lence can drive zonal flow via strong acoustic coupling.25,26

Even below the PSFI threshold, externally driven axial flow

shear can enhance the regulating effect of axial flow on tur-

bulence. When jkzV
0
z;totj is comparable to jkhV0hj, the axial

flow shear will have a strong effect on vorticity flux, mode

structure, and fluctuation intensity. In both ways, the external

axial momentum source can enhance the interaction of axial

and azimuthal flows in CSDX. Moreover, the axial momen-

tum source invokes the interaction of intrinsic and extrinsic

axial flows, which is analogous to the ‘cancellation’ experi-

ment.27 This enables detailed studies on the modulational

growth and saturation of seed axial flow shears in CSDX.

The external axial flow source allows us to explore the

physics of transport barrier formation. Both strong toroidal

rotation and weak magnetic shear are necessary for the for-

mation of enhanced confinement states, e.g., states with

internal transport barriers.2 A linear device with zero mag-

netic shear and controlled axial flow shear–such as CSDX–is

an ideal testbed to study the physics of such states.

Increasing the axial flow shear can enhance zonal flow gen-

eration via the acoustic coupling.25,26 As a result, the

enhanced zonal flow shear can lead to the formation of a

transport barrier. In this way, we can study (1) what deter-

mines the axial flow shear threshold and (2) how the states of

intrinsic axial flows evolve before and after the transition.

These are important for understanding the dynamics of the

flux-driven turbulence–zonal flow–axial flow ecology.
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