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AMP-activated protein kinase (AMPK) is a master regulator
of energy homeostasis and a promising drug target for managing
metabolic diseases such as type 2 diabetes. Many pharmacolog-
ical AMPK activators, and possibly unidentified physiological
metabolites, bind to the allosteric drug and metabolite (ADaM)
site at the interface between the kinase domain (KD) in the
�-subunit and the carbohydrate-binding module (CBM) in the
�-subunit. Here, using double electron– electron resonance
(DEER) spectroscopy, we demonstrate that the CBM–KD inter-
action is partially dissociated and the interface highly disor-
dered in the absence of pharmacological ADaM site activators as
inferred from a low depth of modulation and broad DEER dis-
tance distributions. ADaM site ligands such as 991, and to a
lesser degree phosphorylation, stabilize the KD–CBM associa-
tion and strikingly reduce conformational heterogeneity in the
ADaM site. Our findings that the ADaM site, formed by the
KD–CBM interaction, can be modulated by diverse ligands and
by phosphorylation suggest that it may function as a hub for
integrating regulatory signals.

AMP-activated kinase (AMPK)3 is a heterotrimeric protein
kinase that in mammals can form up to 12 different isoforms

assembled from two alternative �-subunits (�1 and �2), two
alternative �-subunits (�1 and �2), and three alternative �-sub-
units (�1, �2, and �3) (1–3). AMPK senses the energy state of
cells by competitive binding of AMP, ADP, and ATP to two
exchangeable regulatory sites (CBS1 and CBS3) in its �-sub-
units (4 –6). In addition, AMP tightly binds to a third site
(CBS4), which appears to exchange only under nonphysiologi-
cal conditions (4 –6). Energy stress increases the ratios of AMP
and ADP to ATP, which readily changes occupancy of adenine
nucleotides at the “sensor site” CBS3 to activate AMPK’s kinase
activity (4, 7). In turn, activated AMPK reprograms cellular
metabolism, growth, and proliferation to re-establish energy
homeostasis by phosphorylation of key metabolic and regula-
tory proteins (8 –10). AMPK has also been proposed to be reg-
ulated by glycogen, which binds the carbohydrate-binding
module (CBM) in the �-subunits, but this regulatory effect
remains controversial (11–14).

In addition to its known physiological ligands, AMPK can be
activated by the binding of pharmacological activators to the
allosteric drug and metabolite (ADaM) site of AMPK (15, 16).
Similar to AMP, ADaM site agonists can activate AMPK both
by protection from dephosphorylation of the activation loop
and by direct (phosphorylation-independent) allosteric kinase
activation (16 –18). In addition, AMP can also stimulate activa-
tion loop phosphorylation (19, 20). Because adenine nucleo-
tides and their derivatives regulate many proteins in cells, they
are not selective AMPK activators. In contrast, ADaM site
ligands are selective for AMPK and therefore have promise as
therapeutic drugs for the treatment of metabolic diseases, most
prominently type 2 diabetes (10, 21, 22). A limitation of many
ADaM site agonists is their relatively inefficient activation of
�2-subunit– containing AMPK isoforms, which are the pre-
dominant isoforms in human liver and skeletal muscle, two
main therapeutic AMPK target organs (21, 23–25). Recent
crystal structures of AMPK �2�1�1 and �2�2�1 bound to the
�2-biased activator SC4 have provided first insight into �2-
ADaM site-binding determinants (26).

Crystal structures of ADaM ligand-bound AMPK complexes
reveal overall very similar AMPK conformations, with some-
what larger root mean square deviations in their CBMs (15, 16,
23, 26). However, several lines of evidence suggest that ADaM
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sites are dynamic in solution and can adopt a number of differ-
ent conformational states. First, the ADaM site ligand pocket is
adaptable and its shape and size is modulated by ligand binding.
For instance, we have calculated a pocket size of 486.5 Å3 for
AMPK �2�1�1 bound to 991 (PDB 4CFE); pocket sizes of 374.5
Å3 and 474.9 Å3, respectively, for AMPK �1�1�1 bound to the
A769662 derivatives Cl-A769662 (PDB 4QFR) and Br2-
A769662 (PDB 4QFS); pocket sizes of 547.1 Å3 and 522.7 Å3,
respectively, for AMPK �1�1�1 bound to the 991 derivatives
R734 and R739;4 and pocket sizes of 195.0 and 396.1 Å3, respec-
tively, for apo-AMPK �1�1�1 (PDB 4QFG) and apo-AMPK
�1�2�1 (PDB 4RER). Second, the first identified ADaM site ago-
nist, the thienopyridone A769662, only activates �1-subunit
containing complexes, requires phosphorylation of Ser-108 of
the CBM, and can synergize with AMP to fully activate AMPK
even in the absence of AMPK activation loop phosphorylation
(27, 28). In contrast, the cyclic benzimidazole 991 also activates
�2-containing AMPK complexes (albeit less potently than
�1-containing AMPK), does not absolutely require CBM phos-
phorylation for agonist activity, and in combination with AMP
fails to fully overcome the requirement for activation loop
phosphorylation (16, 29). Third, a 991-derivative AMPK acti-
vator, R739, selectively and robustly increases protection of the
activation loop of �2-containing AMPK against dephosphory-
lation without increasing direct allosteric AMPK activation.4
Fourth, the A769662 derivative MT47-100 is an agonist of
�1-containing complexes, but an inhibitor of �2-containing
complexes (30). Fifth, the ADaM site-forming KD–CBM inter-
action is destabilized by glycogen, which binds the CBM distal
to the ADaM site, and is stabilized by CBM phosphorylation
(13), whereas adenine nucleotides constrain the CBM flexibility
(4). Collectively, this indicates that ADaM site modulation
through AMPK ligands is highly complex and likely proceeds
through adoption of different ensembles of conformations in
solution. Full understanding of AMPK regulation through
ADaM site modulation therefore requires elucidation of the
conformational landscapes of the ADaM site in different
AMPK activity states.

To gain detailed insight into ADaM site conformational
states and their differential stabilization, we site-specifically
introduced pairs of nitroxide spin labels into AMPK to deter-
mine the distributions of distances between their electron spins
by DEER spectroscopy. In contrast to continuous wave electron
paramagnetic resonance (EPR) methods, which measure short
distances between spin pairs (5–25 Å) via spectral line broad-
ening, DEER provides interspin distance distributions in the
18 – 80-Å range with high accuracy by analysis of an acquired
dipolar evolution trace (31–33). This dipolar evolution func-
tion is analyzed to yield interspin distance information by way
of background signal subtraction and Pake transform. The
extent to which the position and width of peaks in a DEER
distance distribution are reliably determined depends, among
other things, on the data collection time (32), where the most
reliable fits are those where at least one full dipolar oscillation is
visible in, and thus fittable from, the trace. Regarding the data

presented under “Results”: for distances between 20 and 45 Å
both the position and width of DEER peaks are reliable (the
boundary of which is indicated by a red mark on the x-axis of
distance distribution plots, see, e.g. Fig. 2A); between 45 and 60
Å, the position, but not the width of peaks is reliable (this region
is bounded by a green mark on the x-axis), whereas at dis-
tances greater than 60 Å, the presence of interacting spin
populations are indicated, but neither their position nor
width is reliable. Because different protein preparations have
variations in activity and labeling efficiency, Fig. S1 visual-
izes the level of spectral reproducibility from two pairs of
independent protein preparations.

The amplitude of the dipolar evolution function, the “depth
of modulation” (DoM), can be used to estimate the fraction of
spins involved in discrete pairwise interactions within the dis-
tance range of the method (32), thus providing a means to
detect partial dissociation of a region bearing the labels. For
example, if a domain bearing one label partially dissociates from
the rest of the protein, thus moving the interspin distance out-
side of the detectable DEER range (�80 Å), the DoM will
decrease in proportion to the fraction dissociated. Although
other biophysical techniques such as FRET or hydrogen deute-
rium exchange (HDX) provide insight on averaged conforma-
tional states, DEER identifies distinct conformational states
and their fractional occupancies. Using this experimental
approach, we demonstrate that the ADaM site is only par-
tially formed and highly heterogeneous in the apo-state,
induced and greatly stabilized by ADaM site agonists, and
modulated by phosphorylation.

Results

A cysteine-free version of AMPK is catalytically active and
regulated by adenine nucleotides and 991

To site-specifically introduce DEER spin labels into the
AMPK holo-complex, we first mutated the 13 exposed cys-
teines in AMPK (Table S1). This allowed us to chemically intro-
duce nitroxide spin labels either into endogenous, exposed cys-
teines that we selectively excluded from mutation or into
cysteines introduced at selected positions by site-directed
mutagenesis. Given the pharmacological interest in the ADaM
site of �2-containing AMPK (21), we selected the �1(11–550)–
�2(76 –272)–�1(24 –327) complex, at the time the only �2-con-
taining holo-AMPK complex of known structure (PDB 4RER)
(13), for this study. We further introduced a maltose-binding
protein (MBP) tag at the N terminus of the �1-subunit, which
we have found to increase stability and solubility of the com-
plex. This “Cys-free” AMPK assembles normally and stochio-
metrically and is, as WT AMPK, phosphorylated by the AMPK
upstream kinase CaMKK� at its �- and �-subunits (Figs. S2A
and S3, A and B). It has been reported that AMPK with �2

C130A and C174A mutations cannot be activated by energy
stress in cells or in vitro (34). However, Cys-free MBP-�1�2�1

AMPK, in which the corresponding �1 residues Cys-132 and
Cys-176 are mutated to Ala and Ser, respectively, is clearly acti-
vated by AMP (although it has reduced catalytic activity). This
protein is also activated by the ADaM site ligand 991, and not by4 Y. Yan, X. E. Zhou, H. E. Xu, and K. Melcher, unpublished data.
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the �1-specific A769662 (Fig. S2B), a very similar behavior to
that of WT AMPK (16, 27, 35).

The catalytic center of protein kinases is located in a sub-
strate-binding cleft between the kinase N- and C-lobes. The
two lobes are connected by a flexible hinge that allows the two
lobes to move relative to each other to adopt two alternative
ensembles of conformations: open conformations in the
absence of bound substrate and closed conformations, indica-
tive of substrate-bound, active kinases (36). In this study, we
focused on the interspin distances between one nitroxide spin
label introduced into a solvent-exposed site (K88C) in the CBM
and a second introduced into one of three distinct sites of
the kinase domain (KD) C-lobe (Cys-132, Cys-211, and F225C;
Fig. 1, and Figs. S3C, S4, and S5). The high affinity nonhy-
drolyzable ATP-competitive inhibitor staurosporine arrests
kinase domains in a near closed state (37). Crystal structures
suggest that ADaM site ligands modulate both the CBM–KD
interface (through simultaneous binding of both the CBM and
KD) as well as the KD conformation (open/closed equilibrium
through induction of a helix in the CBM linker that stabilizes
the �C helix of the KD in its active conformation) (15, 16). Thus
distances between a spin label in the CBM domain and one in
the C-lobe of the KD allowed us to probe the effects of ligands
on only the ADaM site in the presence of staurosporine and on
both the ADaM site and kinase domain in the absence of
staurosporine.

We purified Cys-free AMPK with three combinations of
(re)introduced cysteines: (i) �2K88C–�1C132; (ii) �2K88C–
�1C211; and (iii) �2K88C–�1F225C. The spatial vector that
connects �2K88C (corresponds to human �1K89) and �1C132
(corresponds to human �2C130) passes through or borders
both the ADaM site, as indicated by the position of 991 in the

corresponding structure of 991-bound p-AMPK �2�1�1 �
AMP � staurosporine (PDB 4CFE, Fig. S5) (16), and the KD
catalytic cleft, as indicated by the position of staurosporine
(“proximal interaction”). In contrast, the longer spatial vectors
between the other two pairs of residues are more distant to both
ADaM site and KD cleft (“distal interactions”). As negative con-
trols, we purified Cys-free AMPK preparations with only a sin-
gle (re)introduced cysteine (only �2K88C, only �1C132, only
�1C211, and only �2F225C). As positive control, we left both
�1C132 and �1C211 nonmutated. These two cysteines both
reside within the conformationally stable kinase C-lobe.
We phosphorylated part of each AMPK preparation with
CaMKK�, re-purified the proteins, chemically introduced sul-
fhydryl-specific nitroxide spin labels, and removed excess label-
ing reagents. Finally, we confirmed activity and regulation of
the singly and dually labeled preparations prior to DEER spec-
troscopy. As expected, the four singly labeled control prepara-
tions yielded DEER signals indistinguishable from background,
whereas the �1C132 � �1C211 positive control yielded a sharp
single 31-Å peak (Fig. 2A), close to the 31.8-Å distance between
the spin labels modeled into the 4RER structure by Rosetta
energy minimization (see “Experimental procedures”).

The apo-ADaM site exhibits a high degree of structural
heterogeneity

In striking contrast to the above single intra-C-lobe distance
distribution in solution, all spectra of CBM–KD spin label pairs
in AMPK not bound to an ADaM ligand showed broad distance
distributions with multiple peaks (Fig. 2, B–D). The gray shad-
ing represents the extent of variation in the distance distribu-
tion allowed by the data, and hence represents an uncertainty in
the distribution. As is evident, the uncertainty is much larger
here than in the case of Fig. 2A. Thus, in the absence of ADaM
site ligands, the CBM–KD complex can adopt several confor-
mational states, both for nonphosphorylated (Fig. 2B), phos-
phorylated (p-; Fig. 2C), and staurosporine-stabilized, phos-
phorylated AMPK (Fig. 2D).

Pharmacological ADaM site ligands conformationally
constrain the ADaM site

When we added the ADaM site ligand 991, or its derivatives
R734 and R739 (all 10 �M, each), to nonphosphorylated AMPK,
all three compounds dramatically constrained the proximal
�2K88C–�1C132 interaction to a predominant distance of 40 Å
for 991, R734, and R739 with strongly depopulated long dis-
tance peaks (left column, Fig. 3). Even though �2K88 is located
in a loop in both the AMPK �1�2�1 apo and �2�1�1/991 struc-
tures, the distinct single distance peaks indicate that these com-
pounds largely fix the relative position of Lys-88. For the distal
�2K88C–�1C211 and �2K88C–�1F225C interactions (Fig. 3,
middle and right columns, respectively), 991 and derivatives
largely depopulated the dominant DEER distance peak at �41
Å and in the case of �2K88C–�1C211, 991, and R734 shifted the
�57 Å peak by 3–5 Å to a shorter distance. Therefore, these
ligands strongly reduce ADaM site heterogeneity, presumably
by stabilizing the CBM–KD interaction through their direct
interaction with both CBM and KD (15, 16). In addition, ADaM
site ligand binding induces a small expansion of the site (indi-

Staurosporine

K88CCBM

CD

KD
N-lobe

KD
C-lobe

C211

C132

F225C

Figure 1. Visualization of the three interaction pairs in AMPK �1�2�1
(PDB code 4RER) selected for DEER analysis. Nitroxide spin label orienta-
tions were determined by unbiased energy minimization. Gray mesh, empty
ADaM site ligand-binding pocket; CD, cyclodextrin.
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cated by arrows in Fig. 3). Although all AMPK structures in
complex with ADaM ligands were solved in the context of phos-
phorylated (or with phosphomimetic mutations) AMPK bound
to staurosporine and AMP, we note that all show a compound-
induced extension of the ADaM site pocket (see Introduction).
In the only set of crystal structures of the same AMPK protein,
p-AMPK �1�1�1 � AMP � staurosporine, in the presence and
absence of an ADaM agonist, the agonist Cl-A769662 had no
effect on the distance of the corresponding �1K89 –�1C209
interaction and slightly increased the distances of the other two
DEER interactions pairs (15).

KD and CBM are partially dissociated in the absence of ADaM
site ligands

In nonphosphorylated apo-AMPK, the distal �1C211–
�2K88C and �1F225C–�2K88C interactions exhibited low
DoM (Figs. S7–S9). Upon incubation with the ADaM site
ligands, particularly 991 and R739, the DoM of these same
labeled protein preparations increased appreciably (3-fold in
the presence of 991; Figs. S7–S9), indicating that spin label dis-

tances in a substantial fraction of apo-AMPK are outside of the
detectable DEER range (�80 Å), but brought into range by
ligand binding. In contrast to the two distal interactions,
the DoM of the �1C132–�2K88C interaction reproducibly
increased only weakly upon addition of 991, likely reflecting
the distance constraints of this interactions imposed by the
CBM linker (see “Discussion” and summary cartoon in Fig. 9).
Although a structure of nonphosphorylated, apo-AMPK with
resolved CBM is unavailable, these data are consistent with
luminescence proximity and structure results that indicate par-
tial CBM dissociation (13).

We further validated the ability of these compounds to
restrict partial CBM dissociation of a trans interaction between
the isolated KD and CBM using an AlphaScreen luminescence
proximity assay (Fig. 4A). This assay is sensitive both to the
distance of the two interacting domains (the shorter the dis-
tance, the stronger the signal) as well as to the fraction of CBM
and KD that interact with each other (the higher the fraction,
the stronger the signal). As shown in Fig. 4B and Fig. S6, 991 and
to a lesser degree its less potent derivatives R734 and R739
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Figure 2. The ADaM site adopts multiple conformations in apo-state. A, control DEER measurement. B–D, DEER spectra of AMPK in nonphosphorylated (B),
phosphorylated (p-) (C), and phosphorylated and staurosporine-bound state (D). The gray shading indicates the uncertainty range; the red and green vertical
bars on the x-axis indicate the confidence borders for peak width and position, respectively. Data in C and D are from the same protein preparation (phos-
phorylated AMPK) in the presence or absence of staurosporine.
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increased the luminescence signal, even though the distance
between CBM and KD within the DEER detection range
increases. This indicates that these compounds indeed
decrease dissociation between the KD and CBM. Interest-
ingly, 991 dose dependently increased the interaction
between the KD and the �2–CBM at least as much as the
interaction with the �1–CBM, suggesting that preferential
activation of �1 complexes by 991 is likely not only due to
forming more stable complexes.

Phosphorylation alters short and long distance KD–CBM
interactions

Phosphorylation of CBM Ser-108 is thought to stabilize the
ADaM site-forming KD–CBM interaction through a charge
interaction of the CBM phosphate group with a lysine side
chain in the KD (13, 15, 16). In agreement, addition of 991 to

phosphorylated AMPK increased the DoM �2-fold, consistent
with a smaller fraction of KD–CBM dissociation in phosphor-
ylated versus nonphosphorylated apo-AMPK (Figs. S7–S9). In
addition, within the range of the DEER technique, phosphory-
lation shifted the far 55– 60 Å peaks of the �1C132–�2K88C
and �1C211-�2K88C interactions to larger distances (just
beyond the 60 Å reliability mark), whereas the proximal
peaks in the 25–30-Å range depopulated (compare Fig. 5, B
and C).

Phosphorylation of 991-bound AMPK had little effect on the
dominant �2K88C–�1C132 and �2K88C–�1C211 peaks, but
shifted the �2K88C–�1F225C peaks to shorter distances (com-
pare Fig. 5, B and C). Moreover, whereas it is difficult to com-
pare the DoM of different protein preparations (phosphory-
lated versus nonphosphorylated AMPK), we note that
phosphorylation of 991-bound AMPK had no noticeable effect
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Figure 3. 991 and 991 derivatives conformationally stabilize the ADaM site. A–D, DEER spectra of nonphosphorylated AMPK in apo-state (A; same as Fig.
2B), or bound to 991 (B), R734 (C), or R739 (D). All data are from the same protein preparations in the presence or absence of the indicated ligands.
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on the exhibited DoM value, suggesting that 991 at a concen-
tration of 10 �M may efficiently stabilize the KD–CBM interac-
tion independent of the phosphorylation state of AMPK.

Staurosporine constrains the AMPK catalytic cleft differently
than 991

Addition of staurosporine to phosphorylated apo-AMPK
induced clear changes in DEER distance distributions (Fig. 2D)
with small reductions in the DoM (Figs. S7–S9). Specifically,
positions of the longest distance peaks observed for �2K88C–
�1C132 and �2K88C–�1C211 decreased by 5–10 Å, whereas
the peaks centered around �40 Å narrowed, indicating a reduc-
tion in structural heterogeneity (Fig. 2D). These changes likely
reflect the stabilization of the near closed KD conformation
that has been observed in KD crystal structures (37). Unexpect-
edly, when we added staurosporine to 991-complexed AMPK,
structural heterogeneity of the proximal (�2K88C–�1C132)
interaction increased (Fig. 5D), whereas distances of the distal
interaction shifted by 3–5 Å, strongly indicating that 991 and
staurosporine stabilize distinct sets of KD conformations (see
“Discussion”). Note that the experimentally determined DEER
distances in the contexts of both p-AMPK �1�2�1/991
(�2K88C–�1C132: 40 Å, �2K88C–�1C211: 52 Å, �2K88C–
�1C225: 40 Å) and -�1�2�1/991 � staurosporine (�2K88C–
�1C132: 43 Å, �2K88C-�1C211: 47 Å, �2K88C–�1C225: 43 Å)
are similar to the distances between the spin labels modeled
into the structure of p-AMPK �2�1�1/991 � staurosporine �
AMP (PDB 4CFE; �1K89C–�2C130: 41 Å, �1K89C–�2C209: 52
Å, �1K89C–�2C223: 47 Å).

AMP and ATP impart slight interspin distance changes in
phosphorylated AMPK

AMP and ATP competitively bind the CBS sites in the AMPK
�-subunit. HDX-MS has demonstrated that ATP, and more
strongly AMP, conformationally stabilize the CBM, suggesting
conformational connectivity between the CBS sites in the
�-subunit and the CBM of the �-subunit (4). In addition, ATP,
staurosporine, and at high concentrations also AMP (19) bind
the ATP-binding site in the catalytic cleft of the KD. AMP and
ATP (200 �M, each) binding to nonphosphorylated AMPK had
relatively minor effects on DEER distance distributions (Fig. 6),
whereas binding to phosphorylated AMPK induced slightly
more noticeable changes (Fig. 7). In particular, the far distance
(�62 Å) �2K88C–�1C211 peak seems to broaden to two sepa-
rate peaks, similar as in the presence of staurosporine (Fig. 2D),
whereas the �2K88C–�1F225C �38 Å peak upon ATP or stau-
rosporine binding became less populated and the 44-Å peak
slightly shifted and more populated (Fig. 7, B–D). Together, this
suggests that AMP and ATP may mildly affect KD–CBM con-
formational states, partially through binding to the catalytic
cleft.

Glycogen destabilizes the interaction between KD and CBM in
trans, but does not induce unambiguous changes in ADaM site
DEER spectra in the context of holo-AMPK

The interaction between the AMPK KD and CBM can be
reconstituted in trans using isolated domains (13). Glycogen
binding destabilizes the trans CBM–KD interaction and
increases the CBM–KD distance in the context of holo-AMPK,
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most prominently for nonphosphorylated AMPK (13). Fig. 8A
recapitulates the trans interaction data as full dose-response
curves for both WT AMPK �1�2�1 and AMPK �1�2�1 W99G, a
loss-of-function mutation in the carbohydrate-binding loop of
the CBM (14, 38). The compromised ability of glycogen to dis-
sociate the trans KD–CBM interaction in the W99G mutant (4
orders of magnitude increased IC50) strongly implies that the
effect of glycogen on the interaction between the isolated KD
and CBM depends on the direct binding of glycogen to the
carbohydrate-binding loop. Note that whereas cellular glyco-
gen concentrations are always above the IC50 determined in Fig.
8A, in cells glycogen binding requires dephosphorylation of the
CBM carbohydrate-binding loop (39).

When we recorded DEER spectra of the same preparations of
nonphosphorylated AMPK in the absence and presence of 2
mg/ml of glycogen, we observed small changes in DEER spectra

(the 36- and 43-Å �2K88C–�1C132 peaks collapsed to a single
39-Å peak and the 57-Å �2K88C–�1C211 shifted to 54 Å; Fig.
8). These changes are comparable with changes that can be
observed with different, independent preparations of the same
AMPK protein (see Fig. S1B). In the absence of additional
experiments, we can therefore not conclude that glycogen
induces changes in the DEER distance distributions analyzed.

Discussion

AMPK activation reduces blood glucose levels, improves
insulin sensitivity, inhibits fat synthesis and proliferation, and
mediates many of the beneficial effects of exercise and weight
loss. AMPK is therefore an attractive target for the treatment of
metabolic diseases. The most promising site to therapeutically
target AMPK is the ADaM site. Recently, Pfizer and Merck have
both developed first specific ADaM site-targeting AMPK ago-
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nists that can efficiently activate the therapeutically important
�2-containing AMPK complexes in vivo (23, 24). Given the high
potential of the ADaM site for the design of AMPK-activating
therapeutics, as well as its potential as binding pocket for
hypothesized, novel physiological AMPK regulators, it is
important to understand its conformational landscape and
dynamics. Currently, only one crystal structure of an ADaM
site ligand bound to a �2-containing AMPK complex has been
determined (26), which represents a single conformation snap-
shot. In contrast, biochemical characterization suggests that
different ligands and different � subunits induce different
AMPK activity states. DEER spectroscopy is a powerful bio-
physical tool to study the structural heterogeneity and confor-
mational landscape of dynamic proteins by determining the
distributions of interspin distances between site-specifically
introduced spin labels under various conditions inaccessible to
other techniques such as NMR, FRET/FCS, and X-ray crystal-
lography. Moreover, observed changes in the DEER modula-
tion depth when comparing samples in different ligand or
phosphorylation conditions can provide information on the
presence of spin label pairs beyond a distance of 80 Å, which
may be indicative of full or partial protein domain dissociation
with all other experimental conditions held constant. A limita-
tion in DEER accuracy is that the introduction of mutations and
spin labels in only partially solvent accessible local environ-
ments may induce local structural distortions and introduce a

systematic deviation in the distance measured from the native
physiological distance. Importantly, these errors should not
preclude identification of relative distance changes in the same
labeled protein under two different conditions.

Two crystal structures of phosphorylated, AMP- and stauro-
sporine-bound apo-AMPK have visualized the CBM bound to
the KD, similar as in AMPK bound to ADaM site ligands,
although with some CBM structural heterogeneity (13, 15). In
contrast, in a low resolution structure of nonphosphorylated
apo-AMPK the CBM was not resolved and the CBM linker was
displaced (13). In addition, as first pointed out by Calabrese et
al. (15), Ser-108 of the CBM can be phosphorylated through
cis-autophosphorylation (i.e. by the KD of the same AMPK het-
erotrimer) (28), which would require partial dissociation of the
CBM–KD packing seen in the crystal structures to allow non-
phosphorylated Ser-108 access to the KD catalytic cleft. Our
DEER data demonstrate that the CBM can indeed partially dis-
sociate in solution in apo-AMPK as evidenced by the low DoM
of the two distal interactions and the strong DoM increase upon
addition of ADaM site ligands. We have further shown by an
AlphaScreen luminescence proximity assay that 991, and with
less certainty also R734 and R739, can directly stabilize the
interaction between isolated CBM and KD proteins. Impor-
tantly, when the CBM–KD interaction is dissociated in the con-
text of holo-AMPK, CBM and KD still remain in proximity as
they remain part of the same heterotrimeric AMPK complex.
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Position of the CBM is mainly constrained by the CBM linker,
which at least in active AMPK makes intensive interactions
with the activation loop of the KD (7, 13, 16). These constraints
are the likely reason that the shorter proximal interaction,
which is closer to the linker, remains largely within a range of
�70 Å. Within the range of the technique, the data visualize the
high conformational heterogeneity of the CBM–KD interface
with a broad range of distance distributions. The ADaM ago-
nists 991, R734, and R739 dramatically constrained the broad
distributions, especially for the proximal interaction. Together,
this indicates that binding of ADaM site ligands both counter
CBM dissociation and conformationally stabilize the CBM–KD
interaction (Fig. 9).

In addition to ADaM site ligands, both phosphorylation and
staurosporine binding modulate the analyzed interactions as

expected from structural and biochemical analysis. In apo-
AMPK, the phosphate group of CBM pSer-108 stabilizes the
CBM–KD interaction by charge interaction with the KD (13,
15). In 991- and A769662-bound AMPK, the phosphate group
directly binds and stabilizes the ligand, consistent with a robust
increase in ligand affinity upon Ser-108 phosphorylation (15,
16, 27). Although staurosporine was expected to conformation-
ally constrain the analyzed interactions by stabilization of a
near-closed KD conformation, in the presence of 991 it
increased structural heterogeneity and shifted the dominant
DEER distance peaks. Staurosporine stabilizes kinase domains
by high affinity binding to their dynamic catalytic clefts,
whereas ADaM site ligands do so by inducing formation of a
helix in the CBM linker (“C-interacting helix”) that packs
against the KD �C helix (15, 16), a key regulatory element to
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shift the catalytic cleft equilibrium to the closed conformation
(36, 40). Although all structures of holo-AMPK have been
determined in the presence of staurosporine, comparison of
structures in which the CBM linker adopts the C-interacting
helix (e.g. PDB 4CFE, 4CFF, 4QFR, 4QFG, and 4QFS) with the
sole structure in which the C-interacting helix is not induced
(4RER) indeed indicates a small shift of the KD N-lobe toward
the C-interacting helix and away from the KD C-lobe. These
data therefore suggest that ADaM site ligands stabilize forma-
tion of an active KD conformation that is slightly different from
that stabilized by staurosporine (and possibly AMP), and that
therefore the presence of both staurosporine and 991 induces
formation of a broader distance distribution than that of 991 in
the absence of staurosporine. In contrast to AMPK phosphor-
ylation and staurosporine binding, adenine nucleotides, which
reduce hydrogen/deuterium exchange in the CBM (4), and gly-
cogen, which destabilizes the interaction between the isolated
CBM and kinase domains, induce only subtle changes in the
DEER spectra of analyzed interactions.

In conclusion, the ADaM site, formed by CBM–KD interac-
tion, is the key regulatory site for therapeutic AMPK interven-
tion. Although the CBM–KD interaction is partially dissociated
and highly heterogeneous in the apo-state, ADaM site ligands
dramatically stabilize the association and reduce ADaM site
heterogeneity. Phosphorylation, staurosporine, and possibly
adenine nucleotides and glycogen further modulate the
CBM–KD interaction, suggesting that the ADaM site may be a
hub for integrating regulatory signals.

Experimental procedures

Generation of Cys-free AMPK

To introduce Cys mutations into the �1 subunit, a codon-
optimized �1 subunit with 8 mutations (C108S, C176S, C229R,
C299S, C304S, C312S, C416Y, and C494P) was synthesized by
GenScript Biotech (Piscataway, NJ). Cys mutations in the �2-
and �1-subunits (�2-C178A and �1-C131S) were introduced by
site-specific mutagenesis using the QuikChange method (Agi-
lent Technologies, Santa Clara, CA). �1-C132A and �1-C211S
were introduced by site-specific mutagenesis where required.
All mutations were verified by DNA sequencing. Mutant open
reading frames were cloned into a tri-cistronic Escherichia coli
expression plasmid as described (13), only that the His6 tag was
replaced with a codon-optimized MBP tag.

Spin labeling

Phosphorylated or nonphosphorylated AMPK protein was
concentrated to about 10 mg/ml in 50 mM MES, pH 6.8, 150 mM

NaCl, 5 mM MgCl2, 0.5 mM EDTA, and 10% glycerol, mixed at a
1:10 molar ratio with 1-oxy-2,2,5,5,-tetramethylpyrrolinyl-3-
methyl)-methanethiosulfonate (HO-225, Toronto Research
Chemicals Inc., Toronto, Canada) and incubated at 4 °C over-
night. Excess HO-225 was removed by desalting through a GE
Healthcare PD-10 column, and glycerol was added to a final
concentration of 20%. Test compounds were added to final
concentrations of 200 �M for AMP and ATP; 10 �M for 991,
R734, and R739; and 2 mg/ml for glycogen. Test compounds
were incubated with labeled proteins for 30 min on ice prior to

freezing in liquid nitrogen. Final AMPK concentrations were
between 50 and 100 �M.

AMPK expression and purification

AMPK expression plasmids were transformed into E. coli
BL21(DE3). Cells were grown in LB medium to an A600 of �1 at
28 °C and induced with 100 �M isopropyl �-D-thiogalactopyra-
noside at 16 °C overnight. Cell pellets were re-suspended in 25
mM Tris, pH 8.0, 300 mM NaCl, 10% (v/v) glycerol, 5 mM MgCl2,
1 mM EDTA, 2 mM DTT, and lysed by French Press with pres-
sure set to 900 Pa. Lysates were cleared by centrifugation for 50
min at 20,000 � g, passed over a 10-ml MBP Trap HP column
(GE Healthcare, Little Chalfont, UK), and eluted with 25 mM

Tris, pH 8.0, 300 mM NaCl, 10% (v/v) glycerol, 5 mM MgCl2, 1
mM EDTA, 2 mM DTT, and 20 mM maltose. Phosphorylated
AMPK was generated by incubation with a 0.02-fold molar
ratio of CaMKK� in 0.2 mM AMP, 0.2 mM ATP, 2 mM CaCl2, 10
mM DTT, and 1 �M calmodulin at room temperature overnight
(16 h). The phosphorylated AMPK was re-purified by size-ex-
clusion chromatography through a HiLoad 26/60 Superdex 200
column (GE Healthcare) in 50 mM MES, pH 6.8, 150 mM NaCl,
5 mM MgCl2, 0.5 mM EDTA, and 10% (v/v) glycerol. The protein
eluted from the gel filtration column at a volume corresponding
to the size of a monomeric complex at a purity �95% as judged
by SDS-PAGE.

His6-GST-KD (human AMPK �1, residues 11–281) was
expressed from pET24 (Novagen) and induced and lysed as
above in 25 mM Tris, pH 7.5, 150 mM NaCl, 25 mM imidazole,
and 10% (v/v) glycerol. The cleared lysate was loaded on a 5-ml
Nickel HP column (GE Healthcare), washed with the same
buffer, and eluted with 25 mM Tris, pH 7.5, 150 mM NaCl, 500
mM imidazole, and 10% (v/v) glycerol. The protein was further
purified by chromatography though a HiLoad 16/600 Superdex
200 column (GE Healthcare) in 25 mM Tris, pH 8.0, 300 mM

NaCl, 10% (v/v) glycerol, 5 mM MgCl2, 1 mM EDTA, and 2 mM

DTT. The protein eluted from the gel filtration column at a
purity �95% as judged by SDS-PAGE.

Constructs encoding biotinylated CBM for AlphaScreen
assays were expressed in E. coli BL21(DE3) cells from a
pETDuet (Novagen) derivative vector. The first T7 polymerase-
driven expression unit of this vector contains the CBM ORF
(human AMPK �1, residues 78 –163, or �2, residues 76 –163) as
His6-SUMO-avitag fusion, the second site the E. coli biotin-
ligase gene BirA. The 14-amino acid avitag functions as a
defined in vivo biotinylation site in E. coli (41). Cells grown in
the presence of 40 �M biotin were lysed and fusion protein was
purified over Nickel HiTrap columns as above. The His6-
SUMO tag was released by SUMO protease His6-Ulp1 during
overnight dialysis against 25 mM Tris, pH 7.5, 150 mM NaCl, 25
mM imidazole, and 10% (v/v) glycerol. Tags, uncleaved protein,
and protease were removed by binding to a second Nickel
HiTrap column. Biotin-Avitag-CBM proteins were further
purified through a HiLoad 16/600 Superdex 200 column (GE
Healthcare) in 25 mM Tris, pH 8.0, 300 mM NaCl, 10% (v/v)
glycerol, 5 mM MgCl2, 1 mM EDTA, and 2 mM DTT. The pro-
tein eluted from the gel filtration column at a purity �95% as
judged by SDS-PAGE.

Conformational heterogeneity of AMPK

17004 J. Biol. Chem. (2018) 293(44) 16994 –17007



The volumes of the ADaM site ligand-binding pockets were
calculated with the program Voidoo (42) using program default
parameters and a probe with a radius of 1.4 Å. All structure
figures were prepared using PyMOL (DeLano Scientific LLC,
Palo Alto, CA).

Kinase assays

10 nM phosphorylated, or 1 �M nonphosphorylated, AMPK
were incubated with 14 �M His6-GST-SAMS in 10 mM Tris, pH
8.0, 5 mM MgCl2, 150 mM NaCl, 1 mM EDTA, 2 mM DTT, 250
�M unlabeled ATP, and 2 �Ci of [�-32P]ATP for 10 –20 min at
room temperature in a total volume of 15 �l. Reactions were
terminated by boiling in SDS sample buffer and subjected to
Tricine SDS-PAGE. Gels were stained with Coomassie Blue
and destained with 10% (v/v) methanol, 10% (v/v) acetic acid,
dried, and subjected to autoradiography using a FLA-5000
PhosphorImager (Fujifilm, Minato, Japan) and quantitated
using ImageGauge software.

Phosphoprotein gel stain

SDS-PAGE gels were fixed by two rounds of incubation in
�100 ml of fix solution (50% methanol and 10% acetic acid) for
30 min at room temperature with gentle agitation. Gels were
then washed three times in �100 ml of ultrapure water with
gentle agitation for 10 min, each, and stained by incubation in
60 ml of Pro-Q� Diamond phosphoprotein gel stain (Sigma)
with gentle agitation in the dark for 60 –90 min. Gels were
destained three times for 40 min, each, in 100 ml of destain
solution (20% acetonitrile, 50 mM sodium acetate, pH 4.0) with
gentle agitation at room temperature, protected from light. Fol-
lowing destaining by two 4-min washes with ultrapure water at
room temperature, gels were imaged using a Geliance 600
Imaging System (PerkinElmer Inc., Waltham, MA).

AlphaScreen assay

In vitro interactions between biotinylated CBM and His6-
tagged KD proteins were assessed by luminescence proximity
AlphaScreen (PerkinElmer Life Sciences) technology. Briefly,
the biotinylated binding partners were attached to streptavi-
din-coated donor beads, and His6-tagged proteins were
attached to nickel-chelated acceptor beads. The donor and
acceptor beads were brought into proximity by the interactions
between the His-tagged and biotinylated binding partners.
When excited by a laser beam of 680 nm, the donor beads emit
singlet oxygen that activates thioxene derivatives in the accep-
tor beads, which releases photons of 520 – 620 nm as the bind-
ing signal. The experiments were conducted at different strin-
gency levels, with 100 nM CBM, 100 nM KD, and 0.1 mg/ml of
bovine serum albumin (BSA; standard stringency) in Figs. 4 and
8A; 50 nM CBM, 100 nM KD, and no BSA (low stringency) in Fig.
S6A; 50 nM CBM, 100 nM KD, and 0.2 mg/ml of BSA (moderate
stringency) in Fig. S6B; and with �25 nM bead-bound CMB,
�50 nM bead-bound KD, 0.2 mg/ml of BSA (high stringency) in
Fig. S6C in the presence of 5 �g/ml of donor and acceptor
beads, each, in a buffer of 50 mM MOPS, pH 7.4, 50 mM NaF,
and 50 �M CHAPS. The results were based on three experi-
ments (2 experiments for Fig. S6C) with standard errors typi-
cally less than 10% of the measurements.

Pulsed DEER spectroscopy

For pulsed DEER spectroscopy, a 20 –35-�l sample of spin-
labeled protein in a buffer solution containing 20% (v/v) glyc-
erol was placed in a 2.0/2.4-mm borosilicate capillary (Vitro-
com, Mountain Lakes, NJ) and then flash frozen in liquid
nitrogen. Sample temperature was maintained at 50 K by a
recirculating/closed-loop helium cryocooler and compressor
system (Cold Edge Technologies, Allentown, PA). The four-
pulse Q-band DEER experiments were conducted on a Bruker
Elexsys 580 spectrometer fitted with a E5106400 cavity resona-
tor. Pulse lengths were optimized via a nutation experiment but
ranged from 12 to 22 ns (�/2) and 24 to 44 ns (�); pulses were
amplified with a TWT amplifier (Applied Engineering Systems,
Fort Worth, TX). Observed frequency was set to a spectral posi-
tion 2 G downfield of the low and central resonance point of
inflection, and the pump envelope was a 50-MHz wide square-
chirp pulse (generated by a Bruker arbitrary waveform genera-
tor) set at 70 MHz down frequency from the observed position.
All dipolar data were analyzed using a custom program (“Long
Distances”) written by Christian Altenbach in LabVIEW
(National Instruments Corp., Austin, TX); software is available
online (43) and its use is described elsewhere (44). All back-
ground-subtracted dipolar evolution data are shown in Figs.
S7–S9. Peak uncertainty ranges (gray shaded area in all spectra)
were obtained by minute perturbation of DEER analysis back-
ground subtraction function and by combining the resulting
fits; this procedure is automated on the “errors” tab of “long
distances.”

Spin label modeling

Initial models of HO-225 spin-labeled 991-bound (PDB
4CFE) and cyclodextrin-bound (PDB 4RER) AMPK were gen-
erated by fixed backbone design “fixbb” within Rosetta3.6 using
RosettaEPR’s “R1A” side chain parameters (45, 46). Backbone
restrained all-atom refinement was performed using Rosetta’s
standard “relax” protocol with increased 	1/	2 rotamer sam-
pling to generate 1000 possible structures for both HO-225
labeled AMPKs. The most energetically favorable model, as
determined by the internal Rosetta energy function, was used
for Fig. 1 and Fig. S5 and for calculation of label distances.
Rosetta inputs and pipeline are available upon request.
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