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ABSTRACT 

We generalize the Proximity Force Theorem of Ref. 1 (valid for 

gently curved surfaces) to include surfaces that may have large curvatures 

(but are still characterized by small angles between relevant portions 

of the interacting surfaces). A general proof is given for the approxi-

mate continuity of the proximity force when a gap configuration goes over 

into a crevice after contact. Simple and somewhat improved formulae are 

given for the universal proximity potential functions and for gaps 

and crevices. 
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INTRODUCTION 

We shall describe a generalization of the Proximity Force Theorem 

derived in Ref. 1. The generalization' is important for discussing the 

interaction between types of surfaces for which the curvatures at the 

point of least separation are no longer small compared to the diffuseness 

of the surface region. The derivation of the theorem is both more general 

and simpler than previous versions and can be used to obtain certain 

useful insights into the. problem of approximating the energy of a thin-

skinned (leptodermous) system, such as a nucleus, by a sum of a surface 

energy V and a proximity potential V P . 

THE SURFACE AND PROXIMITY ENERGIES 

The potential energy of a configuration specified by a shape 2 is 

written, approximately, as a constant volume energy and a shape-dependent 

part V, where.  

V, = ff dxdye(D) 	' 	 (3) 

gaps and 
crevices 

In Eq. (2) y is the surface energy per unit area and the integra-

tion is over the surface E. In Eq. (3) the additional interaction 

associated with gaps or crevices in is approximated as an integral 

over e(D), the interaction energy per unit area between plane, parallel 
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surfaces at the separation D. The integration is in the transverse x-y 

plane, at right angles to the line of least separation between the two 

pieces of Z specifying the gap or crevice. 

The accuracy of the approximation underlying Eq. (3) depends 

on the smallness of the deviation from parallelism of the surface elements 

on the two sides of the gap or crevice. For gaps or crevices where the 

deviation from parallelism is not everywhere small, Eq. (3) may still be 

useful if the regions where the large deviations occur are sufficiently 

small or if the large deviations occur only outside the effective range 

of the function e(D). 

The geometrical configurations that we shall considerwill include 

cases in which the shape is in the form of a single object or of two 

(or more) pieces. In the latter case the two .pieces may be separated by 

a gap, with a least separation s. We shall include in our discussion 

the case where s is negative, which means that the pieces have overlapped 

(and the density in the overlap region would eventually be doubled). 

We shall refer to such configurations (where the pieces are either 

separated or overlapping) as Gap configurations. In contrast, a 

configuration resulting from first overlapping two surfaces, erasing 

the overlapping portions and then filling, the resulting single shape 

with matter, without any density doubling, will be called a Crevice 

configuration (see Fig 1) 

3. 	THE PROXIMITY THEOREN 

The key trick of the Proximity treatment is the transformation of 

the two-dimensional integral in Eq. (3) into a one-dimensional integral 

as follows: 
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VP = f e(D) J dD 	, 	 (4) - 

sorO 

where .J, the Jacobian of the transformation, is proportional to the area 

between two contours in the x-y plane corresponding to gap widths D and 

D + dD: 

= d(area in x-y plane) 	 (5) 
dD 

We shall refer to J as the gap width distribution function. The 

significance of J may be appreciated by an analogy. Imagine, instead 

of gap width contours in the x-y plane, a chart of depth contours of the 

central portion of a lake or reservoir, shallowest in the middle and 

getting deeper towards the edges By plotting the area between successive 

depth contours as a function of the depth, one.obtains a "depth distri-

bution function" of the lake or reservoir, analogous to J. In the case 

of a. gap the depth distribution starts with the least depth s, and the 

lower limit of integration in.Eq. (4) is. S. The case of negative 

s-values corresponds to a lake or reservoir with an island or boulder 

in the middle, the elevation contours of the island being counted as 

negative depths. In the case of a crevice these elevations are dis,regarded 

and the depth distribution function starts with the zero depth .contour 

around the island's edge. The lower limit of integration in Eq. (4) is 

thus zero for crevices. The upper limit of integration may often be 

extended to infinity - but see .Section 4. 	 . 

It is clear that for given surfaces at varying separations the gap 

width distribution function is a function of the difference D-s only, 
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and not of D and s separately. (We shall denote D-s by z). Thus, 

	

VP  = f e(D) J(D-s) dD 	 (6) 

sorO 

where J(z) is a function of the type illustrated in Fig. 2. Itfollows 

by differentiation that the proximity force between two surfaces is, for 

gaps 

gap 

	

= Je(s) + f e(D)JI (D-s) dD 	, 	 (7) 

10e(0) + f e(D)JI(D) dD 	for sO , 	(7a) 

and, for crevices 	 : 

aV  crevice 

f e(D)J'(D-s) dD 	 (8) 
as 	

f  e(D)JI(D) dD 	for -sO 	(8a) 

In the above, J0  stands for J(0) and J' is the derivative of J. 

We note the general result that the discontinuity in the proximity,  

force as a gap tUrns into a crevice at s=O is 

• 	 - 	) 	-- 	) 	
= J0  e(0) 

s=O 	 s=O 

Now the discontinuity (at =O) in the force due to the surface-energy 

part of the potential is 

/ aVaP\ 

S 	 - 	
"s=O 



This is because, from the definition of J, 2J 0(-ds) is the area of the 

- two infinitessimal caps of the overlapping pieces which are to be erased 

when the overlap is (-ds), and this results in a saving in surface 

energy equal to 2yJ 0 (-ds). Note also that the derivative 

is, of course, zero. The discontinuity in the total force is then 

= J[e(o) + 2y] 	. 	 (8b) 

The value of e(0) is, from the definition of e(s), the interaction energy 

per unit area between two juxtaposed flat surfaces at contact. In the 

case of density distributions with "symmetric" fall-off profiles, such 

that the sum of the densities at contact adds up to the constant standard 

bulk density, the superposition of the densities results in the destruc-

tion of the two surfaces together with their associated surface energies, 

so that e(0) = -2y. 	This leads to the following general theorem: 

"The sum of the surface and proximity energies is continuous 

(in the first derivative) when a gap turns into a crevice 

at contact." 

There are no restrictions on the gap geometry or the smallness of 

the diffuseness (but the density fall-pff profile is assumed to be 

symmetric). 

Coming back to Eqs. (7) and (8), we shall now introduce specific 

assumptions about the appearance of J(D). First, if we assume that 

within the range of thefunction e(D), the gap width function may be 

approximated by the constant J 0 , Eqs. (7),(8) lead to the conventional 

Proximity Force Theorem which states that the proximity force between 

gently curved surfaces is proportional to the interaction energy per unit 
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area between flat surfaces, i.e., to the universal proximity force 

function e(s), (and that for crevices the proximity force is zero). 

The factor of proportionality is J 0 , which we shall call the curvature 

index of the gap between the surfaces. (It is equal to 47r times the 

	

mean curvature radius 	[see Ref. 1, p.431].) 

If we now make the more general assumption that, within the range 

of e(D), the gap width function J(D) may be approximated by a linear 

expression 

	

J(p) 	J0 +J 1 D 	, 	 (9) 

we may write 

gap 

	

- a" 	J0e(s) + J 1 g(s) 	 (10) 

	

-' Je(0) + J 1 (0) 	for s 0 , 	(lOa) 

and 
crevice avP  

- 	 J1&(0)  

In the above, &(s), (the universal proximity potential function), is the 

following indefinite integral over e(s) 

&(s) = f e(s) ds 	, 	 (12) 

and we shall refer to J 1  (the slope of J(D)) as the "Peaking Index" of 

the gap (see Section 4). 

The generalized Proximity Force Theorem may now be stated as follows: 

"The proximity: force between two curved surfaces as a function 
of the separation degree of freedom s is approximately equal 

to the product of the geometrical, curvature index J 0  of the 
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gap between the surfaces and the universal proximity force 

function e(s) (the interaction energy per unit area between 

flat, parallel surfaces), augmented by the product of the 

geometrical peaking index J 1  of the gap and the universal 

proximity potential function &(s) (an indefinite integral 

of e(s)) 	For crevices, the first terni is absent and the 

second is a constant." 

The total force (including that due to the surface energy) is now, 

for gaps 

gaP 

- — 	= J
oe(s) + J1(s), 	 (13) 

and, for crevices with small overlaps, 

crevice  

- as 	
-2yJ0 + J 1 (0). 	 (14) 

Introducing the dimensionless quantities 

Es/b 	,, 	 (15) 

E 	fe(s) ds 	, 	 (16) 

01m- 
	

1 f&(s) ds , 	 (17) 
2yb 2  

S 

we may now write the total energy for a family of shapes that changes 

from a gap to a crevice at s=O in the following form 

V = 2yb[J() + bJ 1()] 	fbrO , (18a) 

V 	2yb[J0 -J 1b(0)J( -) 	for <0 , (18b) 
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where 

s 	.j(0) + J 1 b 1(0) ° 	 (19) 
cb 	...j + J 1b(0) 

The universal functions '(lJ, 	) were tabulated (for nuclear surfaces) 

in Ref. 1. 

We note that in the case of a gap with a zero value of the peaking 

index J  (this corresponds to a paraboloidal gap [see Section 4])  which 

turns into a crevice for s <0, the total energy may be written as 

V = 2ybJ00(C) 	, 	 (20a) 

where 

= t() 	 for. C>O 	 (20b) 

- 	 for C <0 , 	 (20c) 

with 

Cc = -(0) 

= 1.7817, for nuclear surfaces. 

This function (C)  is plotted in Fig. 3 as the solid curve. For C ( 0, 

is a straight line with unit slope. For C- 2.74 the function OM 

(the same as ()) is a pure exponential with a range 0.7176 (see footnote 

to Table I in Ref. 1). Approximating 0 (or •) in the interval 0 C< 2.74 

by a continuation of this exponential down to = 1.9475, joined smoothly 

to a cubic with value and slope at C = 0 matching the exact Thomas-Fermi 

function 0, results in the following formulae: 

-4.41 e "°7176 	, 	for 	> 1.9475 

(exact for C > 2.74), (21a) 
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p. 	 2 	 3 = 	-1.7817 + 0.92704 + 0.01696C - 0.051484 

for 0 	C < 1.9475 (21b) 

= -1.7817+C 	, 	 for CO 	. 	(21c) 

Also shown in Fig. 3 (as a dashed line) is a continuation of 0 to negative 

gap configurations, i.e., to overlapped systems with doubled densities. 

A cubic approximation to this part of 0 is 

-1.7817 + 0.9270C + 0.143C 2  - 0.090 , for ç< 0 . 	(21d) 

Equations (21a-21d) give useful approximations to the gap function 0 and 

the gap-crevice function 3 (see the circled points in Fig. 3). They are 

somewhat preferable to the "cubic-exponential" approximation •(Eq. (27) in 

Ref. I) in that they reproduce the Thomas-Fermi values exactly for > 2.74 

and are continuous (to within a few units in the fifth decimal) in value, 

slope and second derivative at the junction point C = 1.9475. 

A rough straight-lines approximation to • is: 

for 

for 

where 

Cc 
 = 1.7817 	v' •  

This is a very poor approximation in the tail (see the dotted lines 

in Fig. 3) but, because of its simplicity, is still of some use in semi-

quantitative studies of nuclear collision dynamics (see Ref. 3). 

The gap function (C) is sometimes referred to as The Proximity 

Theorem prediction for the interaction potential between nuclei. It 
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needs to be stressed again that whether one uses the gap function 

() or the crevice function (t) for negative t depends on whether one 

believes the physical situation in question to be better approximated by 

a pile-up of density in the overlap region or a redistribution of the 

density to a nearly uniform value. For high-energy nucleus-nucleus 

collisions the former situation might be relevant, but for low-energy 

collisions it is surely on the latter that one should focus one's 

attention. ("High" and "low" means collision energies per nucleon 

high or low compared to typical Fermi-motion energies in the colliding 

nuclei, some 20 MeV in order of magnitude.) But even 4' is expected to 

become less and less relevant as the neck or window between the two 

colliding systems opens up beyond the "geometrical" value defined by 

the intersection of the two overlapping surfaces describing the original 

nuclei. The opening up of the neck beyond the geometrical value would, 

in fact, be expected to.result in a. further saving in surface energy 

and a lowering of the potential below the estimate provided by using 

the function 	With the neck degree of freedom included, the potential 

energy is no longer a function of a single separation variable Cs or 

and a map of V in at least two dimensions is required. Suitable proximity 

corrections may still be used in such cases to improve the estimate of 

the nuclear.potential corresponding to a sum of volume and surface 

energy terms (see Refs. 1 and 3). 

Figure 4 shows how the (almost) smooth interaction function 

corresponding to is made up of the surface energy and the proximity 

energy, each of which has a marked discontinuity in the first derivative. 

The example corresponds to two equal paraboloids with tips characterized 
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by a radius of curvature R, equal to five times the surface width b. 

(The reduced radius of the gap is thus 	= 2.5b.) 

Figure 5 is a similar analysis of the potential energy for two 

equal spheres. There are again marked discontinuities in the slopes 

of V and VP  as the gap turns into a crevice at contact but the sum, V, 

is (nearly) smooth. (Only "nearly" because the interaction function 

e(D) underlying these examples is based on a Thomas-Fermi model of the 

surface for which e(0) differs from -2y by 7.3% and this leads to an 

imperfect cancellation between e(0) and 2y in Eq. (8b).) 

In Fig. 6 the interacting surfaces are equal circular cones with 

semi-opening angles of 600. In this case all the curves V, V, and V 

have continuous first derivatives. 

mall these figures the energies are in unitsof.2'b 2  (roughly 

2MeV) and the separation s is in units of b (roughly 1 fm).. 

4. 	THE GAP WIDTH DISTRIBUTION FUNCTION J(z) 

In Fig. 2 we have plotted J(z) for gaps corresponding to the 

following surfaces: a) two equal parabololds, b) two equal spheres, 

c) two unequal spheres, d) a sphere and a plane, e) two equal hyperbol-

oids, f) two equal cones. 	Because J is the only information about the 

interacting surfaces that enters into the proximity potential, Eq. (4), 

this potential is invariant with respect to deformations of the interact-

ing surfaces that preserve the areas Jdz between successivO width 

contours. The variety of interacting surfaces that are all characterized 

by the same width distribution function may be appreciated by the 

following construction. Imagine a set of width contours drawn on a 
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sheet of thick rubber representing the x-y plane, a series of holes made 

along each contour labeled by D, and a set of rods of length D inserted 

normally into the holes. The two ends of the rods may be imagined as 

defining the two interacting surfaces. Starting with these surfaces we 

may now generate a host of new surfaces by: a) stretching the rubber sheet 

according to transformations that preserve the areas between successive 

width contours, b) sliding the rods in their holes according to arbitrary 

prescriptions, and c) bending the rubber sheet (slightly). The multitude 

of surfaces generated in this way have clearly the same gap width distribution 

function and would be characterized by the same proximity interaction. 

In connection with Fig. 2, note that in the case of paraboloids, 

hyperboloids or cones, J is a single-valued function extending to infinite 

values of the argument z, and the proximity integral in Eq. (4) remains 

well-defined when the upper limit of integration is extended to infinity. 

In the case of a sphere R and a plane, thefunction Jtürns 

negative at z=R and would•continue to z=2R, where it would stop altogether: 

there are no gap widths greater than the diameter 2R augmented by the 

separation s. In this case the extension of the integral in Eq. (4) to 

infinity would include an unphysical contribution from z > 2R. The 

contribution from theinterval R<z<2R, where J is negative, subtracts 

the interaction between slabs whose separations correspond to the 

distances between the plane and the back side of the sphere. The 

effect is, qualitatively at least, in the sense of recognizing the 

finite thickness of the sphere.. Thus a proximity integral extended to 

D = 2R+s would correspond to the replacement of the interaction between 

a plane and a sphere by an integral over interactions per unit area of 

10, 
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a plane and a series of slabs, whose finite thicknesses were matched 

appropriately to the chords of the sphere. Formally the gap width D is, 

in this case, a double-valued function of x,y (even though J(z) remains 

single-valued). In the case of unequal spheres there are four distances 

between the front and back parts of the spheres and the interaction 

could be approximated by an integration over interactions per unit area 

of two finite slabs. Finally, one could formally recognize the front 

and back surfaces of a single sphere as associated with an interaction 

between negative (missing) semi-infinite slabs that have to be removed 

in order to convert infinite nuclear matter into a sphere. of finite 

dimensions. The proximity integral for two unequal spheres would then 

involve six gap widths for each given x,y. Two of the gap widths would 

be associated with the self-energies of the spheres. These would be 

constant for separated spheres (and would not affect the force between 

them), but would become functions of the overlap for crevices. The 

effects assoc.iated with these generalizations are small so long as the 

sizes of the objects in uestion:are large compared to the range 

of the interaction function e(D). We have not pursued their analysis 

to a stage where we felt that it would be useful to retain them 

without including other corrections that might be equally important. 

Figure 2 illustrates.the importance, in certain situations, of the 

present generalization of the Proximity Force Theorem. Thus for hyperbol-

oidal surfaces the curvature index J may become very small or even zero as 

the hyperboloids degenerate into cones. The standard Proximity Theorem 

would then give the (useless) prediction of a zero force between such 

surfaces, whereas the generalized theorem would give a finite answer that 

19 
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would, in fact, be accurate provided only the angles between the interact-

ing surfaces were not too large (but with no restrictions on the curvature 

at the tips). 

We have called the slope J 1  of the width distribution functiOn the 

"Peaking Index" of the gap because it distinguishes between functions 

such as a conical volcano peak (with positive J 1 ), a paraboloidal sugar-

loaf mountain (with J 1=O), and an even less peaked hemispherical boulder 

(with negative J1 ). 

Note finally that even complicated, multiply-connected width contour 

patterns may have simple width distribution functions (that can be 

approximated by expressions of the form J J 0 + J 1 D). Thus in the 

discussion of the cohesive forces between rough surfaces one might find 

it useful to approximate the gap by an infinite array of a mixture of 

spherical, paraboloidal, cylindrical, hyperboloidal or conical protrusions, 

all of which would lead approximately to gap width distribution functions 

of the above type. 
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FIGURE CAPTIONS 

Fig. 1. Schematic illustration of a Gap and a Crevice. In the case of 

a gap, the least separation s may be positive or negative, 

the latter corresponding to overlapping objects. In the case of 

a crevice, s is negative but the density is uniform throughout 

the single object (apart from a small diffuseness of the surface). 

Fig. 2. Examples of the width distribution function J (in units of 27rb) 

for a) two equal paraboloids, b) two equal spheres, c) two 

unequal spheres with a 2:1 ratio of radii, d) a sphere and a 

plane, e) two equal hyperboloids with asymptotes at 60° , 

f) two equal cones with semi-opening angle 600.  Thecurvature 

indexj0  was chosen to be the same in cases a-d, and corresponds 

to the value of J for two equal spheres with radii five times 

the surface width b. The plot is against z (the gap width D 

less the least separation s) in units of b. Only in the case 

of unequal spheres is the approximation J ft .J0 +J 1 z not exact. 

Fig. 3. The unIversal potential energy function 'I() (for a gap) and 

() (for a gap that turns into a crevice when C <0). The 

dashed and solid curves correspond to the exact Thomas-Fermi 

results and the circled points to cubic approximations for 

< 1.9475 and to an exponential for C > 1.9475 (whIch becomes 

exact for C > 2.74). The dots indicate a super-simple straight 

lines approximation to 
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Fig. 4. The surface, proximity and total energies (Vs,  VP  and V) for a 

paraboloidal gap that turns into a paraboloidal crevice when 

the separation s is negative. The gross discontinuities in 

the slopes of V and VP  at s=O almost cancel in the sum V by 

virtue of Eq. (8b). The mean curvature radius R in this example 

is 2.5 times the surface width b (b 1 fm). The energy unit 

2 is 2yb (about 2 MeV). 

Fig. 5. Same as Fig. 4, but for two equal spheres with radii five times 

the surface width b. 

Fig 6 Same as Figs 4 and S but for two equal cones with semi-opening 

angle 600 	In this case all the slopes are continuous at s=0 
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