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Calcium-responsive contrast agents for magnetic resonance imaging (MRI) offer a promising 

approach for noninvasive brain-wide monitoring of neural activity at any arbitrary depth. Current 

examples of MRI-based calcium probes involve synthetic molecules and nanoparticles, which 

cannot be used to examine calcium signaling in a genetically encoded form. Here, we describe 

a new MRI sensor for calcium, based entirely on a naturally occurring calcium-binding protein 

known as calprotectin. Calcium-binding causes calprotectin to sequester manganese ions, thereby 

limiting Mn2+ enhanced paramagnetic relaxation of nearby water molecules. We demonstrate 

that this mechanism allows calprotectin to alter T1 and T2 based MRI signals in response to 

biologically relevant calcium concentrations. The resulting response amplitude, i.e., change in 

relaxation time, is comparable to existing MRI-based calcium sensors as well as other reported 

protein-based MRI sensors. As a preliminary demonstration of its biological applicability, we used 

calprotectin to detect calcium in a lysed hippocampal cell preparation as well as in intact Chinese 

hamster ovary cells treated with a calcium ionophore. Calprotectin thus represents a promising 

path toward noninvasive imaging of calcium signaling by combining the molecular and cellular 

specificity of genetically encodable tools with the ability of MRI to image through scattering 

tissue of any size and depth.

Graphical Abstract

Keywords

magnetic resonance imaging; calcium imaging; genetically encoded reporters; neuroimaging; 
Mn2+ enhanced MRI

In the nervous system, calcium ions give rise to intracellular signals that modulate a 

wide range of biological functions including neural activity, gene expression, synaptic 

communication, and apoptosis.1,2 Consequently, experimental imaging of calcium in 

living cells and organisms is a cornerstone technology for obtaining detailed, time-lapse 

information on neural signaling mechanisms.3–5 High-resolution calcium imaging typically 

relies on fluorescent dyes and genetically encoded calcium indicators (GECIs), which in 

conjunction with multiphoton microscopy can detect activity in single cells up to depths 

of 1 mm in intact tissue.6–16 However, the imaging volume typically accessible by optical 

methods (~1 mm3) encompasses only a small fraction of the brain in most vertebrates.17–20 
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Calcium signals can also be recorded from deeper tissues using endoscopes and specialized 

lenses, but these techniques cover a limited field of view and require invasive surgery to 

embed the imaging hardware inside tissues.21,22 Among noninvasive modalities, magnetic 

resonance imaging (MRI) is unrivaled in its ability to access large volumes of intact 

tissue located at any arbitrary depth. Thus, MRI-based calcium sensors have the potential 

to uniquely complement optical indicators by enabling wide-field imaging of biological 

processes in deep tissues noninvasively. This vision has motivated the development of 

a versatile collection of small-molecule paramagnetic complexes, fluorinated agents, and 

superparamagnetic iron oxide crystals that have evolved over the past two decades for 

imaging calcium by various MRI mechanisms including longitudinal (T1) and transverse 

(T2) relaxation, chemical exchange saturation transfer (CEST), and direct detection of 19F 

spins.23–40 Regardless of the specific contrast mechanism, all reported MRI probes for 

calcium are synthetic molecules, which makes them incompatible with genetic technologies 

for in vivo delivery, stable long-term expression, and cell type specific targeting—key 

aspects that underpin the prolific success of genetically encoded calcium indicators derived 

from the green fluorescent protein (GFP).10 While iron-containing enzymes such as 

cytochrome P450 and ferritin nanoparticles have been used to develop protein-based MRI 

sensors for functional imaging of neurotransmitters and kinase activity,41–46 to the best of 

our knowledge, there are no reported examples of protein-based MRI probes for calcium 

imaging. Here, we describe the development of the first biomolecular MRI reporter for 

calcium, based on a novel manganese metalloprotein, and demonstrate its utility for imaging 

calcium in a biological context.

RESULTS AND DISCUSSION

Our sensor is based on calprotectin, an antimicrobial protein that is released by neutrophils 

to chelate essential transition metals (including paramagnetic Mn2+ ions), thus limiting 

their availability for pathogenic microorganisms in infection sites.47–50 The calprotectin 

heterodimer coordinates Mn2+ using two histidine-rich motifs located at the interface of 

the two subunits.48,51–53 Each subunit also contains a canonical EF-hand motif for binding 

calcium.54 Early biochemical studies on calprotectin found that calcium ions are responsible 

for tuning its Mn2+ binding properties, allowing the protein to strongly bind Mn2+ ions 

only when calcium ions are also bound.52,55,56 Based on calprotectin’s unique ability to 

sequester Mn2+ ions and shield them from nearby water molecules specifically in response 

to calcium, we reasoned that it should be possible to adapt calprotectin for MRI-based 

detection of calcium. Specifically, we hypothesized that in the absence of calcium, a binary 

mixture of calprotectin and Mn2+ ions would effectively shorten the T1 and T2 relaxation 

times of water molecules due to paramagnetic relaxation enhancement from free (i.e., 

unbound) Mn2+. In the presence of calcium, calprotectin would sequester free Mn2+ ions, 

limiting access to neighboring water molecules and consequently increase relaxation times 

in inverse proportion to the concentration of free Mn2+ ions remaining in solution (Figure 

1A). To test our hypothesis, we cloned both subunits of human calprotectin in E. coli 
BL21 cells, substituting the single cysteine residue in each subunit with serine to avoid 

cross-linking during purification. We purified and reconstituted the 26 kDa heterodimer 

using metal-affinity chromatography and verified biochemical function by assaying for 
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calcium-dependent Mn2+ binding using a fluorescent dye (Figure S1). Next, we incubated 

various concentrations of purified calprotectin with Mn2+ and measured changes in T1 and 

T2 relaxation times at high (7 T) magnetic field induced by saturating amounts (~50-fold 

excess) of calcium. These experiments revealed a calcium-dependent increase in relaxation 

times ranging from 20 ± 4% to 95 ± 4% for T1 and 56 ± 14% to 201 ± 2% for 

T2 (N = 5) (Figure 1B), thereby allowing calcium ions to be respectively visualized as 

darkening or brightening of MRI signals in standard T1 and T2 weighted images (Figure 

1C). Relaxivity values of the Mn2+-bound protein complex in the presence of calcium 

were measured as 0.20 ± 0.07 mM−1 s−1 (r1) and 3.30 ± 0.33 mM−1 s−1 (r2), which are 

substantially smaller than free Mn2+ relaxivity.57 The lower relaxivity of Mn2+ in the bound 

state is consistent with previous studies that found the Mn2+ coordination environment in 

calprotectin to largely exclude water molecules.55 Notably, the amplitude of T1 and T2 

changes obtained with calprotectin are 2–6-fold larger than the peak response estimated 

for identical concentrations of metal-loprotein-based MRI sensors (targeting dopamine,42 

serotonin,44 protein kinase41) reported to date (Figure S2). To characterize calprotectin’s 

contrast mechanism in greater detail, we performed relaxometric titrations by treating 

calprotectin with a range of Mn2+ concentrations and measuring T1 and T2 values in the 

presence or absence of excess calcium. In calcium-free conditions, we observed a consistent 

decrease in T1 as the amount of Mn2+ was increased from 0 to 40 μM (corresponding to 0–1 

molar equiv protein). In contrast, when calcium ions were present, the extent of T1 change 

was significantly smaller (p < 0.01, N = 5) in the range of 10–40 μM Mn2+ (Figure 2A). 

We detected a similar trend in T2 values, which decreased with increasing concentrations of 

Mn2+ in the absence of calcium but displayed a significantly smaller change when calcium 

ions were available (Figure 2B). By fitting the measured T1 changes to binding isotherms, 

we determined that calcium elicits ~35-fold increase (Kd(−Ca) = 49.7 ± 8.0 μM, Kd(+Ca) = 

1.42 ± 0.42 μM, p = 0.0003, N = 5) in calprotectin’s binding affinity for Mn2+, consistent 

with results from previous spectroscopic and calorimetric studies (Figure 2C and Table 

S1).52,56 To further probe calprotectin’s MRI properties, we introduced alanine substitutions 

in calprotectin’s histidine-rich motifs to examine whether the calcium response is altered by 

changes in the Mn2+ coordination environment.52,54,55 We examined the resulting variants 

using relaxometry (Figure S3) and found one mutant (His3Asp → Ala4) that displayed 

lower Mn2+ affinity in the calcium-free state (Kd = 184.3 ± 43.6 μM) relative to wild-type 

calprotectin, leading to a modest but statistically significant increase (N = 3, p = 0.005) in 

overall calcium-induced fold change in relaxation time (Figure 2C,D and Table S2). Finally, 

we assessed the selectivity of calprotectin’s MRI response toward calcium by incubating 

a mixture of calprotectin and Mn2+ ions with magnesium (50-fold excess), representing 

the most abundant divalent cation found in cells. No significant change in T1 or T2 values 

could detected under these conditions (p ≥ 0.2, N = 4) (Figure 2E,F). Next, we established 

the dynamic range over which calcium ions can be sensed by calprotectin. For these 

experiments, we fixed the amount of calprotectin and Mn2+ at 40 and 30 μM, respectively, 

and measured T1 and T2 changes in buffered solutions consisting of calprotectin titrated 

with varying concentrations of calcium. In these settings, we detected an 18.7 ± 2.5% (p 
= 0.007, N = 3) increase in T1 and a 77.5 ± 1.5% (p = 1.0 × 10−4, N = 3) increase in T2 

over calcium concentrations spanning the full biologically relevant range of (0.1–100 μM) 

(Figures 3A and S4). Taken together, our results indicate that calprotectin can be used to 
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detect biologically relevant calcium changes based on an increase in T1 and T2 relaxation 

times triggered by calcium-induced binding to free Mn2+, which leads to their sequestration 

in a low relaxivity state.

Next, as a precursor to calcium imaging in mammalian cells, we examined the sensor’s 

calcium response in cellular conditions using intracellular lysates prepared from a mouse 

hippocampal cell line (HT-22). Similar cell lysate preparations have been previously used 

for in vitro validation of protein-based MRI sensors.41 We supplemented the cell lysate with 

purified calprotectin and manganese chloride and then measured changes in relaxation times 

following treatment with calcium concentrations relevant to neural activity. In this cellular 

milieu, calcium concentrations as low as 5 μM were found to induce a significant increase 

in T1 (7.0 ± 1.8%, p = 0.02, N = 4) and T2 (9.1 ± 1.0%, p = 0.0015, N = 4) (Figure 3B), 

while no change was detected when calcium was added to control lysates containing Mn2+ 

but lacking calprotectin (p > 0.2, N = 3) (Figure S5). Importantly, the T1 and T2 changes 

obtained with calprotectin are comparable to the calcium response reported for existing 

Gd3+ and Mn3+ based calcium probes (Table S3) and correspond to signal amplitudes 

that can be reliably detected in vivo by MRI techniques35,42,45,58 already established for 

functional brain imaging.

Finally, we incorporated calprotectin in a polycistronic lentiviral construct, which was used 

to transduce a Chinese hamster ovary (CHO) cell line to establish stable expression from a 

strong CMV promoter. We delivered Mn2+ to cells by direct supplementation in the culture 

medium (Figure S6) and stimulated calcium entry by the addition of a calcium ionophore 

(calcimycin) in the presence or absence of extracellular calcium (5 mM). We performed T1 

measurements on pelleted cells based on procedures established in our earlier work.59 To 

control for nonspecific T1 changes arising from ionophore treatment, wild type CHO cells 

were also treated with calcimycin and imaged concurrently under identical conditions. In the 

presence of calcium, calprotectin-expressing cells were found to exhibit a 22 ± 4% increase 

in T1 compared to control cells (p = 0.011), whereas no change in T1 could be detected 

when either calcium or calcimycin was omitted from the medium (p > 0.7) (Figures 3C and 

S7). Taken together with our results from the hippocampal preparation, these observations 

indicate that calprotectin may be used for MR imaging of calcium activity to detect changes 

from the resting-state (~50–100 nM in neurons) to tens of micromolar concentration, 

which may be reached in stimulation paradigms involving electrical neuromodulation,60 

seizures,61,62 and excitotoxic injury.

CONCLUSIONS

Our findings represent the first example of a genetic construct for imaging calcium with 

MRI. The observed changes in T1 and T2 relaxation in response to calcium binding are 

comparable to most synthetic calcium probes (Table S3) and exceed that of previous protein-

based MRI biosensors (Figure S2). Future work will focus on expressing calprotectin in 

neuronal cell lines, primary neurons, and eventually in vivo, which will allow whole-brain 

imaging of calcium activity with the added benefit of being able to probe specific cell 

populations by genetic targeting. To this end, a preliminary assessment of the feasibility 

of applying calprotectins in vivo may be drawn by comparing with ManICS1, a synthetic 
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(i.e., nongenetic) Mn2+ based calcium probe that was recently used to obtain the first 

measurements of intracellular calcium signals by MRI.35 In this work, brain regions were 

acutely loaded with ManICS1 and stimulated by K+ infusion, which elicited a maximum T1 

weighted signal change of 5.8 ± 1.2%. Notably, both ManICS1 and calprotectin exhibit 

similar IC50 values for calcium binding (Table S3 and Figure 3A). However, calcium 

binding induces a larger relaxivity change in the calprotectin/Mn2+ sensor system (5.6 

to 0.2 mM−1 s−1) compared to ManICS1 (3.6 to 5.1 mM−1 s−1). Given the successful 

implementation of ManICS1 for in vivo imaging, we therefore think that it should be 

possible in principle to adapt calprotectin-based sensors for imaging of calcium signals in 

the brain. However, practical challenges related to Mn2+ transport, background relaxation in 

brain tissue, reporter gene expression, and detection sensitivity will need to be addressed. 

Accordingly, we envision several areas of future development related to the application 

of calprotectins in animal models. First, Mn2+ dosing should be carefully optimized 

to minimize toxicity as well as ensure effective delivery to brain regions of interest. 

Several techniques for transporting Mn2+ (typically in quantities of tens of nanomoles, 

corresponding to intracellular concentrations of 35–93 μM in the rodent brain63) with 

minimum acute toxicity have already been established in the context of Mn2+ enhanced MRI 

(MEMRI). These techniques include oral delivery, intraperitoneal administration, systemic 

injection, transcranial diffusion, and direct infusion in the cerebrospinal fluid.64–66 Although 

Mn2+ can passively enter the brain parenchyma, transient and reversible opening of the 

blood brain barrier (e.g., using focused ultrasound) may be employed to augment the 

amount of Mn2+ transported.67 A second challenge also related to Mn2+ delivery involves 

cell-type dependent variations in Mn2+ transport as well as increased Mn2+ flux (through 

calcium channels) in response to neural activity. The latter mechanism in fact serves as 

the basis for mapping activated brain regions by a technique known as activity-induced 

Mn2+ dependent MRI (AIM).68–70 One potential approach for offsetting variabilities arising 

from cell-specific and activity-dependent changes in Mn2+ movement could be to co-express 

calprotectin with DMT1, a Mn2+ transporter, which is also used as an MRI reporter based 

on its ability to constitutively transport Mn2+ in cells.71,72 Furthermore, because intracellular 

Mn2+ clears slowly from the brain (on the order of days), it may be feasible to implement 

calprotectins in conjunction with AIM. This could be done by time-locking calprotectin 

expression (e.g., using Cre-lox or TetTag transgenic models) to a temporal window that 

follows the AIM segment without further Mn2+ infusion. With judicious controls as well 

as detailed knowledge of calprotectin’s response kinetics, such a multiparametric approach 

to functional MRI could reveal complementary insights on brain activity. Finally, although 

T1 weighted signal changes as small as ~1% have been reliably measured in vivo using 

protein-based neurotransmitter sensors,42,45,58 statistical fidelity of calcium detection can 

be greatly enhanced by optimizing calprotectins for a larger response amplitude. This can 

be achieved by protein engineering to increase calcium and Mn2+ binding affinities (in the 

calcium-bound state), ideally to sub-μM Kd(s). Improved Mn2+ binding will also have the 

added advantage of minimizing competition from other Mn2+ sequestering molecules such 

as ATP and certain proteins (e.g., glutamine synthetase), which typically exhibit weaker 

but non-negligible Mn2+ affinity (~tens of μM) compared to calprotectin.73 These efforts 

are likely to benefit from the ability to utilize molecular engineering techniques such 

as directed evolution, which have been remarkably successful in expanding the toolbox 
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of fluorescent calcium indicators10 as well as developing new MRI reporters based on 

metalloproteins.42,74–77 In summary, as the first biomolecular reporter for sensing calcium 

by MRI, calprotectin is a promising step in the ambitious path toward understanding how 

neural circuits and networks distributed throughout the mammalian brain coordinate to 

process information and generate behavior.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Principle of calcium imaging with calprotectins. (A) Proposed mechanism of MRI contrast 

induced by sequestration of paramagnetic Mn2+ ions by calprotectin in the presence of 

calcium. (B) Percent change in T1 and T2 relaxation times obtained for a binary mixture 

of calprotectin (40, 100, and 200 μM) and Mn2+ (30, 75, and 150 μM) in response to 

saturating amounts of calcium (2 mM) in HEPES buffer 9; pH 7.4). (C) T1 and T2 weighted 

images of calcium (2 mM) induced MRI contrast obtained with a binary mixture of 200 μM 

calprotectin and 150 μM Mn2+. All MRI measurements were performed at 7 T. Error bars 

represent standard error of mean from 5 independent replicates.
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Figure 2. 
In vitro MRI relaxometry of calprotectin-based Ca2+ sensors. In the presence of calcium 

(2 mM), (A) T1 and (B) T2 relaxation times exhibit a significantly smaller decrease with 

increasing Mn2+ concentrations due to Mn2+ sequestration by calprotectin. The solid lines 

represent best fits to equilibrium binding isotherms. (C) Dissociation constants for Mn2+ 

binding to calprotectin (CP) and His3Asp variant (mut.) in the presence and absence 

of saturating calcium (2 mM), estimated from model-fitting of T1 titration results. (D) 

Calcium-induced percent change in T1 and T2 for calprotectin and the His3Asp mutant. 

(E) Calprotectin does not produce a change in T1 and T2 values or (F) detectable T1 

and T2 weighted MRI contrast in response to saturating amounts of Mg2+ (2 mM). For 

all experiments, protein and calcium concentrations were 40 μM and 2 mM, respectively. 

Mn2+ was either titrated from 0 to 30 μM (A,B) or used at 30 μM (D–F). Relaxation rates 

were measured at 7 T. Error bars represent standard error of mean from 3–5 independent 

replicates. * denotes p < 0.05 and n.s. indicates p > 0.05 (Student’s t test).
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Figure 3. 
MRI-based sensing of biologically relevant calcium concentrations. (A) Percent change in 

T1 and T2 relaxation times in response to calcium concentrations spanning 0.1 μM to 1 mM. 

Calprotectin and Mn2+ concentrations were 40 μM and 30 μM, respectively. (B) Percent 

change in relaxation times obtained by adding calprotectin (40 μM) and Mn2+ (30 μM) 

to a hippocampal cell lysate preparation treated with biologically relevant concentrations 

of calcium (1, 5, and 24 μM). (C) Change in T1 elicited by stimulating calcium entry 

in Chinese hamster ovary (CHO) cells lentivirally transduced with calprotectin-expressing 

vectors and treated with 10 μM calcimycin, a calcium ionophore. As ionophore treatment 

by itself alters cellular T1, all values are normalized to T1 values measured concurrently 

in identically treated CHO cells that have not been transduced to express calprotectin. 

Relaxation rates were measured at 7 T. Error bars represent standard error of mean from 3–5 

independent replicates. * denotes p < 0.05 and ** indicates p < 0.01 (Student’s t test).
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