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Abstract 

 
Epidemiology and Pedagogy: Approaches to examining disease dynamics and developing anti-

racist teaching practices. 
 

by 

Whitney Ijeoma Mgbara 
 

Doctor of Philosophy in Environmental Science, Policy, and Management 
 

University of California, Berkeley 
 

Professor Damian Elias, Chair 
 
My dissertation integrates theories and methods from pathogen ecology, infectious disease 
epidemiology and anti-racist pedagogy. For the first part of my dissertation, I focus on two 
environmentally- mediated, infectious diseases impacting the respiratory system, COVID-19 and 
coccidioidomycosis. My first chapter reviews key environmental features that characterize the soil 
niche of the two known fungal species in the Coccidioides genus, the etiologic agents for 
coccidioidomycosis. In this chapter, I aim to understand the environmental biology of 
Coccidioides species, C. immitis and C. posadasii, and factors that influence the pathogens’ life 
history. My second chapter explores the most important health, social, and environmental factors 
impacting transmission and mortality rates in US counties to determine the sectors of society most 
vulnerable to infection and mortality during the COVID-19 pandemic. For the last part of my 
dissertation, I outline a pedagogical framework which integrates social theories in methods for 
anti-racist praxis. In my third chapter I present a pedagogical framework with anti-racist principles 
for developing a course centered on uplifting racially minoritized groups in higher education. 
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Introduction 
 
My dissertation examined concepts related to the epidemiology and etiology of infectious, 
respiratory diseases (COVID-19 and coccidioidomycosis) as well as anti-racism in 
environmental sciences and higher education.  

COVID-19 and Coccidioidomycosis  
Infectious diseases are a constantly evolving threat to public. The impact of infectious disease on 
human populations is a function of many factors including environmental conditions, pathogen 
biology, social and cultural behaviors, and public policy. For environmentally-mediated 
infectious diseases, there are many aspects to disease lifecycle to consider for disease 
management, including emergence from reservoir populations, zoonoses transmitted through 
unconventional agents, and impact on human societies. Using dynamic approaches for analyzing 
disease systems, I examined the environmental and population-level mechanics that influence 
transmission of the virus SARS-CoV-2, the etiological agent for COVID-19. Also, I examined 
breadth of literature to summarize our understanding of the soil niche for the pathogenic fungal 
species Coccidioides immitis and Coccidioides posadasii, the etiological agents for 
coccidioidomycosis.  
 
It’s important to note that COVID-19 and coccidioidomycosis are both known to 
disproportionately impact racially marginalized communities in the US due to differences in 
susceptibility for severe outcomes and inequitable exposure. For example, data indicates that 
black and brown communities in the United States are more likely to suffer severe illness and 
mortality from COVID-19 1–4. Likewise, coccidioidomycosis is a major environmental justice 
concern. Coccidioidomycosis impacts the experiences for those who suffer the risk of high 
exposure of dust particles which carry the infective fungal spores produced by the Coccidioides 
species (henceforth Coccidioides) which typically includes individuals with occupations that are 
based outdoors and incarcerated individuals in endemic areas 5–8. Additionally, it has been shown 
that people identifying as Black or Filipino appear to be at higher risk for disseminated disease 
after contracting coccidioidomycosis in California 9–12. 
 
In Chapter 1, I synthesize literature describing environmental factors driving establishment, 
growth, and persistence for Coccidioides. I discuss current evidence on associations between 
climate and meteorology and the spatiotemporal distribution of Coccidioides and interpret these 
findings according to specific life stages of the fungus, including spore establishment, mycelial 
growth, and spore dispersal. Next, I summarize evidence on soil properties that may support 
Coccidioides growth. Then, I discuss specific Coccidioides traits that may provide the fungus 
with a competitive advantage in harsh soil conditions that characterize the arid and semiarid 
environments where it grows. Finally, I describe key gaps in our knowledge on Coccidioides 
ecology in soil, including the potential role of small burrowing mammals as important reservoir 
hosts for Coccidioides. 
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In Chapter 2, looks at COVID-19 outcomes across the United States (excluding counties in 
Alaska, Puerto Rico, and Hawaii) to explore the relative importance of different types of social, 
physical, and environmental factors on COVID-19 transmission and mortality 13. I quantify the 
relationship between per capita COVID-19 outcomes and county-level physical and mental 
health, environmental pollution, access to health care, demographic characteristics, vulnerable 
population scores, and other epidemiological data.  
 
By pursuing the gaps in our understanding of county-level features related to COVID-19 
incidence and mortality as well as the environmental niche and biology of Coccidioides, I hope 
to offer information that can improve management of COVID-19 and coccidioidomycosis. 

Anti-racism in Higher Education 
For my final chapter, I detail a key example of pedagogical anti-racism efforts in higher 
education. During the initial days of the COVID-19 pandemic in 2020, there was an uptick in 
media-covered deaths of unarmed Black men and women in the US 14–16. Academic departments 
across the United States saw an increase in efforts to integrate belonging, diversity, equity, 
justice, and inclusion initiatives into their programs. In this vein, I was part of a team that 
developed and led a 16-week semester course in the Environmental Science, Policy and 
Management (ESPM) department at the University of California, Berkeley, “ESPM 290: Critical 
Engagements in Anti-Racist Environmental Scholarship''.  The course sought to cultivate anti-
racism mindsets through collaborative learning and anti-racist action in academic contexts from 
individual researchers to the College.  
 
In this chapter, I draw on my experiences from two years of developing and teaching the course 
to present a theoretical and pedagogical framework for course design aimed at long-term, action-
oriented ant-racist engagement. First, I outline our theory of change and provide an overview of 
our teaching philosophy, which includes attending to curriculum, classroom structures, and 
teaching practices. Then, I highlight elements that were critical to the course’s impact: (1) 
engaging with a lexicon around anti-racism, (2) centering the knowledge of Black academics, (3) 
flattening institutional hierarchies in academia, (4) exploring anti-racist principles in mentoring, 
research, the classroom, and other settings, and (5) developing action plans for long-term anti-
racism praxis. Overall, this chapter offers a model for those seeking to implement anti-racist 
praxis through coursework and long-form professional development training for academics. 
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Chapter 1 | The soil niche of Coccidioides: implications 
for coccidioidomycosis epidemiology and ecology      
 
Whitney Mgbara, Isabel Jones, Jennifer R. Head, Erika Lee, Amanda Weaver, Simon K. Campo, 
Robert Wagner, Abinash Bhattachan, Phil Collender, John Taylor, Justin V. Remais  
 
Included as a dissertation chapter with permission from co-authors. 

Abstract 

Coccidioidomycosis is a fungal infection caused by species of the Coccidioides genus, 
Coccidioides posadasii and Coccidioides immitis (henceforth Coccidioides). Coccidioides grows 
as a filamentous fungus in soil and is dispersed via airborne spores, inhalation of which can lead 
to infection in humans. Coccidioidomycosis incidence has increased dramatically across the 
Southwestern United States in recent decades, yet the climatic, meteorological, and edaphic 
(soil) features that describe the distribution of C. immitis and C. posadasii in soil remain 
unresolved. Here, we synthesize literature describing environmental factors driving Coccidioides 
establishment, growth, and persistence in soils of the Southwestern United States. First, we 
discuss current evidence on associations between climate and meteorology and the 
spatiotemporal distribution of Coccidioides and interpret these findings according to specific life 
stages of the fungus, including spore establishment, mycelial growth, and spore dispersal. Next, 
we summarize evidence on soil properties that may support Coccidioides growth. Then, we 
discuss specific Coccidioides traits that may provide the fungus with a competitive advantage in 
harsh soil conditions that characterize the arid and semiarid environments where it grows. 
Finally, we describe key gaps in our knowledge on Coccidioides ecology in soil, including the 
potential role of small burrowing mammals as important reservoir hosts for Coccidioides. 

Introduction 
Coccidioidomycosis, commonly known as Valley fever, is a granulomatous fungal infection 1–5. 
More than 95 percent of cases are reported in Arizona and California is endemic 6,7. Disease 
typically presents as a mild respiratory illness or pneumonia but can lead to rare forms of 
disseminated disease or death 5. Much research has focused on the environmental and social 
factors associated with coccidioidomycosis incidence in humans, but examination of the 
ecological factors that determine where, when, and under what conditions the fungal pathogen 
thrives in soil has been limited. 
 
The etiologic agent for coccidioidomycosis a group of soil-dwelling fungal species in the 
Coccidioides genus. The Coccidioides species are spore-forming ascomycetes in the 
Onygenaceae family 8,9, which include a group of keratin-consuming fungi often associated with 
animals 8,10. There are two species within the genus Coccidioides that are recognized, C. immitis 
and C. posadasii. The Coccidioides species (henceforth Coccidioides) is a thermally dimorphic 
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fungus that grows as spore-forming mycelia consisting of septate hyphae in soil, and spherules 
encasing endospores in mammalian hosts 11–13. These morphologies constitute the two potential 
life cycles of the fungus: the saprobic and the parasitic (Figure 1). During the saprobic life cycle, 
arthroconidia grow within alternating hyphal septa. As conditions dry and hyphae desiccate, the 
light weight arthroconidia may become airborne following soil disturbance caused by natural 
processes (e.g., burrowing, windstorms, or earthquakes) or anthropogenic processes (e.g., 
construction, agriculture, or excavation of archeological sites) 14–19. Airborne arthroconidia may 
settle in a conducive soil environment and germinate, thus continuing the saprobic life cycle, or 
may be inhaled by susceptible mammalian hosts, initiating the parasitic life stage. Once within 
the host, the parasitic phase begins with the production of thick-walled spherules that develop 
endospores as maturation progresses (Figure 1). C. posadasii has been isolated from soils across 
a broad geographic range, including in Arizona, Nevada, New Mexico, western Texas, Mexico, 
and Central and South America. C. immitis occupies a smaller geographic range, and is typically 
found in the desert regions of central and southern California, extending into Baja California, and 
as far north as Washington State 20,21. Overlap in the two species’ distributions has been observed 
in southern California and Baja California 22. 
 
While the life cycle and geographic range of C. posadasii and C. immitis is well described, 
information on their ecology in soils is lacking. Broadly, detection of Coccidioides has been 
linked to undisturbed and uncultivated soils 23, and several outbreaks of coccidioidomycosis have 
been documented following the excavation of undisturbed soils 14,24–28. Where the fungus has 
been isolated, it has been observed to be unevenly distributed, and no one set of physical, 
biological, and biogeochemical characteristics has thus far consistently described its soil niche 
12,29. Moreover, C. posadasii and C. immitis may have evolved ecological niches unique to their 
geographic ranges (e.g., differential thermotolerance observed between the two species may 
reflect adaptation to different climates) 30. As incidence of Coccidioides infection rises across the 
southwestern United States, and as concern that the Coccidioides range may expand under future 
climate change scenarios grows 31, it is essential to synthesize current knowledge on the 
ecological soil niche of Coccidioides to support scientific and public health efforts to better 
understand and predict Coccidioides growth in soil, and mitigate human infection risk.  
 
Here, we review literature describing biotic and abiotic factors that support Coccidioides 
establishment, growth, and persistence in soils of the southwestern United States. We assess 
climatic, meteorologic, and edaphic (soil) properties that influence the saprobic Coccidioides life 
cycle, as well as biological interactions with other fungal species that altogether define the 
ecological niche of Coccidioides in soil. First, we focus on how key climatic and meteorologic 
(e.g., precipitation, temperature, humidity) characteristics might broadly explain the distribution 
of Coccidioides in space and time, with specific focus on climate and meteorologic influences on 
different stages of the saprobic cycle (spore establishment, mycelial growth, and arthroconidia 
dispersal). Next, we consider edaphic properties (e.g., soil texture, soil porosity, soil moisture, 
nutrients, salinity, alkalinity, and presence of animal burrows) that may influence the distribution 
of the fungus at a finer scale within the soil matrix. Then, we explore potential competitive 
advantages that Coccidioides may possess under certain climatic and edaphic circumstances that 
allow it to survive in harsh arid and semiarid environments 29,32–34. Last, we discuss key research 
gaps needed to provide a deeper, quantitative understanding of the organism’s soil niche. 
Ultimately, we aim to provide a comprehensive description of our current understanding of the 
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Coccidioides soil niche, which is crucial to inform environmentally targeted public health 
interventions and control strategies. 

Review and Synthesis 

Climate and Meteorology 
Meteorological and climate variables play a key role in the saprobic phase of the Coccidioides 
lifecycle. Soil moisture initiates mycelial growth35, as moisture enables spores to germinate into 
branching, filamentous structures called hyphae. The network of hyphae creates the mycelium. 
Analysis of genes involved in metabolic processes suggests that mycelia derive nutrients from 
nonliving organic matter and animal keratin 8. Within individual hyphal cells, barrel-shaped 
arthroconidia (spores) grow. Over periods of prolonged dry conditions, hyphal cells desiccate, 
and dead, empty, autolyzed cells split down their middle, leaving half of the dead cell on each 
end of the living arthroconidium. When dry, contaminated soils are disturbed, such as through 
wind erosion or construction, arthroconidia can be become airborne and disperse via soil and 
dust dispersion. This phenomenon of alternating wet and dry periods influencing Coccidioides 
mycelial growth (moist soil during relatively cool, moist weather) and spore dispersion (dusty, 
windy surface soil conditions and relatively warm, dry weather) has been referred to as the 
“grow and blow” hypothesis 36,37. This suggests soil moisture is a major limiting factor that 
influences Coccidioides populations and, subsequent, disease burden.  
 
In accordance with Coccidioides’ climate-sensitive life cycle, changes in precipitation, 
temperature, and drought conditions have been identified as important predictors of Coccidioides 
presence in soils 31,35,38,39. While most soil fungi thrive in conditions that maintain a moisture rich 
soil environment, Coccidioides are typically found in arid environments with distinct wet 
seasons with mild temperatures and distinct dry seasons with high temperatures in which there is 
little to no rain 40. Alternating wet-dry climate conditions lead to seasonal periods of mycelial 
growth and arthroconidia “spore” production, which may in turn produce seasonal patterns of 
human infection. Nearly half of the annual precipitation in the southern U.S. falls between 
October and March 41, with distinct seasonal patterns across the endemic states. California 
exhibits a singular seasonal peak in precipitation, receiving over 80-90 percent of its 
precipitation during this cool winter period 41. Precipitation in Arizona has two distinct seasons, 
with about 50-60 percent falling during winter, and another 40-50 percent during the summer 
(July – September) monsoon months 42. Regional and interannual differences in rain intensity 
(e.g. monsoons) and precipitation timing may drive spatio-temporal differences in observed 
seasonality of coccidioidomycosis in people 38. Here, we review the impacts of precipitation and 
soil moisture, ambient temperature, and drought conditions on the Coccidioides soil niche in 
more detail. 

Precipitation and soil moisture  
Precipitation and soil moisture are critical determinants of fungal growth in soil 12,36,39,43. While 
directly measuring the relationship between soil moisture content and Coccidioides presence in 
soil is challenging due to the sporadic distribution of the fungus in space and time, there is 
evidence that Coccidioides is more likely to be detected in soil following wet periods as 
compared with dry periods 44. In a study by Egeberg and Ely (1956) conducted in the southern 
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San Joaquin Valley, roughly 16 percent of soil samples (19/120) collected at the end of the wet 
season (April) were positive for C. immitis versus 4 percent of soil samples (16/380) collected at 
the end of the dry season (January)44. The depth at which C. immitis was detected also varied 
between the two seasons: at the end of the dry season, three of the four positive samples came 
from soil depths of 10-30 cm, whereas at the end of the wet season, all but one positive sample 
(15/16) were collected from surface soils 44. This distribution corresponds to soil moisture 
dynamics, where moisture is retained at sub-surface levels in dry conditions, but across the entire 
soil column when soil is saturated. Thus, C. immitis hyphae may seek moisture at greater sub-
surface depths when soil moisture is limited during dry periods 45–47. Soil moisture content may 
also influence spatial (rather than spatio-temporal) Coccidioides presence: locations adjacent to 
stream beds and stream banks have been linked with Coccidioides presence, both in soil and in 
air samples collected adjacent to stream beds.3,48,49 
 
While soil moisture is a fundamental requirement for Coccidioides growth, the fungus is not 
known to grow in soils that are frequently saturated. Waterlogged pores in soil may restrict space 
and oxygen needed for filamentous fungi to extend or grow 50, and abundant moisture may 
stimulate competitive microbial activity 12,36,39. Studies assessing mean annual precipitation in 
California suggest mean annual precipitation in excess of 600 mm decreases the disease burden 
and, therefore, the prevalence of C. immitis in soils 38. However, within this range of 
precipitation, fine-scale distribution of Coccidioides is impacted by many factors that further 
influence its soil niche, including soil texture (i.e., proportion of sand, silt, and clay), presence of 
small burrowing mammals, organic matter from flora and fauna, and abundance of microbes 24,43.  

Temperature and humidity 
Temperature and humidity play a major role in defining the soil niche for Coccidioides, both 
directly and indirectly influencing the viability of un-germinated spores, hyphal growth, and the 
lysis of hyphae and subsequent release of infectious arthroconidia 31,37,38,50–57. Evidence suggests 
that Coccidioides spores are adapted to the thermal rigors of arid habitats, and possess hardy cell 
walls and protective enzymes to withstand extreme environmental conditions 58. Laboratory 
studies found that C. immitis arthroconidia can remain viable across a wide range of 
temperatures, from -15°C to 37°C, as well as a wide range of relative humidity, from 10 to 95 
percent 53. However, the viability of arthroconidia may be reduced by extreme environmental 
conditions, including intense ultraviolet light and high surface temperatures 44,59. For instance, in 
another laboratory study, temperatures near or greater than 50°C inactivated Coccidioides spores 
and the number of viable spores decreased by 45 percent over a one month period and nearly 100 
percent over a six-month period when low humidity (10 percent) was coupled with high 
temperature (37°C) 53. Increasing humidity prolonged spore viability across all temperatures 
tested. For instance, increasing humidity from 10 percent to 95 percent, while keeping 
temperatures at 37°C was associated with only a 9 percent loss of viable spores over one month 
and a 48 percent loss over a six-month period 53.  
 
Areas known to harbor Coccidioides have been classified as hyperthermic (overheated) arid, 
thermic (heated) arid, and semiarid 50. Fisher et al. (2007) provide data on the ranges of annual 
ambient air temperatures across government weather stations in Arizona, California, and Utah 
locales with known Coccidioides habitats 50. The average annual low temperature values ranged 
from -0.5°C to 12.7°C while the average annual high temperature values ranged from 17.7°C to 
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27.7°C 50.  While the annual air temperature range provided by Fisher et al. may approximate the 
optimal soil temperature range for Coccidioides growth, mycelial growth rates may vary 
substantially along gradients of soil depth according to the temperature profile of the soil column 
50. Also, spore survival may be low within soils that reach very high temperatures, particularly at 
the surface where energy transfer is highest, due to heat and pressure sensitivity 50. Indirect 
effects of temperature on Coccidioides survival and growth, mediated through soil moisture are 
discussed in the next section. 

Seasonal soil moisture deficit and drought 
Temperature and precipitation interact to determine soil moisture 60,61. Because precipitation in 
the southern US follows distinct annual (California) or biannual (Arizona) seasons, endemic 
regions experience periods with low soil moisture, during which the surface soil no longer 
provides sufficient moisture for growth of soil microbes 62–65. Under such conditions, microbes 
may suffer osmotic stress, a rapid or sudden change in the movement of water 66,67. Organisms 
cope with osmotic stress in various ways, and certain fungi have specific adaptations to 
withstand very low water levels, including production of spores 66,67.  
 

Accordingly, soil moisture deficits influence the short-term production of arthroconidia. During 
seasonal dry periods, the hyphal fragmentation and subsequent production of arthroconidia 
begins near the soil surface 50,59,68. This morphological change is in direct response to the 
depletion of nutrients, moisture, or other resource deficits or environmental stresses 59. Thus, 
while soil moisture deficits may delay hyphal growth in the long-term, it may accelerate 
arthroconidia production in the short-term. There is limited research on the physiological 
responses to soil moisture deficit and drought demonstrating this phenomenon for Coccidioides 
mycelia and arthroconidia. Particularly absent is research that might confirm the degree and 
duration of moisture deficit necessary to initiate the fragmentation of hyphae, and research 
characterizing the conversion time from hyphae to arthroconidia at given degrees of dryness. 
 
Beyond inter-annual soil moisture deficits, the southwestern US is prone to extended periods of 
drought. A drought is defined as a period of anomalously dry conditions that results in water-
related problems and can be classified into types. Agricultural drought is defined by anomalously 
low soil moisture 69 and, thus, thought to be most relevant for Coccidioides. While periods of 
low precipitation have been historically common, anthropogenic warming may have exacerbated 
droughts in recent years 70–73. Indeed, the emerging 2000-2021 megadrought occurring in the 
southwestern US is thought to be rapidly intensifying due to record high temperatures and, has 
already resulted in the driest 22-year period in California since 800 CE 74. As spore-producing 
fungi that can persist in arid soils, it is speculated that Coccidioides have a competitive 
advantage over competing organisms within the soil niche following a prolonged absence of 
moisture and water at the soil surface 34,52,75.   
 
This hypothesized competitive advantage may be conferred via various pathways. For example, 
researchers suspect that if resources are limited (low water availability) or local conditions 
change (increased surface temperatures), the hyphae “retreat” or grow away from the soil surface 
by means of 1) inactivating hyphae near the surface and 2) continuing growth of hyphae along 
those protected from extreme dry, resource poor conditions in lower strata 44,46,57,76. In this sense, 
Coccidioides may seek refuge for lower temperatures and increased moisture conditions in 
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deeper soils. While the actual distance traveled by Coccidioides in seeking refuge is not known, 
Coccidioides-positive samples collected from the southern San Joaquin Valley during the dry 
season were more likely to have been found at depths of 10.16 to 30.48 centimeters beneath the 
surface as compared to positive samples collected from the wet season 77.  
 
Another idea is that other microbes that compete for resources are eliminated by harsh conditions 
that Coccidioides can tolerate. Observations of the interactive (e.g., symbiotic, competitive, 
antagonistic) behaviors of C. immitis with differing microbes in the mixed cultures of soil 
isolation plates support the hypothesis that Coccidioides may be a poor competitor for nutrients 
and biological space when compared with certain fungi or bacteria 51,78. Microbes including 
bacteria such as Bacillus subtilis and Streptomyces spp., may exhibit strong anti- Coccidioides 
properties in the soil 78. Additionally, a plant endophyte, Phialocephala, was negatively 
associated with detection of Coccidioides DNA from soils in Washington state 79. However, 
laboratory studies demonstrate that C. immitis spores can remain viable through climatological 
extremes, including low precipitation and intense heat, which may inactivate other species 53, and 
field study confirms that the same strain of Coccidioides can persist in soils for over six years 79. 
As a filamentous fungus, Coccidioides’s hardy cell structures and ability to branch to more 
favorable depths may enhance its survival during extremes, among other factors. Thus, 
elimination of some competitors from the soil may permit Coccidioides to expand more freely 
when favorable conditions return. Taken together, these ideas form what is called the “soil 
sterilization” hypothesis 12,35,38,54,80.  
 
Large die-offs of mammalian populations have been observed during drought 81, providing a 
third potential pathway yielding a competitive advantage for Coccidioides. Rodent hosts produce 
granulomas to entrap the parasitic spherules of Coccidioides within their lungs. When the rodent 
dies, the granuloma no longer functions and the rodent body temperature drops, permitting 
released spherules to convert to hyphae, either directly or via endospores 82. The host’s body may 
provide moisture and nutrients for hyphal proliferation. This hypothesis is termed the “endozoan, 
small-mammal reservoir hypothesis”, and is discussed later in the review 83. Both the “soil 
sterilization” and the endozoan hypothesis suggest that Coccidioides may proliferate when 
precipitation wets the soil following drought periods, but field evidence to confirm each theory is 
lacking.  

Epidemiologic evidence supporting Coccidioides' climatic niche 
A large body of epidemiologic evidence has demonstrated an association between human 
coccidioidomycosis incidence with climatic and meteorologic conditions, including precipitation, 
temperature, and drought, as well as climate-influenced factors like dust storms 35,55,84–87. For 
example, several studies have identified a seasonal trend whereby incidence is associated with 
alternating seasonal periods of high and low precipitation 38–40,49,88.This association supports the 
idea that wet periods promote Coccidioides growth in soils 24,25,35,50,51. It is thought that 
subsequent dry periods allow for dispersion of spores that can infect people and cause disease 
40,88. There are likely several direct and indirect contributing factors related to climate, including 
vegetation biomass, small mammal population cycles, vegetation and animal-derived soil 
nutrients, agricultural land usage, and seasonal trends in employment involving outdoor work.   
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Observed spatial and temporal heterogeneity in seasonal infection patterns may reflect 
spatiotemporal variations in the local climate conditions that influence mycelial growth and 
dispersion. In Arizona, where roughly two-thirds of US cases are reported 89, annual precipitation 
follows a bimodal cycle, and there are typically two coccidioidomycosis “seasons” 38. In 
contrast, California’s Central Valley, which accounts for much of the remaining 25 percent of 
cases, experiences a unimodal precipitation cycle and a single coccidioidomycosis “season” 38,89. 
This may suggest that C. posadasii (which causes most cases in Arizona) undergoes two 
moisture-aided growth cycles, whereas C. immitis (which causes most cases in California) 
undergoes just one. 
 
Fewer epidemiologic studies have assessed associations between soil conditions resulting from 
observed meteorological events with coccidioidomycosis outcomes, limiting a mechanistic 
understanding of how climate and meteorological events influence the saprobic life cycle of 
Coccidioides and subsequent human risk for infection. Coopersmith et al. (2017) attempted to 
investigate this mechanism by assessing relationships between coccidioidomycosis incidence and 
data on soil moisture and precipitation simultaneously 85. Using in situ soil moisture 
measurements collected across the Southwestern United States by the U.S. Climate Reference 
Network, Coopersmith et al. (2017) found that in both California and Arizona, 
coccidioidomycosis incidence was associated with soil moisture conditions in the previous 
summers and falls85, suggesting that the impact of precipitation on fungal growth and subsequent 
human risk may be mediated by soil moisture.  
 
Caution should be exercised when drawing upon epidemiologic evidence to characterize the 
climatic niche of Coccidioides in soil. Finding associations between climate and meteorological 
conditions and coccidioidomycosis incidence does not confirm the realized niche of the fungal 
pathogen for several reasons. First, incidence of coccidioidomycosis may not be spatially 
correlated with the presence of the fungus in soils because infectious arthroconidia are airborne 
and can be dispersed in the wind during dust generation. Thus, the soil source of an infection 
may be miles away from the place where a person acquires an infection or from where a 
diagnosis ultimately takes place. What is more, people are highly mobile, leading to potential 
exposures occurring far from where incident cases are ultimately diagnosed and reported. Cohort 
studies that follow individuals over time may help clarify the location of exposure, but 
identifying specific sources of dust exposures is generally not possible even within these study 
designs. Moreover, individuals may be susceptible to infection based on race, ethnicity, and pre-
existing conditions 90,91 as well as engagement in certain occupational sectors 92,93. Spatial 
aggregation of vulnerable populations may further confound estimates of pathogen location or 
relative density. Last, soils may support Coccidioides, but if there is little soil disturbance or 
fugitive dust emissions resulting in infection amongst the local population, a correlation between 
climate conditions and epidemiologic outcomes may not be observed. Altogether, associations 
between climatic factors and coccidioidomycosis incidence reveal important patterns for public 
health messaging but may not yield reliable inference on the pathogen’s soil niche. 

Edaphic Properties  
Even within localized geographic areas that experience the same climate and meteorological 
fluctuations, the distribution of soil-dwelling Coccidioides is highly heterogeneous. Clusters of 
detection range on the scale of tens of meters, and appear widely scattered and uneven 29,32,46,94. 
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While reasons for this sporadic nature remain unclear 13, there are several shared edaphic 
characteristics across many Coccidioides detection sites. In this next section, we review the 
evidence for common edaphic properties that describe soil environments where Coccidioides has 
been found, including soil depth, texture and porosity, alkalinity and salinity, and nutrients. We 
also discuss potential roles of small burrowing mammals, like wild rodents, influencing edaphic 
properties related to the Coccidioides soil niche.  

Soil depth 
Soil depth mediates several soil properties that may influence fungal presence, including soil 
moisture, temperature, bulk density, aeration, hydraulic conductivity, organic matter content, pH, 
and nutrient content 45. Germination of Coccidioides spores and mycelial development has been 
found to occur at soil depths ranging from 2 to 31 centimeters 50. This range generally aligns 
with the depth of the surface horizon (the “topsoil”) 95, and Coccidioides is most frequently 
isolated from surface soils at depths between 2 and 20 cm 50. The surface horizon usually 
constitutes the soil stratum with the highest concentration of organic matter and microorganisms, 
as it accumulates surface litter 95,96. As such, it is also where biological activity is the highest 97.  

Soil texture and porosity 
Soil consists of sand-, silt-, and clay-sized particles, with sand particles being the largest (0.5 to 2 
mm diameter) ad clay particles being the smallest (0.002 to 0.05 mm). Soil texture is determined 
by the proportion of those sand-, silt-, and clay-size particles and plays a key role in fungal 
growth via its influence on soil porosity, pore size distribution, water holding capacity, and 
aeration 45. Soil porosity refers to the interstitial space between soil particles that is filled by 
either water or air. Coarser-grained soils have large pores but low porosity 45,98. Soils with 
smaller pores have lower infiltration, allowing water to be held more tightly. Therefore, soils 
with a relatively higher percentage of clay particles retain more water than soils with a higher 
percentage of sand particles 45,98, which could lead to the development of anoxic conditions. 
Detection of Coccidioides in field studies has commonly occurred in soils with sandy or sandy 
loam textures 50,51, which contain a high proportion of large-grained sand and smaller proportions 
of both medium-grained silt and fine-grained clay. Sandy loam soils may offer several 
advantages to Coccidioides. First, the coarse sand grains create medium to large pores to 
accommodate hyphal expansion and motility 99,100 while providing adequate water infiltration 
and drainage. At the same time, smaller clay particles aid in meeting a minimum threshold of 
water and nutrient retention 50. This combination may help achieve the required balance between 
water and nutrients for growth, and pore space for mycelia to extend their networks. In general, 
organisms that can grow as filamentous hyphae are better equipped to reach water pockets in 
coarse, dry soils, suggesting that Coccidioides is well-suited to coarse-textured soils in relatively 
dry regions because the mycelium can effectively forage for moisture and nutrients 50,101,102.  
As soil pore spaces are occupied by either water or air, the spatial architecture of pores and the 
distribution of water within this architecture can influence the flow of gases, such as oxygen and 
carbon dioxide 103. Coarse-textured soils, including sandy loam soils, allow for increased 
aeration and a supply of oxygen within the soil needed for fungal growth 104. During its saprobic 
life cycle in soil, Coccidioides are obligate aerobes, and greater oxygen availability has been 
shown to increase the growth rate of mycelia 105. For well-aerated soils, oxygen availability is 
unlikely to be a limiting factor for Coccidioides growth near the surface, but can become a 
limiting factor at lower depths where anoxic conditions may exist 50. In an in vitro study, 
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mycelium cellular protein growth and viable Coccidioides spore counts increased along 
increasing aeration rates up to a maximum oxygen flux tested (approximately 1 mM O2 L-1 min-

1) 106. At low aeration rates, oxygen was the limiting factor for Coccidioides mycelium growth, 
whereas at higher aeration rates, nutrients in the growth media became the limiting growth factor 
68.  

Alkalinity and Salinity  
Salinity, electrical conductivity, and soil cation exchange capacity can either promote or inhibit 
fungal growth. Together, these factors influence soil alkalinity. Coccidioides presence in soils 
has been associated with high levels of alkalizing ions and compounds, including magnesium, 
calcium, potassium, bicarbonates 50,107, and dissolved salts 25,34,44,51,57,108.  
 
A positive association has been observed between C. immitis detection and soil salinity 108, 
which suggests that Coccidioides is a halotolerant microorganism 51. Over an 8-year period, 
Elconin et al. (1964) collected roughly 5,000 soil surface samples in the San Joaquin Valley of 
California 108. C. immitis was isolated during the years where the chemical composition of the 
surface soils showed elevated soluble salts including sodium, calcium, sulfates, and chlorides. 
The reported salinity, measured in terms of saturation extract conductivity (ECe), ranged from 11 
to 27 ECe/ 103 when C. immitis was detected, but from 3.5 to 8.8 ECe/103 when C. immitis was 
not detected 108. In Washington state, the presence of Coccidioides DNA was statistically 
associated with elevated concentrations of calcium and sodium, as well as boron, magnesium, 
and silicon in soil leachates 79. Soils positive for Coccidioides had a median concentration of 
sodium and calcium of 496 ug/L and 4,460 ug/L, respectively, compared to 293 and 3,130 ug/L 
in soils negative for Coccidioides DNA 79. A common pattern for Coccidioides detection 
includes areas that can be flooded for a portion of the year and dried out at other times which 
may be particularly suitable for Coccidioides (e.g., soils adjacent to arroyos, dry washes, or 
drainage channels) 47,108–110. In addition to providing favorable moisture conditions, these locales 
may serve to concentrate salt in surface soils due to evaporation of surface water.  
Tolerance to high saline soils may influence Coccidioides presence and abundance by providing 
yet another competitive advantage over other soil microorganisms in a given habitat 50. It is 
hypothesized that salts may inhibit antagonistic or competitive microbial species 50. In a study by 
Egeberg et al., two microbial antagonists of C. immitis were isolated and their radial colony 
growth examined under a range of salinity conditions between 0 and 8 percent 57. One 
antagonist, the soil fungus Penicillium janthinellum, did not grow in the presence of sodium 
chloride (NaCl) and calcium chloride (CaCl2). Another antagonist, the gram-positive soil 
bacterium Bacillus subtilis, showed decreasing growth along increasing salt concentrations. C. 
immitis, on the other hand, was able to grow at all salt concentrations challenged with, with peak 
growth occurring at 2 percent both for both NaCl and CaCl2 57.  
 
A key unknown is why Coccidioides appears to be halotolerant, while its soil competitors are 
not. Pérez-Llano et al. (2020) found that halotolerant and halophilic fungi experience 
physiological changes, such as an increase in the thickness of the cell wall, in response to the 
ionic stress induced by high salinity 111. These responses help fungi tolerate more extreme 
conditions, even beyond high salinity, compared to co-occurring microbes within the same soil 
niche. Additionally, climate change may lead to increases in soil salinity broadly which in turn 
could expand suitable habitats for Coccidioides 112–114, highlighting the need to understand the 
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metabolic and physiological effects of salinity on the saprobic stages of the Coccidioides life 
cycle in order to anticipate how Coccidioides populations may respond to future soil salinization. 
Macro- and micronutrients  
 
Fungi rely on carbohydrates, proteins, and minerals for growth 99,100. Cultivation experiments 
have illuminated some basic nutritional requirements for Coccidioides growth, including 
adequate concentrations of soil carbon, nitrogen, potassium, iron, phosphorus, and magnesium 
68,106,115–117. In the absence of competition, Coccidioides grew well in solutions containing amino 
acids, sugars (glucose), ammonium lactate, and inorganic salts, e.g., phosphate, sulfate 
(potassium sulfate), metallic cations (potassium, iron, magnesium, zinc) 68,106,115–117, while no 
significant effects on growth were noted for micronutrients such as manganese, calcium, copper, 
molybdenum, cobalt, or boron salts 68. In the laboratory environment, simple sugars like glucose 
were found to be suitable sources of carbon for Coccidioides, whereas more complex amino 
acids were effective sources of nitrogen 117,118. Recent work about the growth rate of 
Uncinocarpus, a non-pathogenic close relative of Coccidioides, on more complex molecules may 
thus help us speculate about what Coccidioides likely metabolizes in nature 119. U. reesii showed 
growth on a limited range of carbohydrates, primarily basic plant sugars and cell wall 
components, along with growth on gelatin and a wide range of dipeptides and amino acids 120. 
This suggests that Onygenales, including dimorphic fungi, can degrade cellulosic plant material 
in the soil, but may prefer proteinaceous growth substrates, including animal biomass, over 
carbohydrates 120. 
 
In the soil, carbon and nitrogen are derived from both plant, microbial and animal origins. Many 
fungal species primarily gain nutrients from the breakdown of plant residues, and gain energy 
from cellulose derived from plant cell walls 45. In contrast, Coccidioides appears to be 
specialized for growth on substrates containing proteins derived from mammalian hosts, like that 
in keratin. Comparative genomic analyses have revealed that, compared to closely related species 
in the Onygenaceae family, there have been significant deviations in the Coccidioides genome 
that code for enzymatic activity related to the breakdown of plant and animal substrates, whereby 
gene families coding for enzymes that breakdown plant-based cellulose have been reduced and 
those coding for enzymes that break down keratin (keratinase) have enlarged 8,9,12. Laboratory 
studies have shown that Coccidioides is able to grow on keratinized tissues from animal hair 121, 
confirming classification of Coccidioides as keratinolytic fungi capable of decomposing 
keratinized structures and colonizing keratinous materials 122. This further suggests that 
Coccidioides species have evolved specialization to derive nutrients from keratin—which is the 
main structural constituent of mammalian hair and nails8. This specialization may provide a 
competitive advantage over cohabitating fungus, 118,123–128 or bacteria with antifungal properties 
78, whereby Coccidioides can gain nutrients from animal matter in desert environments where 
plant-derived nutrients can be scarce 12. In these environments, small burrowing mammals may 
provide a consistent source of keratin. Moreover, many rodent species have been shown to be 
susceptible to asymptomatic Coccidioides infection 129,130, leading to an active debate over 
whether deceased rodents merely serve as an important nutrient source, or also serve as 
important reservoir hosts for Coccidioides in maintaining its parasitic life cycle. Consolidated 
argument for the essential role that rodents play in supporting Coccidioides populations have 
been summarized as the “endozoan, small-mammal reservoir hypothesis” 83, discussed in more 
detail in the next section.  
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While genetic analysis indicates that gene families coding for use of plant-derived cellulose have 
reduced over time, plant-derived nutrients likely remain an important soil nutrient source in the 
Coccidioides saprobic life cycle. Which plant species provide essential soil nutrients for 
Coccidioides growth remains unclear. Studies have found positive associations between 
Coccidioides presence and specific salt tolerant plants native to the southwestern United States, 
notably creosote bush (Larrea tridentata) and salt bush (Atriplex spp.) 18,131. However, these 
plant species may not be a direct source of nutrients for Coccidioides. Rather, they may be a 
nutritious foraging source for small burrowing mammals in these arid environments; for 
example, salt bush has been associated with wildlife habitat, including for Kangaroo rats 132. 
Alternatively, these plants may serve as indicators for other physical and chemical soil 
conditions that Coccidioides requires.  Moving forward, field and laboratory studies to elucidate 
the relative contributions of plant and animal-derived nutrients to Coccidioides growth, as well 
as to elucidate the role of small burrowing mammals as growth substrates and/or important 
disease reservoirs, are needed. The evolution of Coccidioides to utilize animal fibers and protein 
in addition to plant-derived nutrients may have occurred in order to compensate for the extreme 
environmental conditions that otherwise define its niche, including the scarcity of nutrients in 
desert soil communities 12.  In the next section, we discuss the potential role that rodent burrows 
play as microhabitats within soil ecosystems conducive to Coccidioides growth.    

Influence of rodent burrows on the soil niche 
Rodents have been known to be asymptomatic hosts for Coccidioides since the 1940’s 129,130. An 
early hypothesis that they could serve as reservoir hosts as opposed to merely incidental hosts 
was introduced by Emmons in the 1940s 130,133,134. This hypothesis fell out of favor in the late 
1950’s, but has recently surfaced 83 given genomic data indicating evolution of Coccidioides 
towards reliance on organic material derived from small mammals 8,9 along with field sampling 
data demonstrating higher concentration of Coccidioides within burrows. Studies generally 
report as much as four times or higher probability of Coccidioides detection in rodent burrows 
compared to other soils 44,51,121. There is active debate over the mechanism behind this strong 
association. Research is needed to ascertain the specific role that mammals play – as reservoir 
hosts, as nutrient sources, or as ecosystem engineers (i.e., burrow creation) –  and their relative 
importance in the Coccidioides life cycle 22,83. 
 
Parasitism of small mammals building and using burrows may concentrate Coccidioides within 
and near burrow soils. Under the “endozoan, small-mammal reservoir hypothesis”, fungi are 
released from granulomas in infected hosts upon death, releasing endospores that utilize the 
keratin of the dead host as a substrate to convert to hyphae and propagate 83. Furthermore, 
research has shown that presence of colloidal (e.g., rabbit’s blood) material protects both 
Coccidioides spherules and mycelia from destruction when subjected to dry season 
environmental stresses such as high temperatures and low soil moisture 135. This protective 
association with mammalian blood may explain observations that the fungus can remain viable 
in desert soils for years 79. Moreover, after burying infected canine, murine, and bovine tissues in 
soil 136, researchers found that the fungus proliferated in the immediate vicinity of the burial site 
over seven years 136.  
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Through creation of microhabitats within their burrows, rodents may indirectly support 
Coccidioides by providing special loci with more nutrients or favorable soil conditions. 
Coccidioides are keratinolytic fungi, and burrows likely accumulate higher concentrations of 
keratin from burrowing mammal hair and nails. Additionally, rodent burrows experience fewer 
fluctuations in temperature than would be experienced in the ambient air or at the soil surface 137. 
Burrows typically have higher porosity compared to surrounding soil, which may lead to faster 
water infiltration and lower overall soil moisture 138–140. In some cases, burrows may promote the 
growth of vegetation 141, potentially allowing higher retention of moisture. Additionally, animal 
host environments are often enriched with organic material 83,121,142 and are typically higher in 
nutrients like total nitrogen and nitrates 139–143. By concentrating nutrients, burrows may act as 
“islands of fertility” that support fauna 141.  
 
Beyond changing soil conditions, burrows may provide a suitable microhabitat in the soil which 
allows the fungus to develop specific microbiota associations and symbioses. Vargas-Gastélum 
(2015) observed a higher rate of detection of not just Coccidioides in burrow samples taken from 
a semi-arid ecosystem in Mexico, but also a fungal community consisting of species belonging to 
the phyla Basidiomycota, Glomeromycota and Chytridiomycota and the sub-phylum 
Mucoromycotina. Overall, the microhabitat was dominated by Ascomycota and Basidiomycota 
144; however these fungi are commonly found in soils both positive and negative for Coccidioides 
79. However, as there is limited research on the soil microbial community specific to 
Coccidioides, further investigation into the biotic environment associated with animal burrows 
may provide information on the soil microbial community associated with the fungi during its 
mycelial phase. 

Discussion and Future Research 
Many of the results and syntheses presented here are based on non-replicated or non-replicable 
studies and are therefore not considered conclusive. This is in part because in situ study of 
Coccidioides is laborious owing to the fungus’ sporadic and clustered distribution in space, and 
subsequent detection challenges. In the laboratory, Coccidioides cultures and samples can be 
dangerous to researchers and must be handled under strict biosafety precautions that introduces 
barriers to performing laboratory work. However, field and laboratory research has identified a 
range of features that help define the Coccidioides soil niche, including locales in regions with 
alternating cool/wet and warm/dry seasons; sandy loam soil textures; alkaline soils; soils with 
high salinity and conductivity; and soils with adequate nutrient availability largely sourced from 
animal-derived keratin. Some of these features are considered harsh relative to the niches of 
other soil microbes, suggesting that Coccidioides may possess a competitive advantage in 
extreme conditions.  
 
The Coccidioides life cycle relies on complex interactions between soil physical, chemical, and 
biological properties, as well the larger abiotic and biotic components of the ecosystems which it 
inhabits. Differentiating between which soil properties are associated with different stages of the 
saprobic life cycle also remains unclear, in part because in situ molecular detection methods for 
Coccidioides cannot currently distinguish between detection of mycelia versus spores in 
Coccidioides-positive soil samples. What is more, it remains unclear whether certain soil 
properties are universal requirements for different Coccidioides species. Spatially explicit, 
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randomized sampling methods repeated in space and time are needed generate reproducible and 
comparable data on both Coccidioides presence and associated environmental parameters. In 
silico assessments via modeled computer simulations of Coccidioides interactions with the 
environment may also help us better understand the soil niche and important factors for fungal 
growth and regulation.  
 
Below we discuss two key areas of emerging investigation related to the Coccidioides soil niche, 
occurring at different scales: fine-scale interactions between Coccidioides and other microbes in 
the soil, and large-scale shifts in the geographic distribution of the fungus.  

Effects of soil biodiversity on Coccidioides presence and abundance 
Interactions between Coccidioides and its surrounding soil microbiota are not well understood. 
Comprehensive analysis of soil microbial communities in endemic areas where Coccidioides is 
and is not consistently found is badly needed to better understand the microbial community 
dynamics that influence Coccidioides presence. In general, Coccidioides has been characterized 
as a poor competitor for which long-term survival may benefit from an ability to withstand harsh 
conditions rather than an ability to directly compete with other microorganisms resources 56. 
Identifying specific microbes or groups of microbes that do serve as effective antagonists against 
Coccidioides under “normal” conditions could help us to identify natural biocontrol agents 
against the fungus. Currently, however, there are few studies that directly assess community-
level microbial diversity in relation to Coccidioides presence or absence, leaving any 
understanding of potential beneficial or antagonistic symbioses in natural settings lacking. 
Bivariate analysis of soil collected from a site in Washington State found that the identified that a 
soil saprotroph, Aureobasidium, was positively associated with the presence of Coccidioides 
species DNA in soil, while a plant endophyte, Phialocephala, was negatively associated with 
Coccidioides 79. However, these bivariate analyses may be confounded by associations with 
other soil conditions, and associations cannot be interpreted as being causally associated. One 
promising approach to begin to understand this complex soil community is the nascent field of 
network analysis, through which it may be possible to infer the degree to which Coccidioides is 
interacting with its surrounding microbial community 145,146.  
 
A major challenge to conduct Coccidioides microbial community analyses is targeting 
Coccidioides-positive soils for sample collection. Targeting rodent burrows, where Coccidioides 
is commonly successfully collected from, could help overcome this challenge. Currently, the 
characterization of the fungal community associated with rodent burrows is already actively 
investigated 147–149.  
  
Another challenge to understand natural interactions between Coccidioides and its surrounding 
microbial community is disentangling the impact of anthropogenic influences on Coccidioides 
from naturally occurring community dynamics. Human land use and land use change has wide-
ranging impacts on soil microbial communities. Across altered landscapes, human activity could 
support or suppress Coccidioides presence and growth via impacts on the soil niche and 
subsequent microbial community.  As coccidioidomycosis cases continue to rise across the 
southwestern United States, large-scale and thoughtful soil sampling is badly needed to 
determine the impact of human-driven landscape change on Coccidioides in the context of its 
broader microbial community.    
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Expansion of the Coccidioides geographic distribution  
There is evidence that Coccidioides is expanding beyond the range previously considered 
endemic and becoming more prevalent in areas with historically lower human disease burdens. 
Between 2000 and 2018, there was a 15-fold increase in incidence in people residing in counties 
in the central and southern coast and northern San Joaquin Valley in California, where incidence 
was previously low 6. Outside the southwestern United States, C. immitis has now been isolated 
from soil as far north as Washington State, a location with no history of autochthonous 
coccidioidomycosis150.  
 
Anthropogenic climate change may lead to increased mobilization of spores and subsequent 
geographic range expansion of Coccidioides. Studies have found that areas endemic to 
Coccidioides typically have warmer air temperatures and drier soils, conditions that are likely to 
become more common in the western United States due to climate change 38,151. In California, 
average precipitation over winter months is projected to see a modest increase 152, precipitation 
in autumn and spring is projected to decrease 153, and the duration, intensity, and frequency of 
temperature-driven drought is expected to increase 153,154. These changes may enhance conditions 
favorable for Coccidioides wet growth period, dry dispersion period, and competitive 
advantages. One study predicts that by 2050, nearly the entire western United States could 
contain suitable habitat for Coccidioides 31. Within endemic regions, projected intensification of 
drought conditions 153 could facilitate the dispersion of Coccidioides spores via an increase in 
dust and wind events 155. Already there is evidence for increasing dust storms across the western 
United States 86 from which we may expect an increase in disease burden in already established 
hotspots or an increase in disease incidence in new regions as more naïve hosts are exposed to 
spores. At the same time, drought conditions in already very arid, endemic regions may reduce 
cases overall 87, by limiting the moisture available for the fungus to grow. While most changes 
are expected to be gradual shifts in the range of Coccidioides, regime shifts, and tipping points 
are being increasingly examined in the ecological sciences to describe abrupt ecological 
transitions under changing climate 156 and have yet to be reviewed with respect to Coccidioides. 
 
Anthropogenic land use change may also change patterns of Coccidioides presence in endemic 
areas or facilitate range expansion. For example, in California, the Sustainable Groundwater 
Management Act (SGMA) plans to cycle lands out of agricultural production to reduce overdraw 
of irrigation water from overstressed groundwater basins 157. This may result in the fallowing of 
cultivated lands that were previously unsuitable to Coccidioides growth due to intensive 
cultivation practices. Absent intensive agriculture, fallowed land may also become more 
populated or re-populated with rodents. Long-term, transforming agricultural land for alternative, 
less water-intensive uses such as for solar farms may result in new areas of favorable habitat for 
Coccidioides. There may be opportunity to anticipate some land-use change impacts on 
Coccidioides by studying soil microbial and rodent communities of previously fallowed lands 
that have already been taken out of production or transformed into new land uses in endemic 
areas.   

Conclusion 
Coccidioidomycosis is an emerging infectious disease caused by a soil fungus with a largely 
understudied environmental niche. Coccidioides has generally been associated with arid and 
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semi-arid environments with characteristic climate patterns of alternating wet and dry seasons. In 
the soil, Coccidioides has been associated with porous, sandy-loam soil, with high alkalinity and 
pH and high levels of organic matter, including from animal-derived keratin. Beyond this, there 
is limited understanding of the specific soil conditions that encourage or inhibit fungal growth, 
spore development, and spore dispersal. This limits our ability to establish strong inference on 
the spatio-temporal distribution of the fungus across landscapes and regions and hinders 
pathogen surveillance and control strategies for coccidioidomycosis. Several critical gaps in our 
understanding of the Coccidioides soil niche remain, including the role of small mammals as 
potential reservoir hosts of the fungus; a broader understanding of the microbial community 
within which Coccidioides is found; and how climate and land-use change may drive shifts in the 
Coccidioides endemic range. Future field, laboratory, and in silico research is recommended in 
these areas. 
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Figures 

 
Figure 1. Saprobic (left panel) and parasitic (right panel) life cycle of Coccidioides. In the 
saprobic lifecycle, spores in the soil develop threadlike chains, called hyphae, which branch and 
fuse to form a dense network of filaments called the mycelium Arthroconidia form as alternating 
cells on mycelia, which are released during lyses of the empty intermediate cell. These spores can 
settle on soil, allowing for continuation of the saprobic lifecycle. Inhalation of infectious 
arthroconidia by a host initiates the parasitic cycle. Within the host, endospores develop within a 
spherule. Rupture of the spherule can lead to dissemination of endospores throughout the body, 
causing disseminated disease within the host.  
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Chapter 1 & 2 Transition 
 
Coccidioidomycosis is a fungal infection that affects the respiratory system. The two recognized 
fungal species in the genus Coccidioides, C. immitis and C. posadasii, have been identified as the 
etiological agents for coccidioidomycosis. Once the infective arthroconidia are inhaled, infection 
begins. In Chapter 1, I review environmental factors associated with the soil niche for C. immitis 
and C. posadasii to illuminate the current understanding of the pathogen’s ecology and life history. 
Chapter 1 focuses on pathogen biology to address gaps in our understanding of the soil dwelling 
Coccidioides species for disease management strategies that may target the pathogen directly. 
 
Coronavirus disease (COVID-19) is an infectious, respiratory disease caused by the SARS-CoV-
2 virus. There are multiple routes of transmission including droplet transmission at conversation 
distances, long-range aerosol or long-range airborne transmission typically in poorly ventilated 
and/or crowded indoor settings, and fomite transmission (inanimate objects that can carry and 
spread disease and infectious agents). In Chapter 2, I quantify the relationship between per capita 
COVID-19 outcomes and various county-level factors across the United States including, physical 
and mental health, environmental pollution, access to health care, demographic characteristics, and 
vulnerable population scores. By pursuing the gaps in our understanding of county-level features 
related to COVID-19 incidence and mortality, the goal for Chapter 2 is to offer population-level 
insights that can inform control strategies for managing the spread of COVID-19. 
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Chapter 2 | Ensemble machine learning of factors 
influencing COVID-19 across US counties 
David McCoy, Whitney Mgbara, Nir Horvitz, Wayne M. Getz & Alan Hubbard 
 
Included as a dissertation chapter with permission from co-authors. 
 
Material from: McCoy D, Mgbara W, Horvitz N, Getz WM, Hubbard A. "Ensemble machine 
learning of factors influencing COVID-19 across US counties." Scientific reports 11.1 (2021): 
11777. 

Abstract 
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) the causal agent for COVID-
19, is a communicable disease spread through close contact. It is known to disproportionately 
impact certain communities due to both biological susceptibility and inequitable exposure. In this 
study, we investigate the most important health, social, and environmental factors impacting the 
early phases (before July 2020) of per capita COVID-19 transmission and per capita all-cause 
mortality in US counties. We aggregate county-level physical and mental health, environmental 
pollution, access to health care, demographic characteristics, vulnerable population scores, and 
other epidemiological data to create a large feature set to analyze per capita COVID-19 
outcomes. Because of the high dimensionality, multicollinearity, and unknown interactions of the 
data, we use ensemble machine learning and marginal prediction methods to identify the most 
salient factors associated with several COVID-19 outbreak measure. Our variable importance 
results show that measures of ethnicity, public transportation and preventable diseases are the 
strongest predictors for both per capita COVID-19 incidence and mortality. Specifically, the 
CDC measures for minority populations, CDC measures for limited English, and proportion of 
Black- and/or African-American individuals in a county were the most important features for per 
capita COVID-19 cases within a month after the pandemic started in a county and also at the 
latest date examined. For per capita all-cause mortality at day 100 and total to date, we find that 
public transportation use and proportion of Black- and/or African-American individuals in a 
county are the strongest predictors. The methods predict that, keeping all other factors fixed, a 
10% increase in public transportation use, all other factors remaining fixed at the observed 
values, is associated with increases mortality at day 100 of 2012 individuals (95% CI [1972, 
2356]) and likewise a 10% increase in the proportion of Black- and/or African-American 
individuals in a county is associated with increases total deaths at end of study of 2067 (95% CI 
[1189, 2654]). Using data until the end of study, the same metric suggests ethnicity has double 
the association as the next most important factors, which are location, disease prevalence, and 
transit factors. Our findings shed light on societal patterns that have been reported and 
experienced in the U.S. by using robust methods to understand the features most responsible for 
transmission and sectors of society most vulnerable to infection and mortality. In particular, our 
results provide evidence of the disproportionate impact of the COVID-19 pandemic on minority 
populations. Our results suggest that mitigation measures, including how vaccines are 
distributed, could have the greatest impact if they are given with priority to the highest risk 
communities. 
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Introduction 
COVID-19 background. Coronavirus disease 2019 (COVID-19), caused by the novel severe 
acute respiratory syndrome coronavirus 2 (SARS-CoV-2), spread rapidly around the world1–6. 
Within a month of discovering the first cluster of cases in Wuhan, China1,3,6, 18 additional 
countries had reported a case of COVID-197. The World Health Organization declared the 
resulting outbreaks a Public Health Emergency of International Concern by January 30, 2020 and 
a pandemic by March 11, 2020 7,8. 
 
There are a few consistent observations regarding the epidemiology of the COVID-19 pandemic 
in the US. Most prominent is the relatively high infection and death rates of minority 
populations, particularly Black- and/ or African-Americans9,10, a disparity researcher have noted 
occurred in previous pandemics, such as HIV 11. This disparity has been observed in both adults 
and children 12. There is much previous work on the causes of health disparities among Black- 
and/or African-Americans, and others have speculated on which of these causes are related to the 
differential impact of COVID-1913,14. Thus, to tease out the impact on vulnerable groups, one 
needs data on other baseline health factors, such as obesity 15,16, co-morbidities, age 17,18 
environmental exposures, transportation use and employment factors, including types of 
occupations 10,19. 
 
US health response and forecasting. At the point our analysis was conducted, the US had 
implemented complex and regionally uneven community-level, non-pharmaceutical 
interventions, including travel restrictions, social distancing, and stay-at-home orders. Although 
these interventions have shown to mitigate the community spread in certain communities, the 
trend did not hold for all communities. Many counties experienced an uptick in cases after an 
initial decline. There are several reasons why certain communities experienced a growing 
number of cases, including: (1) lifting shelter-in-place or other social distancing restrictions 
earlier than advised; (2) lax controls on gatherings that resulted in super-spreader events20, and; 
(3) unknown affects of plausible seasonality that impacts viral transmission21. As such, early in 
the pandemic, complex epidemiological contexts have emerged in US communities. The 
complexity is a result of dynamic environmental factors constituting social and physical 
environments for US populations that impact an individual’s risk for contracting COVID-19. 
Thus, to adequately control the spread of COVID-19, it is important to identify early in the 
pandemic the most salient social and physical environmental factors within US communities, 
driving transmission and and effecting susceptibility. 
 
Though models accounting for the specific vulnerabilities of local populations have been 
proposed, only a few models exist that assess the importance county-level variation of such 
variables in fueling COVID-19  outbreaks22,23. Altieri et al.22, for example, use county-level data 
from similar sources to this paper, to create an ensemble forecasting model, dubbed “Combined 
Linear and Exponential Predictors” to predict death counts from COVID-19. Their goal is to 
curate a data repository that can be used to forecast exponential and sub-exponential cases weeks 
in advance in order to help nonprofit organization disseminate much needed personal protective 
devices and respirators to areas projected to have higher mortality rates. 
 
In our study, we use overlapping data sources to model cross-sectional COVID-19 outcomes. 
Our goal, rather than prediction, is to explore the relative importance of different types of social, 
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physical and environmental factors on COVID-19 transmission and mortality. Hospital case and 
mortality data, and seropositive surveillance studies have shown there are subgroups of the 
population that are more susceptible to higher cases of morbidity and mortality. These include 
people older than 65 and and communities affected by racial disparities. We attempt in this paper 
to expand on previous studies (as of July 2020) of county level variation in COVID-19 (e.g.,  
see24) by evaluating additional socio-environmental data to understand if these disparities have 
direct effects on COVID-19 outcomes or are indirect through additional risk factors, such as 
diabetes, food security, air pollution or access to health care. Likewise, no study has been carried 
out to determine which of these factors are most associated with COVID-19 outcomes while still 
controlling non-parametrically for high dimensional covariates. 
 
Our data set is not comprised of individual-level data but includes a large number of predictor 
variables with the potential for complicated interactions between sets of risk factors, e.g. the 
intersection between race/ ethnicity, environmental exposures and underlying health on COVID-
19 outcomes. To avoid as much as possible model misspecification, we fit a prediction model for 
each outcome using SuperLearner 25, an ensemble of machine learning algorithms, which relied 
on cross-validation across many algorithms to derive an optimal combination of such algorithms. 
Using this approach, one can derive an improved fit to the data than an arbitrary linear regression 
model or any one machine learning algorithm. This is important because, in the current study, 
accurate estimates for our parameters of interest (variable importance and expected COVID-19 
cases and/or mortality given a shift in these important variables) is contingent on a good fit to the 
actual prediction function. Additionally, we are guaranteed to get estimates that are less biased 
compared to a single pre-specified algorithm because SuperLearner is guaranteed to perform 
asymptotically as well as the best performing algorithm included in the candidate set of 
algorithms. 
 
Added value of this study. We aggregate 5 types of COVID-19 outcomes, (1) day of the first 
case in a county relative to the first known case reported in the U.S. (Snohomish County, 
Washington, USA), (2) number of cases 25 days after the initial case in a county, (3) number of 
all-cause deaths 100 days after the first case in a county, (4) total number of cases in a county to-
date after initial case and (5) total number of all-cause deaths in a county to-date after first case 
in a county. From many sources including the CDC, U.S. Census Bureau, USA facts, google 
mobility data, and others, we collect a large number of pertinent variables for COVID-19. Using 
ensemble machine learning (ML) we create models that make no assumptions on the 
distributions of the data, these models are thereby non-parametric and allow all degrees of 
interactions and distributions in order to make the best fit. 
 
In each of these models we identify the most important variables in the model by removing the 
variable and measuring the difference in model risk (model error). Based upon the SuperLearner 
fits, we make marginal predictions for the number of cases and mortalities from COVID-19 
when increasing or decreasing these top variables while controlling for all other factors (i.e., 
keeping all other predictors fixed at the original values). Confidence intervals (CIs), significance 
and robustness of findings are measured via bootstrapping the model. Additionally, we 
investigate the predicted number of cases and mortalities from our model when controlling for 
only variables outside the target variable category (i.e., ethnicity, public transportation 
subcategories) and univariate predictions (not controlling for other variables). Given this 
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approach, our contributions are, rather than predictive forecasting the number of cases, an 
approach to measure the relative importance of risk factors for COVID-19 from a county-level 
perspective. 
 
There are many known risk factors measured from case hospitalization data, including diabetes 
and heart disease. As such, we hypothesize these factors will show high variable importance, 
specifically for case mortality. Additionally, we hypothesize that environmental dynamics, which 
increase exposure time to the virus (i.e., number of occupations in a county, public transit use), 
will also be strongly associated with COVID-19 cases early in the pandemic. When such factors 
are identified, this information could also be used to update or improve the public health 
response to specifically target factors related to high case counts in order to further mitigate new 
cases or prevent a resurgence of cases. We estimate variable importance of the high dimensional 
assembled county features without constraints (which induces bias), using a combination of 
machine learning and intuitive substitution estimators. Lastly, we make both the data and 
methods used in this paper accessible to others, thereby providing open source access and 
enhancing the utility of our results. All code, data, and county variables used are available and 
outcome data are updated daily on GitHub (See Code Availability section). 

Methods 
Data sources. For all outcomes and predictors we compiled publicly available data for US 
jurisdictions reported at the state-level (e.g. Google Mobility Data) and county-level, excluding 
Alaska, Hawaii, and Puerto Rico. Our final dataset includes county-level case counts, death 
counts and a wide variety of county-level demographic, epidemiological, health, and 
environmental data used as predictors in our analysis. Our analysis was based on the cumulative 
confirmed cases and deaths of COVID-19 in US counties, starting on January 22, 2020 (referred 
to as Day 1) until July 14, 2020 (USA Facts). The sources for our county-level features 
were: USA Facts, Bureau of Economic Analysis, American Community Survey, Tiger/Line 
GeoDatabase, CDC Interactive Atlas of Heart Disease and Stroke, County Health 
Rankings, Centers of Medicare and Medicaid Services, National Centers for Environmental 
Information, CDC Vulnerability Index, Bureau of Labor Statistics, MIT Election Lab, Google 
Community Mobility Reports; a total of 12 different sources which were joined on county FIPS 
codes.  
 
Outcomes. We use five COVID-19 outcome scenarios: (1) we transformed the case data into 
day of the first case after the first confirmed case on January 21 2020; (2) we determined the 
number of cumulative cases on the 25 days after the day of the first case within each county (i.e., 
day 25 of the outbreak in each county); (3) we used the number of all-cause deaths on day 100 
after the day of the first case of the outbreak for each respective county up to July 14 2020; (4) 
we determine the total number of cases to date after the day of the first case for each county and 
likewise scenario five is the total number of all-cause mortalities to-date after the day of the first 
case for each county. 
 
For each outcome variable excluding number of cases at day 25, we divide the counts by 
population size for each county to create a per capita COVID-19 case or per capita all-cause 
mortality outcome. Likewise, all predictor variables measured in counts were also standardized 
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by population size. All-cause deaths were used rather than reported fatalities due to COVID-19 
for several reasons related to unreliable case data, differences in testing, and co-morbidities 
between COVID-19 and other fatal acute diseases. By using all-cause deaths measured since day 
of first case reported in a county, we hope to get a better estimate on the impact of COVID-19 on 
mortality. As discussed, our predictors cover a wide scope, Table 1 gives a review of the data 
sources and variables collected from each source. Table S1 in the supplementary section gives 
more details of this process. 
 
Predictors. Data on our predictor variables include demographics, health resource availability, 
health risk factors, social vulnerability, and other COVID-19-related information. The predictor 
variables used are collected from different sources which have also been used in Altieri et al.26 
and Killeen et al.27. Because the aims of this paper are not purely predictive, but focus on 
understanding the relative impact each variable has on COVID-19 outcomes, our data curation 
process is different when compared to these two papers. We aggregate data from different 
stratified variables to create an overall public transportation use feature. Likewise for social 
vulnerability scores, we attempt to include core variable that represent a specific type of risk 
feature. For example, given our interest are variable importance measures and marginal 
predictions, if we included both the aggregated CDC vulnerability index with many features 
collected from other sources that are proxy measures for this index (percent non-English 
speaking, poverty levels etc.) then findings for aggregate vulnerability index would be 
conservative given these other variables are also included in the model. That being said, given 
the large overlap and interactions of all variables collected, it it likely that all variable importance 
estimates are conservative. In our curation process, only unstratified variables are used (not 
stratified by age or sex), we also create sub-categories for variables (ethnicity, geography, 
disease prevention, etc.) These sub-categories we use in later analysis to explore possible over 
correction of the model for a respective target variable. 
 
Briefly, some predictor variables include proportions of individuals by poverty level, gender, age 
distribution, race distribution, household income, healthcare access, occupation type, and so on, 
these were collected from USA Facts and the Census Bureau. Airport data, including, distance 
from county polygon centroid to airports were calculated from the Federal Aviation 
Administration. The 2020 county health rankings and Center for Medicaid and Medicare services 
were used to gather information on a range of health data including smoking, diabetes, obesity, 
air pollution and many other physical and mental health metrics. Precipitation by month was 
gathered from the National Oceanic and Atmospheric Association. Vulnerability index scores 
from each theme (described in Table S1) were aggregated from the Center of Disease Control. In 
total, over 150 predictor variables were gathered before curation. This curated data along with all 
relevant code, documentation and results are provided on our GitHub page. 
Data cleaning and curation. The data curation process is described in more detail in the 
supplementary information alongside the data dictionary. All resulting data was numerical (no 
factor variables). In addition, we screen out any variables with more than 70% missing values. 
Similarly, we removed variables with close to zero variance. For variables that were nearly 
perfectly correlated (Pearson correlation = 0.95) we selected one for the analysis. Missing data in 
this cleaned dataset were imputed with the mean. For Google mobility data, we scraped data 
from the published mobility trend reports from February 16, 2020 to March 29, 2020. These data 
represent the general increase or decrease in movement to the respective destination (grocery 
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stores, parks etc.) compared to baseline (pre-pandemic period). To create an aggregate score 
representing the mobility trend for each movement category for each county, we use the slope 
from linear regression to measure this trend over time. The slope for each movement category 
was included in our SuperLearner models. 
 
Exploratory analysis. To graphically represent how our feature data are related to one another, 
and likewise how counties are related to one another through these variables, we use 
unsupervised hierarchical agglomerative clustering of both county features and counties. We 
present the results of this clustering as a heatmap using the pheatmap package in R 28. Our first 
goal of this method is to understand if there are counties that have a trend for early first case 
reported, high COVID-19 case rates at day 25, and COVID-19 case rates to-date, as well as high 
all-cause mortalities at day 100 and to-date. If this trend was seen, we next wanted to investigate 
what variables were ‘highly expressed’ in these counties. As such, all feature data was z-score 
standardized. We then took the quantiles of each outcome to create factor dummy variables that 
can be plotted alongside clustering of counties. Clustering was done for both counties and county 
features and reordered accordingly using Euclidean distances. As this is an unsupervised 
approach, outcome data are not included in this machine learning method but are simply plotted 
alongside the clustering results to visually identify correspondences. Groups of county features 
that were found to be associated with groups of COVID-19 outcomes are presented. 
 
Machine learning pipeline. Although our ultimate goal is not to use our final models for 
forecasting and prediction, one still needs to estimate a regression model in order to determine 
our measures of variable importance. By estimating this model as accurately as possible, one can 
better estimate the variable importance measures that rely on the prediction model. As such, 
instead of choosing one machine learning (ML) algorithm to model county features for each 
outcome, we used an ensemble approach (SuperLearner) to fit a prediction function for each of 
our outcomes. The SuperLearner combines the predictive probabilities of COVID-19 outcomes 
across many ML algorithms. The SuperLearner finds the optimal combination of a collection of 
algorithms by minimizing the cross-validated risk 25,29. This method is an improvement over 
methods using only one ML algorithm because no one algorithm is universally optimal. The 
SuperLearner has been shown in theory to be at least as good as the best performing algorithm in 
the ensemble and often times performs considerably better 30. Given the high-dimensionality and 
complex relationships of the county data, we chose a wide range of algorithms for the ensemble 
in order to optimize performance. For COVID-19 cases at day 25 and to-date per capita rates and 
all-cause mortalities at day 100 and total to-date per capita, we use a large number of linear 
Gaussian based algorithms including conditional mean (control algorithm) simple generalized 
linear model, a series of penalized regressions setting alpha at levels to create ridge regression, 
lasso regression, and elastic net regression 31. Similarly, we use a number of gradient boosted 
decision trees that differed in depth 32. Because these algorithms require hyper-parameter tuning 
for optimal performance, we create a grid of all possible hyper-parameters and choose algorithms 
across this grid for inclusion in the ensemble. For example, for xgboost models we create a grid 
of all combinations for max depth (2, 4, 6, 8, 10, 12), eta (0.001, 0.01, 0.1, 0.2, 0.3), and nround 
(20,50) and use models with these hyper-parameters at intervals across the grid. Likewise for 
decision trees 33 we select models with max number of trees (10, 50, 100). For elastic net we set 
alpha to 1 for lasso regression, 0 for ridge and also for alpha set to 0.25, 0.50 and 0.75. Overall, 
19 algorithms were used in our Super Leaner library. The same procedure was applied for day-
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of-first-case in a county relative to-day-of-first case in the U.S. Instead of using Gaussian 
algorithms, however, custom learners were made for the SuperLearner environment that model 
Poisson outcome data. The same parameters were chosen for this set of learners to create the 
Poisson ensemble. To address possible over-fitting and to get cross-validated risks for each 
algorithm in the ensemble sets, five-fold cross-validation was used for internal SL cross-
validation both to build optimal models with each classifier and to determine optimal weighting 
across classifiers in the ensemble. 
 
Unpacking the black box. The algorithm used to create our predictor given covariates has 
desirable optimality properties, being asymptotically guaranteed to have a fit as good as any of 
the candidate members (the “oracle property”), with no risk of over-fitting. If a library of both 
smooth (e.g., parametric models) and flexible, non-parametric learners, then one can find it hard 
to outperform 25,34. However, the result is a black box that creates predictions as a complex 
ensemble of different learners, some having their own internal variable selection process and 
model selection framework. Thus, the resulting black-box needs to be intelligently queried to 
estimate the independent impact of the various predictors used in the model. We do so in two 
ways. One, is using a straightforward leave-one-variable out method and re-examining the 
change in prediction accuracy. However, this provides no information about the direction of the 
impact, which is why we follow with a query inspired by causal inference methods. In that case, 
we use the model to forward model situations where we change the distribution of predictors 
across the counties in sequential fashion and then calculate the marginal predicted counts (so 
called substitution estimators, or G-computation 35,36). The combination of these two versions of 
nonparametric variable importance measures provide both the importance of the variable (or sub-
category of variable) to the resulting predictor as well as an intuitive measure of the adjusted 
association of single variables.  
 
Variable importance. We built SuperLearners from the same county-level data for each of the 
COVID-19 outcomes. To measure variable importance in each model, we take the fitted model 
and make predictions using all county features and measure the model risk (average in squared 
differences in model prediction versus truth, or mean-squared error). We then scramble 
individual variables and sets (all variable in a category) and re-do the prediction and derive the 
new MSE. The plots (Figures 2 and 3) show the resulting ranked list of variables (most to least 
change in the MSE by scrambling). We use a risk-ratio (MSE-ratio) for each variable to measure 
its relative importance in the model for each outcome. The risk-ratio is the risk in the model 
without the respective variable (numerator) over the risk when the variable is included in the 
model (denominator). As such, a risk-ratio of 1.5 indicates that the model MSE rises by 50% 
when the variable is scrambled while controlling for all other variable affects. We use a similar 
approach to measure the variable sub-category importance on each outcome. Each variable was 
given a sub-category (described in supplementary material) resulting in a total of 15 categories. 
Blocks of variables in each category were scrambled and the model risk-ratio measured to attain 
information on category importance. 
 
Marginal predictions. Given that we fit a black-box to derive our prediction models, we have to 
unpack the black-box to understand what it implies about the adjusted relationship of the 
important variables to the outcomes. We thus use substitution methods to evaluate the predicted 
change in the mean if county characteristics are changed. We examine how the mean outcomes 
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would be predicted to change if the inputs of the specific variable of interest are modified, such 
as reducing a variable in some equivalent way across counties. Other modifications of the inputs 
could be used to examine these variable importance plots, but we looked at % changes in the 
variable across counties. Using these models we then make marginal predictions on the predicted 
number of COVID-19 cases and all-cause mortalities when increasing (or decreasing) the top 
variables found by the variable importance procedure. For example, if heart disease were to be 
identified as a significant predictor for COVID-19 mortality, the question our forward modeling 
approach answers is, “What are the expected number of COVID-19 deaths if we were to reduce 
the number of people with heart disease by 25% across all counties in the U.S.?”. Similarly, 
another question is, “What is the trend in expected COVID-19 cases given a incremental 
decreases in heart disease, say a decrease by 10%, 20% ...90%, is this trend linear or nonlinear?”. 
And furthermore, “If the trend is linear, what is the average decrease in expected COVID-19 
deaths for a 10% reduction in heart disease?”. The non-parametric, forward modeling approach 
detailed below aims to answer these questions. 
 
Suppose a particular observation Oi = (Wi, Ai, Yi) in county i, i = 1, ... , n , depends on explanatory 
variable Ai , other adjustment covariates Wi , and outcome Yi , all in county i. If we wish to 
generate an estimate that characterizes the association of Y across all counties with A adjusting 
for W, but does not rely on a linear approximation, then we do this through plotting the estimate 
 

φ(π) = E{E(Y|A = max(Amin, (1 − π) ∗ A), W)} (1) 
 
as a function of π, where Amin is the minimum observed value of A across all counties in the data 
and π is interpreted as the proportional reduction in the county-specific value of the variable. To 
avoid extrapolation, we truncate A at the minimum observed value for the variable among 
counties. In essence, we exam the resulting predicted mean outcome across all counties as 
though the particular variable were reduced by π % in all counties, and all other covariates 
remain fixed at their observed values. This plot then provides a relevant function of the 
importance of the variable to the outcome. 
 
Under several strong assumptions, including that the other covariates (the W, being either all 
other predictors or all but the ones in same sub-category) contain all the confounding 
information, sufficient experimentation (no positivity  violations 36,37), and independence of 
outcomes across counties, one could interpret (1) as identifying the marginal mean had, contrary 
to fact, all counties been set at the stochastic value, max(Amin, (1 −π)∗A) . We do not have 
information to impose a time-ordering among the covariates, so we treat these plots as a 
nonparametric form of association measure. 
 
To derive inference, we use the non-parametric bootstrap (randomly sampling counties with 
replacement) for each π reduced mean. The procedure is as follows: (1) fit each outcome using 
the aforementioned set of learners, (2) iteratively remove variables and determine risk-ratios, (3) 
set the variable with the highest risk-ratio as the target variable for marginal predictions, (4) for 
each percentage from 0 to 1.0 at 0.10 intervals (a) resample the county data with replacement, (b) 
refit the SuperLearner with this resampled data, (c) reduce or increase the target variable for the 
respective percentage, and (d) predict the expected number of cases or mortalities with this new 
fit. Here, in step (4) we bootstrap this procedure 1000 times by resampling, refitting, and making 
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marginal predictions, in order to create confidence intervals (CI) at each percent change to the 
target variable. 
 
Note that we use three different models to estimate the regression E(Y|A, W) depicted in (1): fully 
adjusted, adjusted only variables not in the sub-category of the variable of interest, and 
unadjusted. To evaluate the performance of our model, we compare each marginal prediction to 
that of a univariate model of the target variable (found by variable importance) for each outcome. 
Here, a generalized additive model (GAM38) was retrained at each iteration of the bootstrap for 
each reduction in the target variable and cases/mortalities were predicted through this univariate 
model. Likewise, to investigate possible over-corrections of our SuperLearners, we also remove 
similar variables that may have strong multi-collinearity with the target variable. This was done 
by removing variables in the target variable sub-category and training a SuperLearner on this set 
of covariates through the bootstrap. Results are presented as line plots and the actual observed 
average or sum for each outcome are plotted as horizontal lines for comparing actual outcomes 
to model predictions. 
 
All data aggregation, curation, cleaning, exploratory analysis, ML pipleine, and marginal 
predictions were performed in R 39. All coding scripts are available on our GitHub page for 
open-access and use. See Code Availability section for more details. 

Results 
COVID‑19 outcomes and county feature distributions. There are 3142 counties in the U.S. 
After our data cleaning and curation process, there were 2620 counties included in the analysis 
and 101 county-level features. As such, our analysis covers 83% of the U.S. population as 
represented by counties. In these counties, as of July 15, 2020 there were 243,065 cases at day 
25, 2,531,134 cases to-date, 53,018 all-cause deaths at day 100, 111,991 all-cause deaths to-date, 
and the average number of days to the first case in a county relative to the first case in 
Snohomish County, Washington was 68 days. A description of the variables used and their 
sources are given in supplementary materials (Table S1). A breakdown of these features with the 
respective mean, standard deviation, and range of values are also given in the supplementary 
materials (Table S2). 
 
Exploratory. The heatmap for exploring the patterns in these data are given in Figure 1. The 
marked section of the heatmap show an outcome trend for (1) first quantile of day of first case 
(Q1 = earlier days of first case): (2) highest total deaths to-date (Q4): (3) highest deaths at day 
100 (Q3): (4) highest total COVID-19 cases to date (Q4): and (5) highest COVID-19 cases at day 
25 (Q4). The distribution of the outcome quantiles across the county dendrogram groups are 
provided in the supplementary materials (Table S8). The cluster of counties with most severe 
outcomes is marked on the left in Figure 1. These patterns indicate there are counties that cluster 
together based on similar characteristics and these counties correspond with an earlier first case 
in the county and higher COVID-19 case and mortality rates. For a breakdown of the number of 
counties in each state in this cluster see the supplementary material; briefly, however, the states 
with the highest number of counties in this cluster with highest outcomes are 1. Virginia (36), 2. 
Florida (33), and 3. Texas (30). The highest column values (red and orange pixels in the heat 
map) in this highest county row cluster occur in branches 3–16 and branches 46–53 of the 
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column-wise dendrogram. A full list for each cluster is given in the plot but the highest county 
features for this subset were: 1—obesity, 2—sexually transmitted diseases, 3—income 
inequality, 4—food environment index, 5—CDC limited English scores, 6—latitude, 7—poverty 
income ratio, 8—GDP, 9—preventable hospital stays, 10—arthritis, 11—asthma, and 12—
ischemic heart disease. 
 
SuperLearner. As discussed, we use cross-validation to generate a coefficient that defines the 
weight for a respective learner in the ensemble. This procedure is done for each outcome and the 
same learners are used for each outcome (outside of day of first case where Poisson outcomes 
were defined). Tables S3–S7 in supplementary give a detailed breakdown of how each algorithm 
was used in the SuperLearner, the risk of the respective algorithm and the overall risk of the 
SuperLearner. Overall, our SuperLearners were able to achieve good fits by utilizing multiple 
algorithms. Results show that for each outcome the SuperLearners were largely built from 
multiple elastic net models, multiple xgboost models, and random forest. Table 2 shows resulting 
risk for each SuperLearner for each outcome. Because the learners were fit to the per capita 
standardized outcome data, we multiply each risk (mean squared error or MSE) by the total 
population in the dataset to get absolute error based on total numbers of cases or mortalities. We 
also calculate the r-squared for each SuperLearner to show variance explained by each model.  
 
Variable importance. The top variable categories for each outcome were: (1) day of first case in 
a county: demography; (2) COVID-19 cases at day 25: ethnicity, transit and preventable disease; 
(3) total COVID-19 cases to-date: ethnicity and preventable disease; (4) mortalities at day 100: 
transit and ethnicity; (5) total mortalities to-date: ethnicity and transit. The top individual 
variables across all the models were: overall population of a county, CDC vulnerability scores 
for minority and limited English, public transportation use, and proportion of Black- and/or 
African-American individuals in a county. To visualize results, we present the risk-ratio (RR) 
results for each COVID-19 outcome collectively in Figures 2 and 3 as a series of dot-plots (RR 
threshold at 1.01). Based on these figures, it can be seen that for day of the first case in a county 
the total population (RR: 1.38) was the most important variable. For per capita COVID-19 cases 
at day 25, the top variable is the CDC minority score (RR: 1.04). For per capita COVID-19 cases 
to-date, the CDC’s score for limited English speaking (1.40) the CDC’s score for minority 
populations (1.17) and proportion Black- and/or African-American individuals in a county (RR: 
1.12) were the top variables. For per capita all-cause mortalities at day 100, proportion taking 
public transportation (RR: 1.14) and proportion Black- and/or African-American individuals 
(RR: 1.07) were the top variables. For per capita all-cause mortalities to-date, proportion Black- 
and/or African-American individuals (RR: 1.08) and proportion taking public transportation 
(RR: 1.03) were the top county features. 
 
Marginal prediction results. For the day of first case, population size was clearly most 
important predictor. For examining the association of cases and deaths of COVID-19 we choose 
two outcomes (total deaths and cases by July 14, 2020) and three of the most consistently 
important variables: two related to demographic features of the population (CDC Minority Score 
and Proportion of Black- and/or African-American individuals) and one related to transportation 
(metric of public transportation use). We estimate the relationship of proportional reductions in 
each of the predictor variables on the marginal outcome (using the substitution estimator of (1)) 
based upon a machine learning fit when controlling for: (1) all other variables (including 
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possibly strongly collinear variables within the same sub-category), (2) only variables outside the 
target variable sub-category, and (3) nothing (unadjusted). The latter estimator of E(Y|A) is based 
upon a smooth regression of the outcome versus the continuous covariates, specifically using 
general additive model with identify link (GAM 38). 
 
Figure 4 shows the predicted average day of first case across all counties for each proportion of 
population size reduced across the counties. Generally, smaller county populations are predicted 
to have a delay relative to counties with higher population sizes, all other factors in the model 
staying constant (the current average being 68 days after the initial U.S. case in Washington) for 
all three estimators, with somewhat larger effects in the adjusted models. For all models, a 0.50 
proportional reduction in population size across the counties suggest a delay of around 2–3 days 
from the onset of the COVID-19 in the county. 
 
Figure 5 shows plotted results for two outcomes (total counts and deaths), both versus proportion 
reductions in the three predictor variables. Proportional decreases in CDC Minority Score is 
associated with a decrease in COVID-19 cases and death. The large attenuation of the 
relationship in the adjusted models suggest strong confounding by the other covariates, where in 
the fully adjusted (and perhaps over-adjusted) curve approaches the null line. Using the curves 
not adjusting for other variables in the sub-category, the association suggest a 0.5 proportional 
reduction in the score would predict a reduction of 750,000 cases (out of around 2,400,000 total 
number by July 14) and approximately 10,000 deaths (out of around 115,000). Note that, 
particularly with deaths, the unadjusted curve is quite different from the actual number (pink line 
is substantially below the horizontal black line at the point of no intervention), this should be 
equal to that value if the model fits the data well. This is due to a few counties with extreme 
large counts (of both death and cases), which are poorly predicted by the bivariate smooths 
resulting in large positive residuals. Thus, when one estimates counts based upon reductions in 
the variable of interest (CDC Minority Score in this case), you get a prediction of the count that 
underestimates the true count. Note, by substantially reducing residual variation, the adjusted 
curves tend to be much closer to the observed count at 0 reduction. 
 
Reducing public transportation suggests significant reduction in deaths, but little impact on case 
counts. For cases, we again have a poor fit of the bivariate smooth (unadjusted), along with the 
suggestion of significant confounding by other covariates. For deaths, a reduction of 50% 
suggest a reduction in deaths of 10,000, but the fact that the intercept for both adjusted curves 
(and unadjusted) is less than the observed count suggest again the influence of outliers. 
Bootstrapped linear regression of the marginal predictions showed that for a 10% reduction in 
public transit use, total deaths reduce by 2012 (95% CI [1972, 2356]). 
 
Finally, for reductions in the proportion of Black- and/or African-American populations, there 
appears to be quite different estimates between the adjusted curves of COVID-19 counts, 
suggesting that variables in the sub-category of this variable create the possibility of over-
adjustment in the full model. For deaths, the curves are nearly identical and imply that a 
reduction of the disparity between Black- and/or African-Americans and White-Americans in 
50% of the population (one way to interpret an actual reduction in this variable) suggest a 
reduction of about 9000 total deaths. Likewise bootstrapped linear regression of these predictions 
are associated with a 10% increase in the proportion of Black and/or African-American 
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individuals in a county increases total deaths to date by 2067 (95% CI [1189, 2654]). For total 
cases, although the expected COVID-19 cases was not perfectly linear given a shift in CDC 
minority index score, a 10% increase in CDC minority index score was associated with 111,006 
additional cases (95% CI [91,991, 127,684]), using the model that adjust for variables outside of 
ethnicity. 

Discussion 
In this paper, we took a semi-parametric (machine learning) approach to evaluating a wide range 
of county-level features which may impact the spread, number of cases, and deaths of COVID-
19 in the U.S. Our contributions are the following: (1) curating an open-source data repository 
that includes variables from many sources, categorized into sub-groups and filtered such that 
strongly collinear variables are removed for statistical analysis; (2) demonstrating the use of 
these variables in ensemble machine learning to build 5 SuperLearners for each COVID-19 
outcome measure; (3) evaluating the features to identify the top variables that influence each 
outcome; (4) adjusting the top variables in our model to make marginal predictions for each 
COVID-19 outcome, while controlling for all other factors to establish the strength and 
directionality of the relationships; (5) constructing confidence intervals around all effects via 
bootstrapping to evaluate significant trends from baseline and between modeling approaches. 
Overall, using 101 county-level features our models show very good fits to the outcomes (all 
observed outcomes were within model confidence intervals apart from mortality which were 
slightly outside our CIs at baseline). 
 
These fits establish that our models are able to accurately predict each outcome given the county-
level feature variables. Our variable importance measures for each model fit generally show a 
trend that the total population size drives day of first case in a county and the proportion of 
Black- and/or African-American individuals in a county and CDC minority scores are most 
important independent contributions of COVID-19 cases and deaths as of mid July. 
 
Causal inference pertaining to the individual relationships of these variables to each outcome is 
speculative at best given that these study variables are ecological and also are a static snap-shot 
of county variables collected before the pandemic hit the U.S. However, the general trend in 
these results seem to represent what has been reported as the U.S. faces this continuing 
pandemic. That is, for day of first case in a county, the total population as the most important 
variable makes sense given the larger the population the higher the probability of someone being 
infected traveling to the respective county. Likewise, CDC minority scores and Black- and/or 
African-American individuals are correlated with reports that suggest that minority populations 
and People of Color are disproportionately impacted by COVID-19 10,12. In addition, we also 
show a significant potential impact of baseline public transportation use and mortality 24,40,41. 
This could indicate that there is higher probability of exposure early in the pandemic in counties 
where travel on public transportation leads longer and closer duration contains. This may also 
lead to higher infectious doses that may possibly increase severity of infection and consequent 
mortality, a phenomenon thought to be the case for influenza 42. 
 
Our finding that counties with larger CDC minority population measures have higher COVID-19 
outcomes, even when controlling for 100 other county-level variables (Table 1, Table S1), show 
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the value of such measures when trying to determine the impact of risk level based on social 
factors for those disproportionately impacted by COVID-19. Additional measures, however, are 
necessary to understand the reasons for this. For instance, although our models adjust for 
income, access to health, and occupation types, our data are limited to reported factors that may 
not account for systematic or institutional levels of cultural/societal factors placing individuals at 
risk. Such factors may confound or modify others for which have been adjusted and may place 
certain individuals at greater risk for SARS-CoV-2 infection. Our future work will integrate 
additional data on environmental exposures and calculate racial dissimilarity scores to further 
investigate findings found in this study. The main difference between our findings and those 
reported to date is that our analysis controls for many other possible mediating factors (e,g., 
access to health-care, smoking, diabetes, heart-disease, and food security). 
 

Conclusion 
The goal of our study is to identify, early in the COVID-19 pandemic, the most salient factors 
that put populations at risk for COVID-19, thereby providing some guidance to individuals 
making difficult policy decisions at this critical time to quell the evolving pandemic. 
Specifically, racial composition of counties and intensity of public transportation use therein 
seem to be the most important risks factors for both the initial rapid growth and subsequent high 
incidence, and also help explain variations in mortality rates across counties. More work, 
however, is needed to establish causal rather than purely statistical relationships. Future work 
with detailed individual data will be important for getting more robust estimates of the individual 
impact of the factors examined. Whether causal or statistical, these results should be taken into 
account when developing policies for lifting restrictions. Additionally, as efforts continue to 
disseminate services and funding, and to roll out vaccination programs, once effective vaccines 
have been developed, consideration of these factors will facilitate the efficacious allocation of 
resources to the benefit of the US population as a whole. 

Code Availability 
All code for collecting data, collected data, statistical scripts, up-to-date outcome data, 
visualizations, and statistical results are available on GitHub: https://github.com/blind-
contours/Getz_Hubbard_Covid_Ensemble_ML_Public	\ 
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Figures 

 
Figure 1.  COVID-19 heatmap visualization of the distribution of county-level data. The rows 
represent counties clustered by the dendrogram and the columns are features of the counties which 
are also clustered by similarity. Red coloration indicates higher values (up to a z-score of 4) and 
blue coloration indicates lower values (− 4). The column bars on the left are outcomes, categorized 
by quantiles. The sections marked by C1, C2, and C3 show similar high or low features of counties 
in this region which have early COVID-19 appearance and high transmission and mortalities. 
Figure was created using pheatmap version 1.0.12 28. 
 



42 
 

 
Figure 2.  Variable importance as indicated by the relative increase of mean-squared error when 
the block of variables is permuted. 
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Figure 3.  Variable importance as indicated by the relative increase of mean-squared error when 
a single variable is permuted. 
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Figure 4.  Marginal predictions of day of first case (relative to index time) for different 
proportional reductions of total population size for models adjusting for all other covariates, only 
covariates not in sub-category (see supplement Table S1) and unadjusted. 
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Figure 5.  Marginal predictions of total cases and deaths by July 14, 2020) for three of the most 
consistently important variables in predicting the count outcomes: CDC minority score, proportion 
of Black- and/or African-Americans and a metric of public transportation use. X-axis is different 
proportional reductions of each of the three predictors, the Y-axis is the marginal predicted total 
counts for models adjusting for all other covariates, only covariates not in sub-category (see 
supplement table S1) and unadjusted. Black lines indicate actual total number of COVID-19 cases 
and mortalities. 
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Tables 
 
Table 1.  Number of variables used from respective sources with some examples given, complete 
list with distributions given in supplementary material. 

SOURCE N VAR. VAR. EXAMPLES 
USAFACTS 6 COVID-19 outcome data, population 
BUREAU OF ECONOMIC ANALYSIS (BEA) 1 GDP 
5-YEAR AMERICAN COMMUNITY SURVEY (ACS), 2014–
2018 

14 County percentages by Sex and Ethnicity, 
Employment, Household Income, use of Public 
Transportation 

TIGER/LINE GEODATABASES 7 Latitude, longtitude, land area 
TIGER/LINE GEODATABASES; FEDERAL AVIATION 
ADMINISTRATION (FAA) 

 Distance to Airports 

INTERACTIVE ATLAS OF HEART DISEASE AND 
STROKE (2014–2016) 

4 Number of Hospitals, Stroke, Access to Parks 

COUNTY HEALTH RANKINGS AND ROADMAPS 21 Life Expectancy, Smoking, Obesity, Food Access, 
Mental Health, Physicians, Houshold Overcrowding 
etc. 

CENTERS FOR MEDICARE & MEDICAID SERVICES 
(CMS) 

15 Druge Abuse, Hypertension, Hyperlipidemia, 
Osteoporosis, etc. 

NATIONAL CENTERS FOR ENVIRONMENTAL 
INFORMATION 

1 Precipitation 

CDC’S SOCIAL VULNERABILITY INDEX (SVI) 11 Percentile over 65 or under 17, Minority Scores, 
Limited English, Low Income Housing Estimates, 
Number Institutionalized 

QUARTERLY CENSUS OF EMPLOYMENT AND WAGES 14 Labor force types, farming/mining, private industry, 
education/healthcare etc. 

MIT ELECTION LAB 1 Calculated Proportion Voted Republican 2016 
GOOGLE 6 Google mobility to location type, Residence, Grocery 

etc. 
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Table 2.  Cross validated SuperLearner risk across COVID-19 Outcomes. 

 
 
 
  

COVID-19 OUTCOME MODEL RISK (PER CAPITA) MODEL RISK (COUNTS) R-SQUARED 

DAY OF FIRST CASE NA 159.58 0.75 

COVID-19 CASES AT DAY 25 4.22 e−05 10539.64 0.59 

TOTAL COVID-19 CASES TO-DATE 5.22 e−05 13053.75 0.87 

ALL-CAUSE DEATH AT DAY 100 2.80 e−08 7.00 0.57 

ALL-CAUSE DEATH AT TO-DATE 1.42 e−07 35.52 0.59 
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Chapter 2 & 3 Transition 
There is a substantial need for change across academic departments to build belonging and 
inclusivity for racially-marginalized students, as is the need to create a community of scholars with 
a shared language and commitment to advance justice, equity, diversity, and inclusion (JEDI). For 
the past two years, the Department of Environmental Science, Policy, and Management (ESPM) 
at the University of California, Berkeley, held a course titled “Critical Engagements in Anti-Racist 
Environmental Scholarship.” The course was developed and co-taught by a team of graduate 
students in direct response to the nationwide protests following a slew of violent acts against Black 
men and women in 2020. The structure and curriculum of the course was designed to facilitate 
actionable change in teaching, research, and departmental culture among faculty, staff, graduate 
students, and postdoctoral scholars. Ultimately, we aimed to create a community of scholars with 
a commitment to advancing JEDI in academic departments and beyond. 
 
My final chapter uses the course I co-developed/taught, ESPM 290: Critical Engagements in Anti-
Racist Environmental Scholarship, as an exemplary framework for anti-racist pedagogy. 
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Chapter 3 | Cultivating Anti-Racism in the Classroom and 
Beyond through Collaborative Learning in the 
Environmental Sciences 
 
Whitney Mgbara, Rosalie Zdzienicka Fanshel, Kenzo Esquivel, Natasha Shannon, Phoebe 
Parker-Shames, Damian O. Elias, Lorenzo Washington, and Aidee Guzman 

 
Included as a dissertation chapter with permission from co-authors. 

Abstract 
Spurred by nationwide protests against anti-Black violence in the summer of 2020, academic 
departments across the United States saw an uptick in efforts to integrate belonging, diversity, 
equity, justice, and inclusion initiatives into their programs. In this vein, graduate students in the 
Department of Environmental Science, Policy, and Management at the University of California, 
Berkeley, developed and led a semester-long course, “Critical Engagements in Anti-Racist 
Environmental Scholarship.” The course cultivated anti-racist mindsets across scales through 
collaborative learning and action projects. We designed and taught the class as a team of doctoral 
students, and course participants consisted of faculty, staff, postdoctoral scholars, and other 
graduate students, thus disrupting traditional academic power structures. In this article, we draw 
on our experiences from two years of developing and teaching this course. We first outline our 
theory of change, envisioned as a tree—rooted in our pedagogical approach with a multi-layered 
trunk composed of interacting individual, organizational, and institutional layers of the tree 
trunk’s structure—that ultimately bears fruit of anti-racist action. We then provide an overview of 
our pedagogical approach, which includes attending to the roots of curriculum, classroom 
structures, and teaching practices. To conclude, we highlight the five key branches of the 
course’s success: (1) Centering Black voices and experiences, (2) Flattening academic 
hierarchies, (3) Fostering a community of learners, (4) Developing action-oriented 
mindsets, and (5) Sustaining long-term anti-racist praxis. Overall, this article offers a model 
for any department seeking to implement anti-racist praxis through coursework and long-form 
professional development training for academics. 
 

Introduction 
In 2020, the deaths of George Floyd, Breonna Taylor, Ahmaud Arbery, and Jacob Blake 
challenged higher education to reckon with racist organizational structures. Inspired by Black 
Lives Matter protests and decades of student-led organizing at the University of California, 
Berkeley, a diverse collective of graduate student leaders in the Department of Environmental 
Science, Policy and Management (ESPM) came together to challenge what they felt to be 
insufficient departmental and campuswide responses to national calls for change and ongoing 
instances of overt racism and anti-Black violence at UC Berkeley (Chancellor’s Independent 
Advisory Board on Police Accountability and Community Safety, 2020; Roberts-Gregory, 2020; 
Rodríguez, 2012; UC Berkeley Office of the Chancellor, 2019; Watanabe, 2020). This effort was 
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led by the ESPM Graduate Diversity Council, a graduate student organization, and took two 
primary forms. First, Graduate Diversity Council members wrote a letter to faculty detailing a 
list of demands for departmental anti-racist action (ESPM Graduate Diversity Council, 2020). 
Second, five Graduate Diversity Council members, all authors on this article (see Table 1), 
developed a 16-week course entitled “Critical Engagements in Anti-Racist Environmental 
Scholarship'' (hereafter called the Course) for faculty, staff, graduate students, postdoctoral 
scholars, and cooperative extension specialists in ESPM1. In creating this class, we moved 
beyond the limitations of one-time, mandatory anti-bias/diversity trainings (Devine & Ash, 2022; 
Dobbin & Kalev, 2016; Pendry et al., 2007) to foster meaningful learning across multiple 
professional positions and personal identities. We worked toward anti-racist praxis in our 
department by interrogating how anti-Black racism and intersecting oppressions structure 
academia, specifically in the environmental sciences (e.g., Dancy et al., 2018; Marín-Spiotta et 
al, 2020; Miriti et al., 2020; Mustaffa, 2017; Schell et al., 2020). We first held the Course in fall 
2020, followed by a second iteration in fall 2021,2 which expanded to include the Department of 
Plant and Microbial Biology.3  
 
In creating the Course, our working definition of anti-racism was the active, non-neutral 
confrontation of racial inequities via design, practice, and application of the following: lifelong 
learning, action, and critical self-reflection on racism; recognizing and challenging white 
supremacy in interpersonal and organizational-level interactions; and community accountability 
for racial equity and justice in micro, meso, and macro practices and outcomes (after Chavez, 
2012; Kendi, 2019; Welton et al., 2018). Guided by this definition, our work with the Course 
built on a rich tradition of graduate student-led anti-racist organizing (e.g., Chu et al., 2022, 
Lantz et al., 2016; Museus & Sifuentez, 2021; Rhoads, 2016), faculty-student-staff partnerships 
(Kezar, 2010), and decades of scholarship on enacting long-lasting anti-racist change in 
academia (reviewed in Welton et al., 2018).  
 
In this article, we describe and reflect upon the development and implementation of the Course. 
Using a tree-based metaphor, we first outline our theory of change and then provide an overview 
of our theory of change and pedagogical approach, which includes attending to curriculum, 
classroom structures, and teaching practices. Finally, we summarize five key lessons for 
implementing similar courses: (1) Centering Black voices and experiences, (2) Flattening 
academic hierarchies, (3) Fostering a community of learners, (4) Developing action-
oriented mindsets, and (5) Sustaining long-term anti-racist praxis (see Figure 1). We believe 

 
 
 
1Across the 2020 and 2021 iterations of the course there were 71 participants, including the 
teaching team: 42 PhD students, 2 masters students, 7 postdocs, 15 faculty, 2 cooperative 
extension specialists, and 2 professional staff.  
2 This article speaks to the first two iterations of the Course. In spring 2023, a “Deeper Dive” 
version of the Course is being offered for alumni of the first two course iterations, and a third 
iteration of the original course will be taught again in fall 2023.  
3 Lorenzo Washington, an author on this article, a 2020 course participant, and member of the 
2021 teaching team, was instrumental in expanding the course to include his home Department 
of Plant and Microbial Biology.  
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the Course functions as a model for the environmental science community and higher education 
at large. In this article, our broader aim is to provide documentation for others interested in 
implementing similar anti-racism courses and long-form professional development training for 
academics. 

Theory of Change 
Our initial pedagogical decision-making drew on our various racialized identities and 
experiences as teaching team members4 with the racist, violent academic structures we wished to 
disrupt. We primarily draw from the rich scholarly traditions of critical race theory, critical 
pedagogy, and social movement and organizational theory to understand and illustrate which 
course components were most successful in fostering anti-racist change and why. Drawing on 
our lived experiences and collective dialogue as a teaching team, participant feedback, and 
theory-oriented reflection, we distill our theory of change for the Course into five key lessons 
(see Figure 1).  
 
In our theory of change, we envision these lessons in anti-racist change-making as branches 
emerging from a tree trunk comprised of three concentric rings (Figure 1) representing: the 
individual level (e.g. course participants in community with each other; the “heartwood”), the 
organizational level (e.g. ESPM and Plant and Microbial Biology departments, specific lab 
groups; the “sapwood”), and the institutional level (e.g. UC Berkeley, environmental science and 
academia at large; the “bark”). Much like the layers of a tree trunk, all layers are interdependent 
and anti-racist change occurring at one level is intricately connected to and feeds back to anti-
racist change between and across all other levels. While the Course primarily operated at the 
organizational and individual levels, by examining the structures and processes of our 
department and cultivating “internal change agents” (Cox, 2001; Hartley et al., 1997; Patrick & 
Fletcher, 1998), these orientations fed into our goal of anti-racist institutional-level change. 
 
In our tree metaphor, heartwood is at the center of our theory of change and represents individual 
course participants coming together in a community of learners. From this community, “radical 
change in how members perceive, think, and behave at work” (Henderson, 2002) emerges and 
starts the process of anti-racist development to provide the necessary ideation, support, and 
structure for change at the organizational and institutional levels. Importantly, the heartwood also 
supports the branches—the key takeaways in our metaphor—that emerge from our theory of 
change. Much like the photosynthetic products from leaves on the branches of a tree, the 
knowledge gained from our key takeaways provide the energy necessary for continued growth. 
By focusing on heartwood-level anti-racist changes to attitudes/core belief systems in individuals 
and how they interact with organizational policy, we hope to in turn influence anti-racist changes 
in the sapwood: that is, the organizational level (Kezar, 2001). The sapwood layers represent the 
many organizational structures within departments and lab groups that comprise the day-to-day 
implementation of policies, practices, and decision-making procedures. Extending our metaphor 
even further, the sapwood is marked by past growth (tree rings) and carries the histories of 

 
 
 
4 See Table 1 for a description of author/teaching team positionalities.  
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individual, organizational, and institutional efforts. The final, outermost layer in our theory of 
change is the bark, representing the level of institutions. As ESPM is UC Berkeley’s third largest 
department and among the top-ranked environmental science programs in the U.S., we hope that 
our individual- and organizational-level work can, in fact, contribute to institutional-level 
change. Similar to a tree trunk, all layers influence each other, and their interactions facilitate 
growth and change in the right conditions.  
 
The Course’s pedagogical approach, made up of curriculum, teaching practices, and classroom 
structures, serves as the roots of the tree, providing nutrients and water to grow our anti-racist 
community. Finally, the Course’s Collaborative Action Projects (see Classroom Structures, 
below) are represented as the fruits and seeds of this anti-racist work. We hope that these fruits 
and seeds can serve to inspire and catalyze change in other departments, colleges, and 
institutions.  
 

Pedagogical Approach  
In applying our change-making approach to an academic setting, we looked to the field of critical 
pedagogy, which attempts to “understand how power works through the production, distribution, 
and consumption of knowledge within particular institutional contexts and seeks to constitute 
students as informed subjects and social agents” (Giroux, 2010, p. 717). Anti-racist critical 
pedagogy explicitly serves as “a method for addressing race, ethnicity, power, and class” 
(Blakeney, 2005, p. 121). For our course, we worked to examine and challenge these power 
dynamics through three key components of pedagogy: curriculum, classroom structures, and 
teaching practices (Morales-Doyle, 2017). We see these pedagogical components as 
foundational roots for change-making across all three levels (individual, organizational, 
institutional). Here we define and briefly outline our curriculum, classroom structures, and 
teaching practices. For more detailed explanations of each of these three components, please see 
Supplementary Materials 1. 

Curriculum  
We define curriculum as the organization of course topics and materials. In our course, the 
curriculum consisted of six course modules, outlined below. In choosing topics and designing the 
syllabus, we sought specifically to interrogate the hidden curriculum that ideologically informs 
academic culture in environmental sciences (Bang et al., 2012; Hansson, 2018; Kelly, 2009). 
Each module included learning objectives that built upon knowledge developed in prior modules 
and topically-relevant guest speakers (see Table 2 for a summary of all modules and Chapter 3 
Appendix 1 for further in-depth descriptions). 

Course Modules 
We began first with a module on “Framing the Conversation,” which aimed to lay community 
foundations of mutual trust and develop a shared working language around anti-racism, 
structural and institutional racism, and intersecting oppressions. The second module, “Centering 
Black, Indigenous, and other People of Color’s (BIPOC) Voices,” worked to decenter whiteness 
in environmental scholarship through a theoretical exploration of the centering concept (e.g., 
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Price et al., 2020) and by uplifting the lived experiences and scholarship of minoritized 
environmental scientists. While the module title used the term “BIPOC” to allow future course 
iterations to highlight a diverse set of voices, in the 2020 and 2021 course, we specifically sought 
out Black speakers to counter anti-Black racism given events at the time of course conception 
(Dancy et al., 2018; Fasching-Varner et al., 2015; Mustaffa, 2017; Smith et al., 2006). 
 
After rooting the course in the development of a shared (if by definition never “finished”) 
understanding of anti-racist principles and the centering of Black voices, we then spent the next 
three modules drilling down into specific structures and processes within academia. For each of 
these modules, we aimed to expose and untangle harmful power dynamics and engage in 
alternative anti-racist praxis. We began with Module 3 on mentorship , as mentorship is a 
throughline that influences every aspect of one’s experience in academia—it can be a site of 
generative affirmation or harm, or often an ambiguous mix of the two (Estrada et al., 2018a), 
with worse outcomes for racially minoritized individuals5 (Estrada et al., 2018b; Griffin et al., 
2020; Martinez-Cola, 2020; McCoy et al., 2015; McCoy et al., 2017;). We offered tools for 
creating collaborative, multi-directional relationships between mentees and mentors (Estrada et 
al., 2018a; Montgomery 2017). In Module 4, we honed in on key organizational structures and 
practices with academia: inclusion and belonging in lab culture (Berkeley Agroecology Lab, 
2020; Chaudhary & Berhe 2020; CLEAR, 2021), power dynamics in author order (Liboiron et 
al. 2017), racially minoritized faculty recruitment and retention (e.g., Fasching-Varner et al., 
2015; Harley, 2008; Harris, 2017; Stanley, 2006), and disability justice in the classroom (Garcia, 
2020; Karpicz, 2020; Shelton, 2020). Module 5 focused on colonialism in the research process, 
particularly the colonial origins and imperialist deployment of environmental science 
subdisciplines (Gray & Sheikh, 2021; Raby, 2017; Roy, 2018) and how scientific training in the 
United States has perpetuated the logics of both settler and exploitation colonialism (Bang et al., 
2012; Nejadmehr, 2020; Smith, 2012). Readings and activities emphasized the inherently 
political nature of science and the research process, encouraging participants to consider how 
both their fields’ colonial orientations and their own identities impact how they conduct their 
research, from research questions to research methods (i.e., data evaluated) to manners of 
engagement with landscapes and communities (Free Radicals 2020).  
 
The sixth and final module, “Scaling Out,” expanded beyond academia to discuss racism and 
anti-Blackness in the environmental movement writ large. Topics for readings and discussions 
included the racist foundations of majority-white, eugenics-affiliated conservation movements 
(Brune, 2020; Purdy, 2015) and the continuing lack of diversity in leadership of mainstream 
environmental organizations (Taylor, 2014), despite increased attention to environmental racism 
and social equity (Jennings & Osborne Jelks, 2020). We emphasized the importance of pursuing 
anti-racist action beyond the ivory tower, which is particularly vital in departments such as 
ESPM, where a large proportion of graduate students go on to seek careers outside of academia. 

 
 
 
5 Estrada’s emphasis on micro- and macro-affirmations in addition to the more commonly 
addressed micro- and macro-aggressions (Estrada et al., 2018a) was particularly impactful for the 
class, as expressed in course evaluations (see Chapter 3 Appendix 2). 



57 
 

Classroom Structures 
In addition to carefully crafting course curriculum, we also fostered sustained engagement 
through intentional classroom structures, which included interdependent components of sharing 
authority, designing tasks, and evaluating students (Ames, 1992). To allow participants to 
grapple with the material through cycles of inquiry (Engeström, 2001), we sought to flatten 
academic hierarchies, hold all participants accountable to learning, and promote active learning. 
We provide an overview of our approach here (see Chapter 3 Appendix 1 for more detail.) 

Reframing Authority 
Academic hierarchies, which often threaten classroom participants’ sense of safety, drastically 
exacerbate the type of discomfort that accompanies anti-racism work (Esmonde & Booker, 2017; 
Freire, 2018; hooks, 1994). We created two intentional structures to foster “classroom 
counterspaces” (Masta, 2021) that attempted to ameliorate these harmful academic hierarchies. 
First, the Course was co-taught by a five-graduate student teaching team rather than a single 
faculty member,6 and participants included faculty, staff, postdocs, and graduate students. 
Second, from the beginning, we framed the teaching team as non-experts’ intent on learning 
alongside course participants. Each session was developed and collaboratively co-led by rotating 
members of the full teaching team, and our intersectional identities and diverse disciplinary 
backgrounds informed how each of us “showed up” in the space. By modeling the active 
questioning of an “inquiry stance” (Cochran-Smith & Lytle 2009) and designing and delivering 
highly participatory course content and classroom tasks, we aimed to create an overarching ethos 
of a “community of learners” (Brown & Campione, 1994; Matusov, 2001; Rogoff et al., 1998).  

Designing Tasks for Active Learning 
As we designed this course during the early stages of the COVID-19 pandemic when in-person 
classes were not possible, we sought to incorporate online classroom tasks that would foster 
active learning (Harris et al, 2020). We enhanced the intimacy and accessibility of the remote 
learning environment through use of Zoom chat features, professional captioning, live-time polls, 
and frequent use of breakout rooms. We also created action-oriented classroom assignments 
designed to facilitate applied learning in addition to reading and discussion (see Teaching 
Practices below for more detail). 

Participant Evaluation and Accountability 
Our method for participant evaluation also intentionally disrupted academic hierarchies. We took 
an “ungrading” approach (Kohn & Blum, 2020): graduate students received a “credit/no credit” 
rather than a letter grade, with engaged participation—understood as a shared commitment to the 
community and learning goals—as the evaluation criteria. While course participants of all 
positions were considered student peers, technically only graduate student members of the class 
were enrolled in official course units. The teaching team was concerned that faculty and staff 
members in particular would attrit as the semester progressed. To counter this risk, each faculty 

 
 
 
6 One faculty member worked with the teaching team to navigate administrative requirements 
and provide input on course development but entered the classroom as a co-learner. 
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and staff participant signed an agreement to commit to full participation in the course at the same 
level of credit-receiving graduate students: attending all course sessions, active engagement in 
the classroom, and completing all assignments. This strategy was effective in 2020, but less so in 
2021, likely due to greater commitments faculty faced with the return to in-person activities.  

Teaching Practices 
Here, we provide examples of specific practices and assignments we used to foster dialogue and 
collaborative learning between all course participants regardless of formal academic position. In 
designing our teaching practices, we relied on Freire (1994, 2018), Hooks (1994, 2003), and 
other critical pedagogical visionaries to disrupt “banking models” of curriculum delivery that 
view learners as empty boxes to be filled by instructor expertise. Rather than this one-way 
approach, we favored multi-directional, community-based learning. See Supplementary 
Materials 1 for more detailed descriptions of the practices we outline below.  

Two-way Participant Interviews 
One of the most effective teaching practices in the 2020 course was the use of “two-way 
interviews” to present curricular concepts through the lived experience of course participants. 
For these sessions, the two leads prepared a series of questions for each other in advance and 
then held a live, free-flowing conversation on these topics during class. All other course 
participants served as witnesses, respectfully holding the space for the two speakers. After 45 
minutes of the two-way interview, we then opened the conversation up to all participants to ask 
follow-up questions of the speakers, contribute their own experiences on the same topics, and 
reflect on their reactions to their colleagues' stories. In 2020, we conducted two-way interviews 
between two graduate students and then two faculty members; in 2021, we had a faculty panel 
with a similar structure. This teaching practice was particularly powerful for community-
building, because it allowed for participants to have intense emotional responses to their 
colleagues’ vulnerable, resilient, and honest perspectives on navigating the department, academia 
at large, and environmentalist spaces. Inviting emotion into the classroom enhances intercultural 
learning (Jokikokko, 2016; Zembylas, 2008). 

Inclusive Selection of Guest Speakers and Topics 
Another core teaching practice was our inclusion of guest speakers as part of each module. Our 
desire to center Black scholars meant we wanted to provide a platform for them to share their 
expertise in environmental science. By engaging with Black scholars about their academic 
subjects and assigning their publications as required readings, the course worked to dismantle 
racist assumptions about Black intelligence (Evans-Winters, 2014) and position Black scholars 
as holders of knowledge (Leonardo & Grubb, 2019). Of note, to uphold our commitment to 
compensating Black scholars for their time and expertise, guest speakers, when possible,7 were 
paid for their contribution to the course. As Berkeley courses are not given funding for such 

 
 
 
7 UC Berkeley College of Natural Resource’s policy is that university funds cannot be used to 
pay honoraria to University of California employees, so we were unfortunately unable to pay 
honoraria to every single guest speaker, despite our best efforts.  



59 
 

expenses, the teaching team fundraised through the campus Office of Graduate Diversity for 
speaker honoraria. 

Balancing Lecture and Dialogue 
In addition to guest speakers, the teaching team often provided brief introductions or summaries 
of topics, readings, and modules. At the same time, we tried to minimize lectures and “sage on 
the stage” teaching models (King, 1993) to emphasize flattened classroom hierarchies. To 
maintain this balance, we interspersed lecture components with opportunities for class 
participants to share their understandings and learnings from readings through full group 
discussion, small group discussion, and pair-shares (see below). 

Peer-to-Peer Learning 
To forefront our “community of learners” ethos, in every session we balanced time spent as a 
whole class, in small group or pair discussions, and in individual reflection. Breakout rooms in 
Zoom facilitated this mix of practices. Small group activities provided the opportunity for 
exercising deep listening (Sangha & Bramesfeld, 2021), for which we provided explicit 
guidance. When placing course participants into small group breakout rooms, we were 
intentional that a mix of faculty, postdocs, professional staff, and graduate students were present. 
After breakout rooms, we held full group report backs. Keys to impactful report backs were: 
providing clear but participant-driven instructions on what to share back; having participants 
choose a group spokesperson in advance; and allocating adequate time for each group to share 
discussion highlights as well as time for full group conversations. 

Course Assignments 
Assignments served several key purposes: preparing participants for class discussion, providing 
an opportunity to reflect on learnings, and catalyzing Collaborative Action Projects (see below). 
Assignments included weekly readings and written reflections which included prompts about key 
takeaways from the previous week, lingering questions, and how participants might apply new 
learnings into their daily lives (e.g., in the lab, in the classroom, or beyond). We also held one 
online discussion forum per module. 

Collaborative Action Projects 
The closing course assignment was a Collaborative Action Project—the fruits of our theory of 
change tree (Figure 1)––where teams of mixed positions (faculty, students, postdocs, and staff 
together) developed action plans to extend beyond the end of the course. The projects, which 
received unanimous feedback as one of the most effective aspects of the Course, wove together 
pedagogy, participatory research, and activism (Freire, 2018; Hale, 2008) by enabling 
participants to practice change-making at the level(s) of individual labs, the department, and the 
college. Topics ranged from a disability justice guide to a lab-based anti-oppression plan to an 
anti-racist assessment of ESPM’s undergraduate Food Systems Minor. (See Table 3 for all final 
projects from 2020 and 2021, and Box 1 for a more in-depth example). We invited groups to 
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present in a public town hall meeting several months after the completion of the course as a way 
to create community accountability and check in about ongoing project progress.8 

Iterative Course Changes 
We view self-reflective iteration as fundamental to our pedagogical approach, in adherence to 
our view that anti-racism is a lifelong process of individual and organizational learning. During 
and after each semester of the Course, we committed to assessments and improvements to ensure 
that it was tailored to the specific needs of the class participants. As we worked through 
“improvement cycles” (Welton et al., 2018), we continued to evaluate how our curriculum, 
classroom structures, and teaching practices would best foster a non-hierarchical community of 
learners. We incorporated feedback from brief polls at the end of class sessions, a mid-semester 
evaluation, and an end-of-semester evaluation. For example, we modified reflection assignments 
mid-way through fall 2020 and shifted the course to a hybrid format mid-way through fall 2021, 
both in response to participant feedback. We also shifted the module organization and reading 
content for 2021 based on 2020 feedback. See Chapter 3 Appendix 1 for further details. 

Discussion 
The pedagogical approaches outlined above provide the roots for changemaking across multiple 
structural levels: from heartwood to sapwood to bark—individual to organization to institution. 
We understand the following five takeaways to be the key branches growing from both our 
pedagogical approaches and our theory of change: (1) Centering Black voices and experiences, 
(2) Flattening academic hierarchies, (3) Fostering a community of learners, (4) Developing 
action-oriented mindsets, and (5) Sustaining long-term anti-racist praxis. These lessons 
reflect not only the teaching team’s own analysis, but also the feedback of participants about 
what they found most valuable about the course (see Supplementary Material 2 for a selection of 
participant comments). These five branches were essential to the Course’s success, and much 
like we see the Collaborative Action Projects as seeding new trees of change, we believe these 
takeaways can also bear fruit—they can be applied to the development of similar anti-racism 
courses. 

Centering Black Voices and Experiences 
Courses on anti-racism must embed racially minoritized—especially Black—perspectives 
throughout the curriculum, inside classroom structures, and within teaching practices. All too 
often, anti-racism training seeks to appease and uplift white experiences, rather than centering 
racially minoritized experiences, consequently reinforcing white supremacy (Ikeda et al. 2021). 
For example, in the same manner that environmental racism (particularly in the United States) 

 
 
 
8 The first town hall, in April 2021, was attended by 75 people—the majority of the 2020 course 
participants, as well as other department members, Berkeley administrative leadership, and 
visitors from multiple environmental science departments at other universities. We also hosted a 
second town hall in April 2022, which featured final action projects from the 2021 course as well 
as follow-up presentations from groups first formed in the 2020 course. 
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excludes Black and other communities of color from accessing clean water, clean air, and 
outdoor recreation, the professional sphere of environmental sciences also excludes Black and 
other Scholars of Color from educational, research, and job opportunities (Masta, 2021; Tuitt et 
al, 2018).  
 
When developing our anti-racist critical pedagogy, we embedded perspectives of racially 
minoritized scholars across guest lectures, assigned readings, and in-class activities. We 
dedicated an early module (“Centering BIPOC Voices,” see Table 2) to centering and uplifting 
the knowledge and scholarship of Black environmental scientists, whose research ranged from 
inequities in urban green spaces to Black feminist environmentalisms. We centered Black 
scholars in particular to combat the anti-Black sentiments prevalent in the U.S. that violently 
flared up in the 2020. As whiteness is too often the norm in our academic spaces, we found this 
centering important to critical learning in anti-racism.  
 
The 2020 two-way interview addressing the racialized atmosphere in academic departments was 
especially impactful because it centered the lived experiences of Black and Latinx scientists on 
our teaching team. Similarly, the two-way interview between two faculty participants, who are 
both first generation college students and respectively identify as Mexican American and queer, 
revealed how insidiously racism and the intersecting oppressions of classism and homophobia 
affect each aspect of the faculty experience (Stanley, 2006).  

Flattening Academic Hierarchies 
Our pedagogical strategies created a learning space for graduate students, faculty, postdocs, and 
professional staff alike. This approach recognized that any course participant, regardless of their 
position, can provide new and crucial insights into course topics and concepts. Graduate 
students, who, due to shifting demographics in graduate admissions, are more likely to embody 
minoritized identities than faculty members (Arbeit & Yamaner, 2021), bring valuable lived 
experiences and fresh perspectives. Staff bring their professional expertise as programmatic 
enactors of university policies and may also manage faculty-student relationships. Postdocs, who 
are at a crucial transitional stage between student and faculty (or other professional positions), 
have distinct expertise in shifting academic priorities. Lastly, faculty can contribute their in-
depth knowledge of teaching, research, and power structure nuances derived from their 
experiences at university decision-making tables. 
 
The mentorship module illustrated the importance of these varied perspectives. Activities in this 
module facilitated cross-dialogue between graduate students, postdocs, and faculty around their 
approaches to mentorship as well as their lived experiences and needs as mentors and mentees. 
Staff added a valuable birds-eye view of departmental mentorship policies and practices. These 
multi-positional, multi-directional dialogues between co-teacher-learners increased the Course’s 
potential to actualize change (Jones, 2016; Posselt, 2020). This collective approach also worked 
to flatten hierarchies to mitigate the harm that graduate students may experience when engaging 
in departmental activism without access to the institutional power available to faculty (Perez et 
al., 2022).  
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Fostering a Community of Learners 
Individual, organizational, and institutional change-making is an inherently relational process 
(Engeström, 2001; Phillips & Lawrence, 2019). Open dialogue must occur to effectively address 
racism, colonialism, and other intersecting forms of oppression and can only be achieved by 
developing a trusting community with a shared commitment to the work (hooks, 1994). Given 
how rarely faculty, staff, postdocs, and graduate students come together as co-learners in a 
classroom, our pedagogical approach sought to build relationships among course participants 
with varying identities and positions to subvert the power dynamics between them. To this end, 
we drew on community agreements and collective vulnerability to cultivate “brave” rather than 
“safe” spaces (Arao & Clemens, 2013), the latter of which often centers the safety of white 
people (Leonardo & Porter, 2010). We also employed intentional active-learning teaching 
methods to encourage participant interaction and collaboration. Participants frequently cited this 
opportunity for community-building as a major highlight of the course (see Supplementary 
Material 2).  

Developing Action-Oriented Mindsets 
All too often, a final lesson marks the end of anti-bias trainings or courses. In contrast, collective 
“action learning”—that is, learning-by-doing—encourages participants to apply anti-racist 
change mindsets beyond the classroom (Henderson, 2002). Action learning is key to broader 
systemic change because it combines the critical reflection of individual transformational 
learning with an organizational- and institutional-level focus of activity. In keeping with this 
learn-by-doing framework, our course featured long-term action plans as final deliverables. 
These projects were a major focal point of the course and provided opportunities for specific, 
action-oriented anti-racist interventions across multiple levels, from heartwood to sapwood to 
bark. 
 
For both iterations of the Course, the Collaborative Action Projects were one of the most 
effective tools for change, as attested to by course participants (see Chapter 3 Appendix 2). 
Importantly, we emphasized that action plans developed during the semester were only the 
beginning; to advance their work, participants needed sustained and active engagement beyond 
the end of the course. To this end, we held space for concrete accountability with our town hall 
check-ins several months later. While some final action projects did not maintain momentum 
beyond the end of the course, many have continued more than two years out (see Table 3 and 
Supplementary Materials).  

Sustaining Long-term Anti-racist Praxis 
Racist ideologies are upheld by the discursive, relational, and material elements of universities as 
an organizational field (Phillips & Lawrence, 2019). As challengers to this dominant ideology 
(Fligstein and McAdam, 2012), internal change agents (Cox, 2001; Hartley et al., 1997; Patrick 
& Fletcher, 1998) work to cultivate a future that is more inclusive, creative, and anti-racist. This 
requires sustained, long-term engagement with anti-racist praxis. Academic communities are 
dynamic, where members range from semi-permanent (faculty and staff) to more ephemeral 
(graduate students and postdocs). One of the barriers to radical transformation in academia is a 
misalignment between the needs and timelines of different stakeholders (Jones, 2016; Kezar, 
2010; Perez et al., 2022; Porter et al., 2018; Posselt, 2020). The Course created a space for these 
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different stakeholders to come together, bond as a community, and deeply interrogate multiple 
interlocking academic values and structures. By cultivating community and shared action goals, 
we worked to realign the priorities of participants from different positions and foster collective 
buy-in to the anti-racist goals of the course. Together, we cultivated the tree that we hope will 
sustain long-term anti-racist praxis, provide the seeds for new anti-racist change efforts, and 
radically transform racially oppressive academic institutions. We recognize that it may take a 
long time for these seeds to grow into healthy ecosystems, but we are already seeing them take 
root.9 

Summary 
The 2020 national uprisings against anti-Black racism and police brutality highlighted the long-
standing need for systemic anti-racist change, including in the academy and environmental 
organizations. Environmental science, as an interdisciplinary field that spans both academia and 
non-academic agencies and organizations, seeks solutions to environmental problems which are 
often racialized. However, as a discipline, environmental science largely eschews engaging with 
racial justice in research, education, and practice (Cronin et al., 2021; Marín-Spiotta et al, 2020; 
Miriti et al., 2020; Schell et al., 2020). Centering belonging, diversity, equity, justice, and 
inclusion in environmental research, education, and scholarship requires that current and future 
researchers, educators, and leaders be trained in anti-racist frameworks. 
 
To cultivate this training, we developed a course, “Critical Engagements in Anti-racist 
Environmental Scholarship”, that sought to advance anti-racist action in the environmental 
sciences, starting with our own departments. While universities maintain broad policies on 
diversity and inclusion—many adopted in response to the 2020 uprisings—follow-through by 
administration and support for faculty, staff, and students to implement these plans is opaque and 
often lacking (Ahmed, 2012; Berrey, 2015; Casellas Conners & McCoy, 2022; Tuitt, 2020). The 
goal of the Course was to move away from ad hoc efforts (e.g., one-off workshops) and instigate 
foundational individual (heartwood) learning and organizational (sapwood) shifts to build 
towards long-term institutional (bark) changes (see Figure 1).  
 
Our goal in this article is to facilitate implementation of similar courses at other universities, 
which we see as one of the fruits of our tree of change. To this end, we outlined the theoretical 
underpinnings and pedagogical approaches of our course (the roots), including our curriculum, 
classroom structures, and teaching practices. To conclude, we summarized five key takeaways 
from the course (the branches in Figure 1).  
 
The Course clearly shaped many participants’ attitudes, relationships, and commitments to anti-
racist change (see Supplementary Material 2). We hope that our course incubated a community 
of “change agents” capable of working effectively both inside and outside of academia, at 

 
 
 
9 For example, by request, we have shared our syllabus for the Course over 80 times with 
departments across the United States and Canada and thus far have given four invited talks and 
workshops based on the Course. 
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different scales, for the long term (Cox, 2001; Hartley et al., 1997; Patrick & Fletcher, 1998). By 
necessity, anti-racism work is never finished, as racism and anti-Blackness are long-standing, 
insidious societal and structural harms. Nevertheless, through the experience of developing anti-
racist praxis, our course participants are better equipped to make substantive changes at different 
scales and levels, including in the environmental sciences and academia.  
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Figures  

 
Figure 1. Theory of Change and Pedagogical Approach. We envision our anti-racist change-
making as a tree. In our vision, change happens at three interdependent levels of the tree trunk's 
inner rings: the individual/heartwood, organizational/sapwood, and institutional/bark levels. The 
arrows represent flow between the levels of change. The pedagogical approach are the roots 
nourishing our change-making (i.e. the trunk of the tree), our key takeaways are the branches that 
emerge out of our change-making process, and our action (e.g., the Course’s Collaborative Action 
Projects) are fruits and seeds of our work that may inspire more change.  
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Tables 
Box 1. Advancing Inclusion and Anti-Racism in the College Classroom: A Rubric and 
Resource Guide for Instructors 
 
In response to the 2020 graduate student letter calling for departmental action to address anti-
Black racism (ESPM Graduate Diversity Council, 2020), an ESPM faculty-graduate student 
working group formed to create an anti-racist teaching tool entitled, “Advancing Inclusion and 
Anti-Racism in the College Classroom: A Rubric and Resource Guide for Instructors” (Blonder 
et al., 2022). The teaching tool developed in tandem with, and was informed by, the 2020 
Course, with nine of the twelve tool authors participating in the Course. The tool authors also 
collaborated with staff at Berkeley’s Center for Teaching and Learning and drew on curricular 
materials from the American Cultures Engaged Scholars Program.  
 
In keeping with the Course’s tenet that anti-racism is always an ongoing journey, the team 
designed the tool for iterative self-assessment over time. It contains sections on writing syllabi; 
exploring student and instructor positionality; rethinking assessments; cultivating inclusive 
learning environments; establishing and maintaining anti-racist norms and expectations; 
engaging with student feedback; and orienting curricular materials toward social justice, anti-
racism and anti-colonialism. The team initially created the tool for environmental science 
courses, but it is widely applicable to other disciplines. 
 
In 2021, a draft version of the teaching tool was piloted with two courses as part of another 
Course Collaborative Action Project, an anti-racist assessment of ESPM’s undergraduate Food 
Systems Minor (see Table 3). In 2022, the project team received grant funding to hire several 
graduate students, who then worked with faculty to apply the tool to ten courses in ESPM and 
adjacent departments. Course changes included: creation of instructor positionality statements, 
new grading schemes, inclusion of more decolonial, justice-centered, and/or Indigenous 
perspectives in course materials, and an increase in centering of student experiences in course 
materials, among others. 
 
As of February 23, 2023, this publicly-available resource has over 7,500 unique downloads. 
See the tool at: https://zenodo.org/record/5874656#.Y5thV-zMI6E.  
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Table 1: Author Positionalities  
All authors are/were affiliated with the College of Natural Resources at the University of 
California, Berkeley. Salient identities are all in authors’ own words.  

Team 
Member 

Institutional 
Position 
(Fall 2022; 
time of 
writing) 

Institutional 
Position 
(Fall 2020; 
Y1) 

Course Role 
(Fall 2020; 
Y1) 

Course Role 
(Fall 2021; 
Y2) 

Disciplines Salient 
Identities 

Whitney 
Mgbara 

6th Year 
PhD 
StudentA 

4th Year 
PhD 
StudentA 

Teaching 
team / Course 
Development 

Course 
development 

Environmental 
Health and 
Epidemiology 

Female, cis-
gender, 
Nigerian-
American 

Rosalie 
Zdzienicka 
Fanshel 

4th Year 
PhD 
StudentA 

2nd Year 
PhD 
StudentA 

Teaching 
team / Course 
Development 

Student 
participant 
/research 
observer 

Critical 
University 
Studies and 
Food Systems  

Non-binary 
female, gay, 
white/Jewish, 
lower-
working class 
background 

Phoebe 
Parker-
Shames 

Postdoctoral 
FellowA 

5th Year 
PhD 
StudentA 

Teaching 
team / Course 
Development 

Teaching 
team 

Conservation 
Ecology 

Female, cis-
gender, queer, 
white/Jewish 

Kenzo 
Esquivel 

4th Year 
PhD 
StudentA 

2nd Year 
PhD 
StudentA 

Teaching 
team / Course 
Development 

Teaching 
team 

Agroecology Male, cis-
gender, queer, 
mixed-race 
(Mexican-
Japanese)  

Aidee 
Guzman 

Postdoctoral 
FellowA,C 

6th Year 
PhD 
StudentA,C 

Teaching 
team/ Course 
Development 
/ lead GSI 

N/A Agroecology  Female, cis-
gender, 
Mexican-
American, 
first 
generation 

Lorenzo 
Washington 

5th Year 
PhD 
StudentB  

3rd Year 
PhD 
StudentB  

Student 
participant 

Course 
development 

Plant Biology Male, cis-
gender, queer, 
Black mixed-
race, first 
generation  

Natasha 
Shannon 

3rd Year 
PhD 
StudentA 

1st Year 
PhD 
StudentA 

Student 
participant 

Course 
development 
/ speaker 
support 

Political 
Ecology and 
Critical Agrarian 
Studies 

Female, cis-
gender, white, 
low-income 
background 

Damian O. 
Elias 

ProfessorA Associate 
ProfessorA 

Student 
participant 

Teaching 
Team 

Animal 
Behavior and 
Evolutionary 
Biology 

Male, cis-
gender, 
Mexican- 
American, 
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first 
generation 

A Environmental Science, Policy and Management Department  
B Plant and Microbial Biology Department 
C Department of Ecology and Evolutionary Biology, University of California-Irvine, CA, USA 
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Table 2. Fall 2020 Course Modules. See Chapter 3 Appendix for Fall 2020 and 2021 syllabi. 
Overall Course Vision 
and Learning Objectives 

● Foster growth, both at the personal and community level within ESPM, in our understanding of the 
racist structures and cultures that exist in academia. 

● Develop an anti-racist praxis around environmental scholarship. 
● Uplift the voices and lived experiences of racially minoritized scholars in environmental science and 

adjacent fields represented in ESPM. 
● Provide the tools necessary for faculty, postdocs, staff, and graduate students to act on anti-racist 

values to create tangible change in our community and beyond.  

Module Module Learning Objectives 

1: Framing the 
Conversation  

Goal: Begin building community, mutual trust, and a common working language. Get excited about learning 
together. 
Learning Objectives:  

● What is the difference between an anti-racist and a non-racist? Why is it important to be 
an anti-racist? 

● What steps can we take to practice (or learn more about) anti-racism? Preview of the work 
ahead. 

● What is intersectionality? This class is framed around racism but recognizing how it 
relates to other forms of oppression. 

2: Centering BIPOC 
Voices 

Goal: Engage as anti-racists scholars by being open to people with different identities.  
Learning Objectives:  

● What does it mean to center racially minoritized—specifically Black— voices? Why is it 
important?  

● Recognize how socially constructed viewpoints of Black intelligence and competencies 
decenter them as learners in educational institutions. 

● Describe, understand, listen to racially minoritized scholars' works, research, and/or lived 
experiences. 

3: Advising and 
Mentoring 

Goal: Identify common problems that racially minoritized (and all) graduate students encounter and provide 
guidelines for creating collaborative learning mentor-mentee relationships. 
Learning Objectives: 

● How do student and faculty identities and lived experiences play out in the mentor-mentee 
relationship?  

● Recognizing that mentees are not reservoirs for faculty ideas but rather younger colleagues. 

4: Improving Academic 
Settings in Environmental 
Science 
A: The Lab 
B: Recruitment, 
Retention, and 
Department Culture 
C: The Classroom  
 

Goal: Unpack the culture of ESPM as it relates to fostering inclusive spaces for faculty, staff, graduate and 
undergraduate students, and postdocs of color. 
Learning Objectives: 

● How to create an intentionally anti-racist and inclusive culture in lab groups, department at large, and 
classroom.  

5: Engaging in the 
Research Process in 
Environmental Science 
A: Colonialism 
B: Fieldwork 

Goal: Examine how identity influences the research process and gain tools to decolonize the research process, 
particularly in fieldwork. 
Learning Objectives: 

● How does the history and context of colonialism influence the goals and methods of research both in 
the United States and abroad?  

● What role(s) do researchers play in perpetuating neo-colonialism and how do we decolonize our 
research? 

● How is an individual’s approach to fieldwork (including field safety) affected by different identities?  

6: Scaling Out  Goal: Transgressions against racially minoritized scholars do not occur in a vacuum. Racially minoritized  
scholars are faced with challenging situations, ideals, and people beyond the campus and into their communities. 
We must address these issues within academia and beyond. How can we apply what we have learned in a 
broader context? 
Learning Objectives: 

● Understand that anti-Black ideals are represented beyond academia in environmentalism and 
environmentalist spaces (NGOs, government agencies, industry). 

● What is the importance of keeping track of the state of diversity in environmental organizations?  
● How can we increase co-conspiratorship in these spaces? 
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Table 3. Collaborative Action Projects in 2020 and 2021  
Year Project Title Publicly Available Link  

2020 

Improving Mentorship Practices module for required core graduate student class (ESPM 
201A: Research Approaches in Environmental Science, Policy, and Management)  

Berkeley Freshwater Labs Anti-Oppression Plan 
https://www.youtube.com/watch?v=ByF
Otru98sE 

Food Systems Minor Anti-racism Assessment  

Interdisciplinary BIPOC Paper & Author Database (parallel project with POC In 
Wildlife Ecology Database) 

https://docs.google.com/spreadsheets/d/1
4qyTDQNNnoQH6jZDwNfVePLYfaSdi
eTy4DZ7bQjiM4A/edit?usp=sharing 

Disability Justice Best Practices Guide  

ESPM Graduate Student Exit Interviews  

Indigenous Partnerships Project  

Indigenous Science Book Club  

Advancing Inclusion and Anti-Racism in the College Classroom 
https://zenodo.org/record/5874656#.Y5u
wGuzMI6E 

2021 

Providing Equitable Research Experience for Undergraduates  

K-12 Outreach Project  

Centering Equity in Plant and Microbial Biology Qualifying Exams 

https://docs.google.com/document/d/1A_-
7MVWf7oB0QioLbjPwcxDi7iJy8KoR/e
dit?usp%3Dsharing%26ouid%3D117680
838385157441961%26rtpof%3Dtrue%26
sd%3Dtrue 

Inclusion in Plant and Microbial Biology Seminar Series  

Improving the Efficacy of ESPM's First Year Curriculum  

Demystifying the Graduate School Process 
https://esajournals.onlinelibrary.wiley.co
m/doi/full/10.1002/bes2.2029 

Assessing the Course as a Site of Organizational Change and Anti-Racist Meaning 
Making  
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Conclusion 
The overall vision of my dissertation was to explore complex drivers of infectious diseases from 
an environmental and epidemiologic lens and provide an exemplary framework for anti-racist 
pedagogy in environmental science. In my dissertation, I uncovered (1) abiotic and biotic factors 
influencing the soil niche of the two, recognized fungal species in the Coccidioides genus (the 
soil-dwelling fungus that causes coccidioidomycosis), (2) disease dynamics of COVID-19 and its 
unequal impacts on communities of color, and (3) a pedagogical framework for anti-racist 
training and action. Specifically, the pedagogical framework aimed to create a community of 
change agents ready to address systemic racism in research, institutions, and individual 
researchers.  
 
In my first chapter, reviewed the soil niche of Coccidioides species. This chapter concluded that 
Coccidioides has generally been associated with arid and semi-arid environments with 
characteristic climate patterns of alternating wet and dry seasons. In the soil, Coccidioides has 
been associated with porous, sandy-loam soil, with high alkalinity and pH and high levels of 
organic matter, including from animal-derived keratin. Beyond this, there is limited 
understanding of the specific soil conditions that encourage or inhibit fungal growth, spore 
development, and spore dispersal. This limits our ability to establish strong inference on the 
spatio-temporal distribution of the fungus across landscapes and regions and hinders pathogen 
surveillance and control strategies for coccidioidomycosis. Several critical gaps in our 
understanding of the Coccidioides soil niche remain, including the role of small mammals as 
potential reservoir hosts of the fungus; a broader understanding of the microbial community 
within which Coccidioides is found; and how climate and land-use change may drive shifts in the 
Coccidioides endemic range. 
 
For my second chapter, I used a novel set of SuperLearner algorithms to assess variable 
importance for several cross-sectional COVID-19 outcomes. The results revealed that racial 
composition of counties and intensity of public transportation use therein seem to be the most 
important risk factors for both the initial rapid growth and subsequent high incidence of COVID-
19 and help explain variations in mortality rates across counties.  
 
There are many was to implement anti-racist practices in higher education. For my third and final 
chapter, I detailed the pedagogical framework for an anti-racism course. The outcome of the 
course was a transition of a community of learners to a community of change agents capable of 
working effectively both inside and outside of academia, at different scales, for the long term. 
This chapter provided a framework for inspiring others to design similar courses and to highlight 
the components that were essential to its success. Through the experience of developing anti-
racist praxis, course participants will be better equipped for making substantive changes at 
different scales and levels. Anti-racism is essential to creating substantial transformations in the 
current, oppressive systems that impact environmental sciences, academia, and beyond.  
 
While race is an outdated social construct, racism remains a pervasive reality in modern society 
that leads to the exclusion, marginalization, and violence against non-white people. My work 
shows that racism influences much of our societal infrastructure from disease dynamics e.g., 
transmission and health outcomes (Chapter 2) to access and training in higher education (Chapter 
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3). Additionally, racism influences how, where, and who is studied, and this has unequal 
consequences for racially minoritized communities. To move forward, it’s important that we 
remain proactive and incorporate anti-racist mindsets, praxis, training programs, and research 
practices in all academic settings where necessary. Lastly, implementing anti-racist ideologies 
will require that we develop sustainable actions plans (Chapter 3). There is a long overdue need 
to integrate JEDI practices in workplaces across the country, including academia. 
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Chapter 2 Appendix  

Materials from: Supplemental Document for the Ensemble Machine 
Learning of Factors Influencing COVID-19 Across US Counties 
Publication 
 
Because of the diverse number of variables and sources of information we provide this 
supplementary document that explains the variable aggregation methods and gives a breakdown 
of the variable types and distributions. Additionally, we give metrics on the fit of each of our 
SuperLearners calculated through cross-validation as well as details on the heatmap presented in 
the main body of the manuscript.  

Data Dictionary  
This table gives a detail for each variable used in modeling, its source, and a descriptions: 
 
Table S1. Variables used in modeling with sources, sub-categories and details. 

Variable Name / Measure  New or 
generated 
data? 

Category  Sub-category Definition Source 

FIPS no identifier    FIPS code to identify 
geographic area (county); 
integer 

  

CountyRelativeDay25Cases yes outcome   Number of cumulative 
cases on day 25 of the 
outbreak by county per 
capita 

USAFacts 

TotalCasesUpToDate yes outcome   Number of total 
cumulative cases to date 
per capita 

USAFacts 

USRelativeDay100Deaths yes outcome   Number of cumulative 
deaths on day 100 of the 
outbreak per county per 
capita 

USAFacts 

TotalDeathsUpToDate yes outcome   Number of total 
cumulative deaths up to 
date per 
capita 

USAFacts 

FirstCaseDay yes outcome   Day of the first case 
starting after Jan. 21 2020 

USAFacts 

Population no demography demography Adjusted population size, 
2020 

USAFacts 

GDP no demography demography Real gross domestic 
product (GDP) by 
County, 2018, 
from December 12, 2019 
release 

Bureau of 
Economic 
Analysis (BEA) 

pct_female_2018 yes demography demography Percentage of the 
population that identifies 
as female, 2014-2018 

5-Year American 
Community 
Survey (ACS), 
Sex by, Age, 
2014 - 2018 
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pct_black_only_2018 yes demography Ethnicity Percentage of the 
population that identifies 
as Black or African 
American alone, 2014-
2018 

5-Year American 
Community 
Survey (ACS), 
Race, 2014 - 
2018 

pct_american_indian.alaskan_native_o
nly_2018 

yes demography Ethnicity Percentage of the 
population that identifies 
as American Indian and 
Alaska Native alone, 
2014-2018 

5-Year American 
Community 
Survey (ACS), 
Race, 2014 - 
2018 

pct_asian_only_2018 yes demography Ethnicity Percentage of the 
population that identifies 
as Asian alone, 2014-
2018 

5-Year American 
Community 
Survey (ACS), 
Race, 2014 - 
2018 

pct_hawaiian_or_pacific_islander_only
_2018 

yes demography Ethnicity Percentage of the 
population that identifies 
as Native Hawaiian and 
Other Pacific Islander 
alone, 
2014-2018  

5-Year American 
Community 
Survey (ACS), 
Race, 2014 - 
2018 

pct_some_other_race_alone_2018 yes demography Ethnicity Percentage of the 
population that identifies 
as Some other race alone, 
2014-2018 

5-Year American 
Community 
Survey (ACS), 
Race, 2014 - 
2018 

pct_2_or_more_races_2018 yes demography Ethnicity Percentage of the 
population that identifies 
as two or more races 
alone, 2014-2018 

5-Year American 
Community 
Survey (ACS), 
Race, 2014 - 
2018 

pct_hispanic_or_latino_2018 yes demography Ethnicity Percentage of the 
population that identifies 
as hispanic or Latino, 
2014-2018 

5-Year American 
Community 
Survey (ACS), 
Hispanic or 
Latino Origin by 
Race, 2014 - 
2018 

CentroidLat yes geography location Latitude for mean 
position of all the points 
in the geometric object 
determined by legal 
boundaries for a county 
based on the 2019 Census 
Bureau’s MAF/TIGER 
database for use with 
Esri’s 
ArcGIS 

TIGER/Line 
Geodatabases 

CentroidLon yes geography location Longitude for mean 
position of all the points 
in the geometric object 
determined by legal 
boundaries for a county 
based on the 2019 from 
the 
Census Bureau’s 
MAF/TIGER database 
for use with Esri’s 
ArcGIS 

TIGER/Line 
Geodatabases 

NearestAirportDistance yes geography airport Distance from county 
centroid to the nearest 
airport (km) 

TIGER/Line 
Geodatabases; 
Federal Aviation 
Administration 
(FAA) 
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NearestAirportEnplanements yes geography airport Number of enplanements 
for the nearest airport to 
the county centroid, 2018 

TIGER/Line 
Geodatabases; 
Federal Aviation 
Administration 
(FAA) 

NearestAirportOver5000000Distance yes geography airport Distance from county 
centroid to the nearest 
airport that has 
50,000,000 or more 
enplanements (km) 

TIGER/Line 
Geodatabases; 
Federal Aviation 
Administration 
(FAA) 

NearestAirportOver5000000Enplaneme
nts 

yes geography airport Number of enplanements 
for the nearest airport to 
the county centroid that 
has 50,000,000 or more 
enplanements, 2018 

TIGER/Line 
Geodatabases; 
Federal Aviation 
Administration 
(FAA) 

AreaLand yes geography geography Area of the county 
geometry from 2019 tiger 
census 
shapefile (square km) 

TIGER/Line 
Geodatabases 

urban_rural_status no healthcare healthcare Number of Hospitals by 
county, 2017 

Interactive Atlas 
of Heart Disease 
and Stroke 
(2014- 
2016) 

all_stroke_deathrate no health disease prev Stroke Death Rate per 
100,000, 35+, All 
Races/Ethnicities, Both 
Genders, 2016-2018 

Interactive Atlas 
of Heart Disease 
and Stroke 
(2014- 
2016) 

Premature.death.raw.value no health disease prev Years of potential life lost 
before age 75 per 
100,000 
population (age-adjusted) 

County Health 
Rankings & 
Roadmaps 

Adult.smoking.raw.value no health disease prev Percentage of adults who 
are current smokers. 

County Health 
Rankings & 
Roadmaps 

Adult.obesity.raw.value no health disease prev Percentage of the adult 
population (age 20 and 
older) that reports a body 
mass index (BMI) greater 
than or equal to 30 
kg/m^2 

County Health 
Rankings & 
Roadmaps 

Food.environment.index.raw.value no health health envir. Index of factors that 
contribute to a healthy 
food 
environment, from 0 
(worst) to 10 (best). 

County Health 
Rankings & 
Roadmaps 

Access.to.exercise.opportunities.raw.va
lue 

no health health envir. Percentage of population 
with adequate access to 
locations for physical 
activity. 

County Health 
Rankings & 
Roadmaps 

Excessive.drinking.raw.value no health health envir. Percentage of adults 
reporting binge or heavy 
drinking. 

County Health 
Rankings & 
Roadmaps 

HIV.prevalence.raw.value   health disease prev     

Sexually.transmitted.infections.raw.val
ue 

no health disease prev Number of newly 
diagnosed chlamydia 
cases per 
100,000 population 

County Health 
Rankings & 
Roadmaps 
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Life.expectancy.raw.value no health health envir. Average number of years 
a person can expect to 
live. 

County Health 
Rankings & 
Roadmaps 

Food.insecurity.raw.value no health health envir. Percentage of population 
who lack adequate access 
to food. 

County Health 
Rankings & 
Roadmaps 

prev_2017_over_65_Alzheimer.s.Disea
se.Dementia 

no health disease prev Prevalence of 
Alzheimer’s Disease and 
Related Dementia, All 
Fee-for-Service 
Beneficiaries, 2017 (%) 

Centers for 
Medicare & 
Medicaid 
Services (CMS) 

prev_2017_all_ages_Arthritis no health disease prev Prevalence of Arthritis 
(Osteoarthritis and 
Rheumatoid), All Fee-
for-Service Beneficiaries, 
2017 
(%) 

Centers for 
Medicare & 
Medicaid 
Services (CMS) 

prev_2017_all_ages_Asthma no health disease prev Prevalence of Asthma, 
All Fee-for-Service 
Beneficiaries, 2017 (%) 

Centers for 
Medicare & 
Medicaid 
Services (CMS) 

prev_2017_all_ages_Cancer no health disease prev Prevalence of Cancer 
(Breast, Colorectal, Lung, 
and Prostate), All Fee-
for-Service Beneficiaries, 
2017 (%) 

Centers for 
Medicare & 
Medicaid 
Services (CMS) 

prev_2017_all_ages_Chronic.Kidney.D
isease 

no health disease prev Prevalence of Chronic 
Kidney Disease, All Fee-
for- 
Service Beneficiaries, 
2017 (%) 

Centers for 
Medicare & 
Medicaid 
Services (CMS) 

prev_2017_all_ages_COPD no health disease prev Prevalence of Chronic 
Obstructive Pulmonary 
Disease, All Fee-for-
Service Beneficiaries, 
2017 (%) 

Centers for 
Medicare & 
Medicaid 
Services (CMS) 

prev_2017_all_ages_Depression no health disease prev Prevalence of 
Depression, All Fee-for-
Service 
Beneficiaries, 2017 (%) 

Centers for 
Medicare & 
Medicaid 
Services (CMS) 

prev_2017_all_ages_Diabetes no health disease prev Prevalence of Diabetes, 
All Fee-for-Service 
Beneficiaries, 2017 (%) 

Centers for 
Medicare & 
Medicaid 
Services (CMS) 

prev_2017_all_ages_Drug.Abuse.Subst
ance.Abuse 

no health disease prev Prevalence of Drug 
Abuse/ Substance Abuse, 
All Fee- 
for-Service Beneficiaries, 
2017 (%) 

Centers for 
Medicare & 
Medicaid 
Services (CMS) 

prev_2017_all_ages_Hyperlipidemia no health disease prev Prevalence of 
Hyperlipidemia (High 
cholesterol), All 
Fee-for-Service 
Beneficiaries, 2017 (%) 

Centers for 
Medicare & 
Medicaid 
Services (CMS) 

prev_2017_all_ages_Hypertension no health disease prev Prevalence of 
Hypertension (High 
blood pressure), 
All Fee-for-Service 
Beneficiaries, 2017 (%) 

Centers for 
Medicare & 
Medicaid 
Services (CMS) 

prev_2017_all_ages_Ischemic.Heart.Di
sease 

no health disease prev Prevalence of Ischemic 
Heart Disease, All Fee-
for- 
Service Beneficiaries, 
2017 (%) 

Centers for 
Medicare & 
Medicaid 
Services (CMS) 
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prev_2017_all_ages_Osteoporosis no health disease prev Prevalence of 
Osteoporosis, All Fee-
for-Service 
Beneficiaries, 2017 (%) 

Centers for 
Medicare & 
Medicaid 
Services (CMS) 

prev_2017_all_ages_Schizophrenia.Oth
er.Psychotic.Disorders 

no health disease prev Prevalence of 
Schizophrenia and Other 
Psychotic Disorders, All 
Fee-for-Service 
Beneficiaries, 2017 (%) 

Centers for 
Medicare & 
Medicaid 
Services (CMS) 

num_hospitals no healthcare healthcare Number of Hospitals by 
county, 2017 

Interactive Atlas 
of Heart Disease 
and Stroke 
(2014- 
2016) 

Uninsured.raw.value no healthcare healthcare Percentage of the 
population under age 65 
that has 
no health insurance 
coverage 

County Health 
Rankings & 
Roadmaps 

Primary.care.physicians.raw.value no healthcare healthcare Number of primary care 
physicians per 100,000 
population 

County Health 
Rankings & 
Roadmaps 

Preventable.hospital.stays.raw.value no healthcare healthcare Hospital discharge rate 
for ambulatory care-
sensitive conditions per 
100,000 fee-forservice 
Medicare 
enrollees 

County Health 
Rankings & 
Roadmaps 

Flu.vaccinations.raw.value no healthcare healthcare Percentage of fee-for-
service Medicare 
enrollees 
that had an annual flu 
vaccination 

County Health 
Rankings & 
Roadmaps 

Percentage.of.households.with.overcro
wding 

no housing density Percentage of households 
with overcrowding – 
more 
than 1 person per room 

County Health 
Rankings & 
Roadmaps 

pct_in_labor_force_employed_2018 yes occupation occupation Percentage of population 
employed in labor force, 
2014-2018 

5-Year American 
Community 
Survey (ACS), 
Health Insurance 
Coverage Status 
and Type by 
Employment 
Status, 2014 - 
2018 

percent_park_access no physical 
environment 

physical 
environment 

Percentage of Population 
Living Within Half a 
Mile of a Park, 2015 

Interactive Atlas 
of Heart Disease 
and Stroke 
(2014- 
2016) 

Air.pollution...particulate.matter.raw.va
lue 

no physical 
environment 

physical 
environment 

Average daily density of 
fine particulate matter in 
micrograms per cubic 
meter (PM2.5) in a 
county 

County Health 
Rankings & 
Roadmaps 

Drinking.water.violations.raw.value no physical 
environment 

physical 
environment 

Indicator of the presence 
of health-related drinking 
water violations. 0=No, 
1=Yes 

County Health 
Rankings & 
Roadmaps 
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pcp_m1 no physical 
environment 

physical 
environment 

Precipitation in January 
2020 (in) 

National Centers 
for 
Environmental 
Information / 
National Oceanic 
and Atmospheric 
Administration 
(NOAA) 

High.school.graduation.raw.value no social education Percentage of ninth-grade 
cohort that graduates in 
four years. 

County Health 
Rankings & 
Roadmaps 

Some.college.raw.value no social education Percentage of adults ages 
25-44 with some post- 
secondary education. 

County Health 
Rankings & 
Roadmaps 

Unemployment.raw.value no social occupation Percentage of the civilian 
labor force, age 16 and 
older, that is unemployed 
but seeking work 

County Health 
Rankings & 
Roadmaps 

Income.inequality.raw.value no social economic Ratio of household 
income at the 80th 
percentile to 
income at the 20th 
percentile. 

County Health 
Rankings & 
Roadmaps 

Median.household.income.raw.value no social economic The income where half of 
households in a county 
earn more and half of 
households earn less. 

County Health 
Rankings & 
Roadmaps 

EPL_PCI no social economic Percentile per capita 
income estimate 

CDC's Social 
Vulnerability 
Index (SVI) 

EPL_AGE65 no demography age Percentile percentage of 
persons aged 65 and older 
estimat 

CDC's Social 
Vulnerability 
Index (SVI) 

EPL_AGE17 no demography age Percentile percentage of 
persons aged 17 and 
younger estimate 

CDC's Social 
Vulnerability 
Index (SVI) 

EPL_DISABL no health disease prev Percentile percentage of 
civilian 
noninstitutionalized 
population with a 
disability estimate 

CDC's Social 
Vulnerability 
Index (SVI) 

EPL_SNGPNT no social economic Percentile percentage of 
single parent households 
with children under 18 
estimate 

CDC's Social 
Vulnerability 
Index (SVI) 

EPL_MINRTY no social Ethnicity Percentile percentage 
minority (all persons 
except white, non - 
Hispanic) estimate 

CDC's Social 
Vulnerability 
Index (SVI) 

EPL_LIMENG no social Ethnicity Percentile percentage of 
persons (age 5+) who 
speak English "less than 
well" estimate 

CDC's Social 
Vulnerability 
Index (SVI) 

EPL_MUNIT no social economic Percentile percentage 
housing in structures with 
10 or more units estimate 

CDC's Social 
Vulnerability 
Index (SVI) 

EPL_MOBILE no social economic Percentile percentage 
mobile homes estimate 

CDC's Social 
Vulnerability 
Index (SVI) 

EPL_NOVEH no social economic Percentile percentage 
households with no 
vehicle available estimate 

CDC's Social 
Vulnerability 
Index (SVI) 
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EPL_GROUPQ no social density Percentile percentage of 
persons in 
institutionalized group 
quarters estimate 

CDC's Social 
Vulnerability 
Index (SVI) 

pct_no_workers_in_household_2018 yes social economic Percentage of the 
households with no 
workers, 2014 2018 

5-Year American 
Community 
Survey (ACS), 
Household  size 
by number of 
workers in 
household, 2014 
- 2018 

pct_poverty_income_ratio_under_100 yes social economic Percentage of population 
with a ratio of income to 
poverty level in the past 
12 months under 1.00, 
2014 2018 

5-Year American 
Community 
Survey (ACS), 
Ratio of income 
to poverty levels 
in the Past 12 
Months, 2014 - 
2018 

pct_poverty_income_ratio_100to200 yes social economic Percentage of population 
with a ratio of income to 
poverty level in the past 
12 months from 1.00 to 
2.00, 2014-2018 

5-Year American 
Community 
Survey (ACS), 
Ratio of income 
to poverty levels 
in the Past 12 
Months, 2014 - 
2018 

Driving.alone.to.work.raw.value           

pct_taking_Public_transportation_2018 yes transit transit Percentage of the 
population with public 
transportation (excluding 
taxicab) as means of 
transportation to work, 
2014-2018 

5-Year American 
Community 
Survey (ACS), 
Means of 
Transportation to 
Work, 
2014 - 2018 

agg_commuting_by_residence_place no transit transit Residence County to 
Workplace County 
Commuting Flows by 
Residence 

5-Year American 
Community 
Survey (ACS), 
Commuting 
Flows, 2011-
2015 

occ_all_federal   occupation occupation 10 Total, all industries 
federal 

Quarterly Census 
of Employment 
and Wages 

occ_all_state   occupation occupation 10 Total, all industries 
state 

Quarterly Census 
of Employment 
and Wages 

occ_all_local   occupation occupation 10 Total, all industries 
local 

Quarterly Census 
of Employment 
and Wages 

occ_goods_prod   occupation occupation 10 Total, all industries 
private 

Quarterly Census 
of Employment 
and Wages 

occ_natural_mining   occupation occupation 101 Goods-producing Quarterly Census 
of Employment 
and Wages 

occ_construction   occupation occupation 1011 Natural resources 
and mining 

Quarterly Census 
of Employment 
and Wages 

occ_Manufacturing   occupation occupation 1012 Construction Quarterly Census 
of Employment 
and Wages 
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occ_servic_prov   occupation occupation 1013 Manufacturing Quarterly Census 
of Employment 
and Wages 

occ_trade_trans_util   occupation occupation 102 Service-providing Quarterly Census 
of Employment 
and Wages 

occ_Info   occupation occupation 1021 Trade, 
transportation, and 
utilities 

Quarterly Census 
of Employment 
and Wages 

occ_financial   occupation occupation 1022 Information Quarterly Census 
of Employment 
and Wages 

occ_prof_business   occupation occupation 1023 Financial activities Quarterly Census 
of Employment 
and Wages 

occ_educ_health   occupation occupation 1024 Professional and 
business services 

Quarterly Census 
of Employment 
and Wages 

occ_leisure   occupation occupation 1025 Education and 
health services 

Quarterly Census 
of Employment 
and Wages 

rep_ratio   social demography ratio of republican votes 
to total votes in 2016 
election 

MIT election lab 

soc_assc_rate   social density social associates per 10k   

pct_mental_distress   social disease prev mental distress   

pct_insufficient_sleep   social disease prev no sleep   

grocery_pharmacy   transit transit google mobility data 
from x to y 

Google  

parks   transit transit google mobility data 
from x to y 

Google  

residential   transit transit google mobility data 
from x to y 

Google  

retailAndRecreation   transit transit google mobility data 
from x to y 

Google  

transitStations   transit transit google mobility data 
from x to y 

Google  

workplaces   transit transit google mobility data 
from x to y 

Google  

occ_total_all_industries   occupation occupation 10 Total, all industries 
total 

Quarterly Census 
of Employment 
and Wages 
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Statistical Breakdown of Variables Used 
 
Table S2. Range, mean, median, standard deviation and variable type for variables used 

Variable Name / Measure  Variable 
Type 

Minimum Maximum Mean Standard 
Deviation  

Median 

FIPS Identifier  10001 56045 33139.3309 13169.53632 31170 

CountyRelativeDay25Cases Outcome 1 13869 92.7729008 518.748661 13 

TotalCasesUpToDate Outcome 1 95557 966.081679 4184.672423 109 

USRelativeDay100Deaths Outcome 0 5228 20.2358779 185.0200739 0 

TotalDeathsUpToDate Outcome 0 7171 42.7446565 288.2969229 2 

FirstCaseDay Outcome 1 148 67.9083969 17.38025651 64 

Population Predictor  625 5150233 95405.6099 258464.9638 27036.5 

GDP Predictor  26968 711974400 5743017.64 23894006.96 1084813.5 

pct_female_2018 Predictor  0.21003945 0.579226911 0.49942708 0.022607205 0.50380189 

pct_black_only_2018 Predictor  0 0.874122807 0.08770954 0.139326185 0.02371927 

pct_american_indian.alaskan_native_onl
y_2018 

Predictor  0 0.855333658 0.01679006 0.066543522 0.00327476 

pct_asian_only_2018 Predictor  0 0.252645515 0.01177309 0.019401881 0.00589667 

pct_hawaiian_or_pacific_islander_only_
2018 

Predictor  0 0.021386093 0.00064471 0.00148338 0.00015202 

pct_some_other_race_alone_2018 Predictor  0 0.570095949 0.01898913 0.035467631 0.00831348 

pct_2_or_more_races_2018 Predictor  0 0.189837877 0.02268693 0.016756945 0.01920718 

pct_hispanic_or_latino_2018 Predictor  0 0.990687702 0.08689204 0.133408979 0.03829681 

CentroidLat Predictor  25.04678033 48.82961587 38.4291696 4.895100602 38.6032232 

CentroidLon Predictor  -124.2152207 -67.60905949 -90.484675 10.74667917 -89.16483 

NearestAirportDistance Predictor  0.823168814 259.7738866 63.7217757 34.40582912 59.6056734 

NearestAirportEnplanements Predictor  2636 51865797 2459136.18 7337672.281 178057 

NearestAirportOver5000000Distance Predictor  2.365905464 940.4769079 237.439957 140.2947943 216.912479 

NearestAirportOver5000000Enplanemen
ts 

Predictor  5790847 51865797 17699825.3 12418360.15 15292670 

AreaLand Predictor  58690498 47090939040 2243334237 2886455082 149374547
8 

urban_rural_status Predictor  1 4 3.47022901 0.772938108 4 

all_stroke_deathrate Predictor  27.9 180.2 76.9034525 15.46103681 75.8 

Premature.death.raw.value Predictor  0.001361519 14.85136496 0.58586235 0.902767497 0.31160837 

Adult.smoking.raw.value Predictor  0.059087195 0.41491309 0.17579878 0.034875938 0.17028337 

Adult.obesity.raw.value Predictor  0.124 0.577 0.3313771 0.051878141 0.333 

Food.environment.index.raw.value Predictor  0 10 7.53204008 1.057107542 7.7 

Access.to.exercise.opportunities.raw.val
ue 

Predictor  0 1 0.62644697 0.223111815 0.65741808 

Excessive.drinking.raw.value Predictor  0.078096324 0.286237394 0.17591714 0.031203184 0.17599619 

HIV.prevalence.raw.value Predictor  0 0.248412138 0.00736452 0.014083134 0.00483243 

Sexually.transmitted.infections.raw.value Predictor  0.000125644 3.243402226 0.02185311 0.074035055 0.01104916 

Life.expectancy.raw.value Predictor  61.62562897 89.48944483 77.418201 2.770746091 77.4617427 
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Food.insecurity.raw.value Predictor  0.029 0.363 0.13127405 0.038301995 0.127 

prev_2017_over_65_Alzheimer.s.Diseas
e.Dementia 

Predictor  4.1825 30.4888 11.8556835 1.934830368 11.8481335 

prev_2017_all_ages_Arthritis Predictor  18.7 62.7 33.2101908 4.953532759 33.3 

prev_2017_all_ages_Asthma Predictor  1.4 11.6 4.43556586 1.125369051 4.4 

prev_2017_all_ages_Cancer Predictor  3.5 12.1 7.50248374 1.222017884 7.5 

prev_2017_all_ages_Chronic.Kidney.Dis
ease 

Predictor  9.2 51.5 23.1284733 4.302205402 23.1 

prev_2017_all_ages_COPD Predictor  3.6 32.1 13.0471292 3.678299314 12.6 

prev_2017_all_ages_Depression Predictor  7.2 35.9 17.843388 3.333253322 17.8 

prev_2017_all_ages_Diabetes Predictor  8.5 49.6 27.2415267 4.714199177 27.3 

prev_2017_all_ages_Drug.Abuse.Substa
nce.Abuse 

Predictor  0 16.7 3.32540462 1.671097625 3.1 

prev_2017_all_ages_Hyperlipidemia Predictor  10.3 67.6 38.6522901 8.526103848 39.9 

prev_2017_all_ages_Hypertension Predictor  28.8 74.9 57.0606489 8.143505106 58.7 

prev_2017_all_ages_Ischemic.Heart.Dis
ease 

Predictor  13.9 46.9 27.1161832 5.165785826 26.8 

prev_2017_all_ages_Osteoporosis Predictor  1.1 16.6 5.43661487 1.566943886 5.3 

prev_2017_all_ages_Schizophrenia.Othe
r.Psychotic.Disorders 

Predictor  0 17.5 2.73111041 1.09223365 2.6 

num_hospitals Predictor  0 48 1.39122137 2.030504115 1 

Uninsured.raw.value Predictor  0.022627241 0.337495997 0.11477122 0.052698789 0.104963 

Primary.care.physicians.raw.value Predictor  0 0.005144483 0.00053876 0.000318108 0.00049405 

Preventable.hospital.stays.raw.value Predictor  0.001008498 5.8528 0.33787854 0.499945044 0.16874969 

Flu.vaccinations.raw.value Predictor  0.07 0.66 0.42367503 0.094675985 0.44 

Percentage.of.households.with.overcrow
ding 

Predictor  0 0.169398907 0.02247575 0.017162914 0.01837327 

pct_in_labor_force_employed_2018 Predictor  0.375917178 0.920989144 0.71177429 0.079392843 0.71810713 

percent_park_access Predictor  0 100 19.0835878 18.16042269 14 

Air.pollution...particulate.matter.raw.val
ue 

Predictor  3 15 9.11667939 1.830299595 9.4 

Drinking.water.violations.raw.value Predictor  0 1 0.36564885 0.481703575 0 

pcp_m1 Predictor  0.01 29.49 3.52638889 2.947930471 3.155 

High.school.graduation.raw.value Predictor  0.404 1 0.89007109 0.066892687 0.89946144 

Some.college.raw.value Predictor  0.151758794 0.903365627 0.5769537 0.116502609 0.5779264 

Unemployment.raw.value Predictor  0.013020833 0.132632633 0.04090638 0.013371092 0.03862468 

Income.inequality.raw.value Predictor  2.543128746 11.97063933 4.48940161 0.731134841 4.37970134 

Median.household.income.raw.value Predictor  25973 140382 52705.2481 13257.01787 50823.5 

EPL_PCI Predictor  -999 0.9997 0.11969782 19.52893859 0.49535 

EPL_AGE65 Predictor  0 1 0.49607832 0.281636685 0.4893 

EPL_AGE17 Predictor  0.0003 0.9997 0.49978683 0.286041997 0.504 

EPL_DISABL Predictor  0.0006 1 0.49540557 0.282012813 0.4906 

EPL_SNGPNT Predictor  0.0035 0.9997 0.49902534 0.279350547 0.49 

EPL_MINRTY Predictor  0.001 1 0.47889603 0.286503968 0.4691 

EPL_LIMENG Predictor  0 1 0.47251286 0.295415662 0.4642 
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EPL_MUNIT Predictor  0 1 0.49441481 0.285252688 0.4947 

EPL_MOBILE Predictor  0 1 0.5005024 0.286942573 0.4963 

EPL_NOVEH Predictor  0 0.9997 0.4947934 0.283593037 0.5002 

EPL_GROUPQ Predictor  0 1 0.493535 0.292441641 0.4995 

pct_no_workers_in_household_2018 Predictor  0.108412006 0.710758474 0.31763254 0.076205339 0.31053048 

pct_poverty_income_ratio_under_100 Predictor  0.023031051 0.550965018 0.15559534 0.063928187 0.14623987 

pct_poverty_income_ratio_100to200 Predictor  0.05874302 0.527681661 0.2493857 0.061402222 0.24786896 

Driving.alone.to.work.raw.value Predictor  0.060475223 0.951658768 0.80523337 0.059576755 0.81362847 

pct_taking_Public_transportation_2018 Predictor  0 0.613605424 0.00845089 0.030240253 0.00319651 

agg_commuting_by_residence_place Predictor  0.162467905 0.621885522 0.42507364 0.062269901 0.42728234 

occ_all_federal Predictor  2.86589E-05 0.0112 0.00060409 0.000633156 0.00040924 

occ_all_state Predictor  1.43568E-06 0.0048 0.00058637 0.000533827 0.00045857 

occ_all_local Predictor  2.76046E-05 0.017564403 0.00145498 0.001351828 0.00106089 

occ_goods_prod Predictor  0.000219491 0.065294535 0.00535705 0.003327967 0.00443767 

occ_natural_mining Predictor  3.52558E-06 0.061036196 0.00162764 0.002512533 0.00083342 

occ_construction Predictor  0.000202491 0.02947627 0.00264463 0.001567839 0.00232076 

occ_Manufacturing Predictor  5.11274E-05 0.007529572 0.00111367 0.000573892 0.00103843 

occ_servic_prov Predictor  0.002658623 0.085833617 0.01942579 0.00727905 0.01824523 

occ_trade_trans_util Predictor  0.000715783 0.018966335 0.00582727 0.002227406 0.00535803 

occ_Info Predictor  2.19342E-05 0.003171843 0.00037287 0.000256216 0.00031025 

occ_financial Predictor  0.000147113 0.013595295 0.00214443 0.001035159 0.00195662 

occ_prof_business Predictor  0.000117536 0.027233208 0.00318709 0.001945994 0.00267935 

occ_educ_health Predictor  0.000204666 0.032647896 0.00318074 0.002368195 0.00269972 

occ_leisure Predictor  9.82608E-05 0.016111708 0.00250664 0.001455836 0.00226896 

rep_ratio Predictor  0.094605554 0.945848375 0.63884179 0.146748554 0.66530701 

soc_assc_rate Predictor  0 52.3138833 11.9612474 5.598064461 11.4234988 

pct_mental_distress Predictor  8.003230952 21.0132251 12.9909953 1.934384709 12.9401388 

pct_insufficient_sleep Predictor  23.22678619 46.70778346 33.1342874 4.018470442 33.0518716 

grocery_pharmacy Predictor  -0.68000604 0.001057082 -0.2002382 0.142066326 -0.2106614 

parks Predictor  -1.590154032 0.878284506 -0.0650332 0.555193587 0.07656297 

residential Predictor  0.316520689 0.640138931 0.438045 0.072091058 0.42706131 

retailAndRecreation Predictor  -1.707188161 -0.986106916 -1.2988005 0.183307021 -1.2733313 

transitStations Predictor  -1.989429175 -0.400483238 -1.1413261 0.386738545 -1.1984295 

workplaces Predictor  -1.405919662 -0.738900634 -1.0598425 0.144216957 -1.0742978 

occ_total_all_industries Predictor  0.004090189 0.106247869 0.02741209 0.010299583 0.02528717 
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Cross Validated Risk of the Estimators 
 
Table S3. Cross-Validated Coefficients and Risk for Day of First Case Outcome 

Learner Coefficient Mean Risk SE Risk Fold SD Fold Min Risk Fold Max 
Risk 

Conditional Mean 0.00 326.50 16.83 21.96 303.41 354.08 

Poisson Xgboost depth = 5, rounds = 100 0.08 195.00 10.83 26.21 175.12 239.99 

Poisson Xgboost depth = 10, rounds = 200 0.12 201.06 11.25 22.38 181.37 234.70 

Poisson Ridge Regression 0.07 203.47 11.86 18.99 181.00 230.33 

Poisson Lasso Regression 0.00 227.91 29.42 59.21 185.14 331.88 

Poisson Gradient Boosting Machine 0.72 177.07 9.83 15.58 165.87 203.52 

Elastic Net, alpha = 0.25 0.01 210.91 18.95 38.65 179.15 274.90 

Elastic Net, alpha = 0.50 0.00 220.47 24.80 51.71 179.24 306.17 

Elastic Net, alpha = 0.75 0.00 224.28 28.53 60.82 178.31 327.66 

SuperLearner NA 178.00 9.98 16.26 162.74 204.02 
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Table S4. Cross-Validated Coefficients and Risk for Number of Cases at Day 25 
Learner Coefficient Mean Risk SE Risk Fold SD Fold Min Risk Fold Max 

Risk 
GLM 0.00 124.28 123.25 275.33 0.37 616.80 

Conditional Mean 0.25 1.10 0.37 1.23 0.35 3.26 

Ridge Regression 0.00 48.01 46.99 104.79 0.32 235.46 

Elastic Net 0.00 36.60 35.58 79.28 0.32 178.42 

Lasso Regression 0.00 30.88 29.86 66.49 0.31 149.79 

Xgboost, nrounds = 50,  
depth =2, eta =0.001 

0.00 54800.39 9.26 31.51 54748.31 54831.68 

Xgboost, nrounds = 50,  
depth =4, eta =0.001 

0.00 54800.39 9.26 31.51 54748.31 54831.68 

Xgboost, nrounds = 50,  
depth =6, eta =0.001 

0.00 54800.39 9.26 31.51 54748.31 54831.68 

Xgboost, nrounds = 50,  
depth =8, eta =0.001 

0.00 54800.39 9.26 31.51 54748.31 54831.68 

Xgboost, nrounds = 50,  
depth =8, eta =0.01 

0.00 22179.65 5.79 21.39 22144.36 22201.03 

Random Forest,  
ntrees = 10 

0.25 1.07 0.34 1.10 0.44 3.03 

Xgboost, nrounds = 50,  
depth =4, eta =0.2 

0.25 1.20 0.35 1.01 0.47 2.99 

Xgboost, nrounds = 50,  
depth =4, eta =0.3 

0.25 1.34 0.36 0.98 0.62 3.05 

SuperLearner NA 13.23 12.20 26.95 0.49 61.40 
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Table S5. Cross-Validated Coefficients and Risk for Total Cases to-date 
Learner Coefficient Mean Risk SE Risk Fold SD Fold Min Risk Fold Max 

Risk 
GLM 0.00 416.94 293.75 698.71 66.12 1664.87 

Conditional Mean 0.00 182.98 23.67 56.45 108.74 247.13 

Ridge Regression 0.13 120.26 21.51 54.20 62.28 194.47 

Elastic Net 0.01 142.90 31.48 100.09 61.35 310.72 

Lasso Regression 0.01 141.39 31.47 100.07 60.23 310.72 

Xgboost, nrounds = 50,  
depth =2, eta =0.001 

0.00 586264.00 387.48 1041.23 585286.52 587872.96 

Xgboost, nrounds = 50,  
depth =4, eta =0.001 

0.00 586264.00 387.48 1041.23 585286.52 587872.96 

Xgboost, nrounds = 50,  
depth =6, eta =0.001 

0.00 586264.00 387.48 1041.23 585286.52 587872.96 

Xgboost, nrounds = 50,  
depth =8, eta =0.001 

0.00 586264.00 387.48 1041.23 585286.52 587872.96 

Xgboost, nrounds = 50,  
depth =8, eta =0.01 

0.00 237383.68 240.87 704.53 236711.62 238471.76 

Random Forest,  
ntrees = 10 

0.23 110.35 20.25 43.24 71.89 180.76 

Xgboost, nrounds = 50,  
depth =4, eta =0.2 

0.32 101.36 18.00 36.39 69.40 157.70 

Xgboost, nrounds = 50,  
depth =4, eta =0.3 

0.30 113.92 18.48 35.33 78.80 168.75 

SuperLearner NA 103.72 18.92 46.89 61.26 175.62 
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Table S6. Cross-Validated Coefficients and Risk for Deaths at day 100 
 

  

Learner Coefficient Mean Risk SE 
Risk 

Fold SD Fold Min 
Risk 

Fold Max 
Risk 

GLM 0.13 0.06 0.06 0.13 0.00 0.30 

Conditional Mean 0.13 0.00 0.00 0.13 0.00 0.30 

Ridge Regression 0.13 0.00 0.00 0.00 0.00 0.00 

Elastic Net 0.13 0.00 0.00 0.00 0.00 0.00 

Lasso Regression 0.13 0.00 0.00 0.00 0.00 0.00 

Xgboost, nrounds = 50,  
depth =2, eta =0.001 

0.00 11989.94 0.18 0.00 0.00 0.00 

Xgboost, nrounds = 50,  
depth =4, eta =0.001 

0.00 11989.94 0.18 0.58 11989.25 11990.56 

Xgboost, nrounds = 50,  
depth =6, eta =0.001 

0.00 11989.94 0.18 0.58 11989.25 11990.56 

Xgboost, nrounds = 50,  
depth =8, eta =0.001 

0.00 11989.94 0.18 0.58 11989.25 11990.56 

Xgboost, nrounds = 50,  
depth =8, eta =0.01 

0.00 4852.61 0.12 0.58 11989.25 11990.56 

Random Forest,  
ntrees = 10 

0.12 0.00 0.00 0.40 4852.14 4853.04 

Xgboost, nrounds = 50,  
depth =4, eta =0.2 

0.12 0.00 0.00 0.00 0.00 0.00 

Xgboost, nrounds = 50,  
depth =4, eta =0.3 

0.13 0.00 0.00 0.00 0.00 0.00 

SuperLearner NA 0.00 0.00 0.00 0.00 0.00 
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Table S7. Cross-Validated Coefficients and Risk for Total Deaths to-date 
Learner Coefficient Mean Risk SE 

Risk 
Fold SD Fold Min Risk Fold Max 

Risk 
GLM 0.13 0.06 0.06 0.13 0.00 0.30 

Conditional Mean 0.13 0.00 0.00 0.00 0.00 0.00 

Ridge Regression 0.13 0.00 0.00 0.00 0.00 0.00 

Elastic Net 0.13 0.00 0.00 0.00 0.00 0.00 

Lasso Regression 0.13 0.00 0.00 0.00 0.00 0.00 

Xgboost, nrounds = 50,  
depth =2, eta =0.001 

0.00 11989.94 0.18 0.58 11989.25 11990.56 

Xgboost, nrounds = 50,  
depth =4, eta =0.001 

0.00 11989.94 0.18 0.58 11989.25 11990.56 

Xgboost, nrounds = 50,  
depth =6, eta =0.001 

0.00 11989.94 0.18 0.58 11989.25 11990.56 

Xgboost, nrounds = 50,  
depth =8, eta =0.001 

0.00 11989.94 0.18 0.58 11989.25 11990.56 

Xgboost, nrounds = 50,  
depth =8, eta =0.01 

0.00 4852.61 0.12 0.40 4852.14 4853.04 

Random Forest,  
ntrees = 10 

0.12 0.00 0.00 0.00 0.00 0.00 

Xgboost, nrounds = 50,  
depth =4, eta =0.2 

0.12 0.00 0.00 0.00 0.00 0.00 

Xgboost, nrounds = 50,  
depth =4, eta =0.3 

0.13 0.00 0.00 0.00 0.00 0.00 

SuperLearner NA 0.00 0.00 0.00 0.00 0.01 
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Table S8. Breakdown of outcome quantiles across the county dendrogram clusters  
 COVID-19 Cases at Day 25      COVID-19 Cases Total to-date Deaths at Day 100 Deaths Total to-date 

Cluster Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q1 Q2 Q3 Q4 

1 9 16 67 292 5 21 64 294 40 66 278 17 24 64 279 

2 213 323 320 220 202 278 364 232 532 336 208 288 265 288 235 

3 193 166 129 85 192 186 141 54 356 141 76 234 158 108 73 

4 254 171 104 58 265 163 84 75 454 91 42 346 124 73 44 
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Chapter 3 Appendix 

Appendix 1: Pedagogical Approach 
Here we provide more in-depth explanations of our pedagogical approach as well as a link to 
download the course syllabi. We include this supplementary material particularly for anyone 
interested in creating similar anti-racism courses. 

Curriculum  
The course curriculum consisted of six modules, each with learning objectives that built upon 
knowledge developed in prior modules. In this section, we expand on the information provided 
in the Main Text to outline the curriculum for the inaugural 2020 course and discuss iterative 
changes for the 2021 version honed through our own learning (see Main Text Table 2 for module 
breakdown.)  

Course Modules 
We began first with a module on “Framing the Conversation.” Beginning with trust- and 
community-building was vital, because it allowed for more open, honest, and fruitful 
conversations around difficult topics. This initial approach fostered a shared understanding of 
anti-racism and a strengthened set of collective values (Rozas & Miller 2009). Drawing on our 
anti-racism definition, which includes an emphasis on lifelong learning, action, and critical self-
reflection, we emphasized the need for individual commitment to maintaining an “inquiry as 
stance.” Cochran-Smith and Lytle (2009) define an “inquiry stance” as “a continual process of 
making current arrangements problematic” (p. 121).  
  
The second module, “Centering Black, Indigenous, and other People of Color (BIPOC) Voices,” 
began with a “two-way interview” between two Black and Latinx graduate student members of 
the teaching team about their racialized experiences (see further details on this methodology 
under “Teaching Practices,” below and in the Main Text). Next, we invited two Black scholars 
who had graduated from ESPM to present their work. These acts of centering sought to upend 
the status quo whereby the academy upholds whiteness, white experiences, and white scholarship 
as more legitimate and more worthy of curricular attention (Masta, 2021; Tuitt et al., 2018). 
Simultaneously, by welcoming and prioritizing Black personal narratives in the tradition of 
critical race theory (Ladson-Billings, 1998), the course gave credence and visibility to the merit 
of Black lived experiences as important sources of knowledge about course topics (Tuitt et al., 
2018). Centering and uplifting Black voices and expertise was particularly vital for our course 
given that anti-racism trainings themselves all too often center at white experiences, 
perspectives, and subjectivities at the expense of BIPOC experiences, thereby reinforcing white 
supremacy (Ikeda et al., 2021). 
 
Module 3 focused on mentorship in academia due to the critical importance of mentor-mentee 
relationships in helping students achieve end goals, such as degree attainment (Pfund et al., 
2016). Several studies demonstrate that BIPOC students do not receive sufficient and/or 
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adequate mentorship in comparison to their white counterparts (Noy & Ray, 2012; Segura et al., 
2011; Spalter-Roth et al., 2013). Therefore, we allocated two class sessions to this module. We 
primarily focused on faculty as mentors and graduate students as mentees while also discussing 
career-long mentorship from undergraduate to faculty levels. Guest lectures, readings, and 
activities focused on the unique needs and experiences of students of color, particularly with 
white mentors (Estrada et al., 2018b; Griffin et al., 2020; Martinez-Cola, 2020; McCoy et al., 
2015; McCoy et al., 2017). Course participants also engaged with potential tools (e.g., joint 
expectation contracts) to use in navigating mentor-mentee relationships. Additionally, an 
important topic discussed included the importance of micro-affirmations in mentorships (Estrada 
et al., 2018). 
 
In Module 4 we homed in on key organizational structures and practices within academia. 
Within STEM disciplines, the individual lab is often the space that is most central to a graduate 
student and postdoc’s development as an academic (Austin, 2002; Barnes & Austin, 2009), yet 
lab culture is not typically interrogated through a critical lens. We held small group discussions 
to work through Chaudhary & Berhe’s10 (2020) “Ten Simple Rules for Building an Anti-Racist 
Lab,” and role-played an activity on authorship order inspired by Liboiron et al.’s (2017) “Equity 
in Author Order.”11 Recruitment and retention of racially minoritized faculty at Predominately 
White Institutions has been a topic of extensive scholarship for two decades (e.g., Fasching-
Varner et al., 2015; Harley, 2008; Harris, 2017; Stanley, 2006), yet graduate students, postdocs, 
and even faculty-to-faculty peers rarely get an honest glimpse inside the black box of the 
process. Our readings (e.g., Clancy, 2020; Hayes, 2020) and classroom activities for this session 
highlighted the personal experience of minoritized faculty within ESPM and adjacent 
environmental science departments at Berkeley, demonstrating the critical race theory tradition 
of “counternarrative” (Ladson-Billing, 1998).  
 
The last component of our module on academic settings focused on the classroom. Again, anti-
racism in postsecondary classrooms has been the topic of decades of academic scholarship (e.g., 
Blakeney, 2005; hooks, 1994; Kandaswamy, 2007; Kishimoto, 2018; Santas, 2000; Wagner, 
2005). Post-2020 academic work indicates renewed interest in the topic of anti-racist classrooms 
(e.g., Alderman et al., 2021; Blonder et al., 2022; Bratman & DeLince, 2022; Ikeda et al., 2021; 
Moreau et al., 2022). The classroom—with its attendant pedagogical threads of curriculum, 
classroom structure, and teaching practices—could easily have been the topic of a full semester-
long course unto itself. Given the almost limitless directions this session could take, we used it as 
an opportunity to focus on the intersection of anti-racism and disability justice in the classroom 
(Garcia, 2020; Karpicz, 2020; Shelton, 2020). The readings and guest speaker drew from critical 
pedagogy, critical race theory, and critical disability studies. In the 2021 course we expanded 

 
 
 
10 Berhe is an ESPM alumnae. 
11 Most students and faculty in ESPM’s social science division, Society and Environment, do not 
work in lab environments and typically produce texts with single authors or a maximum of 2–3 
authors. This session on lab culture and authorship was thus most relevant to the 75% of ESPM 
that is in the biophysical sciences.   
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“the classroom” into its own 2-week module. (See Main Text Box 1 for a course action project 
focused on the classroom.) 
 
Module 5 focused on colonialism in the research process (Bang et al., 2012; Gray & Sheikh, 
2021; Nejadmehr, 2020; Raby, 2017; Roy, 2018; Smith, 2012). Guest lectures introduced the 
critical need for decolonial research to move away from racializing “settler ecologies'' that 
degrade non-European epistemologies and dispossess Indigenous peoples of their lands (Avalos, 
2020; Smith, 2012; Trisos et al., 2021). Guest panelists from ESPM also discussed the practice 
of community-based participatory research (Balazs & Morello-Frosch, 2013; Wallerstein et al., 
2018). Activities invited participants to consider what decolonizing their own research processes 
might look like. We used the Free Radicals (2020) Research Justice Worksheet for participants 
to reflect on the political and social influences, power dynamics, and consequences of their 
research, and to examine their own positionality in relation to their field sites (Baker et al., 
2019). Finally, we focused on anti-racist, anti-ableist, and LGBTQ+-inclusive guidelines for 
fieldwork (CLEAR, 2021; Pickrell, 2020). 
 
Module 6 “Scaling Out” expanded anti-racist work beyond academia. This short but critical final 
module reiterated both the pervasiveness of racism in the environmental sphere and the 
importance of pursuing anti-racist action beyond the ivory tower. We began the module by 
discussing assigned readings and ended the module with group presentations for actions plans. 

Classroom Structures 

Reframing Authority 
A strength of our course was that everyone was able to bring their unique and valuable 
perspectives to the conversation based on lived experiences and identity., which is key to 
learning about how racism, colonialism, and other systemic oppressions have informed scientific 
disciplines and higher education. As such, we worked to overturn the traditional academic 
hierarchy of “teacher(s)” and “learner(s),” which does not accurately represent the wealth of 
knowledge present in the classroom. Relatedly, the racist heteropatriarchy results in an academic 
funnel such that faculty are whiter and more male than graduate students (Estrada et al., 2016; 
Graves, 2019; Marín-Spiotta et al, 2020), with less expertise in engaging in anti-racist praxis and 
fewer racialized lived experiences to inform this work (Perez et al. 2022). In this traditional 
hierarchy, graduate students are usually restricted to the “learner” position. Professional staff are 
typically excluded from the classroom space altogether, despite having unique knowledge of 
strategies for navigating institutional bureaucracy. Faculty, for their part, have long-term 
experience in the nuances of power structures that they rarely get to share with students. By 
engaging in a multi-positional dialogical community of co-teacher-learners, we increased the 
potential for actualized change (Jones, 2016; Perez et al., 2022; Posselt, 2020). 
 
Within the graduate student teaching team, each member contributed equally to developing the 
course materials, and we all showed up in the classroom itself as instructors. Each course module 
was rotationally led by different members of the teaching team. One team member served as lead 
instructor and held greater responsibility for content delivery and evaluation of assignments (and 
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was paid as a formal graduate student instructor, inclusive of tuition and fee remission);12 
however, each session was collaboratively co-led by rotating members of the full teaching team. 
A faculty member served as instructor of record for the course, yet entered the classroom as a 
student and modeled “professor as learner” behavior for other faculty participants. Behind the 
scenes, the instructor of record also championed the course in administrative spaces as necessary.  
 
The fact that ESPM is by design a highly interdisciplinary department (e.g., geography, 
sociology, ecology, organismal biology, data science, forestry, agroecology, etc.) helped foster 
what hooks (1994) calls a dialogue across boundaries “erected by race, gender, class, 
professional standing, and a host of other differences” (p. 130). While interdisciplinarity does not 
guarantee non-hierarchical classroom spaces, we could build on our collective experience in 
“intellectual border-crossing” (Giroux & McLaren, 1994) to subvert power dynamics in the 
classroom. We also knew that while we had instigated the course, we were not specialists in 
either anti-racist environmental science or anti-racist pedagogy and did not want to present 
ourselves as such. This informed our second structural approach to classroom power dynamics. 
From the beginning, we framed the teaching team as “non-experts'' intent on learning alongside 
course participants. We aimed to create an overarching ethos of a “community of learners” 
(Brown & Campione, 1994; Matusov, 2001; Rogoff et al., 1998), which Matusov (2001) defines 
as a space where “the students and the teacher have collaboratively shared responsibility and 
ownership for guidance and learning” and “the teacher [is] a learner in a community of students 
who are also learners” (p. 383–84). Through iterations of the course, the intersectional identities 
of the teaching team shifted, and we were mindful of when the lived experiences discussed in 
class were not shared by the teaching team. In the 2021 course, for instance, we struggled to 
center Black voices without asking minoritized colleagues to take on unpaid labor. One strategy 
we employed was presenting existing materials from Black creators, including quotes from the 
readings, in-class videos, poetry, podcasts, and other media. 

Designing Tasks for Active Learning 
We initially designed this course entirely online because of the COVID-19 pandemic. While the 
remote learning environment might intuitively seem less conducive to the intimacy necessary for 
meaningful anti-racist dialogue, we leveraged unique elements of the online classroom to 
encourage vulnerable, fully-present participation. For example, extensive use of the Zoom chat 
function lowered barriers to engagement, fostered lively, multi-topic, simultaneous conversations 
in informal language (including heavy use of emojis and internet slang), and enabled continued 
discussion as a class and in semi-private conversations between classmates. The chat function, 
combined with professional captioning, also increased accessibility for non-hearing 
participants.13 The remote environment further allowed for participation of those who were not 
physically located in Berkeley—as a result, participants who were engaged in fieldwork (who 

 
 
 
12 Other graduate student teaching team members received modest compensation for their work.  
13 While the chat feature enhanced accessibility overall, it should be noted that some participants 
might find the simultaneous use of the chat feature to be distracting or that the chat might make it 
difficult to focus on the speaker. 
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would not typically be taking classes) or otherwise living remotely during the pandemic were 
able to “return” to classroom learning. The privacy and structure of breakout rooms also 
facilitated one-on-one and small group conversations and exposed as many participants to each 
other as possible through intentional mixing across positions and identities. This kind of privacy 
is difficult to foster in a physical classroom. The online space also enabled us to invite a wide 
array of paid guest speakers to engage with the class from afar. In 2021, while most Berkeley 
courses had returned to full in-person instruction, we decided to continue with online learning to 
capture many of the same benefits we observed in 2020. However, we found that in 2021, as 
participants returned to in person activities, they were less active in the Zoom chat during class 
sessions and shared fewer in-depth posts in discussion forums (See Teaching Practices, below). 
Therefore, midway through the semester we pivoted to holding four hybrid class sessions. In the 
2021 course evaluations, participants reported how meaningful it was to have the opportunity for 
engagement, energy, and community-building among classmates when face-to-face.14 

Participant Evaluation and Accountability 
In addition to the measures outlined in the Main Text to engage all participants in the course, we 
added faculty, postdocs, and staff members to the course portal in Berkeley’s learning 
management system, Canvas, so that they accessed course materials and turned in assignments 
via the same structure as enrolled graduate students. In the 2020 iteration of the course, almost 
100% of the 13 faculty showed up for the course with full engagement, as did postdoc and staff 
participants. Concerns about less motivation and participation from non-graduate student 
participants were a non-issue. However, in 2021, as university functions began to return in full 
force after the end of California’s COVID-19 Shelter in Place, we had only five faculty 
participate in total and most were less able to fully commit as course participants.  
 
We also attempted to mitigate tension between faculty and graduate student commitment to anti-
racist work through accountability structures in the Collaborative Action Projects. Graduate 
student activism in STEM departments often comes at the price of students’ well-being, 
academic success, and access to professional opportunities, and can also unintentionally promote 
faculty inaction (Perez et al., 2022). To counter these risks in our mixed-position course, we 
encouraged graduate students and postdocs to act as catalysts of change and simultaneously held 
faculty and staff accountable to leveraging their power and implementing those changes. 
However, the Course and resulting action projects continue to be predominantly graduate 
student-led, and we continue to strategize ways to avoid minoritized graduate students taking the 
most responsibility—and paying the highest costs—for anti-racist efforts.  

 
 
 
14 However, it should be noted that managing a hybrid classroom brought the additional 
challenge of a disconnect between those attending virtually and in-person, diminishing the 
advantages of a virtual setting (Raes et al., 2020). Moving forward, we plan to hold the course 
primarily in-person, utilizing virtual settings as needed for guest speakers, as we feel that it will 
better align with the community-building intentions of the course. 



 
 
 
 
 

104 

Teaching Practices 

Two-Way Participant Interviews 
We conducted two separate two-way interviews in the 2020 course. The first was between two 
members of our teaching team in the first module, “Uplifting Our BIPOC Community,” during 
which they described their experiences in the department from their positions as racialized 
graduate students. The second interview took place in the “Improving Academic Settings” 
module between two faculty members, with one faculty member identifying as Mexican 
American and a first-generation college student and the other faculty member identifying as 
white, LGBTQ+, and a first-generation college student. This discussion covered the 
interviewees’ trajectories as faculty, from campus visits during their job applications to 
negotiating job offers to advancing through the tenure process. In 2021, instead of a two-way 
conversation, we hosted a conversation between five faculty members from both ESPM and 
Plant and Microbial Biology, with a similar “witnessing” structure from other course 
participants.15  

Inclusive Selection of Guest Speakers and Topics 
For sessions with guest experts, speakers presented hour-long lectures followed by ample time 
for questions and discussion. Inclusion of participatory, dialogical elements (Freire, 2018) in 
speaker presentations yielded more engaged and productive classroom discussions that were 
more impactful for participants. In recruiting speakers for the course, particularly for the 
centering module, we asked invitees to choose the topic—rather than asking for a “diversity” 
talk, we invited speakers to discuss their research and/or personal academic journey. We also 
solicited reading suggestions from guest speakers, whether from their own work or others.  

Balancing Lecture and Dialogue 
Class sessions started with members of the teaching team providing a brief introduction and 
presentation of materials relevant for a given week. This included a summary of core concepts 
and key terms from the readings, presentation of relevant historical information, and examples to 
connect specific concepts to environmental scholarship. Participants generally appreciated the 
quick lectures to refresh on the readings and set the stage for the remainder of the class 
discussion. We kept the lecture portion of class to 10–20 minutes so that the remaining time 
could be devoted to the pair, small group, and full group dialogue described in the Main Text (in 
2020 class sessions were 80 minutes and in 2021 they were 110 minutes—even these longer 
sessions flew by quickly).  

 
 
 
15 While this was a useful way for course participants to listen to a variety of perspectives, it did 
not recreate the same level of intimacy. In course evaluations, 2021 participants did not highlight 
the panel in particular, whereas the majority of 2020 participants emphasized the power of the 
two-way interviews. 
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Peer-to-Peer Learning 
In addition to the small group discussions mentioned in the Main Text, we occasionally held 
two-person breakout room activities to cultivate an opportunity for participants to get to know 
one another at a deeper level. We would also combine pair sharing with individual reflection: the 
whole class would first spend time individually writing a response to a prompt, and then join 
two-person breakout rooms where they took turns speaking and practicing deep listening 
(Sangha & Bramesfeld, 2021), followed by dialogue. We would then hold a full group 
discussion, while simultaneously respecting that personal stories would only be shared with 
permission of both members of a pair. This teaching strategy, known as “think-pair-share,” 
provides participants an opportunity for self-reflection, confidence building, and cooperative 
knowledge generation (Kaddoura, 2013). We received feedback that for some participants this 
more intimate pair-sharing was one of the most impactful learning activities, while for others it 
could create discomfort, particularly in graduate student-faculty pairings where fears about the 
potential consequences of expressing vulnerability across academic hierarchy crept into the 
space. In future iterations of the course, we will hold affinity-based discussion opportunities by 
shared identity categories and academic position.  

Course Assignments 
We selected readings for each module to highlight a broad diversity of knowledge outside of 
strict academic definitions—these included peer-reviewed academic publications alongside 
podcasts, blog posts, poetry, and news and popular media publications. When guest lecturers 
were in attendance, readings were selected by the visiting lecturer and often included their own 
publications. The weekly reflection assignments, as described in the Main Text, were submitted 
without names on a Google form and only seen by the Graduate Student Instructor member of 
the teaching team to encourage Course participants to engage without the fear of “having 
everything right.” In addition, at the end of each module, participants shared reflections on an 
online full-class discussion forum and engaged with at least 1–2 other participants’ posts to 
encourage learning from one another. Prompts for these discussion forums changed for each 
module.   
 
For all three of these assignments—readings, private reflections, online discussion forums—
participant engagement and investment in the activity related directly to how worthwhile the 
assignments felt. Mid- and end-of-semester evaluations showed that participants greatly 
appreciated the readings; even when they could not complete all readings for a given week, many 
liked having a longer list of readings that they could revisit in the future. Participants noted that 
discussions of readings could have been more integrated into the class period, something we 
struggled to regularly incorporate into once-per-week class sessions. Individual written 
reflections did not work equally well for all participants, as some participants found the weekly 
process to be redundant. In 2020, all class participants were actively engaged in the online 
discussion forums, both writing long, deeply personal reflections and engaging thoughtfully with 
each other’s posts. However, as noted above, in 2021 when most Berkeley courses were fully in-
person, we found that participants were less interested in the discussion forums as a learning 
modality.  
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Collaborative Action Projects 
The Action Projects enabled participants to practice change-making at the level of individual 
labs, the department, and the college. The six curricular module topics served as a frame for 
participants to envision which aspects of institutional culture and structures they wanted to 
address through their action projects. In the tradition of socio-cultural literacy (Gutiérrez, 2008) 
and justice-centered scientific pedagogy (Davis & Schaeffer, 2019; Morales-Doyle, 2017), we 
encouraged participants to draw on their own lived experiences in the department to identify and 
inform the specific topics for the action project. Midway through the semester, we provided 
classroom time for participants to brainstorm potential projects and solidify teams. Teams then 
submitted written project commitments two-thirds of the way through the semester. For the final 
deliverable, teams presented their in-process projects to the whole class and submitted a written 
plan with the project’s next steps, a timeline, and a team reflection on the project’s progression. 
Built into the assignment was the understanding that the course deliverable was only the 
beginning—to effectively advance departmental change, participants would need to continue to 
work beyond the semester. While not all projects maintained momentum beyond the structure of 
the course, many projects did continue and several have gone on to acquire independent funding 
to broaden the impact of their work. Here, faculty participation in the course created an 
opportunity for ongoing impact: faculty can make use of their greater institutional power to move 
the levers necessary for change and infuse anti-racism into existing departmental priorities. 
Committed faculty participation has been critical for projects that have successfully maintained 
momentum. Additionally, many aspects of the Action Projects were incorporated into wider 
efforts from faculty (e.g. ESPM faculty working groups, UC Berkeley Diversity Leadership 
Academy, Life Sciences DEIB initiatives). 

Iterative Course Changes 

Syllabus 
In the 2021 iteration of the course, much of the core module structure remained the same, with 
some reshuffling to organize and differentiate anti-racism priorities in department, classroom, 
and research settings more clearly. Specifically, conversations about retention and department 
culture were moved to the mentoring module, the section on classroom environments became its 
own expanded module, and we incorporated discussions of lab environments into the research 
process module. Because the second iteration of the course included participants from two UC 
Berkeley departments—ESPM and Plant and Microbial Biology—we tailored relevant readings 
and guest speakers to better cater to both groups. For example, the “centering” module in 2021 
included a Plant and Microbial Biology alum guest speaker, and readings on colonialism and the 
research process shifted to include botanical literature. We also updated readings and classroom 
resources across the syllabus to reflect new scholarship and up-to-date contexts, both within and 
outside academia. 

Mid-Semester Course Evaluations  
Throughout the semester, we created opportunities for participants to provide feedback so that 
we might adjust how the course was structured to best meet participant needs. For example, after 
the mid-semester evaluation, we gave participants the option to discuss readings during office 
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hours in lieu of submitting individual weekly reflections. We also incorporated changes based on 
feedback from the first year for the second iteration: this included expanding and contracting 
certain modules, shortening required reading lists, and beginning work on final action plans 
earlier in the semester. 

Funding 
In 2020, the course Graduate Student Instructor (GSI) was funded through the College of Natural 
Resources Office of the Dean and guest speakers were funded through the Office for Graduate 
Diversity. ESPM provided modest awards to the full teaching team to recognize their work in 
developing and co-teaching the course. In 2021, ESPM provided funding but it was not adequate 
for course team course development and a full GSI. We experimented with dividing development 
and teaching between two teams, rather than five teaching team members working 
simultaneously. One team of three graduate students worked on pre-semester course 
development and then handed off course delivery responsibility to a team of two graduate 
students and a faculty member. All teaching team members had either co-taught in 2020 or taken 
the 2020 version of the course, including the faculty team member (see Main Text Table 1 for 
details). In this configuration, the faculty member was more active in co-leading the course. 
Because this structure more resembled traditional classroom authority, we held frequent 
discussions throughout the teaching process to resist the reintroduction of academic hierarchies.  

Cross-Positional Participant Engagement 
In both years, we were cognizant of the ways in which member positionalities and identities 
influenced inter-team relationships as well as teaching team-class participant relationships. 
Moving forward, we continue to reflect and adapt with the orienting goal of flattening academic 
hierarchies. Importantly, we are pursuing ways to provide institutional incentives for non-
graduate student course participants. For example, we plan to frame participation as long-form 
professional development—with the hope that course participation fits within the tenure and 
promotion structures or requirements—to increase course buy-in and engagement from those not 
receiving units as enrolled students. We are also navigating how to best facilitate in-person 
community building in future course iterations. Importantly, we will continue to incorporate 
participant feedback and lessons learned in our preparation for future iterations of this course.  
 
Download the full syllabi for the 2020 and 2021 iterations of the Course at:  
https://docs.google.com/forms/d/e/1FAIpQLSf16pl2SDKLRZ0rMkweWjE6LUugu0ayk6qLqsfc
IiCuStcVCw/viewform?usp=sf_link 
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Appendix 2: Sample Participant Feedback from Course Evaluations 
 
The quotes below are representative of repeated themes articulated in the midpoint and end of 
semester anonymous course evaluation surveys.  

Overall Course Impact 
Participants reflected on the potential for lasting impact from the course: 

● “One of the most inspiring things I have done in my 25-year career.” 
● “This was an incredible experience- and I wish that all members of the community can 

take this class (and repeat it every several cycles of learning). This is a class which I 
hope we can teach every semester (sometime soon), as there are so many items to 
discuss, and so many students, faculty, staff, and postdocs interested in doing this work.” 

● “The entire teaching team...made profound contributions and the course was one of the 
very best organized that I have taken or participated in during my life. They all brought 
their different experiences and perspectives into the class [and] did a phenomenal job of 
facilitating the classes. It was a learning journey for you all—you managed to create a 
course that will have a lasting impact on ESPM.” 

 

Curriculum 
Participants gained competencies in course materials and the confidence to put them to 
immediate use: 

● “Micro-affirmations—something that I can use right away with my lab, mentees and 
students. The importance of mentoring and understanding each mentee's positionality and 
intersectionality—mentoring seems to be a foundational block on which much anti-
racism work is built.” 

● “I learned a great deal about what "centering" actually means and a great deal about the 
ways in which racism shows up specifically in academia. I feel that I have a better 
understanding of the ways in which race and racism intersect with the challenges of 
mentoring, fieldwork, and the entire research process. I also feel better equipped to 
confront these challenges and racial injustices, having been given the tools to articulate 
the problems...and hope for changing them…. I also know from this class that anti-racism 
is an ongoing journey that is at once incredibly personal and incredibly structural in 
nature…. I have a long way to go in this journey, but I feel like this class has provided a 
solid, comprehensive foundation from which to build on.” 

● “I gained a more nuanced perspective on what anti-racism is and how settler 
colonialism persists in our institutions and culture to date. Broadly allowing me to 
better frame critiques of various systems (academia, carceral, etc.) and 
develop/understand efforts that can be decolonizing. Specifically, I have a much more 
informed perspective on how racist/colonial/white supremacist/exclusionary ideals and 
systems have persisted in academia and the field of environmental studies. This 
perspective also lends itself to developing tangible (both in short and long-term) ways 
that I and elements of the institution around me can work to be anti-racist and decolonial 
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in our actions. This notably includes methods that make for a more engaging and 
effective educational and research environment.” 

 

Classroom Structures 
Participants expressed a strengthened sense of community as a result of the course: 

● “I also really appreciated and found valuable the interactive aspect of the class and the 
discussions in sub-groups to deepen my understanding and share my own reflections and 
ideas. This course allowed ESPM members to get to know each other more, and it 
created a sense of community within the department, which was missing in my 
personal experience.” 

● “[The teaching team was] phenomenal. The care, labor, and expertise you brought to the 
work of planning and facilitating were fully evident. You created a wonderful structure 
for learning that both built community and relationships while meeting the learning 
needs and styles of a diverse student group.” 

 

Teaching Practices 
Participants found the two-way interviews to be a particularly effective teaching practice:  

● “[The two graduate students in conversation] were role models in terms of centering 
themselves and being allies to each other. I can learn from that.”  

● “I like the dynamic that has been created when we are listening to two or more people 
engage in conversation…It was especially powerful to hear two faculty members grapple 
with discriminatory practices in their own careers; hearing about their struggles and 
frustrations seemed to help folks be more open and vulnerable in breakout rooms.” 

 
 
 




