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ABSTRACT
We genera11ze the Prox1m1ty Force Theorem of Ref. 1 (va11d fbr
' gently curved surfaces) to 1nc1ude surfaces that may have large curvatures
(but are still characterized by small angles between relevant portlons
of the interacting sgrfaces)f A general proof is given for the approxi-
mate continuity of the prqximityfforce.when,argapfconfiguration goes over
into a'crevice after coﬁtect' Slmple and somewhat 1mproved formulae are.
given for the universal prox1m1ty potentlal functlons Q and & for gaps

and crevices.



1.  INTRODUCTION

 We shall describe a genenelization1of‘§he Proximity Force Theorem
derived.in Ref. 1. The generalizatienlisVimportant for discussing the
interaction between types of surfaces for which the curvatures at the
point of least separation are no longer small compared to the diffuseness
of the surface region. . The derlvatlon'of-the theo:em is both more general
and simpler than preﬁieus Versions and can be used to obtein certain
ausqul insights into the.problem of appfoximating.the energy of a thin-
skinned (lepto&ermous) system, such as a*nucleus, by a sum of a surface
- energy V ‘

g and a proximity potential Vp-

- 2. THE SURFACE AND PROXIMITY ENERGIES

The potentlal energy of a conflguratlon specified by a shape E is
written, apprqxlmately,‘as a constant volume energy and a shape- dependent ;'
part V,swhere- | V

- Vs ovgev, 5 R €Y
with S S

S __:Yffdd R @
y |

<
[}

p .[f dxdyve(D) . By v : (3)
‘gaps _and ’
crevices

<
f

In Eq. (2). vy is the surface energy per unit area and the integra-
tion is over the surface . In Eq. (3) the additional interaction
associated with gaps or crevices in Z is approximated as an integral

"over e(D), the interaction energy per unit area between plane, parallel
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eurfaces at the separétion D.. The ihtegration is in the transverse x-y
~plane, at right‘angles to the line of least,separation between theAtwo
pieces of Z specifying the gap or crevice. |

| The accuracy of the approximation underlying Eq. (3) depends

on the smallness of the deviation from parallelism of the surface elements
on the two sides of the gap or crevice. For gaps or crevices: where the
deviation from parallelism is not everywhere small Eq. (3) may st111 be
useful if the regions where the large dev1at1ons occur are suff1c1ent1y
small or 1f the large dev1at10ns occur only outside the effective range
of the function e(D)g

The geometrical configurations that we shall consider will include

cases in wh1ch the shape Z is in the form of a 51ng1e object or of two
(or more) p1eces._ In the latter case the two pieces may be separated by
a gap, with a least separation.s. We shall include in our discussion
the case where siis negative, which means that the pieces hawe overlapped
(ahd the density in the overlap region would eVentuélly be doubled).

We shall refer to suchvcdnfiguretiohs (where the pieces are eitherv
separated or everlapping) as Gap configuratione. In contrast, ‘a
conflguratlon resultlng from first overlapplng two surfaces, eras1ng

the overlapplng portions and then f1111ng the resultlng 51ng1e shape
with matter, without any density doubling, will be called a Crevice

configuration (see Fig. 1).

3. THE PROXIMITY THEOREM
The key trick of the Proximity treatment is the transformation of
the two-dimensional integral in Eq. (3) into a one-dimensional integral

as follows:



v, = fve(D‘_‘)‘JdD . @ -

s or 0
where J, the Jacobian of the transformation, is proportional to the area
between two contours in the x-y plane corfesponding to gap widths D and

D +dD:

g = ~d(area 12Dx-y plane) . (5)

We shall‘refer to J as the gap width'distributibn function. The
significance of J may be appreciated by an analogy. ~Imagine, instead
of gap width contours in the x-y plane, a chart of depth contours of the
central portion of a lake or reservdir, shallowest in the middle and
gettingvdeePer‘tOQéfds tﬁe édges.: By blotting the'aréa'betweenusuccéssive
depth COhtourS as-a function of the depth, bnefobtéihs a "depth distri-
'bufién fuh;tion" of the lake or reserVoir, analogous to J. In the case
of a gap theVdepth distribution startg‘with the.least depth s, énd the
lower limit'of integratioﬁ ih Eq. (4) is s. ‘Thé case of negative
s-véluesvcorresponds to a lake or reservoir with an island or boulder
in the middle, the elevation contours of the island being_coumted,as'
negative depthé. ‘In the casevof a_crévice these elevations are disregarded
and the depth distribution fuﬁction starts with the zero depth contour
around the island's edge. The lower limit of integration in Eq; (4).is
thus zero for crevices. The upper limit of integration may often be
extended fo.infinity — but see -Section 4.

It is clear thgt(for giveh surfaces at varying separations the gap

width distribution function is a function of the difference. D-s only,




ahd'not_of' D and s separately. (We shall denote D-s by z). - Thus,

sor 0
where ;J(i)vis a. function of the-typé illtstrated in Fig. 2. It follows
'by differentiation that the proximity force between two surfacesris,lfor
 gaps o
av_ 8%
P

5 350 () . fe(Dv)J'.(D.-:s)‘ i , %

S

> Jge(0) + [ eI () db  for 540, (7a)

-0
and, for crevices

g crevice‘ : o . . -
av,cTevics - S |
- fe(D)J‘ (D-s) db . o (®

0 . V. . '
> j—e(D)J'(D) dD - for -s-=+0 .. V(Sa)

0 - R

In the above, Jo stands for J(0) and Jf'is the derivative of J.
We note the general result that the discontinuity in the proximity

force as a gap turns into a creviée at s=0 is_

 , : “gap, - crevice |
S V. oV,
= (- =R ) .- B -
Ap B ( 3s > <’ s ) " ‘Jo e(0)

's=0 - s=0

Now the discontinuity (at s=0) in the forceé due to the surface-energy
part of the potential is

_ gap Ny CTevice
e ) ()
S \ 9s s=0 9s - E

s=0

2yd



This is because,-from_the definitionvof J;"ZJO(-ds)' is the area of the
two infinitessimal caps of the overlapping pieces which are to be erased
when the overlap is (;ds), and this résults in.a‘saving in surface
“energy equal to '2yJ°(—ds), . Not_e also thatjt‘he derivative avsgap/ 9s

is, of course, zero. The discontinuity in the total force is then
A = Jo[é(O) +2y] . : (8b)

Tﬁe value of e(0) is, from the definition of e(s), the interaction energy
per unit area between‘two juxtaposed flat_surfaces at cénﬁact; In the
case of déhsity distributions wifh‘"Symmetric":fall-off pfofiies; such
that the sum of the densities at contaéf'adds'up to the constant standard
bulk density, thevstperposition of the densities results in the destruc-
’ tioh of thé‘th surfaceé togefher with their assd¢iated surféce energies,
_so that e(0) = -2v. This leads to the following general theoreﬁf
: "The sum of the surface and proximity energies is continuous
(in the first derivative) when a gap turns into a crevice
at contact."
fhefe are no'resﬁrictions on the gap geometry ér the smallness of
the diffuseness (but the density fall-off profile is assumed to be -
_ - - S S
symmetri;). |
Cominé back to Eqs. (7) and (8), we shall now introduce specifiq
assumptions about the appearance of‘J(D).. First, if we assume fhat;
within the range of the:funétion.e(D), the gap width'function may be
approkimated.by the constant Jo’ Eqs. (7), (8) leadvto the conventional
Proximity Force Theorem which states that the proximity force between

gently curved surfaces is proportional to the interaction energy per unit




area between flatisurfaces, i.e., to the-universalvproximity force :
function e(s), (and that fortcrerices the proximity force is zero).
The factor of proport1on311ty is J o’ which we shall call the curvature
‘1ndex of the gap between the surfaces. (It is equal to 4w tlmes the
mean curvature radlus R [see Ref 1, p. 431] )

If we now make the more general assumptlon that within the range
of e(D), the gap width function J(D) may be approximated by a 11near

expression

IO ~ I +dD - @
~ we may write
WpEF o o |
" Tas ~ Joe(g),f J?g(s)‘ . B (;0)
> I e(0) + J,8(0) for s+0 ,  (10a)
and » L
av?crev1ce | o v |
I b - an

In the above, &(s), (the unlversal prox1m1ty potential functlon), 1s the
following 1ndef1n1te 1ntegra1 over e(s)
&s) = [els)ds | | (12)
‘ s o , | _
and we shall refer to J, (thebslepe of J(D)) as the "Peaking Index'" of
the gap (see Section 4). ‘ |
The generalized Prdximity'FQrce Theorem may now be stated as follows:

"The proximity force between two curved surfaces as a function
. ) [ ’ -
of the separation degree of freedom s is approximately equal

N to the product of the geometrical curvature index J0 of the



gap’ between the surfaces and the universal proximity force
functlon e(s) (the interaction energy per unit area between
- flat, parallel surfaces), augmented by the product of the
geometrical peaking index J, of the gap and the universal
proximity potential function &(s) (én indefinite.integrAI'
of e(s)). For crevices, the first term is absent and the.

second is a constant."

The total force (including that due to the surface energy) is now,

. for gaps
o ' av82aP
9s

= - Joe.(s) + J]_(S), - . » | (13)

and, for crevices with small overlaps,

crevice
oV:

o

~ '-2yJo+.l‘l,(,o), | o (14)

Introducing the dimensionless quantitiés

L = s/ ., o L o (15)
o(z) Tfe(s) as o, (16)
0,2) = —— [&(s) ds | o an
) 2yb“. . .

S

we may now write the total energy for a family of shapes that changés
from a gap to a crevice at s=0 in the following form
Vo= 2yb[J 6(z) + bJ,8,(2) ] for £=0 , (18a)

Vo~ 2yb[J_ - 3,00(0)](z -;c)' for £<0 , (18b)

~y




where v

s -J_¢(0) + J b9, (0) : S
.z == = 2 L | (19)
. -Jo f.J;bQ(O) o

(¢]

Thé unifersal functibns o(z), ¢,(C) wefeitabﬁlated (for nuélear sﬁrfaces)
in Ref. 1. | o | |

' We_ndte that inithe case of a gap with a zero value of the peakihg
.index J1 (this corresponds to a paraboloiﬁal.gap [see Section 4]) which -

turns into a crevice for s <0, the total energy may be written as

Vo= 2vbI 8(5) , (e
where"" | ‘ |
o 3 = o)  for >0 - (20b)
3~ ooz,  for £<0,  (200)
| with' |
T, = -0

1.7817, for nuclear surfacés.

This fﬁn;tion's(c) is plottéd invFig.{S as the solid éufve.v.For z <0,
3 is a straighf liné with unit slope. For ¢ > 2.74 the function 3(z)

(the same as é(c)) is é pure exponentiél wifh a range 0.7176 (seé footnote
‘to Table I'in Ref. 1). Approximating & (or 9) in the interval 0 < < 2.74
'by a continuation 6f fhis exponential down fo c.é1.9475, joined smoothly
to a cubic with value an&_slope at [ =0 matching the exact Thomas-Fermi

function &, results in the following formulae:

6 = ¢ . _4.41 e'C/0-7176 ', . . forl; > 1.9475

(exact for ¢ = 2.74), (21a)



. =10~ -

$ = 0 ~ -1.7817 + 0.9270C + 0.01696Z° - 0.05148¢°,
: ' ' for 0 <1z <1.9475 (21b)
& = -1.7817 + L , for <0 . (21c)

s

Also shown in Fig. 3 (as a dashed line) is a continuation of ¢ to negative
gap configurations, i.e., to overlapped systems with doubled densities.

A cubic approximation to this-paft of ¢ is

2

® ~ -1.7817 + 0.92707 + 0.143z2 - 0.09z° , for 2.< 0 .  (21d)

Equations (21a-21d) give useful approximations to the gap function ¢ and
the gap-crevicé function & (see the circled points in Fig. 3). They are

somewhat preférabie to the "cubic-exponehtial" approximation (Eq. (27) in

Ref.‘l)‘in that they feproduée the Thomas-Fermi values exactly for ¢ = 2.74

and.are continuous (to Within a few units in the fifth decimal) in value,
slope and second derivative at the jumétion point 7 =1,9475.

A rough straight-lines approximation to ¢ is:

\

3~0 . for ¢ 2 Ze s

‘@~g-g, for T<g o,
where

g, = 1.7817 ~ V3 .

This is a very poor‘apbroximation'in the tail (see the dotted lines
in Fig. 3) but, because of 'its simplicity, is still of some use‘in semi-~
quantitative.studies qf nucléar collision'dynamics-(see Ref. 3).

The gap function @(t) is sometimes referred to as Tbe Proximity

Theorem prediction for the interaction potential between nuclei. It

I

e
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needs to Be stressed_again thatbwhether one uses the gap function
| Q(C)'or the crevice funetion 8(;) for negative 4 depends on whether one
believes the physical situation in question to be better.approximated by
a‘piie—up of‘density iﬁ the everlap region or a redistribution of the
‘density to a neerly uniform‘vélue. For high-energy nucleus-nucleus |
_collisions the formervsituation might be relevant,.but for low-energy .
collisions it is surely oﬁ the latter that one.shbuldufocus one's
attention. (ingh".and "low' means collision enetgieS'per nucleon
~high or low'compared.to typical Fermi-motion enefgies in the coiliding
nuclei, some 20 MeV in order of magnitude.) Bgt even a.is expeeted'tob
become less and less relevant as the neck or window between the two
c0111d1ng systems opens up beyond the "geometrlcal" value deflned by
the intersection of the two overlapplng surfaces descrlblng the or1g1na1
nuclei.v The opening up of the neck beyond the geometrical value would,
in fact, be expected to:result in a further saving in.sufface energy
and a lowering of the potential below the estimate provided by using
the function 3(;). With the neck degree of freedom included, the potential
eneigy is no longer a function of a single separation variable (s or )
and a map of V in at least two dimensions isvrequi:ed. Suitable proximity
eorrections may still be used in sueh cases to impreve the‘estimate of
" the nuclear\petentiel correspondingito a sﬁm of.volume'and surface |
energy.terms (see_Refs. 1 and 3).

, Figure 4 shows how the’(almost) smooth interaction function
corresponding to & is made ﬁp of the surface energy and the proximity
energy, each of which has a marked dlscontlnulty in the first derlvatlve.

The example corresponds to two equal paraboloids. w1th tips characterized
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;

by ‘a radiqs of curvature R; equal torfiﬁe times the surface width b.
(The reduced radius of the gap is thus R = 2.5b.) |

Figure 5 is a similar ahélysis of the potentialnenergy for two
edual spheres. ‘There are again marked discontinuities in the slopes
of Vg and Vp as the gap .turns into a crevice at contact but the sum, V,
is (nearly) smooth. -(Oniy "nearly'" because the interaction function
é(D) underlying thesé examples is based on a Thomas-Fermibmodel of the
, ;urface for which e(OT differs from -2y by 7.3% and this leads to an
impérfect cancellation between e(0) and 2y in Eq. (8b).)

' in Fig. 6 the interacting surfaces are equallcircular‘cones with
ﬁemi-opening angles of 60°. In thisvcase all the curves VS’ VP and V
“have ¢ontinu§qs first derivatives.

' In all these figures the energies are iniunitsﬂof;ZVbz (roughly
2:MeV) and the sepafatioﬁ'vs is in_units bf b - (roughly 1 fm).

4

4. THE GAP WIDTH DISTRIBUTION FUNCTION J(z)

In Fig. -2 we have plotted J(z) for gaps corresponding to the

following surfaces: a) two equal paraboloids,, b) two equal spheres,

c) two unequal spheres, d) a sphere and a plane, e) two equal-hyperbol-

'oids, f) two eQual cones. Because J is fhe only information abbut thé
interacting surféces that enters into the proximity potential, Eq. (4),
;his potenﬁial is invafiaht with respect to deformations of thevinteract;
ing surfaces that preserve the areas Jdz between successive width
contours. The varietf of interacting surfaces that are all characterized
by the same width dist:ibutioﬁ function may be appreciated by the

following construction. Imagine a set of width contours drawn on a

e
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sheet of thick ruhber,representing the x-y plane, a series of holes made
along each contour labeled by D, and a set of rods of length D inserted

normally into the holes. The two ends of the rods may be imagined as

defining the two interacting surfaces. Starting with these surfaces we

may now generate a host of new surfaces by: a) stretchlng the rubber sheet

accordlng to. transformatlons that preserve the areas between succe551ve

wldth contours, b) sliding the rods in their holes according to arbitrary

prescrlptlons, and c) bendlng the rubber sheet (sl1ght1y) The multitude

of surfaces generated in this way have clearly the same gap width distribution

function and would be characterlzed by the‘same proximity interaction. |
Invconneetion'with Fig. 2, note that in the ease of paraboloids,

hyperboloids or cones, J is a Single-yalued function‘eXtending_to_infinite

Values of the argument z, and the prbximity'integralvin Eq.-(4) remaine

well deflned when the upper limit of 1ntegrat10n is extended to infinity.

In the case of a sphere R and a plane,vthe functlon J turns

negatlve at z=R and would continue to z = 2R, where it would stop altogether

there are no gap_w1dths;greater than the dlameter.ZR augmented by the

separation s. - In this:case the extension of the integrai,in Eq. (4) to

infinity would include an.unphysical”contribution,from z > 2R. The

contribution from thelnterval R <z <2R, where J is negative, subtracts

the 1nteractlon between slabs whose separatlons correspond to the

distances between the plane and the back side of the sphere. The

effect ié qual1tat1ve1y at least, in the.sense of,recognizing the

f1n1te thlckness of. the sphere. Thus a proximity integral extended to

D'= 2R4-s would correspond to the replacement_of.the interaction between‘

a plane and a sphere by an integral over interactions per unit area of
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a plane and a series of slabs, whose finite thicknesses were matched
appropriately to the chords of the 5phere; Formally the gap width D is,
- in this Case,va-double—valued function of x,y (even though J(z) remains
.single—valued)f‘ In_the-ease of\unequal spheres there are'fbur distances
between the front -and back parts of the Spheres and tﬁe interactidh |
could be approximated by an integration over interactions per unit area
| - of two fihite“slabs.‘ Finally, one coﬁld formally recognize the frentﬂ
aﬁd Béck~surfaces of e single sphere as associated with an interaction
between negatlve (m1551ng) semi-infinite slabs that have to be removed
in order to convert 1nf1n1te nuclear matter into a sphere of f1n1te
dlmen51ons The prox1m1ty 1ntegra1 for two unequal spheres would then
“involve six gap widths for each given x,y. Two of the gap ﬁidths ﬁould'
be associated.with the self-energies of-the spheres. 'These’would_be
ebnstant,for separated spheres (and onldvnot affect the'fOrcehbethen
them),'but_would become functions of thevoyerlap for crevices. Thev
effects associated with'these”generalizationsvare small so long as the
sizes‘of the'objects-in Question;ere large comparedvte the range :
of the interaction function e(D).- We have not pursued their analysis
~to a stage where we felt that“it‘would be'useful‘to retain them
without including other correctiens that might be equally impertéhtr
Figure 2 illustrates.the importance, in~certeinisituations of the

present'generalization of the Proximity Force Theorem. Thus for hyperbol-

_01dal surfaces the curvature index J may become very small or even 2€T0 as

the hyperb0101ds degenerate into cones. The standard Proximity Theorem
would then give the (useless) prediction of a zero force between such

surfaces, whereas the generalized theorem would give a finite answer that

~e
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would, in fact, be ac¢ﬁrate provided pnly Ehé angles between thé interact-
.ing surfaces were not too large (but wiph no restrictions on the curvature
at the tips) |

We have called the slope J, of the width dlstrlbutlon function the -
"Peak1ng Index" of the gap because it distinguishes betwéen functions
| such as a conical volcano peak (with positive J,), a paraboloidal sugar-
loaf mountain (with J ,=0), and an even less peaked,hemispherical boulder
(w1th negatlve J ).

Note f1na11y that -even compllcated mu1t1p1y -connected width contour
pattérns may have simple width distribution functions (that can be
approximated by expressions,of>the form J ~ J§+ J,D). Thp$_in the
discp55ionpof the cohesive forces between rough surfaces one might find
it usefﬁl to approximate the gap by_an»infinitg'array of3a_mix;ure,of,
'spheficél,iparéboloidal, cylindricai, hyperboloidal or coﬁical protrusions,
all of which wpuld lead approximately to gap width distfibution functions

of the above type.
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FIGURE CAPTIONS

Fig. 1.

Fig. 2.
Fig. 3.

‘Schematic illustration of a Gap and a Crevice. In the case of

a gap, the least separation s may be positive or negative,
the latter corresponding to oVerlapping objects. In the case of
a crevice, s is negative but the density is uniform throughout

the single object (apart from a small diffuseness of the surface).

Examples of the width distribution function J (in units of 2mb)

for a) two equal paraboloids, b) two equal spheres, c) two

"uneqdal spheres with a 2:1 ratio of radii,. d) a sphere and a

plane, e) two equa1 hyperboloids with_asymptotes at .60°,

f) two equal conés with_semi-opehing angle 60°. The curvature
index,Jo was chosén to be the same in cases a-d, and correqunds
to the value of Jo for tw§ equal spheres with radii five times |
the surface width b. The plot.is against z'(the gap width D
less the least sepafation s);in units of b. Only in the case

of unequal spheres is the approximation J = J,+J,z not exact.

‘The universal potential-energyvfunCtion o(z) (for a gap) and

$(c) (for a gap that turns into’é crevice‘when C'{O). The
dashed and solidfcurves,correspOnd to the exact ThomaS-Fermi
results and.the.éircled points to cubic app;oximations for

< 1.9475_aﬁd»to_an exponential for g >.1.9475‘(which becomes
exact for £ = 2.74). The dots iﬁdicate a super-simple étraight

lines approximation to @(c).



Fig. 4.

‘Fig. 5.

Fig. 6.
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The surface, proximity and total energies (VS,-‘VP and V) for a

| paraboloidal gap that turns into a paraboloidal crevice when

the separation s ‘is negative."Thé gross discontinuities in
the slopes of Vs and Vp at s=0 almost cancel in the sum V by

virtue of Eq. (8b), ' The mean curvature radius R in this example

'is 2.5 times the surface width b (b =~ 1 fm). The energy unit

is 2yb? (about 2 MeV).

Same as Fig. 4, but for two equal .spheres with radii five times

the surface width b.

Same as Figs. 4 and 5 but.fdr_twb,equaIYCOnes'with.semi-openingv

angle 60°. -Iﬁ this case all';he Slopes_are continuous at s=0.

b
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Equal paraboloids, §=_2.5b'
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Equal spheres , R= 5p
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