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Abstract

Fault detection and diagnosis (FDD) algorithms for building systems and equipment represent one of the

most active areas of research and commercial product development in the buildings industry. However, far

more e↵ort has gone into developing these algorithms than into assessing their performance. As a result,

considerable uncertainties remain regarding the accuracy and e↵ectiveness of both research-grade FDD

algorithms and commercial products—a state of a↵airs that has hindered the broad adoption of FDD tools.

This article presents a general, systematic framework for evaluating the performance of FDD algorithms.

The article focuses on understanding the possible answers to two key questions: in the context of FDD

algorithm evaluation, what defines a fault and what defines an evaluation input sample? The answers to

these questions, together with appropriate performance metrics, may be used to fully specify evaluation

procedures for FDD algorithms.

Keywords: Fault detection and diagnosis, performance evaluation, algorithm testing, benchmarking,

building systems, building energy performance
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1. Introduction1

Faults and operational ine�ciencies are pervasive in today’s commercial buildings [1–3]. Fault detection2

and diagnosis (FDD) tools use building operational data to identify the presence of faults and isolate their3

root causes. Widespread adoption of such tools and correction of the faults they identify would deliver an4
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estimated 5%–15% energy savings across the commercial buildings sector [1, 4]. In the United States, this5

opportunity represents 260–790 TWh (0.9–2.7 quadrillion Btu) of primary energy, or approximately a 2%6

reduction in national primary energy consumption [5, 6].7

Fault detection is a process of detecting faulty behavior and fault diagnosis is a process of isolating the8

cause(s) of the fault after it has been detected. Fault detection and diagnosis are sometimes performed sepa-9

rately but are often combined in a single step. In the last three decades, the development of automated fault10

detection and diagnosis (AFDD) methods for building heating, ventilation, and air conditioning (HVAC)11

and control systems has been an area of active research. Two International Energy Agency (IEA) Annex12

Reports [7, 8] and literature reviews by Katipamula and Brambley [9, 10], Katipamula [2], and Kim and13

Katipamula [11] are the major review publications in the HVAC FDD area.14

Kim and Katipamula [11] indicate that since 2004, more than 100 FDD research studies associated with15

building systems have been published. A great diversity of techniques are used for FDD, including physical16

models [12, 13], black box [14, 15], grey box [16, 17], and rule-based approaches [18, 19]. Commercial17

AFDD software products represent one of the fastest growing and most competitive market segments in18

technologies for building analytics. There are dozens of AFDD products for buildings now available in19

the United States, and new products continue to enter the market [20, 21]. However, considerable debate20

continues and uncertainties remain regarding the accuracy and e↵ectiveness of both research-grade FDD21

algorithms and commercial AFDD products—a state of a↵airs that has hindered the broad adoption of22

AFDD tools.23

Far more e↵ort has gone into developing FDD algorithms than into assessing their performance. Indeed,24

there is no generally accepted standard for evaluating FDD algorithms. There is an urgent need to develop25

a broadly applicable evaluation procedure for existing and next-generation FDD tools. Such a procedure26

would provide a trusted, standard method for validation and comparison of FDD tools at all stages of27

development, from early-stage research to mature commercial products. Given the wide variety of FDD use28

cases and competing techniques, establishing a standard evaluation methodology is a daunting challenge29

[22, 23]. Significant progress has been made in establishing FDD test procedures and metrics within both30

the buildings sector [24, 25] and other industries [26, 27]. Nevertheless, existing approaches to evaluation31

di↵er significantly with respect to specific evaluation parameters within a given general methodology and32

how these choices impact evaluation results.33

Therefore, this article describes a general, systematic framework for evaluating the performance of FDD34

algorithms that leverages and unifies prior work in FDD evaluation and incorporates insights from interviews35

with industry experts. Section 2 provides a brief summary of relevant prior work. Section 3 then outlines36

the process required to evaluate an FDD algorithm. Sections 4 and 5 examine two critical questions that37

must be answered to apply this evaluation process:38
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1. What defines a fault?39

2. What defines an evaluation input sample?40

Section 6 provides a brief introduction to FDD evaluation outcomes in the context of performance metrics.41

Finally, Section 7 discusses these findings in light of key considerations for FDD algorithm performance42

evaluation and Section 8 concludes with recommendations and suggested areas of future research.43

2. Background44

To assess the state of the art in FDD evaluation, we reviewed articles, book chapters, and technical45

reports related to FDD evaluation in five industries: buildings, aerospace, power systems, manufacturing,46

and process control. In the buildings sector, IEA Annex 34 technical report [8] provides a broad overview47

of early development and evaluation of FDD algorithms for HVAC systems and equipment. In the report,48

House et al. [28] notes the need for systematic performance evaluation of FDD algorithms. The report49

presents examples of several such evaluations, including detailed descriptions of the experimental procedures.50

However, the report does not provide a similarly comprehensive description of the evaluation framework or51

performance metrics. Although some FDD research contemporaneous with the report does provide detailed52

analysis of algorithm performance [29, 30], the evaluation methods and results are not presented in a way53

that facilitates comparison of results among disparate evaluation e↵orts.54

Building on the Annex 34 work, Reddy [24, 31] and Yuill and Braun [23, 25, 32, 33] have contributed55

significantly to the development of FDD evaluation methodologies for chillers and unitary equipment, re-56

spectively. Reddy [24] describes FDD algorithm performance evaluation as one component of a broader57

evaluation methodology that examines FDD tools’ performance, cost, ease of implementation, ease of use,58

data requirements, training requirements, and applicability to the needs of a particular site or customer.59

The author catalogs possible raw evaluation outcomes (see Section 6) and associated performance metrics.60

Yuill and Braun [25] incorporate the evaluation outcomes described in [24] into a general FDD evaluation61

approach that includes an evaluation workflow, a description of evaluation metrics, and a discussion of62

establishing ground truth by means of defining a fault impact threshold (see Section 4.3). This general63

methodology is expanded in [32] and forms the foundation for the present work.64

In the power systems sector, Kurtoglu et al. [26] present an FDD evaluation workflow that largely65

parallels that of Yuill and Braun [25], but with greater emphasis on temporal performance metrics (see66

Section 6). SAE Aerospace Recommended Practice ARP5783 [27] provides a highly detailed methodology67

for evaluating aircraft fault detection tools. Literature in other industries focuses largely on mathematical68

treatments of proposed FDD performance metrics [34, 35].69

Shortcomings common (although not universal) in the literature reviewed include:70
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• Inconsistent, conflicting, or unclear explanation of the method(s) for assigning ground truth in scenarios71

used for FDD algorithm evaluation72

• Lack of clear or rigorous definition of input samples used for FDD algorithm evaluation73

• Lack of rigorous mathematical definitions for performance metrics reported74

• No formal treatment of the substantial di↵erences in evaluation approach found in the existing litera-75

ture.76

The present work addresses these topics.77

3. Methodology78

The objective of the research was to develop a general and practical performance evaluation framework79

for FDD algorithms by synthesizing prior research with industry domain expertise. The elements of the80

framework are drawn from the technical literature and from interviews conducted with six FDD experts in81

the buildings industry. Our intended audience is the buildings industry; however, the principles outlined are82

broadly applicable and inform FDD evaluation methodologies for other industries.83

3.1. Problem Statement84

The purpose of an FDD algorithm is to determine whether building systems and equipment are operating85

improperly (fault detection) and, in the case of abnormal or improper operation, to isolate the root cause86

(fault diagnosis). The purpose of FDD performance evaluation is to quantify how well an FDD algorithm87

performs these two tasks. Achieving a credible outcome from FDD performance evaluation requires adher-88

ence to a clear and well-designed evaluation procedure. The purpose of the general evaluation framework89

presented in this article is to provide a rigorous foundation upon which such FDD evaluation procedures90

may be constructed. The framework is therefore descriptive rather than prescriptive; we outline the process91

required to evaluate an FDD algorithm and we document the choices faced by an FDD evaluator.92

3.2. General Performance Evaluation Framework93

With the procedure of Yuill and Braun [25] as a starting point, Figure 1 presents a general FDD perfor-94

mance evaluation framework consisting of six components or steps:95

1. Determine a set of input scenarios, which define the driving conditions, fault types, and fault96

intensities (fault severity with respect to measurable quantities).97

2. Create a set of input samples drawn from the input scenarios, each of which is a test data set for98

which the performance evaluation will produce a single outcome.99
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Figure 1: FDD performance evaluation framework (expanded and generalized from Yuill and Braun [25, Figure 1])

3. Assign ground truth information associated with each input sample.100

4. Execute the FDD algorithm that is being evaluated for each input sample. The FDD algorithm101

receives input samples and produces fault detection and fault diagnosis outputs.102

5. Retrieve FDD algorithm fault detection and fault diagnosis outputs.103

6. Evaluate FDD performance metrics. First, raw outcomes are generated by comparing the FDD104

algorithm output and the ground truth information for each sample. Then, the raw outcomes are105

aggregated to produce performance metrics.106

Steps 1, 2, 4, and 5 are original to the evaluation procedure presented by Yuill and Braun [25], while107

steps 3 and 6 are novel.108

3.2.1. Input Scenarios109

Each input scenario defines a test case consisting of one or more input samples. Input scenarios may110

specify [24, 25]:111

• Building types and characteristics (age, size, use patterns, etc.)112

• Equipment types113

• Faults types, intensities, and prevalence114

• Environmental conditions115

• Data available to the FDD algorithm (e.g., from sensors, meters, or a control system)116

• Cost data (if applicable for calculating performance metrics).117

3.2.2. Input Samples118

Input samples are drawn from the input scenarios that make up the AFDD evaluation data set. Each119

input sample is a collection of data for which the AFDD performance evaluation should produce a single120

5



Figure 2: Workflow for executing an FDD algorithm during performance evaluation, depicting Step 4 from Figure 1, with

connections to Steps 2 and 5

result (6). Input samples may include system information (metadata) and time series trend data from121

building sensors and control systems.122

3.2.3. Ground Truth123

In order to evaluate whether the output of an AFDD algorithm is correct for a given input sample, it is124

first necessary to establish the state of the system represented by that sample: faulted or unfaulted, and, if125

faulted, which fault cause(s) are present. In this step, each input sample generated in Step 2 is assigned a126

ground truth state.127

3.2.4. Algorithm Execution128

In this step, the FDD algorithm is first initialized and then executed for each input sample. Initializa-129

tion may include input of metadata specific to the selected input scenario(s), supervised learning using a130

training data set (input samples labeled with ground truth), or tuning (parameter adjustment) to adjust131

the algorithm’s sensitivity.132

Figure 2 illustrates the workflow by which an FDD algorithm converts input samples (Step 2) into133

algorithm outputs (Step 5). Within the FDD algorithm, the input sample is preprocessed into one or134

several analysis elements required. (For example, Ferretti et al. [36] preprocess 1-minute interval data into135

an hourly average). The FDD algorithm analyzes each analysis element, yielding intermediate FDD results.136

The FDD algorithm then aggregates these intermediate results across all the analysis elements to produce137

detection and diagnosis results that are displayed to the user (Step 5).138

3.2.5. Algorithm Outputs139

For each input sample, the FDD algorithm is expected to produce a detection result that indicates140

whether a fault is present as well as a diagnosis result that presents further information about the precise141
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nature or root cause of the fault. Together, the detection and diagnosis results yield a single output for use142

in Step 6.143

3.2.6. Evaluation Results and Performance Metrics144

Evaluation results are generated by comparing the FDD algorithm’s output for each sample (Step 5)145

with the ground truth data (Step 3), producing a set of raw evaluation outcomes. These raw outcomes are146

then aggregated to produce one or more FDD performance metrics (Step 6).147

4. Definition of a Fault148

The presence of a fault may be—and has been—defined in many ways. The existing literature and149

commercial FDD tools use three general methods or categories of fault definition: condition-based, behavior-150

based, or outcome-based.151

As an introductory example, consider an air handling unit (AHU) with its cooling coil valve stuck open,152

causing chilled water to leak through the coil. First, examine the case in which the unit is experiencing a153

call for heating. The unit’s faulted state may be defined by the unit’s condition (the chilled water valve is154

stuck open), behavior (the unit is simultaneously heating and cooling), or outcome (the unit’s chilled water155

consumption is greater than expected). If, however, the same unit were cooling rather than heating, it would156

still be considered faulted under the condition-based definition (the valve is still stuck), but not under the157

behavior-based definition (it is no longer simultaneously heating and cooling). The unit’s state under the158

outcome-based definition would be determined by the amount of chilled water flow through the stuck valve159

compared to an expected level of chilled water consumption.160

Although rarely identified explicitly, these three categories of fault definition are used consistently in161

disparate fields, including aerospace, industrial process control, power systems, and buildings. With respect162

to building HVAC systems, Wen and Regnier [37] distinguish between the condition-based and behavior-163

based categories while Yuill and Braun [25, 32] describe the outcome-based category. Here, we extend the164

prior research by formally defining and comparing the three categories.165

4.1. Condition-Based166

The condition-based definition of a fault is the presence of an improper or undesired physical condition167

in a system or piece of equipment. Examples of condition-based fault definitions include stuck valves, fouled168

coils, and broken actuators. In the case of control systems, the definition may be extended to encompass an169

error in the underlying control code. Although the faulty condition may (and typically will) cause improper170

or undesired system or equipment operation, the presence or absence of such operation does not define the171

presence or absence of the fault. Rather, the system is faulted so long as the faulty condition is present,172

regardless of whether its behavior is presently exhibiting symptoms of the fault.173
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Many existing articles on FDD evaluation use exclusively condition-based ground truth. Examples can be174

found in the aerospace [26], defense [38], power systems [39], water treatment [35], and buildings industries175

[36, 40, 41]. Among articles that use di↵erent categories of fault definition for di↵erent faults, condition-based176

definitions are also common, for example, Morgan et al. [42].177

4.2. Behavior-Based178

The behavior-based definition of a fault is the presence of improper or undesired behavior during the op-179

eration of a system or piece of equipment. Examples of behavior-based fault definitions include simultaneous180

heating and cooling and short cycling. Typically, the faulty behavior is caused by some underlying faulty181

condition; Wen and Regnier [37] observe that many faults can be described in terms of either symptoms182

(behavior) or sources (underlying conditions). However, the key di↵erence between the condition-based and183

behavior-based fault definitions is the treatment of the case when a fault condition is physically present but184

the system or equipment is not symptomatic: a condition-based definition still considers the system faulted,185

but a behavior-based definition does not.186

Faulty behavior is typically defined with respect to rules—logical statements that dictate expected be-187

havior. Alternatively, faulty behavior may be defined using observability criteria; for instance, the results188

of a hypothesis test that the observed sensor readings di↵er statistically from normal operation. Analysis of189

fault observability (detectability) is widely used in chemical and industrial process monitoring [43, 44].190

A few articles describe mixes of faults, of which some have a behavior-based ground-truth definition:191

diesel engine overheating [42], reduced condenser and evaporator water flow rates for chillers [31], and192

failure to maintain air handling unit temperature and pressure set points [37]. Regardless of the ground193

truth definition, use of equipment behavior as the primary fault detection criteria is common in FDD194

algorithms, particularly rule-based algorithms that leverage indirect sensor readings [24, 25, 36, 45].195

4.3. Outcome-Based196

The outcome-based definition of a fault is a state in which a quantifiable outcome or performance met-197

ric for a system or piece of equipment deviates from a correct or reference outcome, termed the expected198

outcome. Examples of outcome-based fault definitions include increased hot or chilled water consumption199

(compared to an expected value), reduced coe�cient of performance (compared to an expected or rated200

value), and zone temperature outside of comfort bounds. Although there is significant overlap between201

behavior-based and outcome-based fault definitions, the key feature of an outcome-based definition is the202

presence of an expected, or baseline, outcome against which the system or equipment performance is com-203

pared.204

Use of an outcome-based fault definition is common in manufacturing and industrial process control, in205

which the key criterion is whether the output of the production process conforms to expected metrics or206
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tolerances [34, 46]. In the buildings industry, [25, 32] have proposed that ground truth samples for unitary207

equipment faults be classified as faulted or unfaulted according to their fault impact ratio (FIR), which is208

the ratio between the measured and baseline value of some metric of interest,209

FIR =
Valuefaulted �Valueunfaulted

Valueunfaulted
. (1)

Aside from the process control industry, only a few articles surveyed used an outcome-based detection210

method within the FDD algorithm. Frank et al. [47] use deviation of building energy consumption outside211

of normal bounds as the fault detection criteria. This approach is similar to energy monitoring tools that212

flag abnormal energy consumption in monthly utility bills, for example, Reichmuth and Turner [48].213

5. Definition of an Input Sample214

AFDD performance evaluation requires a data library consisting of a large set of input samples, which215

the AFDD algorithm will process to produce raw outcomes for evaluation. There are several ways to define216

an input sample (Figure 3). The existing academic literature uses two common methods: a single instant217

of time and a regular slice of time.218

5.1. Single Instant of Time219

An input sample defined as a single instant of time (Figure 3a) consists of a single set of simultaneous220

measurements of the selected system variables, representing a snapshot of system parameters under a certain221

condition. This type of input sample is well-suited for use with continuous processes and has been used222

in diverse contexts, including for aerospace applications [27], diesel engines [42], wastewater treatment [35],223

chillers [22], and air conditioning equipment [25, 40].224

5.2. Regular Slice of Time225

An input sample defined as a regular slice of time (Figure 3b) contains multiple measurements of the226

selected system variables recorded within a fixed time window (for example, one day or one week). In the227

academic literature, time slices are typically on a repeating cycle (for example, every hour on the hour) and228

measurements within the time slice are recorded at a regular interval (for example, each minute). Use of this229

type of input sample is also common in the academic literature [26, 36, 39, 41, 45, 49]. In some evaluation230

approaches (for example, Zhao et al. [45]), the fault is imposed for the full duration of the time slice. In231

other cases (for example, Ferretti et al. [36]), the fault is imposed for only a portion of the time slice but232

the entire sample is nevertheless considered to represent a fault.233
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(a) Single instant of time (b) Regular slice of time

(c) Rolling time horizon (d) Event

Figure 3: Various ways to define an input sample for FDD algorithm evaluation

10



5.3. Other Definitions for Input Samples234

Other, less common definitions for input samples include rolling time horizons, event-based windows, and235

hybrid windows that combine nonconsecutive measurements or combine concepts from the single instant in236

time and regular slice of time definitions. The rolling time horizon definition for an input sample (Figure237

3c) is similar to a regular slice of time (Figure 3b), but the time window shifts through time at a fixed238

interval of less than the window width (for example, 60-minute windows centered on each minute of the239

day). Event-based input samples define a sample as a set of measurements taken within a window of time240

immediately before, during, and/or after a triggering event. An event may be a large change in a monitored241

variable (Figure 3d) or an external action, such as takeo↵ of an aircraft [38, 50] or insertion of a fault242

condition [26]. Use of rolling time horizon-based or event-based input samples for evaluation is uncommon243

in the academic literature, and the few available literature examples of event-based samples are all outside244

of the buildings domain. However, some commercial AFDD algorithms use these types to determine AFDD245

outputs.246

The three papers mentioned above also illustrate hybrid definitions of an input sample. To evaluate247

FDD algorithms for aircraft engines, DePold et al. [38] and Simon et al. [50] use a hybrid sample consisting248

of two sets of nonconsecutive steady-state measurements recorded during two separate events: takeo↵ and249

cruise. Kurtoglu et al. [26] combine event-based and single instant in time definitions for input samples.250

The evaluation samples consist of variable-length time series data collected after a fault is inserted in an251

electrical power system (an event). The authors compute temporal performance metrics with respect to252

single instances of time within this time series but use the AFDD algorithm outputs for the final instant of253

time within the event window to compute static metrics.254

5.4. An Illustrative Example255

Consider again the example of a stuck AHU chilled water valve. The input sample definitions provided256

above are illustrated by a few typical rules that commercial AFDD software might use to detect this fault:257

• Single instant of time: A simple rule to detect a stuck valve might sample and compare the valve258

command and status at a regular interval (for instance, every 15 minutes) and label any di↵erence as259

a fault. One result is reported per sample.260

• Regular slice of time: A more sophisticated version of the rule might sample and compare the valve261

command and status multiple times each hour, reporting a fault only if the number of times that the262

values di↵er exceeds a pre-determined threshold. One result is reported per time period.263

• Rolling time horizon: A third possibility is an algorithm that examines valve status and reports264

a fault if it has not changed for a predetermined amount of time, for example, 24 hours. The time265

threshold (in this case, 24 hours) represents the length of the rolling time horizon.266
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Figure 4: Classification of fault detection and diagnosis outcomes during algorithm evaluation. (Adapted from Reddy [24,

Figure 1])

6. Evaluation Outcomes267

FDD performance metrics are abundant in the literature [24–26], and most of them are quantitative268

measures. Existing AFDD performance metrics may be divided into two categories: temporal and static269

[26]. Temporal metrics quantify an FDD algorithm’s evolving response to a time-varying fault signal, while270

static metrics quantify an FDD algorithm’s performance with respect to a collection of samples independent271

of their ordering in time. As discussed in Section 7.1.1, the raw evaluation outcomes used to compute these272

metrics are strongly influenced by the choice of fault and input sample definitions.273

Most static performance metrics are computed using the same basic set of possible algorithm outcomes.274

Conceptually, an FDD algorithm labels a sample as faulty or fault-free (detection), and, if faulty, describes275

the possible cause(s) of the fault (diagnosis). The algorithm may also fail to provide an output for either276

the detection stage or the diagnosis stage. Combining these possibilities for algorithm output with possible277

ground truth states yields five possible outcomes for fault detection and three for fault diagnosis (Figure 4):278

False positive refers to the case in which the ground truth indicates a fault-free state but the algorithm279

reports the presence of a fault. Also known as a false alarm or Type I error,280

False negative refers to the case in which the ground truth indicates a fault exists but the algorithm281

reports a fault-free state. Also known as missed detection or Type II error.282

True positive refers to the case in which the ground truth indicates a fault exists and the algorithm283

correctly reports the presence of the fault.284

12



True negative refers to the case in which the ground truth indicates a fault-free state and the algorithm285

correctly reports a fault-free state.286

No detection refers to the case in which the algorithm cannot be applied (for example, due to insu�cient287

data) or the algorithm gives no response because of excessive uncertainty.288

Correct diagnosis refers to a true positive case in which the predicted fault type (diagnosed cause) re-289

ported by the algorithm matches the true fault type.290

Misdiagnosis refers to a true positive case in which the predicted fault type does not match the true fault291

type.292

No diagnosis refers to a true positive case in which the algorithm does not or cannot provide a predicted293

fault type, because, for example, of excessive uncertainty.294

The most commonly used performance metrics comprise the rate of these outcomes across the input295

samples, such as the false positive rate, false negative rate, and so on. For example, the true positive rate296

is the proportion of positive fault cases that are correctly identified as such. For a more comprehensive297

discussion of performance metrics including conceptual illustrations, full mathematical definitions, and a298

survey of technically advanced metrics, refer to [51].299

7. Discussion300

In order to ground the review presented in this article in the actual practice of FDD algorithm developers,301

vendors, implementers, and end users, the authors interviewed six domain experts with deep knowledge of302

the building analytics industry: three in the commercial sector and three in the academic sector. This303

section presents the result of these interviews, followed by a discussion of the impact of evaluation procedure304

choices on evaluation outcomes and on data set generation. Additional methodology concerning these expert305

interviews is documented in [51].306

7.1. Summary of Industry Expert Opinion307

All six industry experts agreed that both commercially available and research AFDD algorithms can308

be found that leverage all three fault definitions for fault detection. Experts were split on the question of309

what fault definition to use in a ground truth data set intended for FDD algorithm evaluation. All experts310

interviewed were extremely hesitant to select a single approach, citing the need for more context. Nearly all311

experts noted that condition-based definitions are more widely used and more appropriate for fault diagnosis,312

even when the detection algorithm is behavior-based or outcome-based. Experts noted that behavior-based313

and outcome-based fault definitions have little diagnostic power. However, experts disagreed as to whether314

algorithms should be penalized for di↵erences in the fault definitions used for detection and diagnosis.315
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Within a given FDD algorithm, an input sample may be preprocessed into one or several analysis316

elements required by the algorithm. Most experts stated that they are familiar with at least one algorithm317

that uses each of the four ways to define an analysis: a single instant of time, a regular slice of time, a318

rolling time horizon, and an event. Experts noted that algorithms typically use one output for each analysis319

element. When multiple analysis elements are used, these outputs may require aggregation to yield a single320

outcome for the input sample. All experts agreed that some form of notification delay setting commonly321

exists in FDD algorithms, especially in commercially available AFDD tools. The delay setting may be based322

on fault duration or number of fault appearances counted from intermediate AFDD results. Most experts323

recommended using a “regular slice of time” (time window) of one day or longer for evaluation samples,324

as this length is well-aligned with the design and typical use of commercially available AFDD products for325

buildings. The exception was for handheld diagostic devices, for which “single instant of time” is a better326

choice for evaluation samples.327

7.1.1. Impact of Evaluation Design Choices on Evaluation Outcomes328

The evaluation design choices made for fault and input sample definitions have direct e↵ects on FDD329

evaluation outcomes. In general, use of a condition-based fault definition results in the largest number330

of samples being classified as faulted in the ground truth data, while use of an outcome-based definition331

results in the smallest number of faulted samples. Therefore, all else being equal (including the samples332

in the evaluation data set), using condition-based ground truth will result in fewer false alarms and more333

missed detections, while outcome-based ground truth will result in more false alarms and fewer missed334

detections. Because systems and equipment may exhibit some fault symptoms (adverse behaviors) without335

significantly altering performance outcomes, using behavior-based ground truth is likely to yield evaluation336

results that fall somewhere between the results for the other two definitions. These trade-o↵s are apparent337

in the literature [25, 45].338

One key way that the definition of an input sample a↵ects evaluation outcomes is by defining the number339

of cases counted in the evaluation, which is important for ratio-based metrics. For example, if the evaluator340

uses a single instant of time sample definition for evaluating algorithm A and a regular slice of time (one-341

hour) sample definition for evaluating algorithm B, then the false alarm rates of the two algorithms cannot342

be fairly compared side by side as the referencing point di↵ers due to the inconsistent input sample definition.343

In short, for fair comparison, the definition of input sample should be consistent across all the FDD algorithm344

candidates involved in an evaluation. Furthermore, as confirmed by industry experts, algorithms di↵er in345

reporting timescale. As a result, regardless of the input sample definition selected, there will be instances in346

which FDD algorithms generate outputs at a di↵erent timescale from the input sample. The FDD evaluator347

should clearly document how this mismatch is handled. Zhao et al. [45] provide an example of good practice348

for such documentation.349
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7.1.2. Considerations for Data Set Generation350

To generate a data set for FDD evaluation, ground truth must be assigned to each input sample. Because351

fault impact varies, the evaluator must establish severity thresholds that distinguish between faulted and352

unfaulted samples. These thresholds should be consistent with the ground truth fault definition method353

that the evaluator has elected to use. Methods to define thresholds include:354

• Condition-based ground truth: Yuill and Braun [25] propose the term fault intensity (FI), which355

is defined for each fault in terms of measurable numeric quantities related to the physical condition356

of the system or its control parameters. FI may be binary (e.g., power failure) or continuous (e.g.,357

refrigerant 15% undercharged). For each fault, the evaluator should document the range of FI values358

that are considered su�ciently severe to include as faults in the data set.359

• Behavior-based ground truth: the evaluator should define and document either a set of rules360

for expected behavior, violation of which establishes a fault, or a statistical significance test for fault361

observability that establishes when a fault is symptomatic. In the former case, the rules are similar362

to rules used in rule-based AFDD algorithms: they typically take the form of if/then statements363

describing expected system actions and may include tunable numeric thresholds.364

• Outcome-based ground truth: the evaluator should first define the performance metrics (outcomes)365

of interest. For each outcome, the evaluator must establish and document both a baseline (expected)366

value (possibly di↵erent for each input sample) and the FIR that defines a fault. The requirement for367

a baseline complicates generation of ground truth. Yuill and Braun [25] discuss the relative merits of368

various methods for obtaining the baseline.369

Evaluation data may be supplied from simulation, laboratory experiments, or field measurements from370

a real building. Each approach has advantages and disadvantages. The closer the evaluation procedure can371

adhere to the realism of a field study, the greater the credibility, but the more di�cult it is to obtain and372

su�ciently screen the data. It is important to recognize that all data sets make implicit assumptions about373

fault prevalence, and these assumptions a↵ect computed performance metrics.374

The input sample definition should also be considered when selecting a data set generation approach,375

because input sample definition constrains the available approaches for generating data and determines the376

e↵orts required to process the raw data. The following are key considerations for various input sample types:377

• Single instant of time type of input sample: It is a snapshot of system operation conditions.378

Thus, it is usually desirable that the measurements be taken when the system is at a steady state. The379

steady-state requirement means that the laboratory or model should have the capability to control the380

operation conditions at a desired value throughout the data generation period. Steady-state operating381

conditions are hard to find in field data.382
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• Regular slice of time type of input sample: Longer time durations require more laboratory time,383

which may not be feasible for experiments due to resource constraints. In this case, simulation or384

building field data may be better data sources.385

• Other types of input sample (for example, rolling window horizon and event): If a more esoteric386

type of input sample is selected, considerable computing or programming e↵orts may be required to387

convert the raw data to the needed structure.388

8. Conclusion389

This article proposes a general FDD performance evaluation framework and documents the design deci-390

sions required to implement the framework. Two key decisions that are required are the definition of a fault391

and the definition of an input sample for evaluation. A fault can be defined by the condition or state of392

a physical system, by a system’s undesired or improper behavior, or by a quantitative outcome’s deviation393

from an expected value or range. The choice of fault definition determines the ground truth classification of394

evaluation input samples and, by extension, a↵ects the values of the metrics computed from FDD outcomes395

associated with those samples.396

In the existing literature, input samples for FDD evaluation are usually defined as a single instant in397

time (a set of simultaneous measurements) or a regular, repeating slice of time. Commercial FDD tools may398

also use rolling time horizons or event-based windows. The definition of an input sample has implications for399

evaluation data set generation, mapping FDD outputs to performance evaluation results, and comparison400

of FDD algorithms.401

8.1. Best Practices402

The proposed FDD performance evaluation framework accommodates many options for specific eval-403

uation parameters. This article provides examples of these options and design decisions from the FDD404

literature for buildings and other industries. Regardless of the specific options chosen, it is critical to clearly405

disclose and fully document all aspects of the performance evaluation for it to be credible and replicable.406

Documentation should address the fault and sample definitions employed; relevant metric definitions and407

mathematical expressions; the scenarios used; and all relevant assumptions about fault prevalence, cost, etc.408

Additionally, “apples-to-apples” comparison of the performance of AFDD algorithms requires (i) that the409

algorithms be tested using consistent fault, input sample, and performance metric definitions; and (ii) that410

they be tested using the same evaluation data set (the same scenarios, input samples, and ground truth). If411

di↵erent data sets must be used (for instance, if evaluators are working independently with access to diverse412

data sets), then e↵orts should be made to align the samples statistically (e.g., for similar fault prevalence413

and severity). These e↵orts should be clearly documented.414
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Although there is no single choice of evaluation parameters that will universally be perceived as ideal,415

the findings from this work indicate some consensus for design of FDD evaluation procedures. Condition-416

based fault definitions are commonly used in the literature for both algorithm development and as ground417

truth in FDD performance evaluation. Subject matter experts also noted that condition-based ground418

truth is the most widely employed and best aligned with diagnosis. In contrast, behavior-based approaches419

are relatively less frequently used for ground truth in the literature, while outcome-based approaches can420

present challenges for experimentally generated data sets and data sets drawn from field studies. Taken421

together, these findings suggest that a condition-based approach to ground truth definition represents the422

most practical near-term choice.423

For input sample definition, regular daily time slices are well-suited for evaluating typical FDD algorithms424

because many such tools provide results that building operators review daily or weekly. For handheld425

diagnostic tools, which are often used to perform “spot checks,” the best input sample definition is a single426

point in time. In the case of metrics, false positive rate, false negative rate, and correct diagnosis rate are427

the most common and therefore lend themselves to ease of interpretation across a broad audience.428

8.2. Recommended Future Work429

Further research can support the evolution of the proposed general FDD performance evaluation frame-430

work into a set of standard, trusted evaluation procedures. To this end, the authors recommend further431

investigation into user and stakeholder expectations for FDD algorithm performance and comparative anal-432

ysis, development of publicly available fault performance evaluation data sets that facilitate independent433

comparison of FDD algorithms, and implementation of case studies that compare the e↵ect of evaluation434

design choices on evaluation outcomes. Together, these will enhance the industry’s understanding of the435

trade-o↵s inherent in FDD performance evaluation and the desired form and content of outcomes. High436

priority longer-term e↵orts include research to estimate fault prevalence, impact, and cost, as well as the437

quantification of the nonenergy costs and benefits of acting on FDD algorithm outputs, whether accurate438

or inaccurate.439
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