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Purpose: Intensity-Modulated Proton Therapy (IMPT) is the state-of-the-art method of delivering
proton radiotherapy. Previous research has been mainly focused on optimization of scanning spots
with manually selected beam angles. Due to the computational complexity, the potential benefit of
simultaneously optimizing beam orientations and spot pattern could not be realized. In this study, we
developed a novel integrated beam orientation optimization (BOO) and scanning-spot optimization
algorithm for intensity-modulated proton therapy (IMPT).
Methods: A brain chordoma and three unilateral head-and-neck patients with a maximal target size
of 112.49 cm3 were included in this study. A total number of 1162 noncoplanar candidate beams
evenly distributed across 4p steradians were included in the optimization. For each candidate beam,
the pencil-beam doses of all scanning spots covering the PTV and a margin were calculated. The
beam angle selection and spot intensity optimization problem was formulated to include three terms:
a dose fidelity term to penalize the deviation of PTV and OAR doses from ideal dose distribution; an
L1-norm sparsity term to reduce the number of active spots and improve delivery efficiency; a group
sparsity term to control the number of active beams between 2 and 4. For the group sparsity term,
convex L2,1-norm and nonconvex L2,1/2-norm were tested. For the dose fidelity term, both quadratic
function and linearized equivalent uniform dose (LEUD) cost function were implemented. The opti-
mization problem was solved using the Fast Iterative Shrinkage-Thresholding Algorithm (FISTA).
The IMPT BOO method was tested on three head-and-neck patients and one skull base chordoma
patient. The results were compared with IMPT plans created using column generation selected beams
or manually selected beams.
Results: The L2,1-norm plan selected spatially aggregated beams, indicating potential degeneracy
using this norm. L2,1/2-norm was able to select spatially separated beams and achieve smaller devia-
tion from the ideal dose. In the L2,1/2-norm plans, the [mean dose, maximum dose] of OAR were
reduced by an average of [2.38%, 4.24%] and[2.32%, 3.76%] of the prescription dose for the quadra-
tic and LEUD cost function, respectively, compared with the IMPT plan using manual beam selec-
tion while maintaining the same PTV coverage. The L2,1/2 group sparsity plans were dosimetrically
superior to the column generation plans as well. Besides beam orientation selection, spot sparsifica-
tion was observed. Generally, with the quadratic cost function, 30%~60% spots in the selected beams
remained active. With the LEUD cost function, the percentages of active spots were in the range of
35%~85%.The BOO-IMPT run time was approximately 20 min.
Conclusion: This work shows the first IMPT approach integrating noncoplanar BOO and scanning-
spot optimization in a single mathematical framework. This method is computationally efficient,
dosimetrically superior and produces delivery-friendly IMPT plans. © 2018 American Association of
Physicists in Medicine [https://doi.org/10.1002/mp.12788]

Key words: Beam orientation optimization, integrated scanning spot optimization, proton therapy

1338 Med. Phys. 45 (4), April 2018 0094-2405/2018/45(4)/1338/13 © 2018 American Association of Physicists in Medicine 1338

https://doi.org/10.1002/mp.12788


1. INTRODUCTION

Intensity-Modulated Proton Therapy (IMPT) is an advanced
planning technique that fully takes advantage of the freedom
of placing the characteristic proton Bragg peaks,1 which are
referred to as spots in IMPT planning, in the 3D space. With
spot scanning technique,2 the energy and intensity of the
Bragg peaks of well-defined narrow pencil beams can be
modulated to generate a sophisticated dose distribution for
tumor coverage and normal tissue sparing.3,4 There are sev-
eral variations of IMPT, including 2D modulation, distal edge
tracking, 2.5D modulation, and 3D modulation.3 Among
them, multifield optimization (MFO)-IMPT3 utilizing all
available degrees of freedom has the greatest versatility for
normal organ sparing. This study focuses on MFO-IMPT,
which will be simply termed IMPT in the rest of paper.

A typical treatment planning process of IMPT involves
three steps: first, a number of proton beams are manually
selected by the dosimetrist. For complicated cases, multiple
trials are needed to decide the number and orientations of
beams; second, proton pencil-beam dose calculation is per-
formed for these beams; finally, inverse planning is carried
out to obtain the intensity map and final dose distribution.4

Because of the unique proton beam physics, the need to fur-
ther reduce body dose, the limited beam time, and to relieve
the patient-specific QA efforts, 2~4 proton fields are typically
utilized in an IMPT session,4,5 in contrast to the larger num-
ber of beams and arcs used in Intensity-Modulated Photon
Therapy (referred to as IMXT). Because of the small beam
number, each beam of the IMPT plan heavily influences the
final quality. The importance of beam orientation was high-
lighted in several studies.6–8 However, due to the vast search
space, it is essentially impossible for a human operator to test
all combinations and find the optimal set of beams. There-
fore, there arises a need for beam orientation optimization
(BOO) for IMPT.

For IMXT, BOO is viewed as a combinatorial problem,
which by its nature is mathematically intractable for realistic
BOO problems. The challenge is greater with the additional
depth dimension in IMPT optimization. While methods for
IMXT BOO have been developed using heuristic and
stochastic algorithms to overcome the mathematical chal-
lenge,9–15 the BOO problem is rarely touched in IMPT. To
our knowledge, the only work that attempts to explicitly
attack the IMPT BOO problem was by Cao et al.,16 in which
the coplanar BOO problem was treated as a combinatorial
problem. To reduce the problem size, starting from a set of
initial beams, a local search was performed to identify beams
that improve dosimetric quality and robustness. This method
is clearly limited in its ability of performing a global search
in a large solution space. Noncoplanar space is commonly
used in proton therapy because of the modern robotic patient
positioning device typically installed in a proton treatment
room.

In this paper, we present a novel framework to efficiently
integrate BOO and scanning-spot optimization that allows a
global search in all feasible beams. The problem is

formulated to include a dose fidelity term and hierarchical
sparsity penalty terms, which reduce the number of active
spots using an L1-norm sparsity term, and control the num-
ber of active beams using a group sparsity term. Group spar-
sity, also known as structured sparsity, was originally used in
optimizing x-ray beam orientations and showed the potential
of reducing the number of beams yet maintaining dense
beamlets.17

In this work, different regularization and dose fidelity
terms are introduced as well as a solver that is capable of han-
dling a larger problem than the original IMXT BOO problem
owing to the additional depth dimension.

2. MATERIALS AND METHODS

The group sparsity-based integrated BOO and scan-
ning-spot optimization problem is formulated under two
different dose fidelity terms, with either convex or non-
convex group sparsity term. The details are described as
follows.

2.A. Problem formulation

The simultaneous beam orientation and scanning-spot
intensity optimization problem is formulated under the fol-
lowing general framework:

minimize
x

CðAxÞ þ gkxk1 þ
X
b2B

abkxbkp2;

subject to x� 0
(1)

where the optimization variable x is a vector of the intensities
of all scanning spots. A is the dose-calculation matrix that
transforms the spot intensities x to dose. A single column of
matrix A contains the vectorized doses delivered to the voxels
in the patient from one unit intensity spot; and A includes col-
umns of all the candidate spots from all candidate beams. B
is the set including all candidate beams, xb is a vector of spot
intensities for the candidate beam b (so x is the concatenation
of the vectors xb), and ab is the regularization parameter for
beam b. C Axð Þ is a dose fidelity term, to penalize dose devia-
tion from prescriptions, kxk1 provides sparsity regularization
on the scanning spots, to reduce the number of active spots
and improve delivery efficiency, and g is the weighting
parameter for spot sparsity.

P
b2B abkxbkp2 is the group spar-

sity term to control the number of active beams to between 2
and 4. The L2,p-norm (0\p� 1) encourages most candidate
beams to be zero, resulting in a small number of beams being
selected. A common choice for the exponent for the group
sparsity term is p ¼ 1, which makes the objective function
convex. However, in the BOO problem, the adjacent block
columns of the dose-calculation matrix (corresponding to
adjacent candidate beams) can be correlated in homogeneous
areas. Subsequently, the group restricted isometry property
may not be well satisfied and the L2,1-norm may lead to a
degenerate solution, i.e., aggregated beams. To avoid degen-
eracy, the nonconvex group sparsity with p ¼ 1=2 is also
explored in this study.

Medical Physics, 45 (4), April 2018

1339 Gu et al.: Proton therapy beam orientation optimization 1339



We choose the weighting parameter ab on the individual
beam b to be:

ab ¼ c
kAb

PTV1~k2
nb

 !p=2

; (2)

where Ab
PTV is the dose-calculation matrix of planning target

volume (PTV) for beam b, nb is the number of candidate
spots in beam b, and c is a regularization parameter. The term
kAb

PTV1~k2 in the numerator is used to ensure that beams pene-
trating different depths in the patient are unbiasedly
weighted. Without this term, the group sparsity has a ten-
dency toward only selecting beams passing through less tis-
sue. The denominator nb prevents the group sparsity penalty
from having a bias against the beams with more spots. By
this weighting method, we are able to tune a single parameter
c to control the number of active beams in the solution to
problem (1).

In this work, PTV is designated to be the target volume for
dose optimization. Although the concept of PTV originally
from x-ray therapy is not exactly applicable in IMPT to main-
tain tumor coverage,18,19 without losing generality, the term
PTV here is used to indicate the target volume without addi-
tional implication of plan robustness.

2.B. Dose fidelity

The function C can take different forms based on the dosi-
metric goals and whether a compatible solver exists. Two dif-
ferent choices of C are implemented and compared in this
work.

The first is the quadratic loss function, which is a common
choice for dose fidelity. The overall cost is written as:

C Axð Þ ¼
X

s2PTVs
wskAsx� lsk22 þ

X
r2OARs

wrk Arx� mrð Þþk22
(3)

where ls is the prescription dose to sth PTV and mr is the pre-
scribed maximal allowed dose to rth OAR. The OAR penalty
terms utilize the one-sided quadratic functionkzþk22, where
zþ ¼ max z; 0ð Þ. This component-wise maximum allows us to
consider only the voxels with doses larger than mr in the rth
OAR. mr can also be set to 0 to penalize any nonzero dose in
an OAR. The weights ws and wr are the structure-specific
weighting parameters to emphasize the different importance
of different structures.

The quadratic penalty is mathematically desirable for
being convex and differentiable. It heavily penalizes the dose
volumes that exceed the constraint. However, in radiation
therapy, more controls on the dose volume behavior are often
desirable. For serial organs, such as the spinal cord, hot spots
need to be avoided. However, for parallel structures, such as
the parotid glands, the mean dose can be more important than
the maximum dose. Therefore, the second type of function C
we use is a linear combination of structure mean dose and
maximum dose penalty, which is referred as the linearized
equivalent uniform dose (LEUD)20 cost function in this work.

The LEUD penalty function is formulated as:

C Axð Þ ¼
X

s2PTVs

wsffiffiffiffiffiffi
Ns

p kAsx� lsk2

þ
X

r2OARs
wr crmean Arxð Þþ 1�crð Þmax Arxð Þð Þ

þ I � q Axð Þ
(4)

where Ns is the number of voxels in sth PTV, and the weight-
ing factor cr 2 0; 1½ � balances the mean dose and maximum
dose for different organs. The penalty on PTV is a voxel-nor-
malized L2-norm. The L2-norm is chosen because it has better
PTV coverage than the L1-norm (which is mean Asx� lsj jð Þ),
and is consistent with the OAR cost with regard to the order
(quadratic term is in the order of 2, while mean dose is linear).
Because the L1-norm on OARs (mean dose) is not as sensitive
to outliers, it allows for hot spots in parallel OARs. Therefore,
in order to eliminate any dose higher than the upper bound
dose q, an upper bound constraint I� q Axð Þ is added to the
objective function. I� q zð Þ is defined as:

I� qðzÞ ¼ 0 if z� q
1 otherwise

�
(5)

2.C. Accelerated proximal gradient method

Equation (1) is difficult to solve using conventional gradi-
ent-based methods because of the nondifferentiable group
sparsity term. Other methods such as the interior point
method are not able to handle the problem due to the large A
matrix size. The alternating direction method of multipliers
(ADMM) method used in the previous study17 required
longer computation time when solving a much smaller prob-
lem (72 candidate beams with two-dimensional beamlets). In
this study, an accelerated proximal gradient method known as
Fast Iterative Shrinkage-Thresholding Algorithm (FISTA)21

is adopted to minimize the proposed objective function.
FISTA is a fast algorithm that has an optimal convergence
rate of O 1=k2ð Þ among first-order optimization methods.21 To
solve an optimization problem using FISTA, the problem
needs to be formulated in the form:

minimize
x

f ðxÞ þ gðxÞ (6)

where f is a smooth convex function, which is continuously
differentiable with Lipschitz continuous gradient (rf ); g is a
function which is possibly nonsmooth, but has a proximal
operator that can be evaluated efficiently. The proximal oper-
ator with step size t > 0 for function g is defined by:

proxtgðxÞ ¼ argmin
y

gðyÞ þ 1
2t
ky� xk22 (7)

Once the optimization problem is formulated as in Eq. (6)
and the conditions for f xð Þ and g xð Þ are satisfied, FISTA is
relatively straightforward to implement as it only involves ele-
mentary matrix-vector arithmetic operations and inexpensive
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proximal operator evaluations. FISTAwith line search is used
in this work, which follows the steps shown in Table I.

2.D. Solving the BOO problem with FISTA

In the group sparsity-based BOO problem, the objective
function can be rewritten in the following format:

f ðxÞ ¼ C Axð Þ
gðxÞ ¼ gkxk1 þ

X
b2B

abkxbkp2 þ I � 0ðxÞ (8)

where I� 0 xð Þ is an indicator function, defined as:

I� 0ðxÞ ¼ 0 if x� 0
1 otherwise

�
(9)

For the quadratic fidelity formulation, the gradient of f is
given by:

rf ðxÞ ¼ ATrC Axð Þ
¼
X

s2PTVs
wsA

T
s Asx� lsð Þ

þ
X

r2OARs
wrA

T
r Arx� mrð Þþ (10)

For the LEUD fidelity formulation, the L2-norm on PTV,
max dose of OAR and upper bound indicator function are not
differentiable. In order to solve this problem, Moreau-Yosida
regularization is used to smooth the nondifferentiable func-
tion. Moreau-Yosida regularization for function f with param-
eter l[ 0 is given by:

f ðlÞðxÞ ¼ inf
y

f ðyÞ þ 1
2l

kx� yk22 (11)

f ðlÞ xð Þ is a convex and differentiable approximation to f xð Þ,
and its gradient can be calculated as:

rf ðlÞðxÞ ¼ 1
l

x� proxlf ðxÞ
� �

(12)

Therefore, the problem of calculating the gradient of the
function f ðlÞ is transformed into calculating the proximal
operator of function f . The gradient of the LEUD penalty
after Moreau-Yosida smoothing is:

rf ðxÞ¼
X

s2PTVs

wsffiffiffiffiffiffi
Ns

p AT
s Asx� lsð Þmin

wsffiffiffiffi
Ns

p

kAsx� lsk2
;
1
l1

 !

þ
X

r2OARs

wrcr
Nr

AT
r 1~þwr 1�crð ÞAT

r Pwr 1�crð ÞB
Arx
l2

� �� �

þATmax Ax�q;0ð Þ=l3
(13)

where l1, l2 and l3 are positive Moreau-Yosida regulariza-
tion parameters for the L2-norm, L1 -norm, and indicator
function, respectively. Nr is the number of voxels in rth OAR.
B is the L1 unit ball and P is the projection operator. See
Appendix A for a detailed derivation. Note that applying
Moreau-Yosida smoothing to the group sparsity term would
be unacceptable because in order to turn off beams, the beam
intensities need to be exactly zero.

After obtaining the gradient of the function f , the next step
is to derive a formula for the proximal operator of the func-
tion g. In the BOO problem, g xð Þ is a separable sum:
g xð Þ ¼PB

b¼1 gb xbð Þ, where
gb xbð Þ ¼ gkxbk1 þ

X
b2B

abkxbkp2 þ I � 0 xbð Þ (14)

It follows from the separable sum rule for proximal opera-
tors that the problem evaluating the proximal operator of g xð Þ
reduces to independently evaluating the proximal operators of
the functions gb xbð Þ. To simplify notation, we derive an
expression for the proximal operator of the function
h xð Þ ¼ gkxk1 þ akxkp2 þ I� 0 xð Þ. Evaluating the proximal
operator of h requires solving the optimization problem:

minimize
x

gkxk1 þ akxkp2 þ
1
2t
kx̂� xk22

subject to x� 0
(15)

Due to the non-negativity constraint, we have that
kxk1 ¼ hx; 1~i, which implies that:

ghx;1~iþ 1
2t
kx̂�xk22¼hx;1~iþ 1

2t
kx̂�xk22

¼ 1
2t
kx� x̂�gt1~

� 	
k22þ

1
2t

kx̂k22�kx̂�gt1~k22
� 	

(16)

Since the second term does not depend on x, the problem
(15) is reduced to

minimize
x

kxkp2 þ
1
2ta

kx� x̂ � gt1~
� 	

k22
subject to x� 0

(17)

which is equivalent to evaluating the proximal operator of
the function kxkp2 þ I� 0 xð Þ at the point x� gt1~

� 	
, with a

step size ta. Accordingly, the proximal operator of function
h is:

TABLE I. Pseudo code for FISTAwith line search.

FISTAwith line search

Initialize x0 :¼ 0, v0 :¼ x0, t0 [ 0, 0\r\1
for k ¼ 1; 2; . . . do
t :¼ tk�1=r
Repeat

h :¼ 1 if k ¼ 1
positive root of tk�1h

2 ¼ th2k�1 1� hð Þ if k[ 1

�

y :¼ 1� hð Þxk�1 þ hvk�1

x :¼ proxtg y� trf yð Þð Þ
break if f xð Þ� f yð Þ þ\rf yð Þ; x� y[ þ 1

2t kx� yk22
t :¼ rt

tk :¼ t
hk :¼ h
xk :¼ x
vk :¼ xk þ 1

hk
ðx� xkÞ

End

Return x

Medical Physics, 45 (4), April 2018

1341 Gu et al.: Proton therapy beam orientation optimization 1341



proxthðxÞ ¼ proxatk�kp2 max x� gt1~; 0
� 	� 	

(18)

There is a known form of proximal operator for both L2,1-
norm and L2,1/2-norm22:

By deriving the gradient of function f and proximal opera-
tor of function g, the BOO problem is then readily solved
using FISTA.

2.E. Evaluations

Four cases, which included three unilateral head-and-neck
(H&N) patients and one skull base chordoma (CHDM)
patient with simultaneous-integrated boost (SIB), were evalu-
ated in this study. We chose these cases with relatively smal-
ler tumors to reduce the size of dose matrix that can be fit
into a personal computer with 64 GB memory. The candidate
beams included 1162 noncoplanar beams that were evenly
distributed across the 4p steradians with 6° separation. For
each candidate beam, the doses of all scanning spots covering
the PTV and a 2.5 mm margin were calculated using
matRad,23,24 a MATLAB-based 3D treatment planning
toolkit. The dose-calculation resolution was 2.5 mm with a
cut-off of 5 9 10�5 of the maximal dose. The prescriptions,
PTVs, and number of scanning spots are shown in Table II.
The magnitude of the optimization problem can be estimated
based on the product of the spot number per beam and the
total number of candidate beams (1162). The average number
of beamlets per beam needed in IMXT for the same patient is
also given in Table II as a comparison of the BOO problem
size in IMPT and in IMXT. The IMXT multileaf collimator
resolution is 5 mm.

A greedy BOO approach, column generation,25,26 was also
applied for each patient, as a comparison for our group spar-
sity method. The detail of column generation algorithm is
provided in Appendix B. The dose fidelity term used in col-
umn generation method is LEUD cost.

The BOO plans were evaluated against plans with manu-
ally selected beams. The manual beam orientations were
selected to avoid OARs as much as possible. In total, seven
plans were generated for each patient: three plans with quad-

ratic dose fidelity: manual plan (Quad-MAN), L2,1/2-group
sparsity (Quad-L2,1/2-GS) and L2,1-group sparsity(Quad-
L2,1-GS); and four plans with LEUD dose fidelity: manual
plan (LEUD-MAN), L2,1/2-group sparsity(LEUD-L2,1/2-
GS), and L2,1-group sparsity (LEUD-L2,1-GS), and column
generation (LEUD-CG). All H&N plans were normalized, so
that 100% of the prescription dose covers 95% of the PTV
volume. The CHDM plan with a simultaneous boost volume
was normalized to have 100% of the 63 Gy prescription dose
covering 95% of the PTV6300 volume.

For evaluation, PTV homogeneity, D95, D98, D99, maxi-
mum dose, and mean dose were evaluated. PTV homogeneity
is defined as D95/D5. The maximum dose is defined as the
dose to 2% of the structure volume, D2, following the recom-
mendation by IRCU-83.27 The mean and maximum doses for
OARs were also evaluated.

As an example to preliminarily illustrate the effect of
beam orientation on the robustness, a robustness analysis
was performed to the CHDM plans to compare the robust-
ness between MAN plans and L2,1/2-GS plans. Nine sce-
narios were incorporated to evaluate the plan robustness,
including one nominal scenario (no uncertainties) and
eight worst-case scenarios, which consisted of (a) setup
uncertainties, by shifting the isocenter of the CT image of
�3 mm along anteroposterior, superoinferior, and lateral
directions; (b) range uncertainties, by scaling the CT num-
ber by �3%.

3. RESULTS

The matRad-based dose calculation for all 1162 candidate
beams using an i7 6-core CPU and Matlab parallel computing

TABLE II. Prescription doses, PTV volumes, and average spots number per beam.

Case
Prescription
dose (GyRBE)

PTV volume
(cc)

Average spots
number per beam

Average IMXT
beamlets number

per beam

H&N #1 40 23.76 906 85

H&N #2 40 32.29 1109 103

H&N #3 66 33.64 1589 111

CHDM PTV6300 63 86.07 3166 241

PTV7400 74 26.42

proxtk�k2ðxÞ ¼ x� x �min
t

kxk2
; 1

� �

prox
tk�k

1
2
2

ðxÞ ¼
0 ; iftkxk�1:5

2 [ 2
ffiffi
6

p
9

x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ffiffi
3

p sin 1
3 arccos 3

ffiffi
3

p
4 tkxk�1:5

2

� 	
þ p

2

� 	� 	r
; otherwise

8><
>:

(19)
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toolbox took 30 min to 1 hr depending on the size of the
tumor. The dose matrix size ranged from 20 to 70 MB per
beam based on target size. The group sparsity-based BOO
process took 2–7 min and 3–20 min for the quadratic and
LEUD cost to complete, respectively.

Three beams for each H&N case and four beams for the
CHDM case were selected. Table III shows the beam
arrangement for each patient and each plan. The couch and
gantry angles follow IEC 61217 coordinate conventions.
Figure 1 shows the beam arrangement of each plan for the
CHDM patient. The beams selected by using the L2,1/2-GS
term were spatially well separated. In comparison, the L2,1-
GS term resulted in aggregated beams with both quadratic
and LEUD cost terms, indicating a potential degeneracy issue
with this group sparsity term. And the CG method tended to
choose beams with short pathlengths to target. Interestingly,

the beam orientations optimized by L2,1/2-GS were similar
to the actual angles selected by an experienced dosimetrist in
this CHDM case.

Besides beam orientation selection, spot sparsification
was achieved. Table IV shows the percentage of active scan-
ning spots. Generally, with the quadratic cost function, 30%
~60% spots in the selected beams remained active. With the
LEUD cost function, the percentages of active spots were
within 35%~85%.

Figure 2 shows the DVHs comparison between GS plans
and MAN plan for each patient. Tables V and VI show the
PTV and OAR statistics for each patient with quadratic cost
function, respectively. Tables VII and VIII show the PTV and
OAR statistics for each patient with LEUD cost function,
respectively. On average, the L2,1/2-GS plans reduced the
OAR [mean dose, maximum dose] from MAN plans by

TABLE III. Beam angles (gantry and couch angle) selected in each plan.

Case MAN

Quad LEUD

L2,1/2 L2,1 L2,1/2 L2,1 CG

H&N#1 (40, 0)
(180, 0)
(300, 0)

(38, 20)
(159, 35)
(282, 0)

(102, 272)
(39, 290)
(316, 18)

(78, 304)
(300, 0)
(315, 26)

(110, 328)
(130, 16)
(315, 26)

(89, 282)
(132, 8)
(73, 19)

H&N#2 (180, 0)
(45, 45)
(315, 315)

(145, 350)
(60, 28)
(315, 315)

(110, 282)
(225, 71)
(338, 35)

(134, 293)
(96, 6)
(320, 322)

(316, 46)
(148, 23)
(315, 315)

(296, 74)
(159, 35)
(37, 57)

H&N#3 (270, 0)
(90, 275)
(90, 0)

(36, 0)
(300, 346)
(114, 13)

(171, 315)
(342, 270)
(315, 314)

(36, 0)
(294, 354)
(113, 13)

(125, 345)
(54, 30)
(315, 314)

(57, 298)
(329, 53)
(21, 325)

CHDM (60, 275)
(270, 0)
(90, 0)
(180, 0)

(100, 280)
(130, 16)
(265, 350)
(330, 290)

(105, 335)
(275, 12)
(240, 140)
(142, 20)

(60, 290)
(90, 354)
(270, 348)
(207, 332)

(84, 312)
(81, 317)
(210, 12)
(62, 20)

(54, 270)
(56, 323)
(338, 57)
(281, 341)

FIG. 1. The beam arrangement of each plan for the CHDM patient.
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[2.38%, 4.24%] and[2.32%, 3.76%] of the prescription dose
for Quad and LEUD cost, respectively, while achieving com-
parable target coverage.

The L2,1-GS method produced competitive plan for
H&N#1 and CHDM case, but led to worse and OAR dose
over MAN plan for H&N#2 and H&N#3 case with similar
PTV coverage. The average decrease in OAR [mean dose,
maximum dose] from MAN plans are [�0.96%, 0.09%] and
[�1.15%, 1.23%] of the prescription dose for Quad and
LEUD cost, respectively.

The limitation of using L2,1-norm can be observed
from the final value of dose fidelity cost. Figure 3
compares the convergence between L2,1/2-norm and
L2,1-norm group sparsity for the H&N#3 case. For the
quadratic and LEUD cost functions, the L2,1/2-norm
group sparsity method converged after about 800 itera-
tions and 1800 iterations, respectively. In contrast, with
an L2,1-norm group sparsity term, the problem quickly
converged within 30 iterations and 80 iterations under
the quadratic and LEUD cost functions, respectively.
However, the converged dose fidelity function values
using the L2,1-norm are substantially greater than the
corresponding values of using the L2,1/2-norm (~ 105 for
L2,1 vs. ~102 for L2,1/2), showing a larger deviation
from the prescription dose using L2,1-norm in this case.

The DVHs comparison between L2,1/2-GS plans and CG
plans is shown in Fig. 4. In all H&N cases, the CG method
produced plans with similar PTV coverage as L2,1/2-GS
method, but the OAR dosimetry was inferior to the group
sparsity algorithm. In the CHDM case, the CG plan performed
comparably with the L2,1/2-GS plan with regard to PTV and
OAR dose. The CG methods reduced the mean dose to brain-
stem by 9.8 Gy over L2,1/2-GS plan by forcing all beams
entering from the anterior direction, increasing the risk of
exposing the eyes to high dose with slight positioning error.

A robustness analysis for CHDM patient is shown in
Fig. 5.The solid lines in each plot are the DVHs for the nomi-
nal case, and the bands bound the worst-case distributions.
The narrower the bands are, the less sensitive the plan is to
uncertainties.19 The spread of the target DVHs at 95% cover-
age under given uncertainties is also measured. Under Quad
cost, the range of spread for [PTV6300, PTV 7400] is [91.4%
~101.7%, 90.0%~99.9%] and [91.9% ~101.6%, 90.8%
~100.0%] of the prescription dose for MAN and L2,1/2-GS
plan, respectively. Under LEUD cost, the range of spread for
[PTV6300, PTV 7400] is [92.4% ~103.3%, 92.7%~100.6%]

and [92.7% ~102.2%, 92.3%~101.6%] of the prescription
dose for MAN and L2,1/2-GS plan, respectively. The target
sensitivity to uncertainties between MAN plans and BOO
plans is comparable, and the MAN plans have greater uncer-
tainties in left optic nerve, while Quad L2,1/2-GS plan intro-
duces larger uncertainties to left cochlea.

4. DISCUSSION

This work introduces a group sparsity-based IMPT opti-
mization method that simultaneously selects beams and opti-
mizes the scanning-spot intensity. In addition to the superior
dosimetry compared with plans using manually selected
beams, the planning method using optimized beams reduces
the dependence on the individual operators who select beams
based on experience and intuition.

Compared to the earlier coplanar x-ray optimization study
using group sparsity,17 the current work expands its scope in
several ways. This is a new application to the IMPT prob-
lem, which is intrinsically a higher dimensional optimization
problem than IMXT due to the additional modulation in the
depth direction. The number of candidate beams in this
study is an order of magnitude larger than in the original
IMXT BOO study that used only 72 candidate beams. The
optimization solver used in the original study was based on
ADMM and is not well suited to the current much larger
IMPT BOO problem, because the linear systems that
ADMM requires to be solved at each iteration would be
intractably large. Therefore, we developed an approach
based on FISTA, which requires only matrix-vector multipli-
cations involving the dose-calculation matrix. To enable the
use of FISTA, we derived several key proximal operators.
FISTA has been shown to have an optimal convergence rate
of O 1=k2ð Þ among first-order methods,21 and the numerical
results demonstrate that FISTA is able to solve the large-
scale optimization problem in a clinically acceptable time.
Although standard convergence results for FISTA assume
that both f and g are convex,21 we have found that FISTA
converged to a good solution even in the case of using the
nonconvex L2,1/2-norm group sparsity penalty.

In this study, two different group sparsity terms, L2,1 and
L2,1/2 norms, were compared for the IMPT BOO problem.
Although the L2,1-norm is convex and offers certain compu-
tational advantages, it leads to suboptimal dosimetry and
tends to converge to a worse fidelity value when compared
against the nonconvex L2,1/2-norm group sparsity term.

TABLE IV. The ratio of number of active spots (number before “/”) over the number of total candidate spots (number after “/”) in the selected beams.

Cost Plan H&N #1 H&N #2 H&N #3 CHDM

Quad L2,1/2 967/2756 = 35.1% 912/3377 = 27.0% 2521/4759 = 53.0% 6532/12582 = 51.9%

L2,1 1282/2646 = 48.5% 926/3238 = 28.6% 2532/4574 = 55.4% 6130/12618 = 48.58%

MAN 1222/2725 = 44.8% 1028/3366 = 30.5% 2777/4835 = 57.4% 7072/12603 = 56.1%

LEUD L2,1/2 1401/2741 = 51.1% 1212/3396 = 35.7% 3295/4760 = 69.2% 10596/12648 = 83.8%

L2,1 1920/2773 = 69.2% 1315/2989 = 44.0% 2734/4582 = 60.0% 10689/12568 = 85.1%

MAN 1545/2725 = 56.7% 1469/3366 = 43.6% 4116/4835 = 85.1% 10634/12603 = 84.3%
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Therefore, in this case, the ability to avoid degeneracy and
select spatially separate beams appears to be dosimetrically
advantageous. This finding shows that while the group spar-
sity method is well suited to solve the BOO problem, the
selection of the sparsity function is a subtle point that can
make a critical difference.

The group sparsity beam orientation optimization method
was tested on two different dose fidelity functions: quadratic
and LEUD terms. Compared to the quadratic dose fidelity
term, the LEUD cost function with a combination of mean
and maximum dose constraints is easier to tune to achieve
desired DVHs. This is reflected in the process of creating

FIG. 2. DVH comparison of the MAN plan (solid line), L2,1/2-GS plan (dotted line) and L2,1-GS plan (dashed line) for each patient. The plans with quadratic
cost are listed on the left column and the plans with LEUD cost are on the right column.
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plans for the four cases in this study: the quadratic L2,1/2-GS
method took on average 9–10 rounds of parameter tuning and
the LEUD method took 4–5 rounds. The advantage of quad-
ratic dose fidelity function is that while the structure parame-
ters need to be tuned, the group sparsity regularization
weighting parameter remains constant for a specific number

of beams. In comparison, with LEUD dose fidelity, the group
sparsity regularization weight is sensitive to the structure
weighting parameter changes, requiring additional adjustment
to maintain the desired number of beams. Quadratic dose
fidelity also resulted in on average more sparse scanning
spots.

TABLE V. PTV statistics for all patients under Quad cost.

Case

Homogeneity D95 D98 D99 Dmax D95 D98 D99 Dmax

MAN L2,1/2 L2,1 L2,1/2 –MAN (GyRBE) L2,1 –MAN (GyRBE)

H&N#1 0.972 0.979 0.969 �0.003 �0.245 �0.542 �0.298 +0.017 �0.074 �0.180 +0.214

H&N#2 0.972 0.974 0.970 +0.018 +0.159 +0.313 �0.246 +0.017 +0.077 +0.149 +0.053

H&N#3 0.981 0.981 0.972 �0.006 �0.061 �0.173 +0.069 +0.013 �0.207 �0.368 +0.723

CHDM PTV6300 0.918 0.916 0.917 �0.003 �0.030 �0.060 +0.126 �0.012 �0.012 �0.050 �0.055

PTV7400 0.953 0.953 0.953 �0.012 �0.012 �0.050 �0.055 �0.028 �0.058 �0.042 �0.054

TABLE VI. OAR statistics for all patients under Quad cost.

Case

L2,1/2 - MAN (GyRBE) L2,1 - MAN (GyRBE)

Dmean Dmax Dmean Dmax

Largest value Average value Largest value Average value Largest value Average value Largest value Average value

H&N#1 �1.24 L Parotid �0.52 �8.05 Brainstem �2.78 �3.08 L Parotid �0.53 �10.38 L Parotid �2.55

H&N#2 �3.75 Carotid �1.03 �2.13 Pharynx �1.04 �0.23 Larynx +0.78 �1.45 Larynx +0.88

H&N#3 �20.14 TMJ �2.96 �34.60 R Opt Nrv �3.86 �26.25 TMJ +1.75 �35.11 TMJ +3.72

CHDM �6.99 L Cochlea �0.72 �16.40 L Cochlea �0.99 �4.49 L Cochlea +0.36 �11.20 L Cochlea �1.16

TABLE VII. PTV statistics for all patients under LEUD cost.

Case

Homogeneity D95 D98 D99 Dmax D95 D98 D99 Dmax

MAN L2,1/2 L2,1 L2,1/2 –MAN (GyRBE) L2,1 –MAN (GyRBE)

H&N#1 0.945 0.961 0.964 �0.010 +0.190 +0.291 �0.714 �0.021 +0.006 �0.227 �0.827

H&N#2 0.966 0.972 0.958 +0.009 �0.200 �0.276 �0.207 +0.013 �0.237 �0.526 +0.731

H&N#3 0.967 0.967 0.965 �0.002 �0.181 +0.069 +0.057 +0.007 �0.333 �0.288 +0.200

CHDM PTV6300 0.885 0.886 0.881 +0.002 �0.037 +0.022 �0.058 +0.002 �0.198 �0.304 +0.242

PTV7400 0.951 0.947 0.945 �0.352 �0.748 �0.957 �0.005 �0.264 �0.680 �1.044 +0.232

TABLE VIII. OAR statistics for all patients under LEUD cost.

Cases

L2,1/2 –MAN (GyRBE) L2,1 –MAN (GyRBE)

Dmean Dmax Dmean Dmax

Largest value Average value Largest value Average value Largest value Average value Largest value Average value

H&N#1 �1.49 L Parotid �1.00 �6.75 Pharynx �2.87 �0.98 Pharynx �0.03 �8.96 Pharynx �1.93

H&N#2 �0.76 Carotid �0.270 �3.75 Larynx �1.11 0.04 Mandible +2.22 0.97 Mandible +4.08

H&N#3 �16.15 TMJ �2.51 �28.83 R Opt Nrv �2.29 �19.52 TMJ +0.76 �21.0 R Opt Nrv +1.03

CHDM �8.78 R Cochlea �1.44 �10.99 R Cochlea �1.01 �8.89 R Opt Nrv �1.27 �9.59 R cochlea �1.27
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The group sparsity BOO method was also compared
against the greedy column generation BOO algorithm. The
results show the GS method produces comparable or supe-
rior plans over CG. Specifically, the CG method tends to

select aggregated beams with short pathlengths to the target
such as the anterior beams in the CHDM case. The result
indicates degeneracy that did not present in the IMXT
BOO solution possibly due to the substantial difference in

FIG. 3. The convergence comparison between L2,1/2-norm (solid) and L2,1-norm (dotted) group sparsity for case H&N#3. Left is Quad-GS and right is LEUD-
GS. The blue curve shows the value of entire cost function and the red curve shows the value of dose fidelity term.

FIG. 4. DVH comparison between L2,1/2-GS plan (solid) and the CG plan (dotted) for each patient.
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dose distribution between the first proton beam and photon
beam. Additional heuristics such as minimal separating
between selected beams may be enforced to ameliorate the
problem.

The results show that nonconvex L2,1/2-GS method cre-
ates more dosimetrically desirable plans. However, robust-
ness is another important consideration in proton planning.
In this manuscript, we provide a general and mathematically
tractable framework for beam orientation optimization with-
out explicitly considering robustness. The framework will
allow us to more quantitatively describe the robustness by
adding a regularization term. In a straightforward fashion, the
uncertainties can be included as the stopping power (or den-
sity for further simplification) variation. Penalizing this term
will push the beams toward more homogeneous paths. More
sophisticated regularization terms can be constructed as dosi-
metric endpoints for a given shift or range uncertainty. That
being said, the robustness and new regularization terms
deserve a separate study. Without complicating the current

manuscript too much, we performed a simple robustness
analysis on one of the tested patients by simulating shifts and
range uncertainties and the results showed no substantial dif-
ference between BOO plans and plans using manually
selected beams.

The dose matrix size is determined by the target, which is
limited to be approximately 110 cm3 to fit the calculation into
a desktop with 64GB memory. For more general IMPT cases
with larger tumor targets, either workstations with substan-
tially larger memory, or methods to intelligently reduce the
dose matrix size without impacting plan quality are needed.
These methods include (a) nonuniform sampling resolution
with a higher resolution in the target and nearby organs, and
lower resolution in the volumes that are considered less criti-
cal and faraway from the target, (b) clustering of the proton
pencil-beam dose matrices, and (c) using heuristics to reduce
the number of candidate beams. We will investigate these
directions for more general integrated BOO and scanning-
spot optimization problems.

FIG. 5. DVH bands of CHDM patient including all setup and range uncertainty distributions. The top rows are in Quad cost and bottom row in LEUD cost; the
left columns are MAN plans and right column are L2,1/2-GS plans.
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5. CONCLUSIONS

This work shows the first IMPT planning approach that
integrates noncoplanar beam orientation and scanning-spot
optimization in a single mathematical framework, which was
further formulated to have a computationally efficient solu-
tion despite its large problem size. This method resulted in
dosimetrically competitive plans compared with the manual
planning method for a brain and three unilateral head-and-
neck cases and is less operator-dependent.
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APPENDIX A.

CALCULATE THE GRADIENT OF LEUD COST

Equation (4) can also be written as the following format:

C Axð Þ ¼
X

s2PTVs

wsffiffiffiffiffi
Ns

p kAsx� lsk2

þ
X

r2OARs

wrcr
Nr

1~
T
Arxð Þ þ wr 1� crð ÞkArxk1

� �
þ I� q Axð Þ

(A1)

where Nr is the number of voxels in rth OAR.
Therefore, function C zð Þ can be formed as the summation

of four subfunctions:

C zð Þ ¼
X

s2PTVs
f1 zsð Þ þ

X
r2OARs

f2 zrð Þ þ f3 zrð Þð Þ þ f4 zð Þ

f1 zð Þ ¼ wffiffiffiffi
N

p kz� lk2

f2 zð Þ ¼ wc
N

1~
T
z

f3 zð Þ ¼ w 1� cð Þkzk1
f4 zð Þ ¼ I� q zð Þ

(A2)

f2 zð Þ is differentiable and the gradient is:

rf2 zð Þ ¼ wc
N

1~ (A3)

Moreau-Yosida regularization is applied to f1, f3 and f4. The
proximal operators for these functions are:

proxlf1 zð Þ ¼ z� z� lð Þ �min
lw=

ffiffiffiffi
N

p

kz� pk2
; 1

� �
proxlf3 zð Þ ¼ z� Pw 1�cð ÞlB zð Þ

proxlf4 zð Þ ¼ min z; qð Þ

(A4)

where B is the L1 unit ball, P is the projection operator.
Then based on Eq. (12), the gradients of f1, f3 and f4 after

Moreau-Yosida smoothing are:

rf ðlÞ1 xð Þ ¼ z� lð Þmin
lw=

ffiffiffiffi
N

p

kz� lk2
; 1

� �
=l

rf ðlÞ3 xð Þ ¼ Pw 1�cð ÞB
z
l

� �

rf ðlÞ4 xð Þ ¼ max z� q; 0ð Þ=l

(A5)

Hence, the gradient of LEUD cost after approximation is
written as:

rf ðlÞ xð Þ¼ATrC Axð Þ

¼
X

s2PTVs

wsffiffiffiffiffi
Ns

p As
T Asx� lsð Þmin

wsffiffiffi
N

p

kAsx� lsk2
;
1
l1

 !

þ
X

r2OARs

wrcr
Nr

Ar
T1~þAr

Twr 1�crð ÞPwr 1�crð Þ
Arx
l2

� �� �

þATmax Ax�q;0ð Þ=l3
(A6)

where l1, l2, and l3 are positive Moreau-Yosida regulariza-
tion parameters for L2-norm, L1 -norm, and indicator func-
tion, respectively.

APPENDIX B.

COLUMN GENERATION-BASED BOO

First, we define the master problem, which includes the
whole candidate beam set B, as:

minimize
d;x

G dð Þ

subject to d ¼
X
b2B

Abxb

xb � 0; for b 2 B

where

G dð Þ¼
X

s2PTVs

wsffiffiffiffiffi
Ns

p kds� lsk2
þ
X

r2OARs
wr crmean drð Þþ 1� crð Þmax drð Þð Þ

þ I�q dð Þ (B1)

The variables have the same meaning as 2.1. In addition,
here Ab is the dose-calculation matrix for beam b. It is obvi-
ous that the objective function is equivalent to the LEUB
dose fidelity term in Eq. (4).

The master problem is designed to optimize the intensities
of the scanning spots from all beams. The goal for BAO is to
select a small number of beams. The beam not selected
should have zero spot intensity. Then, the subproblem with
selected beam set Bselect is defined as:

minimize
d;x

G dð Þ

subject to d ¼
X

b2Bselect

Abxb

xb � 0; forb 2 Bselect

(B2)
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The Lagrange function for the master problem is:

Lðx; d; u; vÞ ¼ G dð Þ þ uðd �
X
b2B

AbxbÞ �
X
b2B

vbxb (B3)

where u, v are Lagrange multipliers associated with the
constrains in the master problem.

The Karush-Kuhn-Tucker (KKT) conditions28 are
evaluated:

d ¼ Ax; d� q; xb � 0; for b 2 B

vb � 0

u ¼ @GðdÞ
vb ¼ AT

bu; forb 2 B

(B4)

Using the same smoothing approach as Section 2.D and
FISTA, the subproblem can be solved to obtain optimal pri-
mal variable x�b; b 2 Bselect , and optimal dual variables u�, and
v�b; b 2 Bselect . Then, all vb; b 2 BnBselect are calculated by
vb ¼ AT

bu. The v�b in the selected set meets the non-negative
condition, but the wb in the rest set may be negative. In
BnBselect , the negative elements in vector wb are summed to
produce a single value to evaluate this beam b. The beam
with the most negative sum is supposed to help to optimize
the master problem most, so this beam is added to Bselect and
a new subproblem is formed and solved again. By this
method, we can start from an empty selected set, add one
beam per iteration, reach the desired number of beam, and
then exit the iteration.

a)Author to whom correspondence should be addressed. Electronic mail:
ksheng@mednet.ucla.edu
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