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Theta phase precession supports memory 
formation and retrieval of naturalistic 
experience in humans

Jie Zheng1,2,3,4, Mar Yebra    1, Andrea G. P. Schjetnan5, Kramay Patel6, 
Chaim N. Katz6, Michael Kyzar1, Clayton P. Mosher1, Suneil K. Kalia5, 
Jeffrey M. Chung7, Chrystal M. Reed    7, Taufik A. Valiante    5, 
Adam N. Mamelak1, Gabriel Kreiman    4,8  & Ueli Rutishauser    1,7,9,10 

Associating different aspects of experience with discrete events is 
critical for human memory. A potential mechanism for linking memory 
components is phase precession, during which neurons fire progressively 
earlier in time relative to theta oscillations. However, no direct link between 
phase precession and memory has been established. Here we recorded 
single-neuron activity and local field potentials in the human medial 
temporal lobe while participants (n = 22) encoded and retrieved memories 
of movie clips. Bouts of theta and phase precession occurred following 
cognitive boundaries during movie watching and following stimulus onsets 
during memory retrieval. Phase precession was dynamic, with different 
neurons exhibiting precession in different task periods. Phase precession 
strength provided information about memory encoding and retrieval 
success that was complementary with firing rates. These data provide  
direct neural evidence for a functional role of phase precession in human 
episodic memory.

From remarkable life scenarios to mundane everyday events, episodic 
memory plays a crucial role in shaping our perception of the world and 
our sense of self. Our brains not only store snapshots of individual events 
but also temporally weave together sequential contiguous moments 
into rich and coherent memories for future use. A fundamental  
open question in human memory is, how do we encode and retrieve 
memories of continuous experience?

Theoretical work suggests that the encoding, binding and com-
pressing of sequential events into a coherent memory might rely on a 
temporal neural code1–6. A key mechanism that gives rise to temporal 

coding is phase precession, whereby neurons spike in progressively 
earlier phases of ongoing theta oscillations relative to the onset of a 
memorable event7,8 or the location of the animal in the case of place 
cells9–11. The notion that phase precession supports sequential learning 
extends to non-spatial tasks: phase precession has been observed dur-
ing encoding of successive stimuli or states, such as images12, sounds8,13, 
odours8, time within an episode14–17 and task progression18. On the 
basis of this literature, we set out to test the hypothesis that phase 
precession would be present following cognitive boundaries (that is, 
event transitions) during movie clip watching and that the purpose of 
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and throughout the manuscript unless stated differently) for the scene 
recognition test and 70% ± 12% for the time discrimination test (scene 
recognition: t21 = 22.263; P = 3 × 10−17; 95% confidence interval, (0.723, 
0.853); time discrimination: t21 = 20.561; P = 2 × 10−15; 95% confidence 
interval, (0.692, 0.847); one sample two-tailed t-test with respect to 
chance level). The participants were implanted with depth electrodes 
for clinical evaluation while performing the task (see the participant 
demographics in Supplementary Table 1 and the spike quality metrics 
in Supplementary Fig. 1).

We quantified phase precession using simultaneously recorded 
single-neuron activity and local field potentials (LFPs) from microwire 
electrodes implanted in the hippocampus, amygdala and parahip-
pocampal gyrus (Fig. 1e and Supplementary Table 2), jointly referred 
to as the medial temporal lobe (MTL). We also recorded data from three 
frontal areas, including the orbitofrontal cortex, anterior cingulate 
and pre-supplementary motor area, which we analysed to compare 
the prevalence of phase precession between the frontal lobe (in total 
41 microwires and 433 neurons) and the MTL (in total 50 microwires 
and 503 neurons).

MTL theta bouts are prevalent following boundaries
As the internal reference ‘clock’ for neuronal spiking6, we first assessed 
the properties of theta-band LFPs recorded from the MTL (see the 
electrode locations in Fig. 1e and the electrode Montreal Neurological 
Institute (MNI) coordinates in Supplementary Table 2). Recordings 
from the amygdala, hippocampus and parahippocampal gyrus revealed 
large non-rhythmic fluctuations in the LFPs (Fig. 2a,c,e). Averaging 
power across the entire task, the LFPs recorded in these regions had 
approximately 1/f-shaped power spectra, with no apparent peaks in 
the conventional theta range of 4–8 Hz (Fig. 2a–f and Extended Data 
Fig. 1a–c,e–g).

We next identified brief ‘theta bouts’ in the time domain on a 
cycle-by-cycle basis27 and quantified each oscillatory cycle by its ampli-
tude, period and waveform symmetry (see Methods and the character-
istics of theta bouts in Extended Data Fig. 2). The revealed transient 
theta bouts (see examples highlighted in Fig. 2g,i; see also Methods) 
have similar frequencies across multiple cycles (Extended Data Fig. 2f), 
consistent with previous findings in humans27–29 and other far-sensing 
species20,21. On average, 14% ± 4% of the entire recording time was 
occupied by theta bouts. The likelihood of theta bout occurrence 
varied across different task periods. During encoding, considering 
1 s periods, theta bouts were more likely to occur following cognitive 
boundaries in boundary clips (Fig. 2h; F5,244 = 12.4; P = 6 × 10−7; 95% 
confidence interval, (0.115, 0.423); two-tailed analysis of variance 
(ANOVA)), with theta bouts occupying 36.4% ± 8.7% of post-boundary 
time windows. In contrast, theta bouts occupied less time within the 1 s 
periods before cognitive boundaries in boundary clips (16.2% ± 5.9%), 
before (18.3% ± 4.7%) and after (16.8% ± 6.7%) no boundaries (that is, 
4 s from the clip onsets) in no-boundary clips, and after clip onsets 
(25.2% ± 8.8%) and offsets (15.6% ± 4.9%) in all clips. The frequency 
of theta bouts was heterogeneous, spanning 2 Hz to 10 Hz, which is 
different from the narrow-band theta oscillations (~8 Hz) observed in 
rodents. This was true even when comparing different bouts detected 
on the same microelectrode (Fig. 2j,l shows two example microelec-
trodes). The variance of theta bout frequency changed considerably 
across electrodes, with some electrodes having theta bouts with rela-
tively consistent frequencies (Fig. 2j, mostly from 6 Hz to 8 Hz). As a 
result, the microelectrodes with relatively low variance in bout-by-bout 
frequency changes had power spectra with prominent theta peaks 
when only considering the 1 s period following cognitive boundaries 
(Fig. 2k), whereas those with larger variance had at best a modest peak 
(Fig. 2m). Across all electrodes, low variance was relatively rare, with 
most electrodes exhibiting relatively large variance in the frequency 
of theta bouts (Fig. 2n; variance of theta bout frequency for all the 
electrodes was 4.18 ± 1.14 Hz).

phase precession during those periods is to support the encoding of 
event sequences. As a result of phase precession, the phase of spiking 
relative to theta is indicative of the elapsed time since the onset of the 
event. Phase precession was first discovered in rodents9 and has since 
been investigated extensively in the context of spatial coding of self10 
and others19. Phase precession has since also been reported in other 
species, including marmosets20, bats21 and humans12,22. A key insight 
of the work in marmosets, bats and humans is that phase precession 
is robustly present even if the underlying theta activity is present only 
intermittently in bouts21. Recent work further generalizes the presence 
of phase precession towards non-spatial domains, demonstrating 
that phase precession carries information about auditory stimulus 
identity8,13, odour identity8, time in an event sequence15,16,23 and sleep15.

Despite the prevalence of phase precession during spatial and 
non-spatial sequential behaviour across species, the precise functional 
role that phase precession plays in memory remains elusive. Phase 
precession coordinates hippocampal cell assemblies such that differ-
ent cells fire in order within a single theta cycle11,24 in a manner that is 
conducive to the induction of synaptic plasticity2,25. Recent rodent8 and 
human studies14,22 report that phase precession occurs most strongly 
following event onsets or event transitions. On the basis of these data, 
it has been hypothesized that a function of phase precession is to 
organize neural activity such that a cohesive memory can be formed 
and later be retrieved. However, so far no direct link between the extent 
of phase precession and episodic-memory-related behaviour has been 
established.

We examined whether phase precession strength is related to 
whether a non-spatial episodic memory is encoded or retrieved in 
humans during continuous semirealistic experience. Our results make 
three key contributions. First, we report non-spatial phase precession 
in humans after event boundaries during naturalistic experience. 
Second, phase precession also occurred during recognition memory 
and order memory retrieval. Third, the strength of phase precession 
reflected participants’ memory encoding and retrieval success. Overall, 
our findings extend phase precession to non-spatial episodic memory 
and demonstrate a direct link between phase precession and memory 
behaviours in humans.

Results
Task and neural recording
Twenty-two patients with drug-resistant epilepsy participated in the 
experiment (3 new participants in addition to 19 participants for whom 
we previously published single-neuron but not field potential data26; 
Supplementary Table 1). The task consisted of three parts: encoding, 
scene recognition and time discrimination (Methods). During encod-
ing, the participants watched 90 movie clips approximately eight sec-
onds long each. Each clip was novel and consisted of either a single 
continuous shot (Fig. 1b, referred to as ‘no-boundary clips’) or several 
different shots separated by event boundaries (Fig. 1a, ‘boundary clips’). 
Event boundaries are time points (cuts) at which the movie transitions 
to an unexpected new part of the movie. This new part can be either 
contextually related or unrelated to the content of the movie seen so 
far. We referred to these two types of boundaries as ‘soft boundaries’ 
and ‘hard boundaries’ in our previous study (Zheng et al.26). Here we 
combine both types and refer to them jointly as ‘cognitive boundaries’. 
To counterbalance trial numbers, we defined virtual ‘no boundaries’ as 
the time point four seconds after the onsets of no-boundary clips. After 
watching all 90 clips once, the participants performed two memory 
tests. During the scene recognition test (Fig. 1c), the participants indi-
cated whether the presented frame was ‘old’ (from watched clips) or 
‘new’ (not watched) via a button press. During the time discrimination 
test (Fig. 1d), we evaluated order memory by asking the participants to 
indicate which of two frames shown on the screen appeared earlier in 
time in the movie clips just watched. The participants performed well 
in both memory tests, with accuracies of 73% ± 10% (mean ± s.d. here 
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Consistent with the findings during encoding, theta oscillations 
during memory retrieval were also relatively rare compared with 
the strong theta oscillations in rodents, resulting in approximately 
1/f-shaped power spectra (Extended Data Figs. 1a–c and 2e–g, with 
balanced trial numbers across different comparison windows). The inci-
dence of theta bouts increased following image onset in both retrieval 
tasks (Extended Data Fig. 1d,h; percentage of time; scene recognition: 
22.2% ± 6.3% versus 12.7% ± 3.8%; F2,97 = 6.88, P = 2 × 10−3; time discrimina-
tion: 21.6% ± 4.2% versus 14.2% ± 3.7%; F2,97 = 7.11, P = 2 × 10−3; two-tailed 
ANOVA) relative to baseline (that is, when the fixation cross was pre-
sented; Fig. 1a–c). Theta bouts following boundaries during encoding 
and theta bouts following image onsets during scene recognition and 
time discrimination were more common on channels that also exhibited 
phase resetting (Extended Data Fig. 3). Theta bout prevalence was also 
relatively low during the later memory retrieval periods (Extended Data 
Fig. 1d,h). The total time occupied by theta bouts was substantially 
larger during encoding than following image onsets in both memory 

retrieval tasks (Extended Data Fig. 1i; encoding versus scene recognition: 
36.4% ± 8.7% versus 21.3% ± 4.2%, P = 0.002, Kolmogorov–Smirnov test; 
encoding versus time discrimination: 36.4% ± 8.7% versus 22.4% ± 6.2%, 
P = 0.007, Kolmogorov–Smirnov test). Lastly, the frequency of detected 
theta bouts following image onsets varied more than that of theta bouts 
following cognitive boundaries during encoding (Extended Data Fig. 1j; 
scene recognition versus encoding: 5.25 ± 0.98 Hz versus 4.18 ± 1.14 Hz, 
P = 0.021, Kolmogorov–Smirnov test; time discrimination versus  
encoding: 5.47 ± 0.93 Hz versus 4.18 ± 1.14 Hz, P = 0.022, Kolmogorov– 
Smirnov test). In sum, these data show that LFPs in the human MTL 
contain prominent but relatively rare and short transient bouts 
of activity in the theta range. Theta bouts were most common  
following the occurrence of cognitive boundaries during encoding.

Theta phase precession mostly occurs following boundaries
Next, we examined whether the spiking of single neurons exhibited 
theta phase precession during memory formation and retrieval of 
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Fig. 1 | Experiment and electrode locations. a–d, Schematics of the three task 
stages. During encoding (a,b), the participants watched a series of silent clips and 
were instructed to answer yes/no questions that appeared randomly after every 
four to eight clips26. These clips contained either cuts to scenes from the same 
or a different movie (a, boundary clips) or no cuts (b, no-boundary clips). The 
red triangle in a marks the time point of the boundary in an example boundary 
clip. The grey triangle in b indicates the time point of four seconds in an example 
no-boundary clip. During scene recognition (c), the participants were presented 
with a static image and were asked to indicate whether the image was ‘old’ (shown 
in the watched clips) or ‘new’. During time discrimination (d), the participants 
were presented with two images side by side and were asked to indicate whether 

the left or right frame appeared first in the watched clips. See ref. 26 for more 
detailed information about the task. Due to copyright restrictions, the example 
images shown here are not the original stimuli used in the experiments. All images 
were generated by the authors. e, Locations of the 50 microelectrodes in the MTL 
across 22 participants (see the participants’ demographics in Supplementary 
Table 1) that had phase precession neurons. Shown is a slice from the template 
brain CIT168 (Methods), with microelectrodes plotted as individual dots and 
colour-coded for different brain regions (cyan for the amygdala, yellow for the 
hippocampus and red for the parahippocampal gyrus). The MNI coordinates for 
all microelectrodes in the plot are listed in Supplementary Table 2.
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continuous experience. We started by assessing phase precession 
within the post-boundary windows in boundary clips. Given the wide 
range of theta bout frequencies (Fig. 2n), we quantified phase pre-
cession with respect to activity within the 2–10 Hz frequency band. 
Similar to the methods used in rodents9,11,30, we quantified phase 
precession by computing the circular–linear correlation31 between 
the theta phase of spikes and the elapsed time after boundaries 
within each microwire. We assessed the significance of phase pre-
cession using a shuffle-based permutation procedure (Methods). 

We quantified elapsed time as the total accumulated theta phase 
rather than absolute time, a metric we refer to as ‘unwrapped phase’ 
throughout. This is a common method to assess phase precession 
first introduced by Mizuseki et al.32 and widely used in the context of 
non-stationary LFPs21,22. For example, 0° on the x axis in Fig. 3a marks 
the time of boundary onset, and 1,080° marks the time after three 
cycles of theta have elapsed.

We found that 68/503 (13.5%; above chance, P < 7 × 10−4, per-
mutation test) neurons in the MTL demonstrated significant phase 
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Fig. 2 | Characteristics of theta bouts during encoding. a–f, Example LFPs 
recorded from microelectrodes located in the amygdala (a), hippocampus (c), 
and parahippocampal gyrus (e). Panels b,d,f show LFP power spectra from the 
same example electrodes in a,c,e recorded throughout the entire task.  
g,i, Examples of detected theta bouts. The raw LFP (grey), 1–40 Hz band-pass-
filtered LFP (black) and detected theta bout (red) are shown. t = 0 is the time point 
when a boundary occurs. h, Proportion of time occupied by theta bouts within 
different one-second time windows (analysis windows) before (Pre-Boundary) and 
after boundaries (Post-Boundary) in boundary clips, before (Pre-NoBoundary) 
and after (Post-NoBoundary) the midpoint in no-boundary clips, and after clip 
onsets (Post-ClipOnset) and clip offsets (Post-ClipOffset) of all the clips. Each dot 
represents one microelectrode (n = 50 in total). The asterisk and horizontal line 
denote the mean and median of the data, respectively. The shaded violin shape 

represents the data distribution, with the lower end indicating the 1st percentile 
(minima) and the top end indicating the 99th percentile (maxima). The top 
edge and bottom edge of the shaded rectangle represent the mean + s.d. and 
mean − s.d., respectively. The top edge and bottom edge of the shaded hourglass 
represent the 75th and 25th percentiles, respectively. ***P = 6 × 10−7 (two-tailed 
ANOVA test across all the analysis windows). j,l, Frequency of all detected theta  
bouts within the Post-Boundary time windows for the two example microelectrodes 
shown in g and i, respectively. The variance is also shown. k,m, Power spectra  
of the LFPs across all the Post-Boundary windows from the microelectrodes in  
g and i, respectively. n, Variance of the frequency of theta bouts across all 
recorded microwires in the MTL. The dashed and solid lines mark the variance of 
the two example microelectrodes shown in g and i, respectively.
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precession following cognitive boundaries during encoding as assessed 
using this method (P < 0.05, permutation test; mean preferred phase, 
166 ± 32 degrees; see example in Fig. 3a and Methods). Figure 3b shows 
the distribution of correlation coefficients for the selected 68 neurons. 
As time elapsed following cognitive boundaries, most phase precession 
neurons (66/68, 97%) spiked progressively earlier relative to ongoing 
theta (from 360° to 0°), characterized by a negative spike-phase corre-
lation (Fig. 3b). Phase precession neurons exhibited an average correla-
tion coefficient of −0.38 ± 0.11 (t67 = −12.550; P = 3 × 10−8; 95% confidence 
interval, (−0.391, 0.227); one-sample two-tailed t-test), which is compa-
rable to the strength of phase precession reported previously8,33,34. Con-
sistent with previous findings21, the majority of these phase precession 
neurons also exhibited theta-band phase-locking when considering all 
spikes together (Extended Data Fig. 4), Most of these phase precession 
neurons do not change their preferred phases before and after bounda-
ries (Extended Data Fig. 5). Around 40% of phase precession neurons 
did not exhibit significant phase-locking, which is proportionally larger 
than typically observed in place and grid cells in rodents32. By defini-
tion, phase precession neurons had more negative (P = 3 × 10−4; 95% 
confidence interval, (−0.521, −0.233); two-tailed Kolmogorov–Smirnov 
test) correlation coefficients than non-phase-precession neurons 
(−0.07 ± 0.13, mean ± s.d.; one-sample two-tailed t-test: t67 = −1.391; 
P = 0.262; 95% confidence interval, (−0.085, 0.007)). Note that phase 
precession was also present in trials without detected theta bouts 
(Extended Data Fig. 6). To evaluate the robustness of phase precession, 
we also computed phase precession using two different methods, 

which demonstrated consistent findings (Extended Data Fig. 7 and 
Supplementary Table 3; see Methods).

Was phase precession specific to the 1 s period following cognitive 
boundaries? For the neurons showing phase precession after cognitive 
boundaries (n = 68; Fig. 3b, orange), their phase precession strength 
following no boundaries, clip onsets and clip offsets or proceeding 
cognitive boundaries and no boundaries did not significantly differ 
from chance levels (P > 0.05, permutation test; Fig. 3e). These findings 
suggest that the reported phase precession neurons demonstrate 
phase precession prominently during memory formation of continu-
ous experience following cognitive boundaries.

Phase precession is task dependent and anatomically specific
We next turned to assessing phase precession during memory retrieval. 
We found that 10.1% (51/503) and 17.7% (89/503) of MTL neurons showed 
phase precession (P < 0.050, permutation test) when participants were 
presented with images during scene recognition (Fig. 3c; mean pre-
ferred phase, 168 ± 25 degrees) and time discrimination (Fig. 3d; mean 
preferred phase, 154 ± 31 degrees), respectively. These neurons exhib-
ited an average correlation coefficient of −0.41 ± 0.09 (t51 = −16.622; 
P = 2 × 10−8; 95% confidence interval, (−0.418, −0.235); one-sample 
two-tailed t-test) during scene recognition and −0.40 ± 0.12 during 
time discrimination. By definition, these correlation coefficients were 
more negative than those of non-phase-precession neurons (scene 
recognition: P = 2 × 10−4; 95% confidence interval, (−0.172, −0.104); time 
discrimination: P = 2 × 10−4; 95% confidence interval, (−0.213, −0.126); 
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Fig. 3 | Prevalence of theta phase precession across different task stages. 
a, Example hippocampal phase precession neuron during encoding. The 
spiking phases relative to local theta (y axis) are plotted as a function of time 
in unwrapped theta phase (Methods). Each dot shows one spike within three 
theta cycles (x axis) relative to boundaries. The orange line indicates the fitted 
correlation between neuronal spiking phase and time in unwrapped theta phase. 
b–d, Distribution of correlation coefficients for all MTL neurons demonstrating 
phase precession during encoding (b, orange), scene recognition (c, blue) or 
time discrimination (d, green). The distribution of correlation coefficients for 
neurons without phase precession is plotted in grey. Note that strong phase 
precession is indicated by negative correlation coefficients. e, Comparison of 
phase precession strength during encoding for the phase precession neurons 
in b (n = 68). Plotted are circular–linear correlation coefficients computed 
using spikes within three theta cycles before (Pre-Boundary) and after (Post-
Boundary) boundaries, after clip onsets (Post-ClipOnset) and after clip offsets 
(Post-ClipOffset) in boundary clips, as well as before (Pre-NoBoundary) and 

after (Post-NoBoundary) the midpoint in no-boundary clips. ***P = 4 × 10−5 
(two-tailed t-test against zero); NS, not significant. f,g, Comparison of phase 
precession strength during scene recognition (f) or time discrimination (g) for 
the phase precession neurons in c (n = 51) and d (n = 89), respectively. Plotted 
are circular–linear correlation coefficients computed using spikes within three 
theta cycles before (Pre-ImageOnset) and after image onsets (Post-ImageOnset), 
after image offsets (Post-ImageOffset) and after making a memory choice (Post-
ButtonPress). The asterisk and horizontal line denote the mean and median of 
the data, respectively. The shaded violin shape represents the data distribution, 
with the lower end indicating the 1st percentile (minima) and the top end 
indicating the 99th percentile (maxima). The top edge and bottom edge of the 
shaded rectangle represent the mean ± s.d. and mean − s.d., respectively. The 
top edge and bottom edge of the shaded hourglass represent the 75th and 25th 
percentiles, respectively. ***P = 3 × 10−8 in f and ***P = 7 × 10−8 in g, two-tailed t-test 
against zero.
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two-tailed Kolmogorov–Smirnov test). Similar to theta bouts, the 
observed phase precession was prominent following the onset of the 
images shown but not during baseline, following image offset or during 
the button-press period (Fig. 3f,g). What triggered phase precession in 
the neurons we examined? We examined whether phase precession was 
related to phase resetting, shifts in preferred phases of phase-locking 
or the presence of theta bouts. This comparison revealed that phase 
resetting on channels with phase resetting neurons was the most 
common relationship (Extended Data Figs. 3–6 and Supplementary 
Table 4). The strength of phase resetting was stronger in hard than in 
soft boundaries (Extended Data Fig. 3b). Given that the majority (49/68, 
72%) of phase precession neurons demonstrated phase precession 
following both soft and hard boundaries (Extended Data Fig. 3c) and 
more phase precession neurons (n = 22 versus 68, χ2 = 16.6, P = 3 × 10−4, 
chi-squared test) were identified using time in unwrapped theta phase 
instead of absolute time, the observed phase precession seemed not 
strictly contingent on phase resetting. Furthermore, in a substantial 
proportion of neurons, none of the three (phase resetting, shifts in 
preferred phase of phase-locking or the presence of theta bouts) were 
present, leaving it an open question what initiates phase precession 
in these cases.

We found that phase precession is a dynamic process. Among all 
the phase precession neurons observed in the MTL across encoding, 
scene recognition and time discrimination (n = 117), half (61/117, 47.9%; 
P = 1 × 10−6, binomial tests) demonstrated phase precession exclu-
sively for only one task stage (Fig. 4d; Fig. 4a–c shows an example).  
Of the neurons that showed phase precession in only one task,  
the majority did so during time discrimination (40/61, 65.6%)  
rather than encoding (18/61, 29.5%) or scene recognition (3/61, 4.9%). 

We also observed neurons that showed phase precession during multi-
ple task stages (Fig. 4d; 56/117, 52.1%, P = 1 × 10−8, binomial tests), with 
most of these neurons showing phase precession for all three task 
stages (35/56, 62.5%). The strength of phase precession varied across 
different task stages (see the example in Fig. 4a–c), with more negative 
correlations (indicating stronger phase precession) during the two 
memory retrieval tasks than during encoding (Fig. 4e,f; scene recog-
nition minus encoding: rdiff = −0.19 ± 0.09; t55 = −11.345; P = 3 × 10−4; 
95% confidence interval, (−0.199, −0.140); time discrimination minus 
encoding: rdiff = −0.24 ± 0.11; t55 = −12.334; P = 6 × 10−7; 95% confidence 
interval, (−0.252, −0.179); one-sample two-tailed t-test). Comparing 
the two retrieval tasks, phase precession was stronger during time 
discrimination than during scene recognition (time discrimination 
minus scene recognition: rdiff = −0.11 ± 0.04; t55 = −6.211; P = 0.031; 95% 
confidence interval, (−0.114, 0.088); one sample two-tailed t-test). 
Regardless of the difference in phase precession across the three task 
stages, their firing rates remained relatively the same (Supplementary 
Fig. 2a; scene recognition minus encoding: Frdiff = −0.18 ± 0.41 spikes 
per s; t55 = −1.286; P = 0.334; 95% confidence interval, (−0.224, 0.049); 
one-sample two-tailed t-test; time discrimination minus encoding: 
Frdiff = −0.14 ± 0.38 spikes per s; t55 = −0.861; P = 0.243; 95% confidence 
interval, (−0.181, 0.082); one-sample two-tailed t-test). Lastly, we asked 
whether phase precession strength varied as a function of different 
types of trials within a given task. Phase precession during scene recog-
nition was significantly stronger following the onset of images that 
were old than images that were novel (−0.26 ± 0.14 versus −0.11 ± 0.07; 
t1,50 = −4.235; P = 4 × 10−3; 95% confidence interval, (−0.165, −0.059); 
two-tailed t-test; Extended Data Fig. 8), suggesting a role of precession 
in retrieval. Together, these results indicate that the strength with which 
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Fig. 4 | Comparison of phase precession strength across different task stages. 
a–c, Example hippocampal neuron whose spiking exhibited phase precession 
during scene recognition and time discrimination, but not encoding. Shown 
are spike phases as a function of time in unwrapped theta phase, displayed 
separately for encoding (a; t = 0 is the boundary in boundary clips), scene 
recognition (b; t = 0 is the image onset) and time discrimination (c; t = 0 is the 
image onset). The coloured lines indicate the fitted correlation between spike 
phase and time in unwrapped theta phase. The correlation value and its statistical 
significance (two-tailed permutation test) are listed above each plot. d, Number 
of MTL neurons showing significant phase precession during encoding (orange), 
scene recognition (blue), time discrimination (green) and combinations 

thereof. e, Difference in phase precession strength between encoding and 
scene recognition for neurons that show phase precession for encoding and/
or scene recognition (that is, the orange plus blue circles in d). f, Difference 
in phase precession strength between encoding and time discrimination for 
neurons that showed significant phase precession during encoding and/or time 
discrimination (that is, the orange plus green circles in d). g, Difference in phase 
precession strength between scene recognition and time discrimination for 
neurons that showed significant phase precession during recognition and/or  
time discrimination (that is, the blue plus green circles in d). Note that in e–g, 
more negative correlations indicate stronger phase precession. The dashed lines 
indicate the example hippocampal neuron shown in a–c.
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a given neuron exhibits phase precession is a dynamic process that 
varies as a function of both the task and the trial type within the task.

We then asked how phase precession propensity varied across 
the brain. There was a statistically significant interaction between the 
effects of task stages (encoding, scene recognition and time discrimi-
nation) and brain regions (F3,6 = 9.37, P = 0.011, two-tailed ANOVA test). 
In particular, only the hippocampus and amygdala contained a signifi-
cantly higher proportion of phase precession neurons than expected by 
chance during all three task stages (Fig. 5a; P < 0.05, permutation test). 
While substantially rarer, the proportion of phase precession neurons 
was also larger than expected by chance in the parahippocampal gyrus, 
orbitofrontal cortex and anterior cingulate cortex, but only during 
encoding and not during either of the memory retrieval tests (Fig. 5a; 
P < 0.05, permutation test).

Phase precession can be independent from firing rate tuning
We previously showed that around 10% of MTL neurons selectively 
increased their firing rates after cognitive boundaries during encoding 
(we labelled these cells ‘cognitive boundary cells’ in Zheng et al.26). Were 
the phase precession neurons we describe here also cognitive bound-
ary cells? On average, phase precession neurons had higher firing rates 
than non-phase-precession neurons following the onset of cognitive 
boundaries, indicating that the two groups of neurons might overlap at 

least to some extent (Supplementary Fig. 2b–d). This was the case, but 
only weakly so: most of the phase precession neurons (encoding: 45/68, 
66.2%) were not cognitive boundary cells (Fig. 5b). Still, the proportion 
of phase precession neurons that were also cognitive boundary cells 
(23/68, 33.8%) was significantly larger than that in the population of 
non-phase-precession neurons (45/455, 9.9%). Similarly, during scene 
recognition and time discrimination, most phase precession cells did 
not change their firing rate following stimulus onset relative to baseline 
(Fig. 5c, scene recognition: 39/51, 76.5%; Fig. 5d, time discrimination: 
66/89, 74.2%). These findings align with theoretical models35,36 that sug-
gest that rate and phase coding can occur together as well as separately 
from each other. We simulated the phase precession model of Mehta 
et al.37 (Extended Data Fig. 9), which revealed that a parameter regime 
where phase precession is present without firing rate changes can easily 
be found. We note that our simulation does not explicitly implement 
recurrent inhibition38,39; rather, recurrent inhibition is accounted for 
using a long refractory period.

Phase precession predicts participants’ memory performance
Given the largely separate groups of cells exhibiting phase precession 
and firing rate changes, we asked whether phase precession and firing 
rate provided complementary information about memory encoding 
and/or retrieval success as assessed behaviourally. We tested this idea 
by computing phase precession strength (correlation coefficient) and 
average firing rates (normalized to baseline) separately for trials with 
correct and incorrect memory (Methods). We then quantified how well 
phase precession strength and/or firing rates explained participants’ 
memory performance (correct = 0 versus incorrect = 1) using a gener-
alized linear model (GLM). Due to the significant difference in phase 
precession strength (Extended Data Fig. 8), correct targets (old images 
identified as old) and correct foils (new images identified as new) are 
counted as separate variables in the model for predicting scene rec-
ognition performance. On the basis of comparisons between models 
with different combinations of features, we found that the winning 
model for explaining recognition memory performance is the model 
that has access to all three variables: (1) phase precession strength 
during encoding, (2) phase precession strength during retrieval and 
(3) firing rate during encoding (Fig. 6a, winning model marked in red). 
This model performed better than one with access to only firing rate. 
Similarly, for explaining time order retrieval performance, the win-
ning model was also the one with access to all three variables (Fig. 6b, 
winning model marked in red). Note that the absolute value of phase 
precession strength was used in the model fitting. An odds ratio big-
ger than 1 indicates that significant amounts of variance in whether 
recognition memory or order memory was correct or incorrect was 
explained by a given variable. Further examining the winning models 
(marked in red in Fig. 6a,b) revealed that in both instances, when phase 
precession occurred during encoding (rencoding) and time discrimination 
(rtimeDiscrim), participants were more likely to correctly recognize targets 
(Fig. 6c) and correctly identify the order (Fig. 6d), respectively. Con-
sistent with the GLM results, stronger phase precession was observed 
following boundaries during encoding for trials associated with correct 
recognition and order memory than for incorrect ones (Extended Data 
Fig. 10a–f; encoding: F1,49 = 8.24; P = 6 × 10−3; 95% confidence interval, 
(0.122, 0,347); time discrimination: F1,61 = 4.38; P = 0.041; 95% confi-
dence interval, (0.015, 0.121)). Stronger phase precession was also 
found following image onsets during time discrimination when par-
ticipants successfully recalled the temporal order of watched clips than 
in unsuccessful trials (Extended Data Fig. 10j–l; F1,61 = 12.55; P = 8 × 10−4; 
95% confidence interval, (0.176, 0.387)).

Next, we assessed how much variance in the winning models was 
explained by subsets of the neurons (the results in the above para-
graph are for all recorded neurons). Compared with the rest of the 
MTL neurons, phase precession neurons explained significantly more 
variance in behavioural accuracy during scene recognition (correctly 
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recognized targets and correctly recognized foils versus incorrect 
recognition memory decisions), with phase precession neurons 
during encoding and scene recognition exceeding 96% and 82% of 
the R2 values achieved for random subsets of the same number of 
non-phase-precession neurons, respectively (Fig. 6e). Similarly, phase 
precession neurons also explained the most variance in time discrimi-
nation accuracy, with phase precession neurons during encoding and 
time discrimination exceeding 97% and 100% of the R2 values achieved 
for random subsets of the same number of non-phase-precession 

neurons, respectively (Fig. 6f). In sum, the strength of phase precession 
provided information about memory encoding and retrieval success 
that was complementary to the information provided by firing rates, 
thereby revealing a temporal code.

Discussion
Theta phase precession is commonly observed in several species and is 
thought to be a neural mechanism to temporally link continuous experi-
ence and encode and retrieve these experiences into and from memory9. 
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built using all phase precession neurons during encoding (orange line), all phase 
precession neurons during scene recognition (blue line) and all non-phase-
precession neurons (grey bars). The total numbers of neurons used for the GLM 
model for each group were balanced by random subsampling. To do so, the non-
phase-precession neuron group was subsampled 100 times, each time selecting 
the same number of neurons as the number of phase precession neurons present 
during scene recognition. The dashed line indicates the chance level. f, Same as e, 
but for time discrimination. Shown is the proportion of variance in the behaviour 
explained by the winning model (indicated by the red box in b). Shown are model 
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However, how phase precession facilitates memory formation and 
retrieval remains an open question. Here we tested the hypo thesis  
that phase precession supports memory formation and retrieval  
of naturalistic experience in humans. We found that phase preces-
sion was prominent in the human MTL following cognitive boundaries  
during movie clip watching and when participants retrieved memories 
of the content and temporal structure of the previously watched movie 
clips. The strength of phase precession was predictive of participants’ 
ability to encode and retrieve the memories.

Theta phase precession was prominent despite the absence of long 
and continuous stretches of theta activity like that observed in rodents 
during movement. This observation is consistent with work in bats, 
where phase precession is also prominent despite theta being present 
only in short bouts21 similar to those in humans. Consistent with previ-
ous work27,28, theta-frequency-band LFP fluctuations in humans tend to 
be non-rhythmic, except for short, transient theta ‘bouts’ (Fig. 2). The 
frequencies of theta bouts detected on the same recording electrode 
can vary across a broad range (2–10 Hz; Fig. 2i), which is in line with 
previous observations in humans22 and bats21 and which explains the 
absence of clear ‘peaks’ in the spectra in many instances. Theta bouts 
and theta phase precession are both prevalent after cognitive bounda-
ries during encoding (Figs. 2h and 3e) and after image onset during 
retrieval (Fig. 3f,g and Extended Data Fig. 1d,h). However, the two 
phenomena were largely independent: while in some cases, stronger 
phase precession was observed in trials with theta bouts detected than 
in trials without theta bouts, phase precession was prominent in either 
condition regardless of whether theta bouts were present or absent in a 
given trial (Extended Data Fig. 6). Further illustrating this point, phase 
precession is stronger during memory retrieval than during encoding 
despite theta bouts being rarer and more variable during retrieval than 
during encoding (Extended Data Fig. 1i,j). Previous studies have also 
reported phase precession when theta frequency is altered40, when 
theta-modulated spiking is reduced41–43 or even with little periodicity 
of low-frequency field potentials20,21. Moreover, theoretical work shows 
that periodicity is not necessary for phase precession37. Indeed, recent 
work suggests unique advantages of phase coding in the absence of 
rhythmicity, which enables multiplexing of rich information through 
a broad range of oscillatory frequencies44. For this reason, we here 
used a method of detecting phase precession that did not require theta 
periodicity. This hypothesis might also explain our observation that 
many phase precession neurons do not also show theta phase-locking 
(Extended Data Fig. 4). Different from rodents, whose place cells and 
grid cells that show phase precession tend to be phase-locked to 4–8 Hz, 
neurons in humans can be phase-locked to oscillations at multiple fre-
quencies with various preferred spiking phases45. Our results, together 
with previous literature, support the idea that phase precession can 
serve as a flexible neural coding principle that is effective for both 
narrow-band and broadband theta.

We observed the strongest phase precession following cognitive 
boundaries during encoding and following image onset during scene 
recognition and time discrimination (Fig. 3c,f,g). Both cases contain 
sharp visual transitions, either across two different movie scenes or 
from a blank screen (baseline) to a movie scene. However, not all sharp 
visual transitions trigger phase precession, as phase precession fol-
lowing movie clip onsets, movie clip offsets, image offsets and button 
presses was not different from that expected by chance (Fig. 3c,f,g). A 
possible reason for why phase precession occurred following cognitive 
boundaries but not movie onsets is that cognitive boundaries attracted 
more attention (which, in turn, can lead to phase resetting46; Supple-
mentary Table 4). We did not control for attention in our study, leaving 
this an open question for further studies. An alternative explanation 
could be that phase precession occurs when encoding or retrieving 
memories across events within a continuous experience. Under this 
interpretation, phase precession would not be present following movie 
onset because the onset of the movie is predictable and constitutes the 

start of a new sequence, without needing to create a link to prior events 
in the same sequence. This hypothesis aligns with theoretical models 
suggesting that phase precession supports sequence learning11,37,47. 
This idea is also consistent with previous findings8,14 that show phase 
precession at event transitions in discrete event sequences.

The strength of phase precession varied across the different  
task stages. As stated above, stronger phase precession was observed 
during scene recognition and time discrimination than during encod-
ing (Fig. 4e,f). Also, during scene recognition, phase precession was 
stronger in old than in new trials. We posit that these differences in 
phase precession strength might be the result of memory-based 
decision-making, during which the precise temporal structure of pre-
vious experiences is relevant. Supporting this hypothesis, more phase 
precession neurons (Fig. 4d) were found during time discrimination 
than during scene recognition. Also, stronger phase precession (Fig. 4g) 
was more predictive of participants’ order memory accuracy than of 
their recognition memory accuracy (Fig. 6c,d). A previous study48 has 
also reported stronger phase-locking (but not phase precession) when 
animals were instructed to make a memory-based decision than when 
they passively traversed the same environment.

A potential explanation of changes in phase precession strength 
between tasks could be the different strategies participants used when 
solving the two memory tests. During time discrimination, the partici-
pants needed to determine the order of the two frames shown on the 
screen, which requires recollection of the entire event sequence. A 
recent study49 that combined neural data and modelling showed that 
phase coding is critical for encoding temporal order information in 
humans. In contrast, during scene recognition, the participants only 
needed to retrieve the memory associated with a single image. Notably, 
during scene recognition, phase precession was mostly observed dur-
ing trials in which an old (familiar) image was shown (Extended Data 
Fig. 8). Identification of novel (foil) images might not require phase pre-
cession because it could rely on novelty signals50,51. An important future 
question is what the relationship is between phase precession and other 
forms of neural coding, such as novelty50. The dynamic task-dependent 
phase precession strength observed in our study suggests that phase 
precession can serve different functional roles as needed.

Models with access to both phase precession strength and firing  
rate were able to explain variance in the memory accuracy of the par-
ticipants significantly better than models with access to firing rate 
alone (Fig. 6). This finding supports the idea that phase coding provides 
information that trial-averaged firing rate does not provide, making the 
two codes complementary35,52,53. By combining both rate and phase cod-
ing, hippocampal cell assemblies may generate sequential structures 
across single theta cycles that represent sequences of past, current and 
future states in both the spatial and episodic domains in a compressed 
manner10,11,47. While phase precession has largely been reported for 
neurons with known tuning curves (that is, rate coding, such as place 
cells and grid cells), most phase precession neurons in our study did 
not show modulation of firing rate with the variables examined in this 
study (Fig. 5b–d). This independence of phase precession strength 
and firing rate modulation is consistent with theoretical models35,36 
(see Extended Data Fig. 9 for a simulation of the Mehta et al.37 model) 
and with previous observations in rodents54 and humans22 that show 
that phase precession can appear in the absence of concurrent firing 
rate changes. We posit that the neurons that show phase precession 
without firing rate modulation might encode the ‘episodic’ position 
within a given high-level behaviour state by their spike phase, similar 
to work in rodents showing phase recession in ‘episode’ or ‘time’ cells 
when rodents run on a treadmill with a goal16 but not without55. An alter-
native interpretation is that we did not test for the variables that would 
modulate firing rate in these neurons. Even for the subgroup of neurons 
that showed both significant firing rate changes and phase precession, 
our findings differed from those of place cells (which exhibit both rate 
and phase coding). This is because in our study, all movie clips were 
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shown only once (they were novel). Contrary to place cells9, the rate 
tuning of phase precession neurons in our study is thus not tied to a 
specific stimulus. These findings suggest that phase precession in a 
given neuron can occur during exposure to many different novel stimuli 
that have the occurrence of cognitive boundaries in common, thereby 
flexibly capturing the temporal structure of diverse event sequences 
using a shared neural coding mechanism.

In sum, we demonstrate non-spatial phase precession during 
memory formation and retrieval of naturalistic experience in humans. 
The strength of phase precession and the groups of neurons showing 
phase precession are task specific, and the strength of phase preces-
sion was predictive of the success of memory encoding and retrieval 
above and beyond firing rates alone. Our findings suggest that phase 
precession in humans is a general neural coding mechanism that can 
flexibly support different aspects of episodic memory.

Methods
This study complies with all relevant ethical regulations. The study  
protocol was approved by the Research Ethics Board at Toronto  
Western Hospital (approval number: 15-5052; approval date: 14 May 
2021) and the Institutional Review Board at Cedars-Sinai Medical Center 
(approval number: Study572; approval date: 9 June 2020).

Task
The task (Fig. 1a–d) consisted of three parts: encoding, scene recog-
nition and time discrimination. During encoding, the participants 
watched 90 novel silent clips embedded with or without boundaries, 
defined as movie cuts transitioning to scenes from the same or a differ-
ent movie. To assess attention, a yes/no question related to the content 
of the clip appeared randomly after every 4–8 clips. After watching all 
90 clips, the participants were instructed to take a short break, roughly 
five minutes, before proceeding to the memory tests. The participants 
first performed the scene recognition test and were instructed to 
identify whether the frames shown were from watched clips (answer: 
‘old’) or from clips not shown (answer: ‘new’). The participants then 
performed the time discrimination test to identify whether the  
‘left’ or ‘right’ frame was shown first (earlier in time) during encoding. 
More detailed information about the task design can be found in our 
previous publication26.

Participants
Twenty-two patients (13 females; mean age, 39 ± 16 years, mean ± s.d.; 
see the participants’ demographics in Supplementary Table 1) with 
refractory epilepsy volunteered for this study and provided their 
informed consent. Nineteen of these participants come from our pre-
vious work26, and three are new participants. The participants per-
formed the task while they stayed at the hospital and were implanted 
with electrodes for seizure monitoring. The locations of the implanted 
electrodes were determined solely by clinical needs. No statistical 
methods were used to predetermine sample sizes, but our sample sizes 
are similar to those reported in previous publications22,26,53. There was 
no participation compensation.

Electrophysiological recordings
Broadband neural signals (0.1–8,000 Hz filtered) were recorded using 
Behnke–Fried electrodes56 (Ad-Tech Medical) at 32 kHz using the ATLAS 
system (Neuralynx Inc.). We recorded bilaterally from the amygdala, 
hippocampus and parahippocampus, and other regions outside the 
MTL. The electrode locations were determined by co-registering post-
operative CT and preoperative MRI scans using Freesurfer’s mri_robust_
register57. Each Behnke–Fried electrode shank had eight microwires on 
the tip and were marked as one anatomical location. To assess potential 
anatomical specificity across different participants, we aligned each 
participant’s preoperative MRI scan to the CIT168 template brain in 
MNI152 coordinates58 using a concatenation of an affine transformation 

followed by a symmetric image normalization diffeomorphic trans-
form59. The fifty electrodes within the MTL across all the participants 
are illustrated on the CIT168 template brain in Fig. 1e, and the corres-
ponding MNI coordinates are listed in Supplementary Table 2.

Spike sorting and quality metrics of single units
Spike sorting was performed offline using a semi-automated 
template-matching algorithm, Osort60. See Zheng et al.26 for more 
details on the spike-sorting procedures. We identified 1,103 neurons 
in this dataset across all brain areas considered. As an accurate assess-
ment of phase precession requires a sufficient number of spikes, we 
excluded 207 neurons with low firing rates (<0.5 Hz) and analysed 
the remaining 936 neurons (503 neurons in the MTL). The quality 
of our spike-sorting results was evaluated using our standard set of 
spike-sorting quality metrics61,62 for all considered 936 putative single 
neurons (Supplementary Fig. 1).

Characteristics of theta oscillations
Preprocessing. LFPs were recorded simultaneously with single-neuron 
activity and were used for computing phase precession along with 
the spike activity from neurons detected from the same micro-
wire. To eliminate potential influences of the spike waveform on the 
higher-frequency parts of the LFP63, we replaced the LFP in a 3 ms 
time window centred on the detected spike by linear interpolation. 
We then downsampled this spike-free version of the LFP from 32 kHz 
to 250 Hz, followed by further post-processing using automatic 
artefact rejection64 and manual visual inspection using the function 
fr_databrowser.m in the Fieldtrip toolbox65 to remove trials with large 
transient signal changes from further analyses. Trials with large tran-
sient signal changes were removed from further analyses. Examples of 
preprocessed LFPs are shown in Fig. 2a,c,e and as grey lines in Fig. 2g,i.

Spectral analysis. The power spectra (1–20 Hz) of the preprocessed 
LFPs were computed using Welch’s method (function pwelch.m in 
MATLAB66) with Hamming windows (50% overlap). In Fig. 2k,n, we 
show spectra computed from preprocessed LFPs within the 0–1 s time 
window that follows boundaries in boundary clips.

Theta bout detection. To examine the cycle-to-cycle variability of 
theta oscillations, we detected transient theta bouts using the method 
described in previous papers27,29. Briefly, two versions of the LFP were 
first computed: one low-pass-filtered at 40 Hz (‘low-passed LFP’) for 
identifying peaks and troughs in a ‘smooth’ version of the LFP without 
high-frequency components, and one band-pass-filtered within the 
theta range (2–10 Hz, ‘theta-filtered LFP’) to identify zero-crossings. 
Theta bouts (2–10 Hz) were identified as time periods in which all 
detected cycles had similar amplitudes (amp_consistency_thresh-
old = 0.6), similar periods (period_consistency_threshold = 0.6), and 
relatively symmetric waveforms with similar length of rising and decay-
ing edges within a given theta cycle (monotonicity_threshold = 0.6) for 
more than three consecutive putative cycles in time. The frequency of 
theta bouts was computed as the ratio of how many cycles the theta 
bout had divided by how long in seconds it lasted. For example, a theta 
bout that lasted for two seconds with four cycles had a frequency of 
2 Hz. The time ratio of theta bouts was computed as how much time of 
the analysis window was occupied by theta bouts divided by the total 
length of the analysis window. For example, a theta bout that appeared 
for one second of a two-second time window had a time ratio of 0.5.

Spike phase estimation. On the basis of the peaks, troughs and 
zero-crossings identified as described above, we estimated theta 
phase at all time points by linearly interpolating between the peaks 
(0° or 360°), troughs (180°) and zero-crossings (90° or 270°) cycle 
by cycle. Compared with a conventional Hilbert transform approach, 
this phase-interpolation method eliminates potential distortions 
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introduced when estimating the phase of non-sinusoidal LFPs27,67. To 
reduce noise in the phase estimation, we excluded spikes that occurred 
during the lowest 25th percentile of theta power distribution of a given 
channel21. The phase assigned to a given spike was set equal to the phase 
estimated at the point at which the action potential was at its peak.

Phase precession measurements
Spike-phase circular–linear correlation method (Method 1). We 
analysed spikes that occurred within the first three theta cycles 
following boundaries during encoding or after the onset of image 
display during scene recognition and time discrimination. Phase pre-
cession was quantified using circular statistics. For each neuron, we 
computed the circular–linear correlation coefficient31 between the 
spike phase (circular) and time in unwrapped theta phases (linear). 
Unwrapped theta phase was defined as accumulated cycle-by-cycle 
theta phase starting at the alignment point (that is, boundary onset 
or image onset). To assess statistical significance, we generated a null 
distribution for each circular–linear correlation using surrogate data 
generated from shuffling the spike timing of neurons 1,000 times. This 
procedure maintained the firing rate and spike phase distribution of 
each neuron while scrambling the correspondence between the spike 
phase and spike time within each trial. A neuron was considered as a 
significant phase precession neuron if the observed circular–linear 
correlation was greater than the 97.5th percentile or smaller than 
2.5th percentile (P < 0.05) of the surrogate null distribution of the 
correlation coefficient.

Chance level of neurons showing phase precession. We estimated 
the number of neurons exhibiting significant phase precession by 
chance by recomputing the spike-phase circular–linear correlation 
1,000 times using the surrogate data generated by shuffling trial 
numbers between the spike phases and LFP. For each iteration, we 
obtained the proportion of selected phase precession cells relative 
to the total number of neurons within each brain region. These 1,000 
values formed the empirically estimated null distribution for the pro-
portion of phase precession cells expected by chance. A brain region 
was considered to have a significant amount of boundary cells or event 
cells if its actual fraction of significant cells exceeded 95% of the null 
distribution (Fig. 5a; P < 0.05).

Control analyses for phase precession
We performed the following control analyses to assess whether our 
findings are sensitive to parameter or method choices. We found that 
the results were robust.

Phase precession with different theta cycle numbers. We re-assessed 
phase precession while varying the number of theta cycles (three cycles 
versus four cycles) from which the spikes were included for the same 
analyses. While including more theta cycles resulted in more spikes 
being available for analysis, the extent of phase precession was not 
significantly different (three cycles versus four cycles comparison; 
encoding: χ2 = 5.17, P = 0.511; scene recognition: χ2 = 7.32, P = 0.253; time 
discrimination: χ2 = 6.22, P = 0.314; chi-squared test).

Phase precession using the spike-phase autocorrelation method 
(Method 2). The results in the main manuscript are derived using 
circular–linear correlation (Method 1). To examine the robustness 
of these findings, we employed a second method (Method 2) to esti-
mate phase precession and compared the results. For this alternative 
method, we compared the autocorrelation of spiking of each neuron 
with the frequency of the underlying LFP32. Method 2 is widely used 
in rodents68,69 with stereotypical 8 Hz theta and also in animals with 
non-stationary theta, such as bats21, non-human primates46,70,71 and 
humans22. As in Method 1, for each neuron, we assigned to each spike 
its unwrapped theta phase by accumulating the cycle-by-cycle phase 

following boundaries during encoding. We then computed the autocor-
relation (‘phase autocorrelation’) of these cumulative spiking phases 
of the spike-train, using 60° bins with a window length of three cycles. 
If a neuron exhibits phase precession, its firing phases should occur 
more and more ahead of theta cycles32. Its spike-phase autocorrelation 
should therefore have peaks at a higher frequency than the frequency 
of the underlying theta (Extended Data Fig. 7f,h). To quantify the rela-
tionship between the spike-phase autocorrelation and the frequency 
of theta, we fitted decaying sine wave functions to the spike-phase 
autocorrelation and then computed the power spectra of the fitted 
line using the Fourier transform. We then plotted the power of the 
spike-phase autocorrelation as a function of frequency ratio, which is 
normalized by an averaged frequency of underlying theta. Lastly, on the 
basis of this obtained power spectrum density plot (insets in Extended 
Data Fig. 7e–h), we computed the modulation index22, which is defined 
as the amplitude of the power spectra peak normalized by the total area 
under the curve of the normalized power spectra. We then generated 
a null distribution of modulation indices from spike-phase autocor-
relations based on surrogate data generated using the same shuffling 
procedure discussed for spike-phase circular–linear correlation. A 
neuron was considered as exhibiting significant phase precession if its 
observed modulation index exceeded the 95th percentile of the sur-
rogate distribution. To eliminate potential bias from low spike counts, 
we only analysed neurons with more than 80 spikes within the analysis 
windows across trials for computing spike-phase autocorrelation. 
Furthermore, we conducted a Rayleigh test using spike phase infor-
mation within the phase precession analysis windows, with greater r 
values indicating a higher likelihood of phase-locking. To overcome the 
bias against neurons with higher firing rates, we computed a Rayleigh 
test on surrogate spike data randomly extracted from neurons’ spike 
phases during the entire recording and repeated the same procedure 
100 times to generate a null distribution of r values. Phase-locking 
neurons are defined as neurons with r values exceeding 95% of the r 
values in the null distribution (P < 0.05, permutation test). Neurons 
showing significant phase-locking (P < 0.05, Rayleigh test) and a peak 
relative frequency around 1 (0.95 to 1.05) were excluded to ensure that 
we did not mistakenly identify phase-locking neurons as exhibiting 
phase precession. Note that Method 1 naturally rejects neurons show-
ing phase-locking, whose correlation coefficient values between spike 
phases and time are around zero. We found no overlap between signifi-
cant phase-locking neurons and phase precession neurons identified 
using Method 1. Comparing the neurons selected as phase precession 
with Methods 1 and 2 shows significant agreement in which neurons are 
selected. For example, during encoding, 70% of the neurons selected 
as phase precession with Method 1 were also selected with Method 2 
(48/68, 70.5%; Supplementary Table 3).

Phase precession using absolute time versus time in unwrapped 
theta phases. We recomputed phase precession using time in seconds  
instead of time in unwrapped theta phases for both Method 1 and 
Method 2 (Extended Data Fig. 7e,g). To do so, we computed the circu-
lar–linear correlation (Method 1) and modulation index (Method 2) 
on the basis of spikes within a fixed zero- to one-second time window 
after boundaries during encoding and after the onset of images dur-
ing scene recognition and time discrimination. This alternative way 
of assessing spike phase resulted in the identification of a smaller 
number of phase precession cells (P < 0.01, permutation test; above 
chance level) than our analyses using time in unwrapped theta phase 
(spike-time correlation versus spike-phase correlation: n = 22 versus  
68, χ2 = 16.6, P = 3 × 10−4, chi-squared test; spike-time autocorrela-
tion versus spike-phase autocorrelation: n = 17 versus 51, χ2 = 14.7, 
P = 7 × 10−3, chi-squared test). Comparing the differences between the 
two correlation coefficients and modulation indices obtained for each 
cell revealed that the larger the difference, the larger the variance of 
theta bout frequency on the wire from which the neuron was recorded 
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(Extended Data Fig. 7k,l). This shows that in the presence of variable 
theta, unwrapped phase more reliably estimates phase precession in 
both Methods 1 and 2. We therefore used unwrapped phase throughout.

Firing rate modulation
For neurons showing significant phase precession during encoding 
and retrieval, we computed their average firing rates within the same 
analysis time windows for computing phase precession—three cycles 
after boundaries during encoding and after image onsets during scene 
recognition and time discrimination. Note that the average lengths of 
pre- and post-analysis time are comparable when aligned to boundaries 
during encoding (pre: 0.86 ± 0.44 s; post: 0.78 ± 0.29 s; t1,67 = −11.222; 
P = 0.156; 95% confidence interval, (−1.706, −1.396); paired two-tailed 
t-test) and image onsets during scene recognition (pre: 0.74 ± 0.38 s; 
post: 0.77 ± 0.36 s; t1,50 = 0.923; P = 0.221; 95% confidence interval, 
(−0.091, 0.245); paired two-tailed t-test) and time discrimination (pre: 
0.75 ± 0.41 s; post: 0.73 ± 0.35 s; t1,55 = 1.523; P = 0.195; 95% confidence 
interval, (−0.040, 0.309); paired two-tailed t-test). A neuron was con-
sidered to have significant firing rate modulation if its average firing 
rate differed significantly between post- and pre-analysis time win-
dows (P < 0.05, paired two-tailed t-test). We also assessed the overlap 
between neurons showing firing rate modulation and phase precession 
at different task stages (Fig. 5b–d).

Relationship between phase precession and memory 
performance
GLM. We assessed the relationship between neural metrics (firing 
rate and phase precession) and participants’ memory as assessed 
behaviourally using a GLM. Using scene recognition as an example, 
we grouped trials into the two categories ‘correctly recognized’ (true 
positives and true negatives) and ‘incorrectly recognized’ (false nega-
tives and false positives) depending on the accuracy of their response. 
To account for the difference in trial numbers, we subsampled correct 
trials with the same trial number as incorrect trials. We first computed 
phase precession (spike-phase circular–linear correlation) and average 
firing rates (z-scored normalized to the baseline) within three theta 
cycles relative to cognitive boundaries during encoding and relative 
to image onsets during scene recognition, separately for correct and 
incorrect trials. For each neuron, this resulted in four values each for 
correct and incorrect trials: correlation coefficients specifying phase 
precession strength (rencoding and rsceneRecog) and normalized firing rates 
(Frencoding and FrsceneRecog). We used a mixed-effect GLM using the function 
fitglme.m in MATLAB with logistic regression and Bernoulli distribu-
tion to predict participants’ binary memory outcomes (that is, correct 
versus incorrect) during scene recognition. The fixed effects were four 
values (rencoding, rsceneRecog, Frencoding and FrsceneRecog) from all the neurons in 
the MTL. The random effects were neuron ID nested within session ID.

Contribution of different fixed effects. To assess the extent to which 
firing rates and phase precession predicted behaviour, we compared 
different reduced versions of the above GLM model. We compared  
model 1 (fixed effect: Frencoding) with model 2 (fixed effect: model 1 +  
FrsceneRecog), model 3 (fixed effect: model 1 + rencoding) and model 4 (fixed 
effect: model 1 + rsceneRecog). We also added the effect of phase precession 
during memory retrieval (rsceneRecog) to model 3 and compared the model 
performance between the two. Model comparisons were performed 
on the basis of the Akaike information criterion, expressed as a log 
likelihood ratio in Fig. 6a. We did this separately also for the time dis-
crimination task, in which all variables were replaced by the equivalent 
for the time discrimination task (Fig. 6b). For example, we replaced 
FrsceneRecog with FrtimeDiscrim and updated rsceneRecog with rtimeDiscrim. We quanti-
fied the strength of each fixed effect using odds ratios, computed as 
the exponential of the coefficient of each variable derived from the 
best GLM model. Odds ratios significantly bigger than 1 indicated that 
participants were more likely to correctly answer a given question when 

the given effect was present. We applied the same methods for time 
discrimination as well (Fig. 6d).

Contribution of different cell groups. We then assessed the ability  
of different groups of neurons in predicting participants’ memory 
outcomes (correct versus incorrect). To do so, we fit the same GLM 
model 4 as described above (fixed effects: rencoding + Frencoding + rsceneRecog 
or rtimeDiscrim) but including only the neurons that showed phase preces-
sion during encoding, only the neurons showing phase precession 
during scene recognition or time discrimination, and the non-phase- 
precession neurons. We then computed the R2 ratio as the ratio between 
the R2 value of GLM model 4 using different subgroups of neurons 
R2
subgroups versus all MTL neurons R2

all, as follows:

R2 ratio =
R2
subgroups

R2
all

We subsampled the non-phase-precession neurons to balance 
the number of neurons across different subgroups when building the 
GLM models.

Statistical methods and software
The participants were not informed of the existence of cognitive 
boundaries in the clips. All the statistical analyses were conducted 
in MATLAB, primarily using the Statistics and Machine Learning tool-
box. For comparison against specific values, we used the one-sample  
t-test. For comparison between two groups, we primarily used the 
Kolmogorov–Smirnov test, while for omnibus testing, we used ANOVA, 
unless otherwise specified in the text. When the normality of data was 
not clear, non-parametric permutation tests were used to determine  
significance levels by comparing the real test statistic to the null  
distribution estimated from the surrogate dataset.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are deposited at the 
DANDI Archive (https://dandiarchive.org/dandiset/000940).

Code availability
The code that supports the findings of this study is deposited at GitHub  
(https://github.com/rutishauserlab/cogboundary-phasepre- 
release-NWB).
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Extended Data Fig. 1 | Comparison of theta bout properties between task 
stages. (a-c) Power spectra of local field potentials recorded during scene 
recognition averaged across all microelectrodes and the entire task within  
the indicated brain area. The shaded area indicates the standard error mean. 
(e-g) Same, but for time discrimination. (d and h) Proportion of the 1 s long 
analysis window occupied by theta bouts detected in microelectrodes (n = 50) 
during following the onset of image, baseline, and probe (decision) during scene 
recognition (d, **p = 2 × 10−3, two-tailed ANOVA test) and time discrimination 
(h, **p = 2 × 10−3, two-tailed ANOVA test). (i) Proportion of time that theta bouts 
detected in microelectrodes (n = 50) occupy 0 to 1-second after cognitive 

boundaries (encoding) or after image display (sceneRecog and timeDiscrim). 
Encoding vs scene recognition: **p = 0.002, encoding vs time discrimination: 
** p = 0.007, scene recognition vs time discrimination: n.s. = not significant, 
Kolmogorov-Smirnov test. (j) Comparison of the variance of frequency for 
theta bouts detected in microelectrodes (n = 50) within the 0 to 1-second after 
cognitive boundaries (encoding) or after image display (sceneRecog and 
timeDiscrim). Encoding vs scene recognition: *p = 0.021, encoding vs time 
discrimination: ** p = 0.022, scene recognition vs time discrimination:  
n.s. = not significant, Kolmogorov-Smirnov test.
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Extended Data Fig. 2 | Characteristics of the local field potential signal.  
(a and b) Time frequency plots of all the theta bouts (a) or theta bouts following 
boundaries (b) that are detected from a representative microelectrode with 
phase precession neurons identified. Time zero refers to the onset of theta bouts. 
(c-e) Time frequency plots of local field potential signals recorded from the same 
microelectrode shown in (a and b), aligned to boundaries (c), clip onsets (d),  
and clip offsets (e). (f ) Frequency difference between cycles (1 vs 2, 2 vs 3, 1 vs 3)  

where all the theta bouts detected from the microelectrodes (n = 50) that phase 
precession neurons are identified. (g and h) Comparison of averaged theta 
power (g) and theta frequency (h) computed from local field potential signals 
within three theta cycles following boundaries, clip onsets and clip offsets in all 
microelectrodes with phase precession neurons identified (n = 50). **p = 3 × 10−3, 
n.s. = not significant (p > 0.05) in (g and h) for two-tailed ANOVA test.
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Extended Data Fig. 3 | Relationship between phase resetting and phase 
precession. (a) Lower panel: theta phases from the local field potential signal 
recorded in a microelectrode where a phase precession neuron was identified. 
Upper panel: the inter-trial phase coherence (ITPC) was computed across all the 
trials from this microelectrode and was plotted as a function of time. Grey shaded 
area indicates significantly consistent phase coherence across trials, or phase 
resetting. (b) Averaged ITPC computed within 500 ms time window following 
soft boundaries versus hard boundaries separately for all the microelectrodes 
where a phase precession neuron was identified (n = 50). The asterisk and 
horizontal line denote the mean and median of the data, respectively. The shaded 
violin shape represents the data distribution with lower end of 1st percentile 
(minima) and top end of 99th percentile (maxima). The top edge and bottom edge 

of the shaded rectangle represent the mean ± std. and mean – std., respectively. 
The top edge and bottom edge of the shaded hourglass represents the 75th 
and 25th percentile, respectively. **p = 0.006 (two-tailed ANOVA test). (c) Ratio 
of phase precession neuron showing significant phase precession following 
only soft boundaries (SB), only hard boundaries (HB) or both conditions. (d) 
Correlation between ITPC and the time ratio of theta bouts occupied within the 
phase precession analysis windows (Pearson’s correlation). Each dot represents 
one microelectrode with phase precession neurons detected. (e-g) Among all the 
microelectrodes with phase precession neurons detected during encoding (c), 
scene recognition (d), and time discrimination (e), the proportion of channels 
showing theta phase resetting (dark blue) or not (light blue).
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Extended Data Fig. 4 | Neurons that exhibit theta-band phase locking  
and/or phase precession. (a) The distribution of spiking phases during the 
entire task from an example phase locking neuron recorded in the hippocampus. 
(b-d) Proportion of neurons that demonstrate phase locking only (blue), 

transient phase precession only (green), both phase locking and transient phase 
precession (yellow), and none (brown) during encoding (b), scene recognition 
(c), or time discrimination (d).
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Extended Data Fig. 5 | Relationship between preferred phase changes in 
phase locking and phase precession. (a-b) Example neuron. The distribution 
of spiking phase (relative to theta) of a phase precession neuron recorded within 
1-second time window before (a) and after (b) boundaries is shown Significance 
level was assessed using the permutation test. (c) Proportion of phase precession 

neurons that demonstrate phase locking only within the 1-second time window 
before boundaries/image presentation, only within the 1-second time window 
after boundaries/image presentation, during both time windows but with 
different phases (that is, phase locking shifts), or no phase locking during either 
time windows.
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Extended Data Fig. 6 | Relationship between theta bouts and phase 
precession. (a-b) Example neuron. Shown are the spike phases of spikes 
following boundaries plotted separately for trials (balanced trial numbers) with 
(a) or without theta bouts detected (b). Phase precession was observed in either 
case Significance was accessed using the permutation test. (c-e) Among all the 

phase precession neurons, their phase precession strength (that is, correlation 
coefficient) computed separately for trials with and without theta bouts  
detected during encoding (c), scene recognition (d), and time discrimination (e). 
**p = 5 × 10−3, *p = 0.032, n.s. = not significant, two-tailed paired t-test.
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Extended Data Fig. 7 | Phase precession quantified using method 1 and 2. 
(a-d) Calculation for Method 1. Two example hippocampal neurons’ (recorded 
on the microelectrodes shown in Fig. 2g and i). Spike phases (relative to theta 
oscillations) are plotted as a function of time in seconds (a and c) or time in 
unwrapped theta phases (b and d), aligned to boundaries. Phase precession is 
quantified as the circular-linear correlations between neuronal spiking phases 
and time in seconds (a and c) or time in unwrapped theta phases (b and d). 
Pink lines indicate the correlation, with the correlation value and its statistical 
significance listed on the top of each subplot. (e-h) Further calculations 
for Method 2. The spike-time autocorrelation (e and g) and spike-phase 
autocorrelation (f and h) plots for the same neurons in (a-d). Blue lines indicate 
the decaying sine wave function fitted to the autocorrelation plots. Inset show 
the spike-phase spectra, with power as the y-axis and the relative frequency 
between the frequency of spiking and frequency of theta oscillations as the 
x-axis. Phase precession is quantified using the modulation index (MI), which is 
defined as the fraction between the peak height divided by the area under the 
curve in the spike-phase spectra plot. The modulation index and its statistical 

significance are listed on the top of each subplot. (i and j) Correlation coefficients 
(i) and modulation indices ( j) for significant (pink) versus non-significant 
(gray) phase precession neurons as identified using Method 1 and Method 2, 
respectively. (k-l) Comparison of phase precession strength estimated using 
time in seconds and time in unwrapped phase for both method 1 and 2. (k) 
Differences in correlation coefficients as estimated using Method 1 (for example, 
|r in b – r in a|) against the frequency variance of theta bouts detected in these 
microelectrodes for significant neurons during encoding. (l) Differences in phase 
precession strength estimated with Method 2. Plotted is the difference in the 
modulation index (l, for example, |MI in f – MI in e|) against the frequency variance 
of theta bouts detected in these microelectrodes for significant neurons during 
encoding. In k and l, each dot represents one neuron. The empty circle represents 
the two example neurons in (a-h). Color lines indicate the fitted linear regression, 
with the correlation value and its statistical significance listed on the top of each 
plot. Significance was assessed using the permutation test in (a-h) and Pearson’s 
correlation in (k-l), respectively.
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Extended Data Fig. 8 | Comparison of phase precession when recognizing 
target (old) versus foil (new) images. An example MTL neuron showing phase 
precession when the participant is asked to recognize target images (a) and 
foil images (b). Note that no significant phase precession is observed when 
identifying foil images. (c) Comparison between phase precession strength 
(correlation coefficient values) when participants are instructed to recognize 
target (blue) versus foil images (gray) across all phase precession neurons 
identified during scene recognition (n = 51). Each dot represents one neuron. 

The asterisk and horizontal line denote the mean and median of the data, 
respectively. The shaded violin shape represents the data distribution with lower 
end of 1st percentile (minima) and top end of 99th percentile (maxima). The top 
edge and bottom edge of the shaded rectangle represent the mean ± std. and 
mean – std., respectively. The top edge and bottom edge of the shaded hourglass 
represents the 75th and 25th percentile, respectively. Significance was assessed 
using the permutation test in (a, b) and two-tailed ANOVA test in (c, **p = 0.004), 
respectively.

http://www.nature.com/nathumbehav


Nature Human Behaviour

Article https://doi.org/10.1038/s41562-024-01983-9

Extended Data Fig. 9 | Phase precession can exist without firing rate 
modulation. Simulation based on the model of Mehta et al, 2002. (a and c) The 
spikes in this model (green dots) occur when the down-swing of the fluctuating 
inhibitory current (red) crosses the excitatory current (blue). Like in the original 
implementation, in this simulation neurons fired only briefly when excitation 

first exceeds inhibition. We implemented this feature by assuming a refractory 
period of 60 ms. Note that in both cases the firing rate of the neuron remains 
the same (number of spikes = 6). The difference is that the activation current is 
constant current in (a) and ramping in (d), resulting in no phase precession (b) 
and phase precession (d), respectively.
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Extended Data Fig. 10 | See next page for caption.
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Extended Data Fig. 10 | Comparison of phase precession strength between 
trials associated with correct versus incorrect memory performance.  
(a-c) Phase precession during encoding grouped by recognition memory 
performance. An example MTL neuron showing phase precession following 
boundaries during encoding for trials that were later correctly recognized 
(a) but not for forgotten (incorrect) trials (b). (c) Comparison between phase 
precession strength (correlation coefficient values) between trials with correct 
(red) versus incorrect (grey) subsequent recognition memory across all phase 
precession neurons identified during encoding (n = 68). **p = 0.006 (d-f ) 
Phase precession during encoding grouped by order memory performance. An 
example MTL neuron showing phase precession following boundaries during 
encoding for trials that were subsequently retrieved correctly (d) or incorrectly 
(e). (f) Comparison between phase precession strength (correlation coefficient 
values) between trials with correct (red) versus incorrect (grey) subsequent 
order memory across all phase precession neurons identified during encoding 
(n = 68). *p = 0.041. (g-i) Phase precession during scene recognition grouped 
by recognition memory performance. An example MTL neuron showing phase 
precession following image onsets when participant successfully (g) recognized 
tested images but no phase precession for incorrect trials (h). Note that, at group 

level, across all phase precession neurons identified during scene recognition 
(n = 51), their phase precession strengths do not show significant difference for 
trials with correct (red) versus incorrect (grey) subsequent recognition memory. 
n.s. = not significant. ( j-l) Phase precession during time discrimination grouped 
by time discrimination performance. An example MTL neuron showing phase 
precession following image onsets when the participant successfully ( j) retrieved 
the correct temporal order of tested images pairs but no phase precession for 
incorrect ones (k). (l) Comparison between phase precession strength between 
trials with correct (red) versus incorrect (grey) subsequent order memory across 
all phase precession neurons identified during time discrimination (n = 89). 
***p = 8 × 10−4. Each dot represents one neuron. The asterisk and horizontal line 
denote the mean and median of the data, respectively. The shaded violin shape 
represents the data distribution with lower end of 1st percentile (minima) and top 
end of 99th percentile (maxima). The top edge and bottom edge of the shaded 
rectangle represent the mean ± std. and mean – std., respectively. The top edge 
and bottom edge of the shaded hourglass represents the 75th and 25th percentile, 
respectively. Significance was assessed using the permutation test in (a-b, d-e, 
g-h, j-k) and two-tailed ANOVA test in (c, f, i, l), respectively.
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Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

Data that support the findings of this study has been deposited at DANDI Archive (https://dandiarchive.org/dandiset/000940)

Research involving human participants, their data, or biological material
Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation), 
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender This study has collected participants' self-report sex (male, female, or other) as a biological attribute. Out of the 22 
participants, 13 reported to be females and the remaining 9 reported to be males. We aggregated all participants' data in our 
analyses. Post-hoc sex-based analyses were not conducted given the lower sample size in both gender groups. 

Reporting on race, ethnicity, or 
other socially relevant 
groupings

No socially constructed variables were used in the manuscript. Due to the limited sample size, we have focused on a within-
subject study design, which treats each participant's data as their own controls. These approach may minimize potential 
confounds coming from genetic, socioeconomic, or clinical factors. Future studies with larger data sample can generalize the 
current findings to a more diverse population. 

Population characteristics A total of 22 participants (39 ± 16 years old [Mean ± s.t.d], 13 females) participated in the current study at either the Cedars-
Sinai Medical Center and Toronto Western Hospital. All participants had normal or corrected-to-normal visual acuity. These 
participants had drug-resistant epilepsy and required surgically implanted stereo EEG monitoring. Supplementary Table S1 
summarizes the their information

Recruitment atients undergoing invasive electrocardiography recordings for clinical purpose from Cedars-Sinai Medical Center and 
Toronto Western Hospital were recruited. All the patients were consented to the study under the guidance of approved IRB 
(Institutional Review Board) protocol at the Cedars-Sinai Medical Center or approved REB (Research Ethics Board) protocol at 
the Toronto Western Hospital. Patients who successfully completed the task and had above chance level performance were 
included for the analyses reported in the study. 

Ethics oversight The Institutional Review Boards at the Cedars-Sinai Medical Center and the Research Ethics Boards at the Toronto Western 
Hospital approved the current study. All participants provided written informed consent before the study. 

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size Our analysis is based on 1103 neurons recorded from 22 participants. This sample size is very large compared to similar studies (Qasim et al., 
2021, 13 participants and 1074 neurons; Kutter et al., 2023, 17 participants and 801 neurons; Kunz et al., 2021, 15 participants and 729 
neurons ). No pre-determined sample size was calculated. 

Data exclusions No data were excluded

Replication The analyses were performed at single neuron level. The effect reported in the study were consistent and replicated across different subjects. 
While we do not perform replication of these results, data are publicly available enabling independent researchers to replicate these findings. 

Randomization Our design is a within-subject analysis: all the subjects were in the same analysis set and had all types of trials. We performed permutation 
testing where appropriate to ensure statistical validity of our results.

Blinding Subjects were not aware of the goals of the study. There was no subjective measurement or decision that the investigator needed to make 
during the experiment. All the data are collected and analyzed off-line.
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Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Plants

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Novel plant genotypes Describe the methods by which all novel plant genotypes were produced. This includes those generated by transgenic approaches, 
gene editing, chemical/radiation-based mutagenesis and hybridization. For transgenic lines, describe the transformation method, the 
number of independent lines analyzed and the generation upon which experiments were performed. For gene-edited lines, describe 
the editor used, the endogenous sequence targeted for editing, the targeting guide RNA sequence (if applicable) and how the editor 
was applied.

Seed stocks Report on the source of all seed stocks or other plant material used. If applicable, state the seed stock centre and catalogue number. If 
plant specimens were collected from the field, describe the collection location, date and sampling procedures.

Authentication Describe any authentication procedures for each seed stock used or novel genotype generated. Describe any experiments used to 
assess the effect of a mutation and, where applicable, how potential secondary effects (e.g. second site T-DNA insertions, mosiacism, 
off-target gene editing) were examined.

Plants
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