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Abstract

We construct some separable infinite-dimensional homogeneous Hilbertian operator spaces H
m,R∞ and

H
m,L∞ , which generalize the row and column spaces R and C (the case m = 0). We show that a separable

infinite-dimensional Hilbertian JC∗-triple is completely isometric to one of H
m,R∞ , H

m,L∞ , H
m,R∞ ∩ H

m,L∞ ,
or the space Φ spanned by creation operators on the full anti-symmetric Fock space. In fact, we show
that H

m,L∞ (respectively H
m,R∞ ) is completely isometric to the space of creation (respectively annihilation)

operators on the m (respectively m+1) anti-symmetric tensors of the Hilbert space. Together with the finite-
dimensional case studied in [M. Neal, B. Russo, Representation of contractively complemented Hilbertian
operator spaces on the Fock space, Proc. Amer. Math. Soc. 134 (2006) 475–485], this gives a full operator
space classification of all rank-one JC∗-triples in terms of creation and annihilation operator spaces.

We use the above structural result for Hilbertian JC∗-triples to show that all contractive projections on a
C∗-algebra A with infinite-dimensional Hilbertian range are “expansions” (which we define precisely) of
normal contractive projections from A∗∗ onto a Hilbertian space which is completely isometric to R, C,
R ∩ C, or Φ. This generalizes the well-known result, first proved for B(H) by Robertson in [A.G. Robert-
son, Injective matricial Hilbert spaces, Math. Proc. Cambridge Philos. Soc. 110 (1991) 183–190], that all
Hilbertian operator spaces that are completely contractively complemented in a C∗-algebra are completely
isometric to R or C. We use the above representation on the Fock space to compute various completely
bounded Banach–Mazur distances between these spaces, or Φ.
© 2006 Elsevier Inc. All rights reserved.
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1. Preliminaries

The goals of the present paper are to classify all infinite-dimensional rank 1 JC∗-triples up to
complete isometry (Theorem 1 in Section 2) and then use that result to give a suitable “classifi-
cation” of all Hilbertian operator spaces which are contractively complemented in a C∗-algebra
or normally contractively complemented in a W ∗-algebra (Theorems 2 and 3 in Section 3). In
particular, we show that these latter spaces are “essentially” R, C, R ∩ C, or Φ modulo a “de-
generate” piece.

In Section 4, we show that the space H
m,L∞ (respectively H

m,L∞ ) can be represented com-
pletely isometrically as creation (respectively annihilation) operator spaces on pieces of the
anti-symmetric Fock space. In Theorems 4 and 5 in Section 4 we compute the completely
bounded Banach–Mazur distances between the spaces discussed in this paper.

In the rest of this section, we give some background on operator space theory and on JC∗-
triples.

1.1. Operator spaces

Operator space theory is a non-commutative or quantized theory of Banach spaces. By defini-
tion, an operator space is a Banach space together with an isometric linear embedding into B(H),
the bounded linear operators on a complex Hilbert space. While the objects are obviously the
Banach spaces themselves, the more interesting aspects concern the morphisms, namely, the
completely bounded maps. These are defined by considering an operator space as a subspace X

of B(H). Its operator space structure is then given by the sequence of norms on the set of
matrices Mn(X) with entries from X, determined by the identification Mn(X) ⊂ Mn(B(H)) =
B(H ⊕ H ⊕ · · · ⊕ H). A linear mapping ϕ :X → Y between two operator spaces is completely
bounded if the induced mappings ϕn :Mn(X) → Mn(Y ) defined by ϕn([xij ]) = [ϕ(xij )] satisfy
‖ϕ‖cb := supn ‖ϕn‖ < ∞.

Operator space theory has its origins in the work of Stinespring in the 1950s, and Arveson
in the 1960s. Many tools were developed in the 1970s and 1980s by a number of operator alge-
braists, and an abstract framework was developed in 1988 in the thesis of Ruan. All definitions,
notation, and results used in this paper can be found in recent accounts of the subject, namely (in
chronological order) [3,6,15,16]. Let us just recall that a completely bounded map is a complete
isomorphism if its inverse exists and is completely bounded. Two operator spaces are completely
isometric if there is a linear isomorphism T between them with ‖T ‖cb = ‖T −1‖cb = 1. We call
T a complete isometry in this case. Other important types of morphisms in this category are
complete contractions (‖ϕ‖cb � 1) and complete semi-isometries (:= isometric complete con-
traction).

Examples of completely bounded maps are the restriction to a subspace of a C∗-algebra of a
∗-homomorphism and multiplication by a fixed element. It is a fact that every completely
bounded map is essentially a product of these two examples, [16, Theorem 1.6]. The space
cb(X,Y ) of completely bounded maps between operator spaces X and Y is a Banach space
with the completely bounded norm ‖ · ‖cb.
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Analogous to the Banach–Mazur distance for Banach spaces, the class of all operator spaces
can be made into a metric space by using the logarithm of the completely bounded Banach–Mazur
distance:

dcb(E,F ) = inf
{‖u‖cb · ‖u−1‖cb; u :E → F complete isomorphism

}
.

Two important examples of Hilbertian operator spaces (:= operator spaces isometric to Hilbert
space) are the row and column spaces R, C, and their finite-dimensional versions Rn, Cn.
These are defined as follows. In the matrix representation for B(�2), column Hilbert space
C := sp{ei1: i � 1} and row Hilbert space R := sp{e1j : j � 1}. Their finite-dimensional ver-
sions are Cn = sp{ei1: 1 � i � n} and Rn = sp{e1j : 1 � j � n}. Here of course eij is the operator
defined by the matrix with a 1 in the (i, j)-entry and zeros elsewhere. Although R and C are Ba-
nach isometric, they are not completely isomorphic (dcb(R,C) = ∞); and Rn and Cn, while
completely isomorphic, are not completely isometric. In fact, it is known that dcb(Rn,Cn) = n.

R, C, Rn, Cn are examples of homogeneous operator spaces, that is, operator spaces E for
which ∀u :E → E, ‖u‖cb = ‖u‖. Another important example of an Hilbertian homogeneous
operator space is Φ(I). The space Φ(I) is defined by Φ(I) = sp{Vi : i ∈ I }, where the Vi are
bounded operators on a Hilbert space satisfying the canonical anti-commutation relations. In
some special cases, the notations Φn := Φ({1,2, . . . , n}), and Φ = Φ({1,2, . . .}) are used. For
more properties of this space and related constructs, see [16, 9.3].

Two more examples of homogeneous operator spaces are min(E), max(E), where E is any
Banach space. For any such E, the operator space structure of min(E) is defined by the embed-
ding of E into the continuous functions on the unit ball of E∗ in the weak*-topology, namely,
‖(aij )‖Mn(min(E)) = supξ∈BE∗ ‖(ξ(aij ))‖Mn . The operator space structure of max(E) is given by

∥∥(aij )
∥∥

Mn(max(E))
= sup

{∥∥(
u(aij )

)∥∥
Mn(B(Hu))

: u :E → B(Hu), ‖u‖ � 1
}
.

More generally, if F and G are operator spaces, then in F
u−→ min(E), ‖u‖cb = ‖u‖, and in

max(E)
v−→ G, ‖v‖cb = ‖v‖. The notations min(E) and max(E) are justified by the fact that

for any operator space structure Ẽ on a Banach space E, the identity map on E is completely
contractive in max(E) → Ẽ → min(E).

By analogy with the classical Banach spaces �p , c0, Lp , C(K) (as well as their “second
generation,” Orlicz, Sobolev, Hardy, Disc algebra, Schatten p-classes), we can consider the
(Hilbertian) operator spaces R, C, min(�2), max(�2), OH, Φ , as well as their finite-dimensional
versions Rn, Cn, min(�n

2), max(�n
2), OHn, Φn, as “classical operator spaces.” Among these

spaces, only the spaces R, C, and Φ play important roles in this paper. (For the definition and
properties of the space called OH, see [16, Chapter 7].) The classical operator spaces are mutu-
ally completely non-isomorphic. If En, Fn are n-dimensional versions, then dcb(En,Fn) → ∞,
[16, Chapter 10].

We propose to add to this list of classical operator spaces the Hilbertian operator spaces H
m,R∞

and H
m,L∞ constructed here, as well as their finite-dimensional versions Hk

n studied in [13,14].
Like the space Φ , the spaces H

m,L∞ , H
m,R∞ and Hk

n can be represented up to complete isometry
as spaces of creation operators or annihilation operators on anti-symmetric Fock spaces ([14,
Lemma 2.1] and Remark 4.2).

This paper relies significantly for the proofs and notations on previous work by two of the
authors in [13,14]. In particular, a review of [13] may considerably help the reader to understand
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the proofs in this paper. More precisely, from [13], we quote Lemmas 5.1 and 5.4, Corollaries 5.3
and 7.3, and Theorem 3(b). In addition, we note that the proofs from [13] for Lemmas 5.8, 5.9
and 6.7, and Propositions 6.3 and 6.10 remain valid without change in the context of the present
paper.

Let us recall from [13, Sections 6, 7] the construction of the spaces Hk
n , 1 � k � n. Let

I denote a subset of {1,2, . . . , n} of cardinality |I | = k − 1. The number of such I is q :=(
n

k−1

)
. Let J denote a subset of {1,2, . . . , n} of cardinality |J | = n − k. The number of such J

is p := (
n

n−k

)
. We assume that each I = {i1, . . . , ik−1} is such that i1 < · · · < ik−1, and that if

J = {j1, . . . , jn−k}, then j1 < · · · < jn−k .
The space Hk

n is the linear span of matrices b
n,k
i , 1 � i � n, given by

b
n,k
i =

∑
I∩J=∅, (I∪J )c={i}

ε(I, i, J )EJ,I , (1)

where EJ,I = eJ ⊗ eI = eJ et
I ∈ Mp,q(C) = B(Cq,Cp), and ε(I, i, J ) is the signature of the

permutation taking (i1, . . . , ik−1, i, j1, . . . , jn−k) to (1, . . . , n). (eI denotes the basis vector con-
sisting of a 1 in the “I th” position.) Since the b

n,k
i are the image under a triple isomorphism

(actually ternary isomorphism) of a rectangular grid in a JW∗-triple of rank one, they form an
orthonormal basis for Hk

n (cf. [13, Sections 5.3 and 7]).
The following definition from [16, 2.7] plays a key role in this paper. If E0 ⊂ B(H0) and

E1 ⊂ B(H1) are operator spaces whose underlying Banach spaces form a compatible pair in
the sense of interpolation theory, then the Banach space E0 ∩ E1 (with the norm ‖x‖E0∩E1 =
max(‖x‖E0,‖x‖E1)) equipped with the operator space structure given by the embedding E0 ∩
E1 � x �→ (x, x) ∈ E0 ⊕E1 ⊂ B(H0 ⊕H1) is called the intersection of E0 and E1 and is denoted
by E0 ∩ E1. We note, for examples, that

⋂n
k=1 Hk

n = Φn [14] and the space R ∩ C is defined
relative to the embedding of C into itself and R into C given by the transpose map [16, p. 184].
The definition of intersection extends easily to arbitrary families of compatible operator spaces
(cf. the proof of Theorem 1).

Lemma 1.1. Let H be an Hilbertian operator space, and suppose that every finite-dimensional
subspace of H is homogeneous. Then H itself is homogeneous.

Proof. Let φ be any unitary operator on H . According to the first statement of [16, Proposi-
tion 9.2.1], it suffices to prove that φ is a complete isometry.

Let F be any finite-dimensional subspace of H and let G be the subspace spanned by
F ∪ φ(F ). By the second statement of [16, Proposition 9.2.1], F and φ(F ), being of the same
dimension as subspaces of the homogeneous space G, are completely isometric, and φ|F is a
complete isometry.

Now let [xij ] ∈ Mn(H). Then {xij , φ(xij ): 1 � i, j � n} spans a finite-dimensional subspace
F of H , and∥∥φn

([xij ]
)∥∥

Mn(H)
= ∥∥φn

([xij ]
)∥∥

Mn(F)
= ∥∥[xij ]

∥∥
Mn(F)

= ∥∥[xij ]
∥∥

Mn(H)
. �

1.2. Rank one JC∗-triples

A JC∗-triple is a norm closed complex linear subspace of B(H,K) (equivalently, of a C∗-
algebra) which is closed under the operation a �→ aa∗a. JC∗-triples were defined and studied
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(using the name J ∗-algebra) as a generalization of C∗-algebras by Harris [10] in connection with
function theory on infinite-dimensional bounded symmetric domains. By a polarization identity,
any JC∗-triple is closed under the triple product

(a, b, c) �→ {abc} := 1

2

(
ab∗c + cb∗a

)
, (2)

under which it becomes a Jordan triple system. A linear map which preserves the triple product
(2) will be called a triple homomorphism. Cartan factors are examples of JC∗-triples, as are C∗-
algebras, and Jordan C∗-algebras. Cartan factors are defined for example in [13, Section 1]. We
shall only make use of Cartan factors of type 1, that is, spaces of the form B(H,K) where H

and K are complex Hilbert spaces.
A special case of a JC∗-triple is a ternary algebra, that is, a subspace of B(H,K) closed

under the ternary product (a, b, c) �→ ab∗c. A ternary homomorphism is a linear map φ sat-
isfying φ(ab∗c) = φ(a)φ(b)∗φ(c). These spaces are also called ternary rings of operators and
abbreviated TRO. They have been studied both concretely in [11] and abstractly in [21]. Given a
TRO M , its left (respectively right) linking C∗-algebra is defined to be the norm closed span of
the elements ab∗ (respectively a∗b) with a, b ∈ M . Ternary isomorphic TROs have isomorphic
left and right linking algebras.

TROs have come to play a key role in operator space theory, serving as the algebraic model
in the category. Recall that the algebraic models for the categories of order-unit spaces, operator
systems, and Banach spaces, are respectively Jordan C∗-algebras, C∗-algebras, and JB∗-triples.
Indeed, for TROs, a ternary isomorphism is the same as a complete isometry.

If v is a partial isometry in a JC∗-triple M ⊂ B(H,K), then the projections l = vv∗ ∈ B(K)

and r = v∗v ∈ B(H) give rise to (Peirce) projections Pk(v) :M → M , k = 2,1,0, as follows; for
x ∈ M ,

P2(v)x = lxr, P1(v)x = lx(1 − r) + (1 − l)xr, P0(v)x = (1 − l)x(1 − r).

The projections Pk(v) are contractive, and their ranges, called Peirce spaces and denoted by
Mk(v), are JC∗-subtriples of M satisfying M = M2(v) ⊕ M1(v) ⊕ M0(v).

A partial isometry v is said to be minimal in M if M2(v) = Cv. This is equivalent to v not
being the sum of two non-zero orthogonal partial isometries. Recall that two partial isometries
v and w (or any two Hilbert space operators) are orthogonal if v∗w = vw∗ = 0. Orthogonality
of partial isometries v and w is equivalent to v ∈ M0(w) and will be denoted by v ⊥ w. Each
finite-dimensional JC∗-triple is the linear span of its minimal partial isometries. More generally,
a JC∗-triple is defined to be atomic if it is the weak closure of the span of its minimal partial
isometries. In this case, it has a predual and is called a JW∗-triple. The rank of a JC∗-triple is
the maximum number of mutually orthogonal minimal partial isometries. For example, the rank
of the Cartan factor B(H,K) of type 1 is the minimum of the dimensions of H and K ; and the
rank of the Cartan factor of type 4 (spin factor) is 2.

In a JC∗-triple, there is a natural ordering on partial isometries. We write v � w if vw∗v = v;
this is equivalent to vv∗ � ww∗ and v∗v � w∗w. Moreover, if v � w, then there exists a partial
isometry v′ orthogonal to v with w = v + v′.

Another relation between two partial isometries that we shall need is defined in terms of
the Peirce spaces as follows. Two partial isometries v and w are said to be collinear if v ∈
M1(w) and w ∈ M1(v), notation v � w. Let u,v,w be partial isometries. The following is part
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of [13, Lemma 5.4], and is referred to as “hopping”: if v and w are each collinear with u, then
uu∗vw∗ = vw∗uu∗ and u∗uv∗w = v∗wu∗u; if u,v,w are mutually collinear partial isometries,
then {uvw} = 0.

JC∗-triples of arbitrary dimension occur naturally in functional analysis and in holomorphy.
A special case of a theorem of Friedman and Russo [8, Theorem 2] states that if P is a contractive
projection on a C∗-algebra A, then there is a linear isometry of the range P(A) of P onto a JC∗-
subtriple of A∗∗. A special case of a theorem of Kaup [12] gives a bijective correspondence
between Cartan factors and irreducible bounded symmetric domains in complex Banach spaces.

Contractive projections play a ubiquitous role in the structure theory of the abstract analog
of JC∗-triples (called JB∗-triples). Of use to us will be both of the following two conditional
expectation formulas for a contractive projection P on a JC∗-triple M (which are valid for JB∗-
triples) [7, Corollary 1]:

P {Px,Py,P z} = P {Px,Py, z} = P {Px,y,P z} (x, y, z ∈ M). (3)

By a special case of [4, Corollary, p. 308], every JW∗-triple of rank one is isometric to
a Hilbert space and every maximal collinear family of partial isometries corresponds to an
orthonormal basis. Conversely, every Hilbert space with the abstract triple product {xyz} :=
((x|y)z + (z|y)x)/2 can be realized as a JC∗-triple of rank one in which every orthonormal
basis forms a maximal family of mutually collinear minimal partial isometries. Recall from
[13, p. 2245] that minimality implies that for all i �= j , {uiujui} = 0, and collinearity implies
that for all i �= j , {uiuiuj } = uj/2.

2. Operator space structure of Hilbertian JC∗-triples

2.1. Hilbertian JC∗-triples: The spaces H
m,R∞ and H

m,L∞

The general setting for this section will be the following: Y is a JC∗-subtriple of B(H) which
is Hilbertian in the operator space structure arising from B(H), and {ui : i ∈ Ω} is an orthonormal
basis consisting of a maximal family of mutually collinear partial isometries of Y .

We let T and A denote the TRO and the C∗-algebra respectively generated by Y . For any
subset G ⊂ Ω , (uu∗)G := ∏

i∈G uiu
∗
i and (u∗u)G := ∏

i∈G u∗
i ui . By [13, Lemma 5.4(a)], these

products do not depend on the order. The elements (uu∗)G and (u∗u)G lie in the weak closure of
A and more generally in the left and right linking von Neumann algebras of T .

In the following lemma, parts (a) and (a′) justify the definitions of the integers mR and mL in
parts (b) and (b′). Here and throughout the rest of this paper, |F | denotes the cardinality of the
finite set F .

Lemma 2.1. Let Y be an Hilbertian operator space which is a JC∗-subtriple of B(H) and let
{ui : i ∈ Ω} be an orthonormal basis consisting of a maximal family of mutually collinear partial
isometries of Y .

(a) If (uu∗)Ω−F = 0 for some finite set F ⊂ Ω , then (uu∗)Ω−G = 0 for every finite set G with
the same cardinality as F .

(a′) If (u∗u)Ω−F = 0 for some finite set F ⊂ Ω , then (u∗u)Ω−G = 0 for every finite set G with
the same cardinality as F .
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(b) Assume (uu∗)Ω−F �= 0 for some finite set F . Let mR be the smallest nonnegative integer with
(uu∗)Ω−F �= 0 for every F with cardinality mR . Define pR = ∑

|F |=mR
(uu∗)Ω−F . Then the

maps y �→ pRy and y �→ (1 − pR)y are completely contractive triple isomorphisms (hence
isometries) of Y onto rank one subtriples of the weak closure of T in B(H). Moreover,
pRY ⊥ (1 − pR)Y .

(b′) Assume (u∗u)Ω−F �= 0 for some finite set F . Let mL be the smallest nonnegative integer
with (u∗u)Ω−F �= 0 for every F with cardinality mL. Define pL = ∑

|F |=mL
(u∗u)Ω−F . Then

the maps y �→ ypL and y �→ y(1 − pL) are completely contractive triple isomorphisms
(hence isometries) of Y onto rank one subtriples of the weak closure of T in B(H). Moreover,
YpL ⊥ Y(1 − pL).

(c) In case (b), let wi = pRui and let m′
R be the smallest nonnegative integer with (ww∗)Ω−F �=

0 for all F with cardinality m′
R . Then m′

R exists, and m′
R = mR . If vi := (1 − pR)ui , then

(vv∗)Ω−G = 0 if |G| = mR . Furthermore, (w∗w)G �= 0 for |G| = mR + 1 and (w∗w)G = 0
for |G| = mR + 2. Thus, if we define kR to be the largest integer k such that (w∗w)G �= 0 for
|G| = k, then kR = mR + 1.

(c′) In case (b′), let wi = uipL and let m′
L be the smallest nonnegative integer with (w∗w)Ω−F �=

0 for all F with cardinality m′
L. Then m′

L exists, and m′
L = mL. If vi := ui(1 − pL), then

(v∗v)Ω−G = 0 if |G| = mL. Furthermore, (ww∗)G �= 0 for |G| = mL + 1 and (ww∗)G = 0
for |G| = mL + 2. Thus, if we define kL to be the largest integer k such that (ww∗)G �= 0 for
|G| = k, then kL = mL + 1.

Proof. The proofs of (a) and (a′) are identical to the proof given in [13, Lemma 5.8]. The fact
that the set Ω − F is infinite has no effect on the proof in [13].

The proofs of (b) and (b′) are identical to the proof given in [13, Lemma 5.9]. The facts that
the set Ω − F is infinite and that the sums defining the projections pR and pL are infinite have
no effect on the proof in [13].

We now prove (c), the proof of (c′) being entirely similar. For any finite set F ⊂ Ω ,

(
ww∗)

Ω−F
=

∏
i∈Ω−F

( ∑
|G|=mR

(
uu∗)

Ω−G

)
uiu

∗
i

( ∑
|H |=mR

(
uu∗)

Ω−H

)

=
∏

i∈Ω−F

( ∑
|G|=mR,i∈Ω−G

(
uu∗)

Ω−G

)
=

∑
G⊂F,|G|=mR

(
uu∗)

Ω−G
.

From this it follows that (ww∗)Ω−F = 0 if |F | < mR and that (ww∗)Ω−F = (uu∗)Ω−F �= 0 if
|F | = mR . This proves that m′

R = mR , that is (ww∗)Ω−F = 0 ⇔ |F | < mR .
Next, we show that (vv∗)Ω−G = 0 if |G| = mR . Since uiu

∗
i commutes with pR , (vv∗)Ω−G =∏

i∈Ω−G(1 − pR)uiu
∗
i (1 − pR) = (1 − pR)(uu∗)Ω−G. However, since pR(uu∗)Ω−G =∑

|F |=mR
(uu∗)Ω−(F∩G) = (uu∗)Ω−G, (vv∗)Ω−G = 0 as desired.

Finally, we prove the property stated for (w∗w)G. Let |F | = r and for convenience, suppose
that F = {1,2, . . . , r}. Then

(
w∗w

)
F

= (
w∗w

)
{1,2,...,r} =

∑
u∗

1

(
uu∗)

Ω−F1
u1u

∗
2

(
uu∗)

Ω−F2
u2u

∗
3 . . . u∗

r

(
uu∗)

Ω−Fr
ur ,

where the sum is over all |Fj | = mR , j ∈ Ω − Fj , F − {j} ⊂ Fj (by “hopping”), and j =
1,2, . . . , r . Every term in this sum is zero if r − 1 > mR , that is r � mR + 2. Further, if r =
mR + 1, there is only one term, namely, writing m for mR ,
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x := (
w∗w

)
{1,2,...,m+1} = u∗

1

(
uu∗)

Ω−{2,3,...,m+1}u1u
∗
2

(
uu∗)

Ω−{1,3,4,...,m+1}u2u
∗
3 × · · ·

× (
uu∗)

Ω−{1,2,...,m−1,m+1}umu∗
m+1

(
uu∗)

Ω−{1,2,...,m}um+1,

which by a sequence of “hoppings” becomes

x = (
u∗u

)
{1,2,...,m}u

∗
m+1

(
uu∗)

Ω−{1,2,...,m+1}um+1.

In turn, using the collinearity of the uk (1 � k � m) with um+1, we have

x = (
uu∗)

1,...,m−1

(
u∗

m+1 − u∗
m+1umu∗

m

)(
uu∗)

Ω−{1,2,...,m+1}um+1

= (
uu∗)

1,...,m−1u
∗
m+1

(
uu∗)

Ω−{1,2,...,m+1}um+1

− (
uu∗)

1,...,m−1u
∗
m+1

(
uu∗)

Ω−{1,2,...,m−1}um+1

= (
uu∗)

1,...,m−1u
∗
m+1

(
uu∗)

Ω−{1,2,...,m+1}um+1 + 0

...

= u∗
m+1

(
uu∗)

Ω−{1,2,...,m+1}um+1.

Thus, if x = 0, then 0 = um+1xu∗
m+1 = (uu∗)Ω−{1,2,...,m}, a contradiction. �

Our goal for the remainder of this section is to give a completely isometric representation
for the spaces pRY and YpL in parts (b) and (b′) of Lemma 2.1. This will be achieved via a
coordinatization procedure which we now describe.

In the following, let us restrict to the special case that Y is a Hilbertian JC∗-triple which
satisfies the properties of pRY in Lemma 2.1 part (c). For notational convenience, let m = mR .
Thus (u∗u)G �= 0 for |G| � m + 1 and (u∗u)G = 0 for |G| � m + 2.

Analogous to [13, Definition 6.1], where Ω was a finite set, we are going to define elements
which are indexed by an arbitrary pair of subsets I, J of Ω satisfying

|Ω − I | = m + 1, |J | = m. (4)

The set I ∩ J is finite, and if |I ∩ J | = s � 0, then |(I ∪ J )c| = s + 1. Let us write I ∩ J =
{d1, . . . , ds} and (I ∪ J )c = {c1, . . . , cs+1}, and let us agree (for the moment) that there is a
natural linear ordering on Ω such that c1 < c2 < · · · < cs+1 and d1 < d2 < · · · < ds .

With the above notation, we define

uIJ = uI,J = (
uu∗)

I−J
uc1u

∗
d1

uc2u
∗
d2

. . . ucs u
∗
ds

ucs+1

(
u∗u

)
J−I

. (5)

Note that in general I − J is infinite and J − I is finite so that uI,J lies in the weak closure
of T . In Definition 1, we shall consider similar elements in which I is finite and J is infinite.

In the special case of (5) where I ∩ J = ∅, we have s = 0 and uI,J has the form

uI,J = (
uu∗) uc

(
u∗u

)
, (6)
I J
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where I ∪ J ∪ {c} = Ω is a partition of Ω . As in [13], we call such an element a “one,” and
denote it sometimes for emphasis by uI,c,J .

The proof of the following lemma, which is the analog of [13, Lemma 6.6], is complicated by
the fact that the sets I are infinite if Ω is infinite.

Lemma 2.2. Let Y be an Hilbertian operator space which is a JC∗-subtriple of B(H) and let
{ui : i ∈ Ω} be an orthonormal basis consisting of a maximal family of mutually collinear partial
isometries of Y . Assume that Y satisfies the properties of pRY in Lemma 2.1 part (c) with m =
mR , that is, (u∗u)G �= 0 ⇔ |G| � m + 1, and (uu∗)Ω−F = 0 ⇔ |F | < m. For any c ∈ Ω ,

uc =
∑
I,J

uI,c,J , (7)

where the sum is taken over all disjoint I, J satisfying (4) and not containing c. The sum con-
verges weakly in the weak closure of T . (Since {I, {c}, J } is a partition of Ω , I is determined
by J , so the sum is over all sets J of cardinality m and not containing c.)

Proof. The proof of [13, Proposition 6.3] remains valid in our context insofar as {uI,J } (where
uI,J denotes uI,c,J ) is a collection of pairwise orthogonal partial isometries in the weak closure
of the ternary envelope T of Y . Since u∗

cuc commutes with (u∗u)J , u∗
I,J uI,J u∗

cuc = u∗
I,J uI,J ,

so that u∗
I,J uI,J � u∗

cuc and similarly uI,J u∗
I,J � ucu

∗
c so that

∑
uI,J � uc. To prove (7), we

proceed as follows.
By the property of the ordering for partial isometries (see Section 1.2), we can write

uc = vc + wc, where wc = ∑
I,J IucJ and, for example, IucJ is shorthand for uI,c,J =

(uu∗)I uc(u
∗u)J , and vc is a partial isometry orthogonal to wc. We shall show that vc = 0 which

will prove the lemma. From collinearity and the definition of m, for any k ∈ I , (uu∗)I uc(u
∗u)J =

(uu∗)I−{k}(uc − ucu
∗
kuk)(u

∗u)J = (uu∗)I−{k}uc(u
∗u)J . By repeating this and taking a limit, we

have IucJ = ucJ . Also, wcJ = (
∑

I ′,J ′ I ′ucJ
′)J = IucJ . Thus vcJ = ucJ − wcJ = 0 for any

c /∈ J . Similarly Ivc = 0 for any c /∈ I .
From this, it follows that vi is orthogonal to wj for every i and j . For i = j this is by the

definition. For i �= j , we have vi(Ju∗
j I ) = (viJ )u∗

j I = 0 if i /∈ J . However, if i ∈ J , then

viJu∗
j I = vi

(
J − {i})u∗

i uiu
∗
j I = vi

((
J − {i}) ∪ {j})u∗

i uiu
∗
j I = 0

since i /∈ (J − {i}) ∪ {j}. Similarly, Ju∗
j Ivi = 0 so that viw

∗
j = w∗

j vi = 0.
Next, we observe that for each pair i �= j , vi ∈ M1(uj ). Indeed,

vi + wi = ui = uiu
∗
j uj + uju

∗
j ui

= viu
∗
j uj + wiu

∗
j uj + uju

∗
j vi + uju

∗
jwi

= viu
∗
j uj +

∑
J,j∈J

wiJ + uju
∗
j vi +

∑
J,j /∈J

wiJ

= viu
∗
j uj + uju

∗
j vi + wi.

Hence vi = viu
∗uj + uju

∗vi , so vi ∈ M1(uj ).
j j
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It now follows that vi � vj for i �= j . Indeed,

vj = vju
∗
i ui + uiu

∗
i vj = vjv

∗
i vi + vjw

∗
i wi + viv

∗
i vj + wiw

∗
i vj = vjv

∗
i vi + viv

∗
i vj .

We are now ready to show that vj = 0 for every j ∈ Ω . Since vj � vi , vj = viv
∗
i vj + vjv

∗
i vi

so it suffices to show that vi ⊥ vj for i �= j .
Let us adopt the notation Jv for (v∗v)J = ∏

j∈J v∗
j vj . (What we previously denoted by J ,

namely (u∗u)J , would now be denoted by Ju.) We know that for i /∈ J , viJu = 0. But viJv =
viJu, so that viJv = 0; indeed, for any k �= i, viv

∗
k vk = vi(u

∗
kuk − w∗

kuk − u∗
kwk + w∗

kwk) =
vi(u

∗
kuk − u∗

kwk) so it suffices to observe that viu
∗
kwk = vi(v

∗
k − w∗

k )wk = 0. Thus viJv = 0 for
all sets J of cardinality m and all i /∈ J . We now show that in fact viJ

′
v = 0 whenever J ′ ⊂ Ω ,

1 � |J ′| < m and i /∈ J ′. Then taking |J ′| = 1 yields the desired orthogonality. Suppose first that
|J ′| = m − 1 and i /∈ J ′. In the first place, viJ

′
v = I ′

vviJ
′
v , where, of course, I ′ = Ω − (J ′ ∪ {i}).

Indeed, writing I ′ = {iα: α ∈ Λ}, we have

viJ
′
v = vi

(
v∗v

)
J ′ = (

viαv
∗
iα

vi + viv
∗
iα

viα

)(
v∗v

)
J ′ = viαv

∗
iα

vi

(
v∗v

)
J ′ = · · · = I ′

vviJ
′
v.

In the second place, by the orthogonality of vj and wj for any j ,

I ′
uuj = (

uu∗)
I ′uj =

[ ∏
i∈I ′

(vi + wi)
(
v∗
i + w∗

i

)]
(vj + wj) = I ′

vvj + I ′
wwj .

In particular, for j = i /∈ J ′, I ′
uui = (uu∗)I ′∪{i}ui = 0 since |Ω − (I ′ ∪ {i})| < m. On the other

hand, I ′
vvj and I ′

wwj are easily seen to be orthogonal partial isometries. Thus I ′
vvi = 0 and hence

viJ
′
v = 0. The same argument leads successively to viJ

′
v = 0 for |J ′| equal to m−2,m−3, . . . ,1

as long as i /∈ J ′. As noted above, with |J ′| = 1, we have viv
∗
j = 0 for all i �= j , that is, vi ⊥ vj .

As also noted above, this implies vj = 0 for all j . �
We shall now assume that our set Ω is countable and for convenience set Ω = N =

{1,2,3, . . .} with its natural order. Note that in this case, the number of possible sets I in (4)
is ℵ0 and the number of such J is also ℵ0.

Again as in [13, Definition 6.8], we are going to assign a signature to each “one” uI,k,J

(see (6)) as follows. Let the elements of I be i1 < i2 < · · · and the elements of J be j1 < j2 <

· · · < jm. The permutation taking the infinite tuple (j1, . . . , jm, k, i1, i2, . . .) onto (1,2, . . .) ac-
tually moves only finitely many elements. Then ε(I, k, J ) is defined to be the signature of this
permutation. Note that, unlike in the context of [13], one of our sets here is infinite, and this
infinite set must be placed at the end of the permutation in order to have a well-defined signature.
This adjustment is not necessary in the definition of the spaces H

m,L∞ (see Definition 1) since the
set I in that case is finite.

The proof of [13, Lemma 6.7] shows that every element uI,J decomposes uniquely into a
product of “ones.” The signature ε(I, J ) (also denoted by ε(IJ )) of uI,J is then defined, as in
[13, Definition 6.8], to be the product of the signatures of the factors in this decomposition. The
proof of [13, Proposition 6.10] shows that the family {ε(IJ )uI,J } forms a rectangular grid (see
[13, p. 2239] for the definition) which satisfies the extra property

ε(IJ )uIJ

[
ε(IJ ′)uIJ ′

]∗
ε(I ′J ′)uI ′J ′ = ε(I ′J )uI ′J . (8)
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It follows as in [13] that the map ε(IJ )uIJ → EJI is a ternary isomorphism (and hence
complete isometry) from the norm closure of spCuIJ to the norm closure of spC{EJI }, where
EJI denotes an elementary matrix, whose rows and columns are indexed by the sets J and I ,
with a 1 in the (J, I )-position. By [4, Lemma 1.14], this map can be extended to a ternary
isomorphism from the w*-closure of spCuIJ onto the factor of type I consisting of all ℵ0 by
ℵ0 complex matrices which act as bounded operators on �2. By restriction to Y and (7), Y is
completely isometric to a subtriple Ỹ , of this Cartan factor of type 1.

Definition 1. We shall denote the space Ỹ above by H
m,R∞ . An entirely symmetric argument (with

J infinite and I finite) under the assumption that Y satisfies the conditions of YpL in Lemma 2.1
part (c′) with m = mL defines the space H

m,L∞ .

Explicitly,

Hm,R∞ = spC

{
b

m,R
i =

∑
I∩J=∅, (I∪J )c={i}, |J |=m

ε(I, i, J )EJ,I : i ∈ N

}

and

Hm,L∞ = spC

{
b

m,L
i =

∑
I∩J=∅, (I∪J )c={i}, |I |=m

ε(I, i, J )EJ,I : i ∈ N

}
.

As noted above, in the case of H
m,L∞ , the signature ε(I, i, J ) is defined to be the signature of the

permutation taking (i1, . . . , im, k, j1, j2, . . .) onto (1,2, . . .).
This discussion has proved the following lemma.

Lemma 2.3. The spaces pRY and YpL in Lemma 2.1 parts (c) and (c′) are completely isometric
to H

mR,R∞ and H
mL,L∞ , respectively.

Remark 2.4. It is immediate from [13, Corollary 5.3] that H
0,R∞ = R and H

0,L∞ = C. Also note
that H

m,R∞ and H
m,L∞ are homogeneous Hilbertian operator spaces by Lemma 1.1 and [14, The-

orem 1]. The results of Section 4 show that these spaces are all distinct from each other and
from Φ .

2.2. The coordinatization of Hilbertian JC∗-triples

Let Y satisfy the hypothesis of Lemma 2.1. Our analysis will consider the following three
mutually exhaustive and (by the results of Section 4) mutually exclusive possibilities (in each
case, the set F is allowed to be empty):

Case 1. (uu∗)Ω−F �= 0 for some finite set F ⊂ Ω .
Case 2. (u∗u)Ω−F �= 0 for some finite set F ⊂ Ω .
Case 3. (uu∗)Ω−F = (u∗u)Ω−F = 0 for all finite subsets F of Ω .

We will first address cases 1 and 2. The following proposition summarizes these cases and is
stated here for easy reference in the proof of Theorem 1. Part (a) follows from Lemma 2.1(b)
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and (c), the coordinatization procedure outlined in Section 2.1, and Lemma 2.3. Part (b) follows
by symmetry using Lemma 2.1(b′) and (c′), and Lemma 2.3.

Proposition 2.5. Let Y be a separable infinite-dimensional Hilbertian operator space which is
a JC∗-subtriple of B(H) and let {ui : i ∈ Ω} (Ω = N) be an orthonormal basis consisting of a
maximal family of mutually collinear partial isometries of Y .

(a) Suppose there exists a finite subset F of Ω such that (uu∗)Ω−F �= 0. Then Y is an intersec-
tion Y1 ∩ Y2 such that Y1 is completely isometric to a space H

m,R∞ (that is, in the notation
of Lemma 2.1, m′

R = m � 1 and k′
R = m + 1), or C, and Y2 is a Hilbertian JC∗-triple

containing an orthonormal basis of mutually collinear minimal partial isometries {vi} with
(vv∗)Ω−F = 0 for all sets F of cardinality m.

(b) Suppose there exists a finite subset F such that (u∗u)Ω−F �= 0. Then Y is an intersection
Y1 ∩ Y2 such that Y1 is completely isometric to a space H

m,L∞ (that is, m′
L = m � 1 and

k′
L = m + 1), or R, and Y2 is an Hilbertian JC∗-triple containing an orthonormal basis

of mutually collinear minimal partial isometries {vi} with (v∗v)Ω−F = 0 for all sets F of
cardinality m.

It is worth emphasizing that the space H
m,R∞ (respectively H

m,L∞ ) is a Hilbertian JC∗-triple
satisfying

(
uu∗)

Ω−F
= 0 ⇔ |F | < m,

(
u∗u

)
G

= 0 ⇔ |G| > m + 1(
respectively

(
u∗u

)
Ω−F

= 0 ⇔ |F | < m,
(
uu∗)

G
= 0 ⇔ |G| > m + 1

)
, (9)

and that H
0,R∞ = R and H

0,L∞ = C.
To handle the remaining case 3, we shall need the following lemma.

Lemma 2.6. Let Y be a separable infinite-dimensional Hilbertian operator space which is a
JC∗-subtriple of a C∗-algebra A and let {ui : i ∈ Ω} be an orthonormal basis consisting of a
maximal family of mutually collinear partial isometries of Y .

Let S and T be finite subsets of Ω and let k ∈ Ω − (S ∪ T ). If (uu∗)Suk(u
∗u)T = 0, then

(uu∗)S′uk′(u∗u)T ′ = 0 for all sets S′, T ′ with |S′| = |S|, |T ′| = |T | and for all k′ ∈ Ω −(S′ ∪T ′).

Proof. It suffices to prove this with (S, k, T ) replaced in turn by (S ∪ {l}− {j}, k, T ) (with l /∈ S

and j ∈ S); by (S, l, T ) (with l �= k); and by (S, k, T ∪ {l} − {i}) (with l /∈ T and i ∈ T ).
In the first case,

ulu
∗
l

(
uu∗)

S−j
uk

(
u∗u

)
T

= (
uju

∗
j ul + ulu

∗
j uj

)
u∗

l

(
uu∗)

S−j
uk

(
u∗u

)
T

= 0 + ulu
∗
j uju

∗
l

(
uu∗)

S−j
uk

(
u∗u

)
T

= ulu
∗
j

(
uu∗)

S−j
uju

∗
l uk

(
u∗u

)
T

(by hopping)

= −ulu
∗
j

(
uu∗)

S−j
uku

∗
l uj

(
u∗u

)
T

= −ulu
∗
j

(
uu∗)

S−j
uk

(
u∗u

)
T
u∗

l uj = 0.

By symmetry, (uu∗)Suk(u
∗u)T −iu

∗ul = 0, proving the second case.
l
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Finally,

(
uu∗)

S
ul

(
u∗u

)
T

= (
uu∗)

S

(
ulu

∗
kuk + uku

∗
kul

)
(u∗u)T

= (
uu∗)

S
ulu

∗
kuk

(
u∗u

)
T

+ (
uu∗)

S
uku

∗
kul

(
u∗u

)
T

= ulu
∗
k

(
uu∗)

S
uk

(
u∗u

)
T

+ (
uu∗)

S
uk

(
u∗u

)
T
u∗

kul = 0. �
We can now handle the final case 3.

Proposition 2.7. Let Y be a separable infinite-dimensional Hilbertian JC∗-triple and let
{ui : i ∈ Ω} be an orthonormal basis consisting of a maximal family of mutually collinear partial
isometries of Y . Suppose that for all finite subsets G ⊂ Ω , (uu∗)Ω−G = 0 and (u∗u)Ω−G = 0.
Then Y is completely isometric to Φ .

Proof. We show first that all finite products (uu∗)F ui(u
∗u)G with F,G, {i} pairwise disjoint

(and F,G not both empty), are not zero. Suppose, on the contrary, that (uu∗)F ui(u
∗u)G = 0

for some F,G, i. If F and G are both non-empty, pick a subset F ′ ⊂ F of maximal cardinal-
ity such that (uu∗)F ′ui(u

∗u)G �= 0 (F ′ could be empty). Then by repeated use of collinearity
and passing to the limit, we arrive at (uu∗)F ′ui(u

∗u)G = (uu∗)F ′ui(u
∗u)Ω−({i}∪F ′) = 0, a con-

tradiction. So either F = ∅ and ui(u
∗u)G = 0, or G = ∅ and (u∗u)F ui = 0. In the first case,

picking a subset G′ ⊂ G of maximal cardinality such that ui(u
∗u)G′ �= 0, then by collinearity

ui(u
∗u)G′ = (uu∗)Ω−({i}∪G′)ui(u

∗u)G′ = 0, a contradiction, and similarly in the second case.
We have now shown that all finite products (uu∗)F ui(u

∗u)G with F,G, {i} pairwise disjoint, are
not zero.

Now consider the space Yn := sp{u1, . . . , un}. By [13, Theorem 3(b)], Yn is completely iso-
metric to a space H

k1
n ∩ · · · ∩ H

km
n , where n � k1 > · · · > km � 1. We claim that m = n and

kj = n − j + 1 for j = 1, . . . , n. By way of contradiction, suppose that there is a k, 1 � k � n,

such that the space Hk
n is not among the spaces H

kj
n , 1 � j � m. Let ψ :x �→ (x(k1), . . . , x(km))

denote the ternary isomorphism of the ternary envelope of Yn whose restriction to Yn imple-
ments the complete isometry of Yn with H

k1
n ∩ · · · ∩ H

km
n , and consider the element x :=

(uu∗){1,...,k−1}uk(u
∗u){k+1,...,n}. As shown above, x �= 0. However, x(kj ) = 0 for each j , a con-

tradiction. To see that x(kj ) = 0, suppose first that kj < k. Since ψ is a ternary isomorphism,

x(kj ) = (u(kj )u(kj )∗){1,...,k−1}u
(kj )

k (u(kj )∗u(kj )){k+1,...,n} = 0 since (u(kj )u(kj )∗){1,...,k−1}u
(kj )

k is

zero in H
kj
n . Similarly, if kj > k, then n − kj + 1 < n − k + 1, u

(kj )

k (u(kj )∗u(kj )){k+1,...,n} = 0 so
that x(kj ) = 0 in this case as well.

We now have for each n that, completely isometrically, Yn = ⋂n
k=1 Hk

n and the latter space is
completely isometric to Φn by [14, Lemma 2.1]. Since Y = ⋃

Yn and Φ = ⋃
Φn, it follows that

Y = Φ completely isometrically. �
We come now to the first main result of this paper.

Theorem 1. Let Y be a JC∗-subtriple of B(H) which is a separable infinite-dimensional
Hilbertian operator space. Then Y is completely isometric to one of the following spaces:

Φ, Hm,R∞ , Hm,L∞ , Hm,R∞ ∩ Hn,L∞ .
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Proof. Let {ui} be an orthonormal basis for Y consisting of a maximal family of mutually
collinear minimal partial isometries. By Propositions 2.7 and 2.5, either Y is completely iso-
metric to Φ , in which case the theorem is proved, or Y is an intersection Y1 ∩ Z, where Y1 is
completely isometric to either H

m,R∞ or H
k,L∞ , with m,k � 0.

Let us suppose first that Y1 = H
m,R∞ and denote m by m1. (The other case is handled in the

same way.) For convenience, we shall say that mR = ∞ if (uu∗)Ω−F = 0 for every finite subset
F ⊂ Ω . Then by repeated application of Proposition 2.5, Y = R∩ Z, where R= H

m1,R∞ ∩ · · · ∩
H

mn,R∞ or H
m1,R∞ ∩ · · · ∩ H

mn,R∞ ∩ · · ·, where m1 < m2 < · · · and the mR for Z is ∞. This is
clear in the case that the intersection is finite. In the other case, by the construction in the proof
of Proposition 2.5, Z = ∏∞

j=1(1 − pj )Y for an appropriate sequence of projections pj (see
Lemma 2.1).

Again by Propositions 2.7 and 2.5, either Z is completely isometric to Φ , or Z is an intersec-
tion Z1 ∩W , where Z1 is completely isometric to H

k,L∞ , for some k � 0. Again, by repeated appli-
cation of Proposition 2.5, Z = L∩W , where L= H

k1,L∞ ∩· · ·∩H
kl,L∞ or H

k1,L∞ ∩· · ·∩H
kl,L∞ ∩· · ·,

where k1 < k2 < · · · and the mL for W is ∞. Since W has mR = ∞ and mL = ∞, by Proposi-
tion 2.7, it is completely isometric to Φ . We now have Y = R∩L∩ Φ .

An argument similar to the one in the proof of Proposition 2.7 shows that an n-dimensional
subspace H

m,L
n of H

m,L∞ is completely isometric to
⋂m+1

k=1 Hk
n and hence the formal identity map

H
m′,L∞ → H

m,L∞ is a complete contraction when m′ > m (and similarly for H
k,R∞ ). On the other

hand, from Lemma 4.1, Φ is completely isometric to
⋂∞

m=0 H
m,L∞ and to

⋂∞
m=1 H

m,R∞ . Thus Φ

is completely isometric to
⋂∞

j=1 H
nj ,L
∞ for any sequence nj → ∞, and from this the theorem

follows. �
Remark 2.8. As just noted, in Section 4 we will show that the spaces H

m,L∞ and H
k,R∞ are com-

pletely isometric to spaces of creation and annihilation operators on pieces of the anti-symmetric
Fock space. Hence all separable rank 1 JC∗-triples are really spaces of creation and annihilation
operators.

We close this section with a well-known lemma about Hilbertian TROs. Recall that TROs are
operator subspaces of a C∗-algebra which are closed under the product xy∗z, and are fundamen-
tal in operator space theory. Indeed, every operator space has both a canonical injective envelope
[18] and a canonical “Shilov boundary” [2] which are TROs. A proof of the following lemma
can be found in [19], which classifies all W ∗-TROs up to complete isometry. We include a quick
alternate proof from the point of view of this section.

Lemma 2.9. If X is a Hilbertian TRO, then X is completely isometric to R or C.

Proof. Let {uj } be an orthonormal basis consisting of mutually collinear minimal partial isome-
tries in X. For a fixed i �= j , since uiu

∗
i uj is a partial isometry in X, uiu

∗
i uj = P2(uj )(uiu

∗
i uj )

is either equal to eiθuj or 0. If the latter case holds, then by the calculation in [13, Lemma 5.1],
uiu

∗
i uj = 0 for all i �= j , and X is ternary isomorphic and thus completely isometric to C. On

the other hand, if uiu
∗
i uj = eiθuj , then by collinearity, eiθ = 1, uju

∗
i ui = 0, and again by [13,

Lemma 5.1], X is completely isometric to R. �
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3. Contractively complemented Hilbertian operator spaces

Suppose that a Hilbert space H is complemented in a C∗-algebra A via a contractive projec-
tion P . Let L be a contractive linear map from H into A with the properties that L(H) ⊥ H and
P(L(H)) = 0. Then the space K = {h + L(h): h ∈ H } is clearly contractively complemented
by P + LP . From this it follows that a classification of contractively complemented Hilbertian
operator spaces is hopeless without some qualifications.

3.1. Expansions of contractive projections

The following definitions are crucial.

Definition 2. Consider a triple {K,A,P } consisting of a Hilbertian operator space K , a C∗-
algebra A, and a contractive projection P from A onto K . If there exists a Hilbertian subspace
H of A which is contractively complemented by a projection Q and a contractive linear map L

from H into A such that P = Q + LQ, L(H) ⊥ H and Q(L(H)) = 0, we say that {K,A,P } is
an expansion of {H,A,Q}. (Note that this implies that K = {h + L(h): h ∈ H }.)

The following is immediate.

Lemma 3.1. If {K,A,P } is an expansion of {H,A,Q} then Q|K is a completely contractive
isometry from K onto H .

Suppose X ⊂ A is a contractively complemented Hilbertian operator subspace by a projec-
tion Q. Further suppose that Y is a Hilbertian operator subspace of A which is isometric to X

and which is orthogonal to X and lies in ker(Q). Then {x + Lx: x ∈ X} is contractively com-
plemented in A by the projection P = Q + LQ, where L is any isometry from X onto Y . It is
clear that {x + Lx: x ∈ X} is an expansion of X. Thus one cannot hope to classify contractively
complemented Hilbertian operator spaces up to complete isometry. However, we will show in
this section that all contractively complemented Hilbert spaces are expansions of a “minimal”
1-complemented Hilbert space which is a JC∗-triple.

Definition 3. The support partial isometry of a non-zero element ψ of the predual A∗ of a JW∗-
triple A is the smallest element of the set of partial isometries v such that ψ(v) = ‖ψ‖, and is
denoted by vψ . For each non-empty subset G of A∗, the support space s(G) of G is the smallest
weak∗-closed subspace of A containing the support partial isometries of all elements of G.

The existence and uniqueness of the support partial isometry was proved and exploited in
the more general case of a JB∗-triple (in which case the partial isometries are replaced by their
abstract analog, the tripotents) in [9]. One of its important properties is that of “faithfulness”:
if a non-zero partial isometry w satisfies w � vψ , then ψ(w) > 0.

We now give two examples of expansions which naturally occur and are relevant to our work.

Example 1. From [14, Theorem 2], if P is a contractive projection on a C∗-algebra A, with
X := P(A) which is isometric to a Hilbert space, then there are projections p,q ∈ A∗∗, such that,
X = P ∗∗A∗∗ = {pxq + (1 − p)x(1 − q): x ∈ X}. The space pXq is exactly the norm closed
span of the support partial isometries of the elements of P ∗A∗ (see [8] for the construction).
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The map E0 :x �→ pxq is an isometry of X onto a JC∗-subtriple E0X of A∗∗, E0P
∗∗ is a normal

contractive projection on A∗∗ with range E0X and clearly pXq ⊥ (1 − p)X(1 − q). It follows
that

{
X,A∗∗,P ∗∗} is an expansion of

{
E0X,A∗∗,E0P

∗∗}.
Specifically, let L : E0X → A∗∗ be the map pxq �→ (1 − p)x(1 − q). Then P(A) = P ∗∗A∗∗ =
{pxq + (1 − p)x(1 − q): x ∈ P(A)} and P ∗∗ = E0P

∗∗ + LE0P
∗∗, since if a ∈ A∗∗, there

is x ∈ A with a = Px = p(Px)q + (1 − p)Px(1 − q) and E0P
∗∗a + LE0P

∗∗a = E0Px +
LE0Px = p(Px)q + (1−p)Px(1−q). Finally, if x ∈ A, then LE0Px = (1−p)Px(1−q) and
E0P

∗∗LE0Px = E0P
∗∗((1 − p)Px(1 − q)) = 0 by [14, Theorem 2(e)].

Definition 4. The triple {E0X,A∗∗,E0P
∗∗} (or simply E0X) will be called the support of

{X,A∗∗,P ∗∗}. It is also called the enveloping support of {X,A,P }.

Example 2. It follows from [5] that for a normal contractive projection P (with predual P∗) from
a von Neumann algebra (or JW∗-triple) A onto a Hilbert space X, there is a similar projection E
on A such that

{X,A,P } is an expansion of {EA,A,E}

and EA is the norm closure of the span of support partial isometries of elements of P∗A∗.
Indeed, as set forth in [5, Lemma 3.2], P(A) ⊂ s(P∗(A∗)) ⊕ s(P∗(A∗))⊥ ⊂ A, and E :A →

A is a normal contractive projection onto s(P∗(A∗)) given by E = φ ◦ P , where φ :P(A) →
s(P∗(A∗)) is the restriction of the M-projection of s(P∗(A∗)) ⊕ s(P∗(A∗))⊥ onto s(P∗(A∗)).
(Although we will not use these facts, φ is a triple isomorphism from P(A) with the triple
product {xyz}P(A) := P {xyz} onto the JW ∗-subtriple s(P∗(A∗)) of A, and φ−1 coincides with
P on s(P∗(A∗)).

The map L : E(A) → E(A)⊥ in this case is given by L = φ⊥ ◦ φ−1 = φ⊥ ◦ P , where
φ⊥ :P(A) → s(P∗(A∗))⊥ is the restriction of the M-projection of s(P∗(A∗)) ⊕ s(P∗(A∗))⊥
onto s(P∗(A∗))⊥. Then for h ∈ s(P∗(A∗)), say h = φ ◦ P(x) for some x ∈ A, h + Lh =
φ(Px) + φ⊥(Px) = Px so that P(A) = {h + Lh: h ∈ s(P∗(A∗))}. Furthermore, for x ∈ A,
Ex + LEx = φ(Px) + φ⊥(Px) = Px. It is obvious that LE(A) ⊥ E(A). Finally, for x ∈ A,
E(LEx) = φ ◦P(φ⊥(Px)) = 0 since Px = PPx = PφPx +Pφ⊥Px and φ ◦Px = (φ ◦P)2x +
φ ◦ P(φ⊥(Px)).

Definition 5. By analogy with Example 1, we will call {EA,A,E} (or simply EA) the support
of {X,A,P } in this case. If {X,A,P } is not the expansion of any tuple other than itself, we say
that {X,A,P } is essential and that X is essentially normally complemented in A.

A concrete instance of Example 2 is the projection of B(H) onto R (or C). It is easy to see
that R and C are essentially normally complemented in B(H), as is R ∩ C in B(H ⊕ H). (See
the paragraph preceding Theorem 3.)

Remark 3.2. If {P(A),A,P } is as in Example 1, then {P ∗∗(A∗∗),A∗∗,P ∗∗} is as in Example 2,
and the enveloping support of P is the same as the support of P ∗∗, since both E0P(A) and
E(A∗∗) coincide with the norm closed linear span of A∗∗ generated by s(P ∗(A∗)).
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Proposition 3.3. Suppose X is Hilbertian and complemented in a von Neumann algebra A by a
normal contractive projection P . Then {X,A,P } is essential if and only if it equals its support.

Proof. Suppose {X,A,P } equals its support and is the expansion of {Y,A,Q} given by a con-
tractive map L. For each partial isometry v ∈ X, v = w + z where w and z are orthogonal partial
isometries, w = Qv, QL = 0, z = L(w) and P = Q + LQ. Suppose v is the support partial
isometry of ψ ∈ P∗A∗. Then

ψ(v) = ψ(Pv) = ψ
(
(Q + LQ)(v)

) = ψ
(
(Q + QLQ)(v)

) = ψ(Qv) = ψ(w),

and hence w = v, L = 0 and {X,A,P } = {Y,A,Q}. The converse is immediate. �
3.2. Operator space structure of 1-complemented Hilbert spaces

As noted at the beginning of the previous subsection, we cannot classify 1-complemented
Hilbert spaces up to complete isometry. However, in Theorem 2, we are able to give a classifica-
tion up to “trivial” expansion.

We assume in what follows that P is a normal contractive projection on a von Neumann
algebra A, whose range Y = P(A) is a JC∗-subtriple of A of rank one, and {ui} is an orthonormal
basis for Y consisting of a maximal family of minimal (in Y ) collinear partial isometries. We shall
assume for convenience that Y is infinite-dimensional and separable. In Theorem 2, we shall also
be able to handle the case of a contractive projection on a C∗-algebra.

We know from the proof of Theorem 1 that each element y ∈ Y has an orthogonal decomposi-
tion y = ∑

n yrn +∑
k ylk +yΦ corresponding to the equality Y = [⋂n H

rn,R∞ ]∩[⋂k H
lk,L∞ ]∩Φ .

We shall prove the following lemma.

Lemma 3.4. If uj = ∑
n u

rn
j + ∑

k u
lk
j + uΦ

j is the decomposition of uj into orthogonal partial

isometries, then for all j , u
rn
j = 0 if rn �= 0 and u

lk
j = 0 if lk �= 0.

By this lemma and the proof of Theorem 1, P(A) coincides with the intersection of at most
the three spaces R,C,Φ . Together with Examples 1 and 2, Remark 3.2, and Proposition 3.3 in
Section 3.1, this proves the second main theorem of this paper.

Theorem 2. Suppose Y is a separable infinite-dimensional Hilbertian operator space which
is contractively complemented (respectively normally contractively complemented) in a C∗-
algebra A (respectively W*-algebra A) by a projection P . Then

(a) {Y,A∗∗,P ∗∗} (respectively {Y,A,P }) is an expansion of its support {H,A∗∗,Q} (respec-
tively {H,A∗∗,Q}, which is essential).

(b) H is contractively complemented in A∗∗ (respectively A) by Q and is completely isometric
to either R, C, R ∩ C, or Φ .

This theorem says that, in A∗∗, Y is the diagonal of a contractively complemented space H

which is completely isometric to R,C, R ∩C or Φ and an orthogonal degenerate space K which
is in the kernel of P . As pointed out at the beginning of Section 3.1, this is the best possible
classification.
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It remains to prove Lemma 3.4. We will show that u
rn
j = 0 if rn �= 0 and a similar argument

will show that u
lk
j = 0 if lk �= 0.

We again adopt the more compact notation IuiJ , used in the proof of Lemma 2.2, for the
“one” (uu∗)I ui(u

∗u)J , and recall that, for example,

I rnu
rn
j J rn :=

( ∏
α∈I

urn
α urn∗

α

)
u

rn
j

( ∏
β∈J

u
rn∗
β u

rn
β

)
.

We note first that for j �= i, {uj , IuiJ,uj } = uj (IuiJ )∗uj = ujJu∗
i Iuj = uj (J ∪{j})u∗

i (I ∪
{j})uj = 0 since uju

∗
i uj = 0. By one of the conditional expectation formulas in (3),

{
uj ,P (IuiJ ), uj

} = P
({uj , IuiJ,uj }

) = 0.

Since every element of Y is in the closed linear span of the uj , we may write P(IuiJ ) =∑
k λ

i,J
k uk and thus 0 = ∑

k λ
i,J
k {ujukuj } = λ

i,J
j uj . We conclude that λ

i,J
j = 0 for j �= i and

hence P(IuiJ ) = λi,J ui for each “one” IuiJ , where we have written λi,J for λ
i,J
i .

Now suppose that i is fixed and k �= i, say k ∈ J . Then

2{uk,ui, IuiJ } = uku
∗
i IuiJ + IuiJu∗

i uk = uku
∗
i IuiJ (by minimality as k ∈ J )

= Iuku
∗
i uiJ (by “hopping”)

= Iuk

((
J − {k}) ∪ {i}) = IukL,

where we have written L for (J − {k}) ∪ {i}. Then by another conditional expectation formula
in (3),

λk,Luk = P(IukL) = P
(
2{uk,ui, IuiJ }) = 2

{
uk,ui,P (IuiJ )

}
= 2λi,J {ukuiui} = λi,J uk.

Thus λi,J = λk,(J−{k})∪{i} and so λi,J = λ is independent of i, J (J of fixed cardinality) such
that i /∈ J . Put another way, P(IuiJ ) = λui for all partitions I ∪ {j} ∪ J of Ω , where λ is a
complex number depending only on the cardinality of J .

It is easy to check that for any fixed integer m � 0, {IuiJ }, where |J | = m and {I, i, J } runs
over the partitions of N, is an orthogonal family of partial isometries with

∑
IuiJ � ui . On the

other hand, for each n, by Lemma 2.2, u
rn
i = ∑

|J |=rn
I rnu

rn
i J rn so that

u
rn
i =

∑
|J |=rn

I rnu
rn
i J rn �

∑
|J |=rn

IuiJ � ui.

Let ui be the support partial isometry of ψi ∈ P∗(A∗). Then

ψi

( ∑
|J |=rn

IuiJ

)
= ψi

( ∑
|J |=rn

P (IuiJ )

)
= ψi

( ∑
|J |=rn

λui

)
,

and so λ = 0 if rn �= 0. Thus ψi(u
rn) = 0 and by the faithfulness of ψi , u

rn = 0 if rn �= 0. �
i i
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By [20], the range Y of a completely contractive projection on a C∗-algebra is a TRO. By
Lemma 2.9 it follows that, if Y is Hilbertian, Y is completely isometric to R or C. This gives an
alternate proof of the result of Robertson [17], stated here for completely contractive projections
on a C∗-algebra.

Although Theorem 2 is only a classification modulo expansions, the following lemma shows
that it is the correct analogue for contractively complemented Hilbert spaces.

Lemma 3.5. Suppose that {Y,A,P } is an expansion of {H,A,Q} and that P is a completely
contractive projection. Then Y is completely isometric to H .

Proof. By definition of expansion, in A∗∗, Y coincides with {h + L(h): h ∈ H }, Q + LQ = P ,
L(H) ⊥ H and Q(L(H)) = 0. Thus, P ∗∗|H is a complete contraction from H onto Y with
completely contractive inverse Q|Y . Hence, Y is completely isometric to H . �
3.3. An essential contractive projection onto Φ

As noted earlier, the spaces R, C and R ∩ C are each essentially normally contractively com-
plemented in a von Neumann algebra. We now proceed to show that the same holds for Φ .

We begin by taking a closer look at the contractive projection P = P k
n of the ternary envelope

T = T (Hk
n ) = Mpk,qk

(C) of Hk
n , onto Hk

n . This projection was constructed in [1] as follows:

P k
n x = 1(

n−1
k−1

) n∑
i=1

tr
(
xU∗

i

)
Ui, for x ∈ T .

In this formula, we let Ui denote orthonormal basis given in (1). Thus, Ui = ∑
ε(I, i, J )EJ,I

which is a sum of “ones.” Recall that a “one” in this context is an element of the form
ε(I, i, J )EJ,I with I ∩ J = ∅. Similarly, a non-“one” is an element of the form ε(I, i, J )EJ,I

with I ∩ J �= ∅. The “ones” and non-“ones” together form a basis for T .

Lemma 3.6. The action of P = P k
n is as follows: if x = ε(I, J )EJ,I ∈ T is not a “one,” then

Px = 0. If x = ε(I, i, J )EJ,I is a “one,” then

P
(
ε(I, i, J )EJ,I

) = 1(
n−1
k−1

)Ui.

Proof. Suppose first that x = ε(I, J )EJ,I is not a “one,” that is, I ∩ J �= ∅. Then

xU∗
i = ε(I, J )EJ,I

∑
I ′,J ′

ε(I ′, i, J ′)EI ′,J ′ = ε(I, J )
∑
I ′,J ′

ε(I ′, i, J ′)EJ,IEI ′,J ′

= ε(I, J )
∑
J ′

ε(I, i, J ′)EJ,J ′ .

Since J ′ ∩ I = ∅ and J ∩ I �= ∅, J ′ is never equal to J and so tr(xU∗
i ) = 0 and Px = 0.

Suppose now that x = ε(I, i, J )EJ,I ∈ T is a “one.” Then for 1 � j � n,

Uj =
∑

′ ′
ε(I ′, j, J ′)EJ ′,I ′ ,
I ∩J =∅
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and as above

xU∗
j = ε(I, i, J )

∑
J ′

ε(I, i, J ′)EJ,J ′ .

Thus, tr(xU∗
j ) = 1 if j = i and tr(xU∗

j ) = 0 if j �= i. It follows that

P(x) = 1(
n−1
k−1

) ∑
j

tr
(
xU∗

j

)
Uj = 1(

n−1
k−1

)Ui. �

We proceed to construct a contractive projection defined on a TRO A which has range Φ .
Since every TRO is the corner of a C∗-algebra, we will have constructed a projection on a C∗-
algebra with range Φ . Now, let ui be an orthonormal basis for the Hilbertian operator space Φ

and let Hn = sp{u1, . . . , un}. As noted in the proof of Proposition 2.7, Hn = Φn is completely
isometric to the intersection

⋂n
i=1 Hi

n ⊂ ⊕n
k=1 T (H i

n) = the ternary envelope T (Hn) of Hn in A.
We construct a contractive projection P n on T (Hn) with range Hn as follows. For x =⊕n
i=1 xi ∈ T (Hn), write x = ∑n

i=1(0 ⊕ · · · ⊕ xi ⊕ · · · ⊕ 0), (xi is in the ith-position). Then
define

P n(x) =
n∑

i=1

P n(0 ⊕ · · · ⊕ xi ⊕ · · · ⊕ 0) := 1

n

n∑
i=1

(
P i

n(xi), . . . ,P
i
n(xi)

)
.

Note that since (P i
n(xi), . . . ,P

i
n(xi)) belongs to Hn = ⋂n

i=1 Hi
n, we shall sometimes write it as

((P i
n(xi))

1, . . . , (P i
n(xi))

n) and view (P i
n(xi))

j as an element of H
j
n .

With uk = (uk, . . . , uk) = (u1
k, . . . , u

n
k) = ∑

i (0, . . . , ui
k, . . . ,0), we have

P n(uk) =
∑

i

P n
((

0, . . . , ui
k, . . . ,0

)) = 1

n

∑
i

(
P i

n

(
ui

k

)
, . . . ,P i

n

(
ui

k

))

=
∑

i

(
ui

k, . . . , u
i
k

)
/n =

∑
i

(
u1

k, . . . , u
n
k

)
/n

= (
u1

k, . . . , u
n
k

) = uk.

By Lemma 3.6 and the fact that T (Hn) is generated by the “ones” and non-“ones” of the Hi
n,

the range of P n is Hn. To calculate the action of P n it suffices to consider its effect on elements
of the form x = IukJ , where {I, k, J } is a partition of {1, . . . , n}. We claim that for such x,

P n(x) = uk

n
(
n−1
i−1

) , (10)

where |I | = i − 1. Let us illustrate this first in a specific example. Let n = 3, x = u2u
∗
2u1u

∗
3u3 =

x1 ⊕ x2 ⊕ x3 ∈ H 1
3 ∩ H 2

3 ∩ H 3
3 , so that x1 = 0, x3 = 0, and i = 2. By Lemma 3.6 again,

P 3(x) = P 3(x1 ⊕ 0 ⊕ 0) + P 3(0 ⊕ x2 ⊕ 0) + P 3(0 ⊕ 0 ⊕ x3)

= 1 [(
P 3

1 (x1),P
3
1 (x1),P

3
1 (x1)

) + (
P 3

2 (x2),P
3
2 (x2),P

3
2 (x2)

)

3
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+ (
P 3

3 (x3),P
3
3 (x3),P

3
3 (x3)

)]
= 1

3

[
(0,0,0) +

(
1

2
u2

1,
1

2
u2

1,
1

2
u2

1

)
+ (0,0,0)

]

= 1

3

1

2

(
u2

1, u
2
1, u

2
1

) = 1

6
u1.

In general, for x = ⊕
xi as above,

P n(x) = 1

n

[∑(
P i

n(xi), . . . ,P
i
n(xi)

)] = 1

n

[
1(

n−1
i−1

) (
u1

k, . . . , u
n
k

)]
,

as required for (10).

Lemma 3.7. Identifying T (Hn) with a subspace of T (Hn+1) given by the injection ui �→ ui of
Hn into Hn+1, we have P n+1|T (Hn) = P n.

Proof. This is obviously true for generators of T (Hn) which are not composed of “ones” since
all of the P k

n and P k
n+1 vanish on non-“ones.” On the other hand, if x is of the form IukJ , where

{I, k, J } is a partition of {1, . . . , n}, then by collinearity uk = uku
∗
n+1un+1 + un+1u

∗
n+1uk , and

by (10),

P n+1(IukJ ) = P n+1((I ∪ {n + 1})ukJ + Iuk

(
J ∪ {n + 1}))

= 1

n + 1

1(
n
i

)uk + 1

n + 1

1(
n

i−1

)uk

= 1

n

1(
n−1
i−1

)uk = P n(IukJ ). �

Lemma 3.7 enables the definition of a contractive projection P on a TRO A which is the
norm closure of

⋃∞
n=1 T (Hn) (in the ternary envelope of Φ) with P(A) = Φ , namely Px =

P nx if x ∈ T (Hn). As noted earlier, we can assume that A is a C∗-algebra. By Example 1,
{Φ,A∗∗,P ∗∗} is an expansion of {E0Φ,A∗∗,E0P

∗∗}, so E0P
∗∗(A∗∗) = E0Φ . Thus E0Φ is a

normally contractively complemented JC∗-subtriple of A∗∗. As in the proof of Theorem 2, E0Φ

coincides with an intersection R ∩ C ∩ Φ , with the understanding that one or two terms in this
intersection may be missing. We claim in fact that R and C are both missing, that is, we have the
following lemma.

Lemma 3.8. The support E0Φ of {Φ,A∗∗,P ∗∗} for the above construction coincides with Φ .

Proof. Because of (10), for any partition {i1, i2, . . .} ∪ {k} ∪ {j1, j2, . . . , jm} of {1,2,3, . . .},

P ∗∗(IukJ ) = lim
n→∞P n+m+1({i1, . . . , in}ukJ

) = lim
n→∞

1

n + m + 1

1(
n+m

n

)uk = 0. (11)

Let us write uj = uR
j +uC

j +uΦ
j +uK

j , where E0uj = uR
j +uC

j +uΦ
j , uK

j = (1−p)uj (1−q) ∈
kerP ∗∗, and E0 = p · q . For I = N − {j}, ICuC = IΦuΦ = 0, so by (11), 0 = P ∗∗(Iuj ) =
j j
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P ∗∗(IRuR
j + IKuK

j ). Since E0(I
KuK

j ) = 0, 0 = E0P
∗∗(IRuR

j + IKuK
j ) = E0P

∗∗E0(I
RuR

j +
IKuK

j ) = E0P
∗∗E0(I

RuR
j ) = E0P

∗∗(IRuR
j ).

By collinearity and by the fact that uR
j uR∗

α = 0, uR
j = (N − {j})RuR

j so that E0P
∗∗uR

j = 0

and similarly E0P
∗∗uC

j = 0. However, P ∗∗E0P
∗∗ = P ∗∗ and so P ∗∗(uR

j ) = 0. Similarly,

P ∗∗(uC
j ) = 0.

Now E0uj is the support partial isometry of a norm 1 element ψj in P ∗A∗, and ψj (E0uj ) =
ψj(P

∗∗E0uj ) = ψj (P
∗∗(uR

j + uC
j + uΦ

j )) = ψj(P
∗∗uΦ

j ) = ψj (u
Φ
j ). Thus E0uj = uΦ

j , so that
E0Φ coincides with Φ . �

Since R, C and R ∩ C are trivially contractively complemented in B(H) as spans of finite
rank operators in such a way that they clearly equal their support spaces, this proves that each of
the spaces occurring in Theorem 2(b) are essentially contractively complemented.

Theorem 3. The operator spaces R, C, R∩C, and Φ are each essentially normally contractively
complemented in a von Neumann algebra.

4. Completely bounded Banach–Mazur distance

4.1. Representation on the Fock space

Let H be any separable Hilbert space. For any h ∈ H , let lm(h) denote the wedge (or cre-
ation) operator from H∧m to H∧m+1 given by lm(h)x = h ∧ x. The space of creation operators
sp{lm(ei)}, where {ei} is an orthonormal basis, will be denoted by Cm. Its operator space structure
is given by its embedding in B(H∧m,H∧m+1). Am will denote the space of annihilation opera-
tors from H∧m to H∧m−1, which consists of the adjoints of the creation operators on H∧m−1.

It will be convenient to identify the space H∧k with �2({J ⊂ N: |J | = k}) (via ej1 ∧ · · · ∧
ejk

↔ eJ if J = {j1, . . . , jk} where j1 < · · · < jk), or with �2({I ⊂ N: |N − I | = k}). We assume
that each I = {i1, i2, . . .} is such that i1 < i2 < · · · , and that the collection of all such subsets I is
ordered lexicographically. Similarly, if I (or J ) is finite.

Define the unitary operators Vk and Wk on H∧k by

Vk :�2
({

J ⊂ N: |N − J | = k
}) → �2

({
K ⊂ N: |K| = k

})
and

Wk :�2
({

I ⊂ N: |I | = k
}) → �2

({
I ⊂ N: |I | = k

})
as follows:

• Vk(eJ ) = ei1 ∧ · · · ∧ eik , where N − J = {i1 < · · · < ik}.
• Wk(eI ) = ε(i, I )ε(I, i, J )eI , where I ∪{i}∪J = N is a disjoint union, and ε(i, I ) is the sign

of the permutation taking (i, i1, . . . , ik) to (i1, . . . , i, . . . , ik).

It is easy to see, just as in [14, Section 2], that the definition of Wk is independent of the choice
of i ∈ N − J .
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Recall that the space H
m,L∞ is the closed linear span of matrices b

m,L
i , i ∈ N, given by

b
m,L
i =

∑
I∩J=∅, (I∪J )c={i}, |I |=m

ε(I, i, J )EJ,I ,

where EJ,I = eJ ⊗ eI = eJ et
I ∈ Mℵ0,ℵ0(C) = B(�2), and ε(I, i, J ) is the signature of the per-

mutation defined for disjoint I, J in Section 2.1.

Lemma 4.1. H
m,R∞ is completely isometric to Am+1 and H

m,L∞ is completely isometric to Cm.

Proof. With bi = ∑
ε(I, i, J )EJ,I and I0 = {i1 < · · · < im}, we have for i /∈ I0,

Vm+1bi(eI0) = Vm+1
(
ε(I0, i, J0)eJ0

) = ε(I0, i, J0)ei1<···<i<···<im,

and

lm(ei)Wm(eI0) = lm(ei)
(
ε(i, I0)ε(I0, i, J0)eI0

) = ε(i, I0)ε(I0, i, J0)ei ∧ ei1 ∧ · · · ∧ eim

= ε(I0, i, J0)ei1<···<i<···<im.

In the case that i ∈ I0, both lm(ei)(eI0) and bi(eI0) are zero. �
We summarize this subsection in the following remark.

Remark 4.2. Every finite- or infinite-dimensional separable Hilbertian JC∗-subtriple Y is com-
pletely isometric to a finite or infinite intersection of spaces of creation and annihilation opera-
tors, as follows:

(a) if Y is infinite-dimensional, then by Lemma 4.1, Theorem 1, and [14, Lemma 2.1], it is
completely isometric to one of

Am, Cm, Am ∩ Ck,

∞⋂
k=1

Ck;

(b) if Y is of dimension n, then by [13, Theorem 3(b)] and [14, Lemma 2.1], Y is completely
isometric to

⋂m
j=1 Ckj , where n � k1 > · · · > km � 1.

4.2. Completely bounded Banach–Mazur distance

In [14], the completely bounded Banach–Mazur distances from the space Hk
n studied in [13]

to the row and column spaces were computed. Theorem 4 in this section generalizes this to
the distance between any two of the spaces Hk

n , thereby answering Problem 1 in [13]. Then, in
Theorem 5, we compute the completely bounded Banach–Mazur distances among the operator
spaces H

m,R∞ , H
k,L∞ , and Φ .
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Let H be an n-dimensional Hilbert space with orthonormal basis {ei}. For e ∈ H , l(e) will
denote the creation operator by e on the antisymmetric Fock space, and lk(e) is its restriction to
H∧k−1. We recall [14, Lemma 2.1] that

Hk
n = sp1�i�n

{
lk(ei) :H∧k−1 → H∧k

}
.

We have H 1
n = Cn and Hn

n = Rn. As is customary, {ri} and {ci} will denote orthonormal bases
for Rn and Cn, respectively. Since the spaces Hk

n are homogeneous Hilbertian operator spaces
[14, Theorem 1], as in [14], using [22, Theorem 3.1], one only needs to estimate the norms of
the formal identity maps between them.

Theorem 4. For 1 � l � k � n,

dcb
(
Hk

n ,H l
n

) =
√

n − k + 1

n − l + 1

l

k
.

Remark 4.3. Note that H
k,op
n = Hn−k+1

n completely isometrically, where Eop is the operator
space obtained from E with the family of norms ‖(xi,j )‖Mn(Eop) = ‖(xj,i)‖Mn(E) [16, 2.10]. It
is also clear that for u :E → F , ‖u‖cb(E,F ) = ‖u‖cb(Eop,F op). These two observations will be
referred to as symmetry.

The following lemma, which will be used in the proof of Theorem 4, provides an alternate
and more illuminating proof of [14, Theorem 3].

Lemma 4.4. If u :H → H is a linear map with singular values {ai}ni=1, then

‖u‖cb(Cn,Hk
n ) = sup

|J |=k

∑
i∈J

a2
i , and

‖u‖2
cb(Hk

n ,Rn)
= inf

{ ∑
J‖J |=k

sup
j∈J

aJ,j : a2
i =

∑
K

i∈K

aK,i, aK,i � 0

}
.

In the last expression, the infimum is taken over all decompositions of a2
i as a sum (indexed

by subsets of {1, . . . , n} with cardinality k and containing i) of nonnegative numbers aK,i .

Proof. The first part is easy as cb(Cn,H
k
n ) = Rn ⊗min Hk

n and qi = lk(ei)lk(ei)
∗ :H∧k → H∧k ,

is the projection onto the subspace generated by eJ with i ∈ J .
The second part is a bit more delicate. We will use a variant of Smith’s lemma [6, Proposi-

tion 2.2.2]: since u has values in Rn, we have ‖u‖cb = ‖u ⊗ IdRn‖. To prove this, one just needs
to notice that for any map t with values in R one has that ‖t‖ = ‖t ⊗ IdC‖ as R is homogeneous.
With t = u ⊗ IdRn , one gets that

‖u ⊗ IdRn‖ = ‖u ⊗ IdRn ⊗ IdCn‖ = ‖u ⊗ IdMn‖ = ‖u‖cb,

by Smith’s lemma.
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We have Rn ⊗min Hk
n = cb(Cn,H

k
n ), so if x ∈ Rn ⊗min Hk

n , it can be considered as a com-
pletely bounded map from Cn to Hk

n with ‖x‖cb = ‖x‖Rn⊗minH
k
n

. The previous observation leads
to

‖u‖cb(Hk
n ,Rn) = sup

x∈cb(Cn,Hk
n )

‖x‖cb�1

‖ux‖Cn⊗minRn = sup
‖x‖cb�1

‖ux‖HS

= sup
‖x‖cb�1

(
Tru∗uxx∗)1/2

.

It is a classical result that when A,B are positive matrices chosen with a given distribution (i.e.
eigenvalues) so that trAB is maximal, then A and B commute. This means that we can assume
that both u∗u and xx∗ are diagonal. So one has that ‖u‖cb is the best constant in the inequality

n∑
i=1

(aixi)
2 � C2 sup

|J |=k

∑
i∈J

x2
i .

The result now follows by a standard application of the Hahn–Banach theorem. The term
on the right is a norm in �∞(S, �k

1) where S is the set of subsets of 1, . . . , n with cardi-
nal k. Let T : Cn → �∞(S, �k

1) be given by (ti) �→ ((tj )j∈J )J . The inequality says that the
sequence a2

i defines a linear form on the range of T with norm C2. Every bounded extension
of this form to �∞(S, �k

1) is given by a vector ((aJ,j )j∈J )J in �1(S, �k∞) and has norm equal
to ‖(aJ,j )J ‖�1(S,�k∞) = ∑

J∈S supi∈J aJ,i . Hence
∑

i (
∑

J,i∈J aJ,i)ti = ∑
i a

2
i ti which yields

a2
i = ∑

J,i∈J aJ,i . �
We shall apply this lemma for u = Id. We need to find the best constant C in the inequality

n∑
i=1

x2
i � C2 sup

|J |=k

∑
i∈J

x2
i .

We can assume that xi is decreasing, and sup|J |=k

∑
i∈J x2

i = 1. Then kx2
k �

∑k
i=1 x2

i = 1 and

x2
i � 1

k
for i � k. So

n∑
i=1

x2
i =

[n/k]∑
l=1

k∑
i=1

x2
lk+i +

n∑
i=[n/k]k+1

x2
i �

[
n

k

]
+

n∑
i=[n/k]k+1

1

k
� n

k
.

We get that ‖u‖cb �
√

n/k, but there is equality with x2
i = 1/k.

Finally using symmetry one recovers [14, Theorem 3]:

dcb
(
Rn,H

k
n

) =
√

(n − k + 1)
n
, dcb

(
Cn,H

k
n

) =
√

k
n

,

k n − k + 1
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Proof of Theorem 4. We first compute the cb norm of Id :Hk+1
n → Hk

n . To this end, we will
find a Stingspring dilation. We have the commutation relations

lk+1(ei)lk(ej ) = −lk+1(ej )lk(ei).

Moreover,
∑

s lk+1(es)
∗lk+1(es) = (n − k)IdH∧k . Let mi ∈ Md , and compute

(∑
j

IdMd
⊗ lk+1(ej )

∗ ⊗ rj

)(∑
i

mi ⊗ lk+1(ei) ⊗ IdMn

)(∑
s

IdMd
⊗ lk(es) ⊗ cs

)

=
∑

i

mi ⊗
∑

s

lk+1(ej )
∗lk+1(ei)lk(es) ⊗ e1,1

= (k − n)
∑

i

mi ⊗ lk(ei) ⊗ e1,1.

In this way we have written a factorization Id(x) = Uπ(x)V , where π is a representation and U

and V are bounded maps. This is a Stingspring dilation for Id :Hk+1
n → Hk

n , and so

∥∥Id :Hk+1
n → Hk

n

∥∥
cb �

∥∥∥∥∑
j

lk+1(ej )
∗ ⊗ rj

∥∥∥∥
∥∥∥∥∑

s

lk(es) ⊗ cs

∥∥∥∥/
(n − k).

By using the previous lemma, one gets

∥∥Id :Hk+1
n → Hk

n

∥∥
cb �

√
n − k + 1

n − k
.

The other estimate for Id : Hk
n → Hk+1

n follows by symmetry:

∥∥Id :Hk
n → Hk+1

n

∥∥
cb �

√
k + 1

k
.

So

dcb
(
Hk

n ,Hk+1
n

)
�

√
n − k + 1

n − k

k + 1

k
.

But

dcb
(
Hk

n ,Hk+1
n

)
� dcb

(
Rn,H

k
n

)/
dcb

(
Rn,H

k+1
n

) =
√

(n − k + 1)
n

k

√
1

n − k

k + 1

n
.

Now, if l > k,

dcb
(
Hk

n ,H l
n

)
� dcb

(
Hk

n ,Hk+1
n

)
. . . dcb

(
Hl−1

n ,H l
n

) =
√

l(n − k + 1)

k(n − l + 1)
.
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If this inequality were strict, then from

dcb(Cn,Rn) � dcb
(
Cn,H

l
n

)
dcb

(
Hl

n,H
k
n

)
dcb

(
Hk

n ,Rn

)
it would follow that n < n. �
Remark 4.5. The spaces Hk

n form a segment in the space of operator spaces of dimen-
sion n equipped with the Banach–Mazur distance. This is also the case for the interpo-
lated spaces (minX,maxX)θ (X a n-dimensional Banach space), which form a line between
(minX,maxX)0 = minX and (minX,maxX)1 = maxX.

We come back to the main object of this paper, the spaces H
m,L∞ and H

m,R∞ .

Theorem 5. For m, k � 1,

(a) dcb(H
m,R∞ ,H

k,R∞ ) = dcb(H
m,L∞ ,H

k,L∞ ) =
√

m+1
k+1 when m � k;

(b) dcb(H
m,R∞ ,H

k,L∞ ) = ∞;
(c) dcb(H

m,R∞ ,Φ) = dcb(H
m,L∞ ,Φ) = ∞.

Proof. We start with (a). Fix n > m,k. We will look at H̃m
n for n-dimensional subspace of H

m,L∞ .
As noted in the proof of Theorem 1, for m � k, the formal identity Id : H̃m

n → H̃ k
n is a complete

contraction. The estimation for the reverse map

∥∥Id : H̃ k
n → H̃m

n

∥∥
cb �

√
m + 1

k + 1
,

follows from the estimates for Id :Hd
n → H

p
n obtained during the proof of the previous theorem.

As before, to show that

dcb
(
H̃m

n , H̃ k
n

) =
√

m + 1

k + 1
,

it suffices to show that there is equality when k = 0. But, in this case H̃ 0
n = Cn and we have

√
m + 1 �

∥∥Id : H̃ 0
n → H̃m

n

∥∥
cb �

∥∥Id : C̃n → Hm
n

∥∥
cb = √

m + 1.

To conclude, one just needs to let n go to ∞, and notice that H
m,L,op
∞ = H

m,R∞ completely
isometrically.

Now (b) and (c) are direct consequences of (a) as dcb(C,H
m,R∞ )dcb(R,H

k,L∞ ) < ∞ and
dcb(C,Φ) = dcb(R,Φ) = dcb(C,R) = ∞. �
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