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Abstract

Using fluctuating hydrodynamics we investigate the effect of thermal fluctuations in the dissipa-

tion range of homogeneous, isotropic turbulence. Simulations confirm theoretical predictions that

the energy spectrum is dominated by these fluctuations at length scales comparable to the Kol-

mogorov length. We also find that the extreme intermittency in the far-dissipation range predicted

by Kraichnan is replaced by Gaussian thermal equipartition.

I. INTRODUCTION

At macroscopic scales, fluid dynamics is governed by partial differential equations that

characterize the behavior of a fluid in terms of fields that represent density, momentum, and

other locally conserved quantities. The evolution of these fields is given by fluxes that are

modeled at the macroscale as smooth, continuous functions of space and time. However, at

atomic scales fluids are discrete systems composed of individual molecules with complex in-

teractions resulting in stochastic dynamics (e.g., Brownian motion). These two descriptions

overlap at the mesoscale. While it is possible to describe a fluid using macroscopic field vari-

ables at the mesoscale, the fluxes are no longer smooth; instead they include spontaneous

thermal fluctuations even for systems that are at thermodynamic equilibrium.

Turbulent fluctuations are of a completely different origin. They are produced from the

nonlinear cascade of energy due to external forcing at large length scales down to the scale

of viscous dissipation. Below the length scale of the external forcing the energy spectrum of

turbulent fluctuations has two regimes, inertial and dissipative. The demarcation between

them is determined by the Kolmogorov length scale η ≡ (ν3/〈ε〉)1/4 where ν is the kine-

matic viscosity and 〈ε〉 is mean energy dissipation rate. In the inertial range (wavenumber

k � kη ≡ 2π/η) the energy spectrum has the form (Batchelor 1953, Kolmogorov 1941),

E(k) ∝ k−5/3, while in the dissipative range it is often modeled as, E(k) ∝ kα exp(−βk)

(Buaria and Sreenivasan 2020, Frisch and Kolmogorov 1995, Pope 2001). Since E(k) de-

creases exponentially in the dissipative range it is natural to ask: At what wavenumber do

mesoscopic thermal fluctuations have a significant effect on this spectrum? This question

dates back to the pioneering work of Betchov (Betchov 1957, 1961) and has received renewed
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attention in recent theoretical studies (Bandak et al. 2021, Eyink et al. 2021) and molecular

simulation work (Gallis et al. 2021).

To investigate the influence of thermal fluctuations on turbulence we turn to the theory

of fluctuating hydrodynamics (FHD), originally proposed by Landau and Lifshitz (Landau

and Lifshitz 1959). This theory extends conventional hydrodynamics by augmenting each

dissipative flux with a random field. Over the past decade our group and others have

extended FHD, combining the derivation of models for complex fluids at the mesoscale

with the development of numerical algorithms for solving the resulting systems on high-

performance computers. For example, we developed low Mach number stochastic FHD

models for isothermal, non-ideal liquid mixtures that exploit the separation of scales between

fluid motion and acoustic wave propagation (Nonaka et al. 2015). It has been demonstrated

that this methodology can accurately model a wide range of phenomena both near and

far from equilibrium (e.g., the experimentally observed “giant fluctuations” effect in fluid

mixing (Donev et al. 2011)).

In this paper we use fluctuating hydrodynamics to investigate the effect of thermal fluctua-

tions in the dissipation range for homogeneous, isotropic turbulence. Section II summarizes

the formulation of incompressible FHD and estimates the wavenumber at which thermal

fluctuations dominate turbulent fluctuations in the energy spectrum. Section III outlines

the numerical algorithm of the simulations and Section IV presents their results. In brief,

the simulations confirm that thermal fluctuations dominate the energy spectrum at length

scales comparable to the Kolmogorov length and produce nearly Gaussian velocity statistics

at somewhat smaller scales.

II. FLUCTUATING HYDRODYNAMICS WITH FORCING

In fluctuating hydrodynamics we write the incompressible, isothermal stochastic Navier-

Stokes equations as,

∂t (ρu) = −∇ · (ρuuT )−∇π −∇ · (τ̄ + τ̃ ) + ρaF (r, t),

∇ · u = 0, (1)

where u is the velocity, ρ is the density, π is a perturbational pressure that enforces the

divergence constraint and aF is a long wavelength acceleration. Here the deterministic
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stress tensor is τ̄ = −µ[∇u + (∇u)T ] with dynamic viscosity µ. The stochastic stress

tensor chosen according to the fluctuation-dissipation relation (De Zarate and Sengers 2006,

Landau and Lifshitz 1959) is

τ̃ =
√
µkBT (W +WT ), (2)

whereW is a standard white noise Gaussian tensor with uncorrelated components.

The long wavelength acceleration, aF , due to an external force added to drive turbulence,

is modeled here using the formulation of (Eswaran and Pope 1988). Define a Ornstein-

Uhlenbeck (OU) process for the complex vector b(n, t) as,

db(n) = Ab(n) dt+B dW , (3)

where n = (nx, ny, nz) are integer indexes such that 1 ≤ |n| ≤ nmax and W is a vector of

complex Wiener processes. The external forcing is limited to long wavelengths by taking

nmax = 2
√

2. The matrices in the OU process are taken to be,

A =
1

TL
I ; B = σ

√
1

TL
I, (4)

where I is the identity matrix. In this case we have (Gardiner 1985),

〈b(n, t), b∗(n′, t+ s)〉 =
σ2

2
e−s/TLδn,n′ , (5)

so the parameters TL and σ are the characteristic time scale and amplitude of the acceleration

due to the external forcing. We then define the forcing in real space as

aF (r, t) = <

 ∑
|n|≤nmax

(b(n) + b∗(−n)) ei k·r

 , (6)

where k = 2πn/L, L is the domain length, and < denotes the real part of a complex number.

Note that the enforcement of the divergence free constraint on aF is handled automatically

by the solution algorithm.

For a given velocity field, u(r), the Fourier transform is defined as,

û(k) =

∫
dr eik·ru(r), (7)

The specific energy density is E(k) = 1
2
〈û(k) · û∗(k)〉, its isotropic integral is E(k), and the

total turbulent kinetic energy is E =
∫
dkE(k). The specific dissipation rate is

〈ε〉 = ν

〈
∂ui
∂xj

∂ui
∂xj

〉
= −ν〈uj∇2uj〉 = 2ν

∫
dkk2E(k), (8)
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where ν = µ/ρ is the kinematic viscosity.

In the absence of forcing the deterministic Navier-Stokes equations can be characterized

in terms of a single parameter, namely, the Reynolds number, Re = UL/ν, where U and

L are characteristic velocities and length scales, respectively. (In the present setting, we

can consider the forcing to simply be an, albeit indirect, approach to setting the velocity

scale.) It is also useful to define the turbulence Reynolds number, ReT = E2/(〈ε〉ν) and the

Taylor-scale Reynolds number, Reλ = (20
3

ReT)1/2.

Without forcing the energy spectrum at long times for Eq. (1) is dominated by the effect

of thermal fluctuations. These fluctuations can be characterized by the covariance of the

velocity field at equilibrium, which is typically referred to as the velocity structure factor.

The fluctuation-dissipation relation for the stochastic dynamics (1) implies, in agreement

with Einstein-Boltzmann theory, that

Su,u =< (̂δu) (̂δu)
∗
>=

kBT

ρ

(
I − kkT

|k|2

)
. (9)

The contribution of fluctuations to the energy spectrum is then given by

Efluc(k) =
1

2
< (̂δu)

∗
(̂δu) >=

1

2
Tr (Su,u) =

kBT

ρ
. (10)

We note that this contribution is independent of k. Consequently, in the energy spectrum

fluctuations scale like E(k) ∝ k2, reflecting the scaling of surface area with radius. We

note that the spatial discretization employed in this work is constructed so that this result

remains exactly true in continuous time ((Delong et al. 2013) and Appendix A) and with

any discrete time-step ∆t for the linearized dynamics (Usabiaga et al. 2012).

The presence of thermal fluctuations introduces an additional scale into the problem.

This additional dependence can be characterized in terms of a dimensionless temperature

θη =
kBT

ρu2
ηη

3
=

kBT 〈ε〉
1
4

ρν
11
4

, (11)

where uη = (〈ε〉ν)1/4 is the Kolmogorov velocity. An order of magnitude estimate for the

crossover wavenumber, kθ, between the turbulence spectrum and the thermal fluctuation

spectrum is given by (Bandak et al. 2021, Eyink et al. 2021),

u2
ηη exp(−kθη) ≈ kBT

ρ
k2
θ (12)
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or

θη ≈ exp(−kθη)/(kθη)2. (13)

For example, for θη = 10−9 the crossover wavenumber is kθ ≈ 15/η ≈ 2.4kη and for θη = 10−6

it is kθ ≈ 9.4/η ≈ 1.5kη. Given that θη ≈ 10−7−10−8 in the atmospheric boundary layer and

in laboratory experiments (Debue et al. 2018) this result predicts that thermal fluctuations

are significant at scales comparable to the Kolmogorov length scale.

The continuum description of fluid transport, either macroscopic or mesoscopic, is not

accurate at molecular scales (Corrsin 1959, Moser 2006). This breakdown occurs below the

microscopic transport length scale, λmic; its ratio to the Kolmogorov length scale is

λmic

η
= C

Ma

Re
1/4
T

, (14)

where Ma is the Mach number and C is a constant of order one. In dilute gases λmic is the

mean free path between collisions and in liquids it is the intermolecular spacing. This result

shows that η � λmic for subsonic, high Reynolds number turbulence. Since laboratory

experiments and molecular simulations have shown that Eqns. (1) are accurate down to

scales comparable to λmic (Boon and Yip 1991, De Zarate and Sengers 2006, Donev et al.

2010, 2011) we use them in our numerical simulations to validate the crossover wavenumber

predicted by Eq. (13).

III. SIMULATION METHOD

The fluctuating hydrodynamic simulations in this paper use the numerical method de-

scribed in (Nonaka et al. 2015). We use a staggered-grid formulation where normal velocities

are stored on the normal faces of grid cells. We begin the time step with un. We evaluate a

Stokes predictor to solve for a preliminary time-advanced velocity, u?,n+1,

ρ
u?,n+1 − un

∆t
+∇π?,n+1 = −∇ · (ρuu)n − 1

2
∇ · τ̄ n − 1

2
∇ · τ̄ ?,n+1,

+∇ ·

(√
µkBT

∆t∆V
Zn

)
+ aF,n, (15)

∇ · u∗,n+1 = 0, (16)

where ∆V is the cell volume, and Z = Z+ZT where Z is a tensor containing unit-variance,

mean-zero, independent Gaussian random variables.
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We then evaluate a Stokes corrector to solve for the time-advanced velocity, un+1,

ρ
un+1 − un

∆t
+∇πn+1 = −1

2
∇ · (ρuu)n − 1

2
∇ · (ρuu)?,n+1 − 1

2
∇ · τ̄ n − 1

2
∇ · τ̄ n+1

+∇ ·

(√
µkBT

∆t∆V
Zn

)
+ aF,n, (17)

∇ · un+1 = 0. (18)

The only significant difference from this earlier work is the addition of the external forcing

described in the previous section. For this external forcing calculation, Eq. (3), we use a

simple Euler-Maruyama method; a higher accuracy integrator is not needed in this context

since we are generating a random forcing. Starting with the initial condition b0 = (0, 0, 0)T ,

we advance Eq. (3) using

bn+1 = bn +Abn ∆t+B
√

∆t ZnI, (19)

where we only advance b(n) for values of n needed to compute aF . Here Z is a complex

Gaussian (normal) distributed random number. We can then evaluate aF,n directly from bn

using Eq. (6).

IV. SIMULATION RESULTS

We ran simulations with ρ = 1.0 g/cm3, T = 300 K, µ = 0.02 poise, which corresponds

to a water-glycerol mixture (Segur and Oberstar 1951), in a (5.12 cm)3 domain with a 5123

grid using a time step ∆t = 10−4 s. We considered two cases. In each case, we ran the

simulation until it became statistically stationary (≈ 30, 000 steps). We then restarted the

simulations with and without fluctuations and ran for several thousand time steps.

Case 1 has strong forcing (σ2 = 2.5 cm2/s) and Case 2 has weak forcing (σ2 = 0.1 cm2/s);

in both cases the forcing time scale is TL = 0.1 s. In Case 1 the mean energy dissipation

rate 〈ε〉 ≈ 4.1 cm2/s3 resulting in Kolmogorov length and time scales of η = 0.037 cm and

τη = (ν/〈ε〉)1/2 = 0.07 s, respectively, which corresponds to ReT ≈ 3600 and Reλ ≈ 143.

For the Case 2 simulations (weak forcing), the mean energy dissipation 〈ε〉 ≈ 0.19 cm2/s3

resulting in Kolmogorov length and time scales of η = 0.081 cm and τη = 0.32 s, respec-

tively, corresponding to ReT ≈ 890 and Reλ ≈ 77. By comparison, 〈ε〉 ranges from 400 to

156,000 cm2/s3 in the water-glycerol experiments of (Debue et al. 2018), while in geophysical
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FIG. 1. Specific energy density spectrum for Case 1 with thermal noise (red) and without (black);

inset is region near the crossover. Blue line is −5/3 slope; green line represents the spectrum of

thermal fluctuations given by Eq. (10). The Kolmogorov wavenumber kη = 2π/η ≈ 170 cm−1 is

indicated by the vertical orange line.

flows 〈ε〉 ranges from around 0.4 cm2/s3 in the upper ocean mixing layer (Thorpe 2007) to

400 cm2/s3 for the atmospheric boundary layer (Garratt 1994). In our Case 1 simulations

the dimensionless temperature is θη = 2.8 × 10−9; from Eq. (13) the predicted crossover

wavenumber is kθ ≈ 2.3 kη. The dimensionless temperature for Case 2 is θη = 1.3 × 10−9

and kθ ≈ 2.4 kη is the predicted crossover wavenumber.

Spectra from Case 1 simulations, with and without thermal noise, roughly 18τη after

restart are shown in Figure 1 (compare with Fig. 1 in (Eyink et al. 2021)). We emphasize

that the green line in the figure corresponds to the theoretical spectrum of the fluctuations

given by Eq. (10). Spectra from Case-2 simulations, with and without thermal noise, roughly

4τη after restart are shown in Figure 2. The crossover between the turbulence spectrum and

the thermal fluctuation spectrum occurs at k ≈ kη, in agreement with the order of magnitude

estimate given by kθ.

It is useful to define (Buaria and Sreenivasan 2020, Khurshid et al. 2018)

φ(k) ≡ d(lnE(k))

d(ln k)
=
k

E

dE

dk
, (20)
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FIG. 2. Specific energy density spectrum for Case 2 (see Figure 1 caption); here kη ≈ 78 cm−1.

given that, in the absence of thermal fluctuations, the energy spectrum in the dissipation

range can be modeled as,

E(k) = C(kη)α exp(−β(kη)γ), (21)

in which case we expect φ(k) = α − βγ(ηk)γ. Figure 3 shows that the function φ(k)

approximately is linear for k / 100 cm−1 in Case 1 and for k / 50 cm−1 in Case 2.

Above these wavenumbers for the simulations with thermal fluctuations, the function rises

rapidly, plateauing at φ(k) ≈ 2, as expected. For the deterministic runs the compensated

function φ̃(k) ≡ φ(k)/(γ(kη)γ) is approximately constant with φ̃ ≈ −5.5 and −4.7 for

γ ≈ 0.85 and 0.9 in Cases 1 and 2, respectively. The deterministic results for φ and φ̃ are

in reasonable agreement with those reported by (Khurshid et al. 2018) and (Buaria and

Sreenivasan 2020), but the runs with thermal noise confirm the original insight of (Betchov

1957) that equipartition should occur at wavenumbers near the Kolmogorov scale.

We also measured the velocity derivative skewness and kurtosis as,

S = −
u3

1,1

(u2
1,1)3/2

and K =
u4

1,1

(u2
1,1)2

, (22)

where

uni,j =
1

V

∫
dr (ui,j(r))n and ui,j(r) =

∂ui(r)

∂rj
. (23)
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FIG. 3. Function φ(k) for Case 1 (above) and Case 2 (below); dashed line is φ = 2. Labels Stochas-

tic (S) and Deterministic (D) indicate simulations run with and without thermal fluctuations.

For homogeneous, isotropic turbulence one typically has S ≈ 1
3

to 1
2

and K ≈ 4. At

thermodynamic equilibrium we expect S = 0 and K = 3 since thermal fluctuations are

Gaussian distributed; this was confirmed in simulations with no external forcing (not shown).

In Case 1 (strong forcing) the measured skewness is S ≈ 0.52 and the kurtosis is K ≈ 4.5;

in Case 2 (weak forcing) S ≈ 0.40 and K ≈ 4.1. These values did not change significantly

when the simulations were repeated with the thermal noise disabled (i.e., deterministic,

forced Navier-Stokes). As functions of time, the skewness and kurtosis are smooth but vary

significantly. For example, kurtosis in Case 2 was as low as 3.7 and as high as 4.5.
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1e-06
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0.0001
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L^3 U Deterministic
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FIG. 4. PDFs for u (black), (−∇2)2u (red) (−∇2)3u (green) and (−∇2)4u (blue). In the legend L

denotes −∇2. Left frame is the strong forcing (Case 1). Right frames is the weak forcing (Case 2).

Note that in both frames solid and dashed black curves overlap and in the right panel the green

and blue dashed curves overlap.

While the skewness and kurtosis are little affected by thermal noise, (Eyink et al. 2021)

have argued that the extreme intermittency in the far-dissipation range predicted by (Kraich-

nan 1967) is replaced by Gaussian thermal equipatition. As in previous numerical studies

(Chen et al. 1993), this intermittency may be diagnosed by probability distribution functions

(PDF) for various higher order derivatives of the velocity, with increasing orders probing

smaller scales. In Figure 4 we show numerical results for both deterministic and stochastic

runs. In the absence of thermal fluctuations the PDFs for (−∇2)nu, with n = 2, 3, 4 have

approximately exponential tails that grow broader with increasing n, as in (Chen et al.

1993). In the stochastic simulations we see quite with opposite behavior with the PDF’s for

(−∇2)nu having suppressed tails for increasing n and becoming nearly Gaussian for n = 4.

In the absence of large-scale external forcing all three PDFs are Gaussian (not shown), as

expected for thermal fluctuations at thermodynamic equilibrium. These results support the

prediction of (Eyink et al. 2021).
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V. CONCLUDING REMARKS

It is generally assumed that the large separation between the scale at which turbulent

eddies are strongly damped and the molecular mean free path implies that thermal fluctua-

tions are irrelevant in turbulent flows. However, statistical mechanics tells us that thermal

fluctuations are present at all wavelengths and the fluctuation-dissipation theorem shows

their close relation to viscous dissipation. Characterizing the impact of thermal fluctua-

tions on turbulent flow requires the introduction of a dimensionless parameter, θη, related

to temperature. For values of θη representative of flows of interest, the presumption that

the viscous dissipation range is well-separated from the thermal range breaks down. The

numerical simulation results in this paper confirm theoretical predictions (Betchov 1957,

Eyink et al. 2021) that the thermal equipartition range in the energy spectrum can domi-

nate in the dissipation range at length scales comparable to the Kolmogorov length. This

means that to model sub-Kolmogorov scale turbulence in this regime the conventional in-

compressible Navier-Stokes equations must be augmented to include thermal fluctuations,

as in the Landau-Lifschitz fluctuating Navier-Stokes equations. Particle simulations, such

as direct simulation Monte Carlo (DSMC), are also useful and preliminary results (Gallis,

private communication) also seem to confirm the importance of thermal fluctuations.

While these numerical results agree with theoretical estimates, experimental verification

remains crucial but very challenging. Traditional techniques, such as hot-wire anemometry

and particle imaging velocimetry, so far lack the resolution and sensitivity to be applicable

at the sub-Kolmogorov scales of turbulent flows. Conceptually, it is not even clear that such

methods based on continuum fluid descriptions suffice to measure molecular velocities coarse-

grained over mesoscopic scales. It may be more practical to look for indirect evidence of the

effects of thermal fluctuations in the dissipation range. For example, high Schmidt/Prandtl-

number scalar mixing, droplet and bubble formation, and chemical reactions are all known

to depend strongly on sub-Kolmogorov scales but can be equally influenced by thermal noise,

so that the two effects may compete in determining observed rates and characteristics.

Finally, in this work we focused on the dissipation range of fully-developed, homogeneous

turbulence but we expect thermal fluctuations to be important for other turbulent flow

scenarios. For example, they may play an important role in triggering the transition to

turbulence. Thermal fluctuations may also be crucial in the generation of unpredictability
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leading to spontaneous stochasticity. In fact, thermal noise is expected to contribute for any

fluid modes that are strongly affected by molecular dissipation, such as the viscous sublayer

eddies of wall-bounded turbulence. For such scenarios and others, fluctuating hydrodynamics

provides a powerful theoretical and numerical tool for future work.
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Appendix A: Nonlinear Fluctuation-Dissipation Relation Proof

Here, we present a detailed proof of the nonlinear fluctuation-dissipation relation (FDR)

for a finite-volume discretization of incompressible Navier-Stokes in a periodic space domain.

The proof parallels the proof for the truncated “continuum” fluctuating incompressible hy-

drodynamics using the space Fourier transform to diagonalize the Leray-Hodge projection

given by Eyink et al. (Eyink et al. 2021). We first briefly review the continuum case. We

then discuss the spatial discretization and extend the FDR to the space-discretized model.

The elements needed to show the discrete nonlinear FDR are that the linearized systems

satisfy a discrete FDR, that the inviscid dynamics conserves kinetic energy, and that the

inviscid dynamics satisfies a Liouville theorem. The first two requirements are well known;

the key issue is showing the Liouville theorem for the discrete dynamics.

Truncated Continuum Fluctuation-Dissipation Theorem

The incompressible fluctuating Navier-Stokes equation in the torus domain Ω = Td

∂tu + (u ·∇)u = −∇p+ ν∆u−∇·τ̃ , ∇·u = 0. (A1)

13



can be written as a system of stochastic ODE’s for the Fourier modes

ûk =

∫
Ω

d3x e−ik·xu(x) (A2)

of the form

∂tûk,m + ikn

(
δmp −

kmkp
k2

) ∑
p+q=k

ûp,nûq,p + νk2ûk,m =

(
2νkBT

ρ

)1/2

ik ηk,m(t) (A3)

where ηk,m(t) for each wavevector k and space component m are complex white-noise with

covariances

〈η∗k,m(t)ηk′,m′(t
′)〉 = V

(
δmm′ −

kmkm′

k2

)
δk,k′δ(t− t′). (A4)

Physically this is a “quasi-continuum” mesoscopic description valid only at wavenumbers

|k| < Λ, some cutoff wavenumber � λ−1
mfp (inverse mean-free path length). For this reason,

and also to give a precise mathematical meaning to the dynamics, all wavevectors in the

above dynamical equations are restricted to have magnitudes less than Λ.

The resulting stochastic dynamics satisfies an exact nonlinear fluctuation-dissipation rela-

tion, according to which the long-time invariant measure is the Gaussian thermal equilibrium

distribution

P [u] =
1

Z
exp

− 1

2kBT

∑
|k|<Λ

|û(k)|2
 . (A5)

This is a well-known “folklore” result, a careful proof of which can be found in Eyink et

al. (Eyink et al. 2021). In fact, this invariant measure is unique because of energy bounds

and non-degeneracy of the noise and is in “detailed balance” or time-reversible for the

dynamics. The proof in (Eyink et al. 2021) based on the Fokker-Planck equation for the

Fourier modes of velocity rests on two key results for the inviscid deterministic dynamics

given by the truncated Euler equations: (i) exact conservation of kinetic energy, and (ii)

a Liouville Theorem on conservation of phase-volume. Conservation of kinetic energy is a

consequence of the “detailed energy conservation” for individual triads of Fourier modes,

first noted by Onsager (Onsager 1949). We comment here briefly on the conservation of

phase-volume.

The Liouville Theorem for truncated Euler was derived by T. D. Lee (Lee 1952), who

employed the Fourier representation of the dynamics. The statement of this result involves

the term

Bk,m(û, û∗) = −ikn
(
δmp −

kmkp
k2

) ∑
p+q=k

ûp,nûq,p (A6)
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in Eq.(A3). A significant complication, however, is that not all of the Fourier modes are

independent, because of the reality condition under complex conjugation

û∗k = û−k. (A7)

In his original proof, T.D. Lee used real and imaginary parts of these modes for a subset of

wavevectors. The proof in (Eyink et al. 2021), Appendix A, instead considered the modes

whose wavevector lies in the half-set

K+ =

k :

kx > 0, or

ky > 0 if kx = 0, or

kz ≥ 0 if kx = ky = 0

 (A8)

and chose ûk,m for k ∈ K+ as the independent complex modes. This proof used the standard

device of treating ûk,m and its complex conjugate û∗k,m as formally independent variables in

the calculus of Wirtinger derivatives ∂
∂ûk,m

, ∂
∂û∗k,m

, simplifying the original calculations of Lee.

Here we note that the wavenumbers p, q which are summed over in Eq.(A6) may lie in the

complementary set K− = −K+ and when p ∈ K−, then ûp should be interpreted instead

as û∗−p. There is a corresponding equation of motion for the complex-conjugate variables

∂tû
∗
k,m = B∗k,m[û, û∗]− νk2û∗k,m −

(
2νkBT

ρ

)1/2

ik η∗k,m(t) (A9)

with B∗k,m[û, û∗] := Bk,m[û, û∗]∗ when k ∈ K+ and |k| < Λ. The statement of the Liouville

Theorem follows from the easily verified results

∂

∂ûk

·Bk[û, û∗] = −(d− 1)ik·û(0),
∂

∂û∗k
·B∗k[û, û∗] = (d− 1)ik·û(0) (A10)

in space dimension d > 1. In fact, summing over all independent modes then gives∑
k∈K+,|k|<Λ

(
∂

∂ûk

·Bk[û, û∗] +
∂

∂û∗k
·B∗k[û, û∗]

)
= 0. (A11)

Centered Finite-Volume Space Discretization

We now describe the finite-volume space-discretization for fluctuating incompressible

Navier-Stokes discussed in Usabiaga et al. (Usabiaga et al. 2012), Delong et al. (Delong

et al. 2013) and Nonaka et al. (Nonaka et al. 2015). We note that the discretization is

15



based on incorporating fluctuations into a classical discretization of Navier-Stokes originally

introduced by Harlow and Welch (Harlow and Welch 1965). For simplicity we consider only

d = 2, since that suffices to illustrate the basic ideas. We shall also consider only the periodic

domain T2 := R2/(LxZ × LyZ) and consider a spatial discretization (xi, yj) = (i∆x, j∆y)

with 0 ≤ i < Nx, 0 ≤ j < Ny and Lx = Nx∆x, Ly = Ny∆y. In this scheme, scalar fields like

pressure p live on cell centers at lattice sites (xi, yj), denoted pi,j. Vector components live

on cell faces displaced in the corresponding directions, so that x-component of velocity is

ui+ 1
2
,j and y-component of velocity is vi,j+ 1

2
. The spatially-discretized equations of motion

(but continuous in time) have the form, ignoring for the moment stochastic terms:

u̇i+ 1
2
,j = −∇·(vu)i+ 1

2
,j − (∇xp)i+ 1

2
,j − ν(∆u)i+ 1

2
,j

v̇i,j+ 1
2

= −∇·(vv)i,j+ 1
2
− (∇yp)i,j+ 1

2
− ν(∆v)i,j+ 1

2
(A12)

where all gradients denote centered-differences, for example,

(∇xp)i+ 1
2
,j =

pi+1,j − pi,j
∆x

, (∇yp)i,j+ 1
2

=
pi,j+1 − pi,j

∆y
(A13)

and ∆ is the standard 5-point laplacian. The nonlinear terms are calculated on interpolated

lattice sites by averaging adjacent values. Thus,

∇·(vu)i+ 1
2
,j =

1

∆x

[
u2
i+1,j − u2

i,j

]
+

1

∆y

[
ui+ 1

2
,j+ 1

2
vi+ 1

2
,j+ 1

2
− ui+ 1

2
,j− 1

2
vi+ 1

2
,j− 1

2

]
∇·(vv)i,j+ 1

2
=

1

∆x

[
ui+ 1

2
,j+ 1

2
vi+ 1

2
,j+ 1

2
− ui− 1

2
,j+ 1

2
vi− 1

2
,j+ 1

2

]
+

1

∆y

[
v2
i,j+1 − v2

i,j

]
(A14)

where, for example,

ui,j =
ui+ 1

2
,j + ui− 1

2
,j

2
, vi,j =

vi,j+ 1
2

+ vi,j− 1
2

2
,

ui+ 1
2
,j+ 1

2
=
ui+ 1

2
,j+1 + ui+ 1

2
,j

2
, vi+ 1

2
,j+ 1

2
=
vi+1,j+ 1

2
+ vi,j+ 1

2

2
, etc. (A15)

The velocity field satisfies the discrete incompressibility condition

(∇xu)ij + (∇yv)ij =
ui+ 1

2
,j − ui− 1

2
,j

∆x
+
vi,j+ 1

2
− vi,j− 1

2

∆y
= 0, (A16)

which implies a Poisson equation to determine the pressure:

(−∇2p)ij =
1

∆x

[
∇·(vu)i+ 1

2
,j −∇·(vu)i− 1

2
,j

]
+

1

∆x

[
∇·(vv)i,j+ 1

2
−∇·(vv)i,j− 1

2

]
(A17)
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In order to prove the Liouville theorem for the space-discretized dynamics, it is convenient,

just as for the continuum case, to use Fourier modes. We introduce the discrete Fourier

transforms

ak,` =
1

N

∑
i,j

e−i(ki∆x+`j∆y)ui+ 1
2
,j, bk,` =

1

N

∑
i,j

e−i(ki∆x+`j∆y)vi,j+ 1
2
, (A18)

qk,` =
1

N

∑
i,j

e−i(ki∆x+`j∆y)pi,j, (A19)

with N = NxNy and with k ∈ 2πZNx/Lx, ` ∈ 3πZNy/Ly In that case, reality of the

basic variables ui+ 1
2
,j, vi,j+ 1

2
, implies that relations a∗k,` = a−k,−`, b

∗
k,` = b−k,−` hold. The

consequence is that not all of these variables are independent and, in the proof of the

Liouville Theorem, we must select an independent subset.

It is convenient here for bookkeeping purposes to label these modes as aα,β, bα,β using the

integers α ∈ ZNx , β ∈ ZNy , where kα = 2πα/Lx, `β = 2πβ/Ly. In that case we may choose

0 ≤ α < Nx, 0 ≤ β < Ny as representative values. Consider first the case with Nx, Ny both

odd. In this case the reality conditions become

α 6= 0: a∗α,β = aNx−α,Ny−β =⇒ α can be restricted to 1 ≤ α ≤ Nx−1
2

β 6= 0: a∗0,β = a0,Ny−β =⇒ β can be restricted to 1 ≤ β ≤ Ny−1

2

a∗0,0 = a0,0 =⇒ a0,0 is real (A20)

and similarly for bα,β. We may thus take as independent variables the complex quantities

aα,β for 1 ≤ α ≤ Nx−1
2
, 0 ≤ β < Ny and a0,β for 1 ≤ β ≤ Ny−1

2
and the single real variable

a0,0, and similarly for bα,β. On the other hand, with Nx, Ny both even, the reality conditions

become

α 6= 0, Nx

2
: a∗α,β = aNx−α,Ny−β =⇒ α can be restricted to 1 ≤ α ≤ Nx−2

2

β 6= 0, Ny

2
: a∗0,β = a0,Ny−β, a∗Nx

2
,β

= aNx
2
,Ny−β =⇒ β can be restricted to 1 ≤ β ≤ Ny−1

2

a∗0,0 = a0,0, a
∗
0,

Ny
2

= a
0,

Ny
2

, a∗Nx
2
,0

= aNx
2
,0, a

∗
Nx
2
,
Ny
2

= aNx
2
,
Ny
2

=⇒ a0,0, a0,
Ny
2

, aNx
2
,0, aNx

2
,
Ny
2

are real

(A21)

We may thus take as independent variables the complex quantities aα,β for 1 ≤ α ≤ Nx−2
2
, 0 ≤

β < Ny and a0,β, aNx
2
,β for 1 ≤ β ≤ Ny−2

2
, and the four real variables a0,0, a0,

Ny
2

, aNx
2
,0, aNx

2
,
Ny
2

,

and similarly for bα,β. The cases with one of Nx, Ny odd and the other even can be treated

likewise.
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The inverse relations hold

ui+ 1
2
,j =

∑
k,`

ei(ki∆x+`j∆y)ak,`, vi,j+ 1
2

=
∑
k,`

ei(ki∆x+`j∆y)bk,` (A22)

pi,j =
∑
i,j

ei(ki∆x+`j∆y)qk,`. (A23)

We then find that spatial derivatives are given by

(∇xu)i,j =
∑
i,j

ei(ki∆x+`j∆y)ik−ak,`, (∇yv)i,j =
∑
i,j

ei(ki∆x+`j∆y)i`−bk,` (A24)

with

k− :=
1

i∆x
(1− e−ik∆x), `− :=

1

i∆y
(1− e−i`∆y) (A25)

and the complex conjugates k+ = (k−)∗, k+ = (k−)∗ given by

k+ :=
1

i∆x
(eik∆x − 1), `+ :=

1

i∆y
(ei`∆y − 1) (A26)

Similarly, the discrete Laplacian Fourier transforms as

− (̂∇2p)k,` = (|k+|2 + |`+|2)qk,` =

[
4

(∆x)2
sin2

(
k∆x

2

)
+

4

(∆y)2
sin2

(
`∆y

2

)]
qk,` (A27)

Lastly, we note that averaged fields can be Fourier analyzed as well, for example

ui+ 1
2
,j+ 1

2
=
∑
k,`

ei(ki∆x+`j∆y)a
(+y)
k,` , vi+ 1

2
,j+ 1

2
=
∑
k,`

ei(ki∆x+`j∆y)b
(+x)

k,` (A28)

with

a
(±y)
k,` :=

1

2
(1 + e±ik∆y)ak,`, b

(±x)

k,` :=
1

2
(1 + e±ik∆x)bk,` (A29)

and similarly for other fields.

With these definitions we note that a straightforward but tedious calculation gives the

deterministic dynamics of Fourier modes as:

ȧk,` = −ik+
∑
k′,`′

a
(−x)
k′,`′ a

(−x)
k−k′,`−`′ − i`

−
∑
k′,`′

a
(+y)
k′,`′ b

(+x)

k−k′,`−`′ − ik+qk,` − ν(|k+|2 + |`+|2)ak,`

ḃk,` = −ik−
∑
k′,`′

a
(+y)
k′,`′ b

(+x)

k−k′,`−`′ − i`+
∑
k′,`′

b
(−y)

k′,`′ b
(−y)

k−k′,`−`′ − i`+qk,` − ν(|k+|2 + |`+|2)bk,(̀A30)

We next prove for this dynamics the two essential ingredients needed for the nonlinear

FDR, namely: (i) exact conservation of kinetic energy and (ii) the Liouville Theorem on

conservation of phase volume. We begin with the latter.
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Discrete Liouville Theorem

We introduce the following notation for the inviscid part of the dynamics

Ak,` = −ik+
∑
k′,`′

a
(−x)
k′,`′ a

(−x)
k−k′,`−`′ − i`

−
∑
k′,`′

a
(+y)
k′,`′ b

(+x)

k−k′,`−`′ − ik+qk,`

Bk,` = −ik−
∑
k′,`′

a
(+y)
k′,`′ b

(+x)

k−k′,`−`′ − i`+
∑
k′,`′

b
(−y)

k′,`′ b
(−y)

k−k′,`−`′ − i`+qk,` (A31)

and state our main result:

Proposition 1 The formula holds

∂Ak,`
∂ak,`

+
∂Bk,`

∂bk,`
= −isin(k∆x)

∆x
a0,0 − i

sin(`∆y)

∆y
b0,0 (A32)

and thus

∑
complex modes (k,`)

(
∂Ak,`
∂ak,`

+
∂Bk,`

∂bk,`
+
∂A∗k,`
∂a∗k,`

+
∂B∗k,`
∂b∗k,`

)
+

∑
real modes (k,`)

(
∂Ak,`
∂ak,`

+
∂Bk,`

∂bk,`

)
= 0

(A33)

Note that these are the discrete analogues of the continuum results (10),(11) for d = 2.

Proof: Note that the advective part of the dynamics is represented by

Aadvk,` = −ik+
∑
k′,`′

a
(−x)
k′,`′ a

(−x)
k−k′,`−`′ − i`

−
∑
k′,`′

a
(+y)
k′,`′ b

(+x)

k−k′,`−`′

Badv
k,` = −ik−

∑
k′,`′

a
(+y)
k′,`′ b

(+x)

k−k′,`−`′ − i`+
∑
k′,`′

b
(−y)

k′,`′ b
(−y)

k−k′,`−`′ (A34)

and the Poisson equation for the pressure in Fourier representation becomes

qk,` = −
ik−Aadvk,` + i`−Badv

k,`

|k+|2 + |`+|2
. (A35)

Thus, the inviscid dynamics can be represented via a discrete Leray projection as

Ak,` =
|`+|2

|k+|2 + |`+|2
Aadvk,` −

k+`−

|k+|2 + |`+|2
Badv
k,`

Bk,` = − `+k−

|k+|2 + |`+|2
Aadvk,` +

|k+|2

|k+|2 + |`+|2
Badv
k,` (A36)

The following straightforward derivatives

∂Aadvk,`

∂ak,`
= −2i

sin(k∆x)

∆x
a0,0 − i

sin(`∆y)

∆y
b0,0,

∂Aadvk,`

∂bk,`
= −i`−1

2
(1 + eik∆x)a0,0
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∂Badv
k,`

∂bk,`
= −isin(k∆x)

∆x
a0,0 − 2i

sin(`∆y)

∆y
b0,0,

∂Badv
k,`

∂ak,`
= −ik−1

2
(1 + ei`∆y)b0,0 (A37)

together with (36) yields the result (32).

Finally, we note that the expression in (32) for complex modes is pure imaginary and

thus cancels in (33) with the contribution from the complex conjugate. On the other hand,

for real modes the expressions in (32) vanish individually because k∆x, `∆y are equal either

to 0 or π. �

Discrete Energy Conservation

It is well know that the discretization Eqs. (A12)-(A17) for the inviscid case ν = 0 in

periodic boundary conditions exactly conserves the discrete kinetic energy (per mass):

H =
1

2

∑
ij

(u2
i+ 1

2
,j

+ v2
i,j+ 1

2
). (A38)

This result follows from the skew-adjoint property of the advection discretization applied

to discretely divergence free fields and orthogonality of discrete gradients with discretely

divergence free fields. See, for example, Delong et al. (Delong et al. 2013), Usabiaga et

al. (Usabiaga et al. 2012). We summarize the argument below for completeness.

To prove the first statement, we note using (ui+ 1
2
,j − ui− 1

2
,j)ui,j = 1

2
(u2

i+ 1
2
,j
− u2

i− 1
2
,j

) that

1

∆x

∑
ij

ui+ 1
2
,j(u

2
i+1,j − u2

i,j) = − 1

∆x

∑
ij

(ui+ 1
2
,j − ui− 1

2
,j)u

2
i,j

= − 1

∆x

∑
ij

1

2
(u2

i+ 1
2
,j
− u2

i− 1
2
,j

)ui,j

=
1

∆x

∑
ij

1

2
u2
i+ 1

2
,j

(ui+1,j − ui,j) (A39)

An exactly analogous calculation shows that

1

∆y

∑
ij

ui+ 1
2
,j(ui+ 1

2
,j+ 1

2
vi+ 1

2
,j+ 1

2
− ui+ 1

2
,j− 1

2
vi+ 1

2
,j− 1

2
) =

1

∆y

∑
ij

1

2
u2
i+ 1

2
,j

(vi+ 1
2
,j+ 1

2
− vi+ 1

2
,j− 1

2
).

(A40)

Adding these results gives ∑
ij

ui+ 1
2
,j[∇·(uu)]i+ 1

2
,j = 0 (A41)

since
1

∆x
(ui+1,j − ui,j) +

1

∆y
(vi+ 1

2
,j+ 1

2
− vi+ 1

2
,j− 1

2
) = 0 (A42)
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is implied by discrete incompressibility. This shows conservation of 1
2

∑
ij u

2
i+ 1

2
,j

by dis-

cretized advection and conservation of 1
2

∑
ij v

2
i,j+ 1

2

follows by an identical argument.

The conservation of total energy by the pressure gradient is more direct, and follows from

discrete incompressibility and the fact that the finite-volume discretizations of the gradient

operator G and divergence operator D satisfy G∗ = −D.

Proof of the Nonlinear FDR

To complete the proof of the nonlinear FDR, we note that Usabiaga et al. (Usabiaga

et al. 2012) added noise to the discretized Stokes equation so that P = (1/Z) exp(−H/kBT )

is the exact stationary measure of this linear stochastic dynamics. This was guaranteed by

adding the noise in the form

∂tv = −Gp+ νLv + f̃ (A43)

where L = DG is the discrete Laplacian, where for ∆V = ∆x∆y

f̃ = D

(√
2νkBT

ρ∆V
W

)
(A44)

and where W is a space-discretized set of temporal white noises living on the faces of the

shifted velocity grids, e.g. in 2D consisting of two independent white noises W
(x)
i,j , W

(y)
i,j , at

the cell centers and another two W
(x)

i+ 1
2
,j+ 1

2

, W
(y)

i+ 1
2
,j+ 1

2

at the corner points/nodes. This result

is easily verified by taking discrete Fourier transforms. Adding this same noise into the

discretized nonlinear equations (12), the invariant measure is preserved. Indeed, because of

energy conservation and Liouville Theorem, the gaussian Gibbs measure is also invariant for

the inviscid deterministic dynamics. See Eyink et al. (2021) for more details.
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