
Lawrence Berkeley National Laboratory
Climate & Ecosystems

Title
Representation of Leaf‐to‐Canopy Radiative Transfer Processes Improves Simulation of 
Far‐Red Solar‐Induced Chlorophyll Fluorescence in the Community Land Model Version 5

Permalink
https://escholarship.org/uc/item/12p217zx

Journal
Journal of Advances in Modeling Earth Systems, 14(3)

ISSN
1942-2466

Authors
Li, Rong
Lombardozzi, Danica
Shi, Mingjie
et al.

Publication Date
2022-03-01

DOI
10.1029/2021ms002747
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/12p217zx
https://escholarship.org/uc/item/12p217zx#author
https://escholarship.org
http://www.cdlib.org/


1. Introduction
Terrestrial photosynthesis (gross primary productivity, GPP) provides carbon input to ecosystems and affects 
fluxes of water and energy between the land surface and the atmosphere (Sellers et al., 1992). Accurate modeling 

Abstract Recent advances in satellite observations of solar-induced chlorophyll fluorescence (SIF) 
provide a new opportunity to constrain the simulation of terrestrial gross primary productivity (GPP). Accurate 
representation of the processes driving SIF emission and its radiative transfer to remote sensing sensors is 
an essential prerequisite for data assimilation. Recently, SIF simulations have been incorporated into several 
land surface models, but the scaling of SIF from leaf-level to canopy-level is usually not well-represented. 
Here, we incorporate the simulation of far-red SIF observed at nadir into the Community Land Model version 
5 (CLM5). Leaf-level fluorescence yield was simulated by a parametric simplification of the Soil Canopy-
Observation of Photosynthesis and Energy fluxes model (SCOPE). And an efficient and accurate method based 
on escape probability is developed to scale SIF from leaf-level to top-of-canopy while taking clumping and the 
radiative transfer processes into account. SIF simulated by CLM5 and SCOPE agreed well at sites except one 
in needleleaf forest (R 2 > 0.91, root-mean-square error <0.19 W⋅m −2⋅sr −1⋅μm −1), and captured the day-to-
day variation of tower-measured SIF at temperate forest sites (R 2 > 0.68). At the global scale, simulated SIF 
generally captured the spatial and seasonal patterns of satellite-observed SIF. Factors including the fluorescence 
emission model, clumping, bidirectional effect, and leaf optical properties had considerable impacts on SIF 
simulation, and the discrepancies between simulate d and observed SIF varied with plant functional type. By 
improving the representation of radiative transfer for SIF simulation, our model allows better comparisons 
between simulated and observed SIF toward constraining GPP simulations.

Plain Language Summary During photosynthesis, plants emit faint light referred to as solar-
induced chlorophyll fluorescence (SIF). Global observations of SIF by satellites provide a new opportunity to 
evaluate and constrain the simulation of terrestrial photosynthesis by models, which is highly uncertain. To 
achieve this, accurate simulation of observed SIF is required. As a light signal, SIF experiences complicated 
scattering and re-absorption (radiative transfer) before it reaches the sensor. The radiative transfer of SIF is 
usually not well-represented in the few studies that incorporated SIF into global models. Here, we incorporate 
simulation of SIF into one of those models with the radiative transfer processes taken into account. Simulated 
SIF generally captured the spatial and seasonal patterns of observed SIF, and whether the radiative transfer 
processes were properly considered had a considerable impact on simulated SIF. By better representing the 
processes involved in SIF simulation, our model allows more reasonable comparisons between simulated and 
observed SIF toward constraining and evaluating the simulation of terrestrial photosynthesis.
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of photosynthesis in land surface models (LSMs) is important for the simulation of carbon, water, and energy 
fluxes, and for projecting the impact of climate change on the Earth system (Bonan, 2014). Since the incorpora-
tion of photosynthesis into LSMs over 25 years ago (Berry, 2012; Ryu et al., 2019; Sellers, Randall, et al., 1996), 
many studies have demonstrated the importance of simulating photosynthesis to many other processes simulated 
by LSMs, ranging from the impact of increasing CO2 on climate (Sellers, Bounoua, et al., 1996), the effect of 
diffuse radiation on the land carbon sink (Mercado et al., 2009), to the changing continental scale river runoff 
(Gedney et  al.,  2006). However, simulations of GPP in LSMs remain highly uncertain. Global mean annual 
GPP estimated by different models from the Fifth Climate Model Intercomparison Project (CMIP5) varies from 
122 to 168 PgC⋅yr −1 and shows different spatial patterns and interannual variability (Anav et al., 2015; Shao 
et al., 2013), highlighting the critical need to improve and validate GPP simulation. Currently, validations of 
GPP simulations at the global scale mostly rely on observation-based GPP products, which are generally based 
on GPP estimations from eddy covariance tower networks (e.g., Jung et al., 2009). However, several recent stud-
ies showed that eddy covariance GPP could be overestimated due to an overestimation of day-time respiration 
(Keenan et al., 2019; Wehr et al., 2016). Global-scale products are further subject to uncertainties arising from 
the uneven spatial representation of eddy covariance GPP, the upscaling algorithm, and the forcing data (Jung 
et al., 2020).

Due to its direct link to photosynthesis, solar-induced chlorophyll fluorescence (SIF) has recently emerged as a 
proxy of GPP (Frankenberg et al., 2011; Mohammed et al., 2019; Porcar-Castell et al., 2014). During photosyn-
thesis, a fraction of light energy absorbed by chlorophyll molecules is re-emitted as chlorophyll fluorescence. 
While the study of the physiological and structural controls of the SIF-GPP relationship is still an area of active 
research and there might be a different response to environmental stress (e.g., heat or water) between SIF and GPP 
(e.g., He et al., 2020; Helm et al., 2020; Marrs et al., 2020), studies have shown a strong empirical relationship 
between SIF and GPP at various temporal and spatial scales (Lee et al., 2013; Li et al., 2018; Magney, Bowling, 
et al., 2019; Miao et al., 2018; van der Tol et al., 2014; X. Yang et al., 2015). SIF is emitted in the spectral range of 
640–850 nm and can be detected at the global scale by instruments onboard several satellites, including the ther-
mal and near-infrared (NIR) sensor for carbon observation-Fourier transform spectrometer on-board the Green-
house gases Observing SATellite (GOSAT), the Global Ozone Monitoring Instrument 2 (GOME-2) on-board 
MetOp-A and -B, the Orbiting Carbon Observatory 2 (OCO-2), and the TROPOspheric Monitoring Instrument 
(TROPOMI) onboard Sentinel-5 Precursor satellite (Frankenberg et al., 2011, 2014; Joiner et al., 2011, 2013; 
Köhler et al., 2018; Parazoo et al., 2019; Sun et al., 2018). The availability of global observations of SIF provides 
the opportunity to use satellite SIF observations to constrain GPP simulations in LSMs. While it is possible to 
constrain simulated GPP by assuming a universal or biome-specific SIF-GPP relationship (MacBean et al., 2018; 
Sun et al., 2017), mechanistic interpretations require the incorporation of the biological processes that drive SIF 
emission and the radiative transfer processes that determine the fraction of emitted SIF reaching the sensor in 
models.

Models of chlorophyll fluorescence have been developed at scales from photosystem, leaf, canopy, to the globe. 
Models at the photosystem-level partition absorbed energy to different pathways: fluorescence, photochemical 
quenching (PQ), and non-photochemical quenching (NPQ; e.g., van der Tol et al., 2014). They are often coupled 
with photosynthesis models such as Farquhar et al. (1980) for C3 photosynthesis and Collatz et al. (1992) for C4 
photosynthesis. Leaf-level radiative transfer models, including FluorMODleaf (Pedrós et al., 2010) and Fluspect 
(Vilfan et al., 2016), simulate the scattering and reabsorption of fluorescence within leaf. Canopy-level models 
further include the scattering and reabsorption of SIF within the canopy, and they usually take into account 
sun-sensor geometry so that the signal observed by remote sensing sensors can be simulated. The Soil Cano-
py-Observation of Photosynthesis and Energy fluxes model (SCOPE; van der Tol et al., 2009) is an integrated 
radiative transfer and energy balance model that is widely used to simulate canopy-level SIF assuming homoge-
neous canopy structure, and its 2.0 version enables the simulations for vertically heterogeneous canopy (P. Yang 
et al., 2021). Recently, a few models have also been proposed to simulate the three-dimensional (3D) radiative 
transfer of SIF for heterogeneous canopies (Gastellu-Etchegorry et al., 2017; Hernández-Clemente et al., 2017; 
Kallel, 2020; Zeng et al., 2020; Zhao et al., 2016).

SIF simulation has recently been incorporated into several global LSMs, including the Community Land Model 
(CLM; Lee et al., 2015; Raczka et al., 2019; Parazoo et al., 2020), the JSBACH model (Thum et al., 2017), 
the Biosphere Energy Transfer HYdrology model (BETHY; Koffi et  al.,  2015), the Organizing Carbon and 
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Hydrology In Dynamic Ecosystems (ORCHIDEE; Bacour et al., 2019), the Boreal Ecosystem Productivity Simu-
lator model (BEPS; Cui et al., 2020; Qiu et al., 2019), and the Simple Biosphere model version 4 (SiB4; Haynes 
et al., 2020). The models use different approaches to simulate SIF, and wide discrepancies of SIF simulated by 
different models have been found at a subalpine evergreen needleleaf forest (Parazoo et al., 2020). Many models 
incorporate simulation of fluorescence yield to the photosynthesis model to simulate leaf-level SIF emission, 
and upscale leaf-level SIF to canopy-level with an empirical scaling factor (Haynes et al., 2020; Lee et al., 2015; 
Parazoo et al., 2020; Raczka et al., 2019). A few models consider some processes of the canopy radiative trans-
fer of SIF, but the upscaling is either still mostly empirical or does not consider some of the important factors 
like canopy clumping and viewing geometry (Bacour et al., 2019; Koffi et al., 2015; Qiu et al., 2019; Thum 
et al., 2017).

While most of the existing LSMs that simulate SIF do not fully account for the radiative transfer of SIF, recent 
studies have demonstrated its importance in SIF simulation and understanding SIF signal and SIF-GPP relation-
ship at the canopy and global scales. Only a fraction of total SIF emitted from leaves in the entire canopy can be 
observed by sensors due to the scattering and reabsorption processes within the canopy. Compared with observed 
SIF, total emitted SIF by all leaves has been found to be more directly linked to GPP at a temperate forest (Lu 
et al., 2020) and at the global scale (Qiu et al., 2019), while less correlated with GPP at three crop sites (Dechant 
et al., 2020). Not considering canopy clumping or the 3D canopy structure has been shown to lead to large error in 
simulated SIF (Hernández-Clemente et al., 2017; Zeng et al., 2020; Zhao et al., 2016). The strong impact of view-
ing angle (or bidirectional effect when both illumination and viewing angles are considered) on the SIF signal 
and the SIF-GPP relationship has been demonstrated with model simulations, field measurements, and satellite 
observations (Biriukova et al., 2020; Liu et al., 2016; van der Tol et al., 2009; Zhang et al., 2018). Furthermore, 
the scattering and reabsorption within leaves are often neglected in SIF simulation by LSMs, as many models 
simulate leaf-level SIF emission with a photosystem-level fluorescence model. By introducing a simplification of 
the SCOPE model for simulating leaf-level fluorescence yield and incorporating the radiative transfer processes 
for leaf-to-canopy scaling of SIF into the model, we expect to improve the accuracy of SIF simulation and also 
enable more robust comparison between simulated SIF and satellite-observed SIF.

Therefore, our goal of this study is to build upon the representation of SIF in CLM version 4 (Lee et al., 2015) 
and incorporate the simulation of far-red nadir SIF into the CLM version 5 (CLM5) by taking into consideration 
the key canopy radiative transfer processes. We simulated SIF emission at the leaf level with a parametric simpli-
fication of the SCOPE model and proposed a computationally efficient approach to upscale SIF to top-of-canopy 
(TOC) at the nadir direction while properly taking clumping, canopy scattering, and the bidirectional anisotropic 
effect into account. We evaluated SIF simulated by CLM5 with the SCOPE model and observations from towers 
and satellites. The impacts of some key radiative transfer processes and model parameterizations on SIF simula-
tions were analyzed.

2. Materials and Methods
2.1. Model Description

This work aims to enable the direct comparison between CLM simulated SIF and satellite observed SIF. To 
accomplish this, we incorporated the simulation of far-red SIF into CLM5 with proper consideration of the main 
processes that drive SIF emission and its transmission to the sensor. The simulation of canopy radiative transfer 
is improved and the simulation of TOC radiation at the nadir direction is added. We provide TOC SIF radiance 
(in the unit of W⋅m −2⋅sr −1⋅μm −1) at 740 nm and at the nadir direction as the final output of our SIF simulation, as 
most of the current SIF products from satellites contain measurements at or close to the nadir direction (e.g., nadir 
mode of OCO-2 and measurements near the center of the swath of the GOME-2 and TROPOMI) and provide SIF 
radiance at 740 nm. While SIF products from OCO-2 and GOSAT are at 757 and 771 nm, they can be converted 
to SIF at 740 nm with scaling factors as shown in multiple studies (Köhler et al., 2018; Parazoo et al., 2019; Sun 
et al., 2018; Yin et al., 2020). Though we only simulated SIF for nadir viewing angle, our approach can be applied 
to other viewing angles by replacing Equation 13 with the corresponding equation in Verhoef (1984).

CLM5 is the default land component of the Community Earth System Model version 2 (CESM2, Lawrence 
et al., 2019). It simulates various terrestrial processes including the exchange of energy, momentum, water, and 
carbon between the land and the atmosphere. In CLM5, two-stream approximation is used for the simulation of 
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radiative transfer within the canopy. Fluxes are partitioned into a single layer of sunlit and shaded canopy (Bonan 
et al., 2011).

To include SIF, we incorporated several processes related to SIF emission and its radiative transfer into CLM5 
and improved the simulation of a few processes as well (Figure 1). Major differences between our model and 
previous work that incorporates SIF into LSMs are summarized in Table1. In our model, the calculation of SIF 
can be summarized as Equation 1:

𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑓𝑓esc ⋅ 𝑆𝑆𝑆𝑆𝑆𝑆em = 𝑓𝑓esc ⋅ ∫
𝐶𝐶

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 ⋅Φ𝑓𝑓 (1)

where fesc is the probability that an emitted fluorescence photon reaches the sensor. SIFem is the total leaf-level SIF 
emission, which is calculated by integrating the product of absorbed photosynthetically active radiation (APAR) 
and leaf-level fluorescence yield (Φf) over the canopy.

SIF emission per unit leaf area is first simulated at the leaf level (separately for the sunlit and shaded portions of 
canopy) as the product of APAR and leaf-level fluorescence yield Φf, where APAR is calculated with the radia-
tive transfer model and Φf is calculated by incorporating simulation of fluorescence yield into the photosynthesis 
model (Section 2.1.1). SIF emission is then integrated over the canopy according to leaf area index (LAI) to 
obtain total leaf-level SIF emission (SIFem). In CLM5, the integration is approximated by the sum of SIF emis-
sion from sunlit leaves and shaded leaves (see Section 2.1.3 for details). For models with a more complex canopy 
representation, the integration can be performed at finer scales (e.g., over multiple layers). Finally, TOC observed 
SIF (SIFobs) is calculated by multiplying SIFem with the escape probability (fesc), the probability that emitted SIF 
reaches the sensor. In Section 2.1.4, we propose a new method to calculate fesc with the existing radiative transfer 
model for scattered solar radiation. This method avoids solving the radiative transfer equation for fluorescence, 
which can be computationally expensive. Thus, the simulation time of the model is not significantly increased 
(less than 3%). In addition, we modified the radiative transfer model to incorporate canopy clumping and the 
simulation of nadir radiation.

2.1.1. Leaf-Level Fluorescence Yield

Simulation of photosystem-level and leaf-level fluorescence yield is still an active area of research and is associ-
ated with high uncertainty (He et al., 2020; Hu et al., 2018; Raczka et al., 2019; van der Tol et al., 2014). Here, 
we use a simplification of the SCOPE model (van der Tol et al., 2009), which has been widely used for SIF simu-
lations, to simulate leaf-level fluorescence yield (Φf).

The SCOPE model simulates SIF spectra by integrating leaf biochemistry, photosynthesis, and radiative transfer 
within the leaf and across the canopy. In SCOPE, the Fluspect model (Vilfan et al., 2016) is used to simulate 
excitation-fluorescence matrices (EF-matrices) that convert excitation spectra to fluorescence spectra for a refer-
ence unstressed, dark-adapted condition at the leaf level. To obtain the matrices for steady-state fluorescence, 
these EF-matrices are then scaled by a ratio (η) between photosystem-level fluorescence yields at the steady state 

𝐴𝐴
(

𝜙𝜙𝑓𝑓𝑠𝑠

)

 and under dark-adapted conditions 𝐴𝐴
(

𝜙𝜙𝑓𝑓𝑜𝑜

)

 . This ratio 𝐴𝐴
(

𝜂𝜂 = 𝜙𝜙𝑓𝑓𝑠𝑠∕𝜙𝜙𝑓𝑓𝑜𝑜

)

 is calculated by the model developed by 
van der Tol et al. (2014), which extended a conventional photosynthesis model to calculate photosystem-level 

Figure 1. Flowchart for solar-induced chlorophyll fluorescence (SIF) simulation in the Community Land Model version 5 
(CLM5). Text in black indicates variables and processes that exist in CLM5, and bold text in blue indicates those added or 
modified for SIF simulations in this paper. Parallelograms represent data, and rectangles represent processes.
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fluorescence emission. This conversion can be made because fluorescence at the steady state and at the reference 
condition go through the same scattering and reabsorption processes within leaves. Leaf-level steady-state fluo-
rescence spectra are then calculated as the product of excitation spectra and the scaled EF-matrices.

This method cannot be directly incorporated into CLM because: (a) the application of EF-matrices requires 
hyperspectral radiation spectra, while CLM only has one visible band (0.4–0.7 μm) and one NIR band (0.7–
4.0 μm, which is different from the range of 0.7–1.0 μm often used in remote sensing observations); and (b) some 
leaf biochemical and biophysical parameters (e.g., leaf chlorophyll content, leaf water content, and leaf structure 
parameter) needed for the Fluspect model does not exist in CLM. Therefore, we obtain the ratio η by incorporat-
ing the photosystem-level fluorescence model (for simulation of 𝐴𝐴 𝐴𝐴𝑓𝑓𝑠𝑠 and 𝐴𝐴 𝐴𝐴𝑓𝑓𝑜𝑜 , van der Tol et al., 2014) into CLM, 
and use it to scale a leaf-level fluorescence yield at 740 nm calculated with the SCOPE model for the reference 
condition 𝐴𝐴

(

Φ𝑓𝑓𝑜𝑜,740

)

 , thus obtaining the leaf-level fluorescence yield at 740 nm for the steady state (Φf,740):

Φ𝑓𝑓𝑓740 = 𝜂𝜂 ⋅Φ𝑓𝑓𝑜𝑜𝑓740 =
𝜙𝜙𝑓𝑓𝑠𝑠

𝜙𝜙𝑓𝑓𝑜𝑜

Φ𝑓𝑓𝑜𝑜𝑓740 (2)

𝐴𝐴 Φ𝑓𝑓𝑜𝑜,740 varies with leaf biochemical and biophysical properties (e.g., leaf chlorophyll content, water content, dry 
matter content, and leaf structure). However, as leaf biochemical and biophysical parameters are not available 
in CLM, a constant 𝐴𝐴 Φ𝑓𝑓𝑜𝑜,740 of 0.0607 is used in the model (for all plant functional types [PFTs] and both sunlit 

References
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et al. (2017) a Koffi et al. (2015)

Cui et al. (2020) 
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et al. (2019)
Haynes 

et al. (2020)
Bacour 

et al. (2019) Our model

LSM CLM4/CLM4.5/
CLM5

JSBACH BETHY BEPS SiB4 ORCHIDEE CLM5

Canopy 
representation

One-layer canopy 
with sunlit and 
shaded portions

Three-layer 
canopy without 
distinguishing 
sunlit and shaded 
portions

60-layer canopy 
with sunlit and 
shaded portions 
(from SCOPE)

One-layer canopy 
with sunlit and 
shaded portion

One-layer canopy 
with sunlit and 
shaded portion

One-layer canopy 
without sunlit and 
shaded portion

One-layer canopy 
with sunlit and 
shaded portions

Leaf-level 
fluorescence 
model

van der Tol 
et al. (2014) with 
different models 
for KN

van der Tol 
et al. (2014)

Fluspect (from 
SCOPE)

van der Tol 
et al. (2014)

van der Tol 
et al. (2014)

Directly simulates 
canopy-level SIF 
with a parametric 
simplification 
of SCOPE and 
regulation of PSII 
fluorescence yield

A parametric 
simplification of 
the method used 
by SCOPE to be 
compatible with 
CLM

Clumping None None None Yes None None Yes

Canopy scattering Fixed scaling 
factor from 
leaf-level to 
canopy-level

Fixed attenuation 
coefficient

Radiative transfer 
(SCOPE)

Simplified 
radiative transfer/
parameterized 
scaling factor

Fixed scaling 
factor

Parametric 
representation

Based on escape 
probability 
calculated with 
radiative transfer 
of scattered 
radiation

Viewing geometry Fixed scaling 
factor from 
leaf-level to 
canopy-level

Fixed attenuation 
coefficient

Radiative transfer 
(SCOPE)

None/
parameterized 
scaling factor

Fixed scaling 
factor

Parametric 
representation

Based on escape 
probability 
calculated with 
radiative transfer 
of scattered 
radiation

Note. SIF, solar-induced chlorophyll fluorescence; LSM, land surface model.
 aAbsolute magnitude of SIF is not simulated.

Table 1 
Comparison Between Our Model and Previous Work That Incorporates SIF Into LSMs
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and shaded leaves). This value was calculated by averaging the 𝐴𝐴 Φ𝑓𝑓𝑜𝑜,740 calculated by the SCOPE model with 315 
different inputs: leaf biochemical and biophysical parameters were from 315 samples in the LOPEX93 data set 
(Hosgood et al., 1993, samples that do not provide all parameters and those with leaf chlorophyll content less than 
2 μg⋅m −2 were excluded) while other inputs were set to their default values in the model. 𝐴𝐴 Φ𝑓𝑓𝑜𝑜,740 for each input 
was calculated by manually setting η to one (so 𝐴𝐴 Φ𝑓𝑓𝑜𝑜,740 = Φ𝑓𝑓,740 ), and dividing the total leaf-level SIF emission at 
740 nm by APAR. Standard deviation of 𝐴𝐴 Φ𝑓𝑓𝑜𝑜,740 was 0.0032 (5.3% of the mean value of 𝐴𝐴 Φ𝑓𝑓𝑜𝑜,740 ), indicating it is 
acceptable to use a constant 𝐴𝐴 Φ𝑓𝑓𝑜𝑜,740 .

According to the SCOPE model and Lee et al.  (2015), photosystem-level fluorescence yields 𝐴𝐴 𝐴𝐴𝑓𝑓𝑠𝑠 and 𝐴𝐴 𝐴𝐴𝑓𝑓𝑜𝑜 are 
calculated in CLM5 using Equations 3 and 4, respectively.

𝜙𝜙𝑓𝑓𝑠𝑠 = 𝜙𝜙𝑓𝑓 ′
𝑚𝑚
(1 − 𝜙𝜙𝑝𝑝) =

𝐾𝐾𝐹𝐹

𝐾𝐾𝐹𝐹 +𝐾𝐾𝐷𝐷 +𝐾𝐾𝑁𝑁

(1 − 𝜙𝜙𝑝𝑝) (3)

𝜙𝜙𝑓𝑓𝑜𝑜 =
𝐾𝐾𝐹𝐹

𝐾𝐾𝐹𝐹 +𝐾𝐾𝑜𝑜

𝑃𝑃
+𝐾𝐾𝐷𝐷

 (4)

where KF, 𝐴𝐴 𝐴𝐴𝑜𝑜

𝑃𝑃
 , KD, and KN are rate coefficients for fluorescence, maximum photochemistry, constitutive thermal 

dissipation, and energy-dependent heat dissipation, respectively, and are calculated by Equation 5; 𝐴𝐴 𝐴𝐴𝑓𝑓 ′
𝑚𝑚
 is the 

maximum fluorescence yield for a light-acclimated leaf when it is exposed to saturating radiation; and ϕp is the 
actual photochemical yield calculated as shown in Text S1 in Supporting Information S1.

𝐾𝐾𝐹𝐹 = 0.05 (5a)

𝐾𝐾𝑜𝑜

𝑃𝑃
= 4.0 (5b)

𝐾𝐾𝐷𝐷 = max(0.8738, 0.0301(𝑇𝑇 − 273.15) + 0.0773) (5c)

𝐾𝐾𝑁𝑁 = 2.48
(1 + 0.114)𝑥𝑥𝛼𝛼

0.114 + 𝑥𝑥𝛼𝛼

 (5d)

where T is leaf temperature in Kelvin, xα is calculated by Equation 6.

𝑥𝑥𝛼𝛼 = exp(2.83log(𝑥𝑥)) (6a)

𝑥𝑥 = 1 −
𝜙𝜙𝑝𝑝

𝜙𝜙𝑝𝑝0

 (6b)

where 𝐴𝐴 𝐴𝐴𝑝𝑝0 is the dark-adapted maximum photochemical yield calculated by Equation 7, the calculation of ϕp is 
provided in Text S1 in Supporting Information S1.

𝜙𝜙𝑝𝑝0 =
𝐾𝐾𝑜𝑜

𝑃𝑃

𝐾𝐾𝐹𝐹 +𝐾𝐾𝑜𝑜

𝑃𝑃
+𝐾𝐾𝐷𝐷

 (7)

Here, Equation 5d is adapted to measurements on cotton leaves under varying light, temperature, and CO2 concen-
tration (van der Tol et al., 2014). However, our understanding of KN is still limited, and there is large uncertainty 
associated with its calculation (He et al., 2020; van der Tol et al., 2014; Raczka et al., 2019). It has also been 
found that SCOPE simulations based on Equation 5d were not able to capture measured fluorescence yield at high 
stress levels (He et al., 2020). A variety of methods have been applied to model KN, and they all rely on fitting 
with experimental data (Porcar-Castell, 2011; Raczka et al., 2019; van der Tol et al., 2014). To test the possible 
impact of the modeling of fluorescence yield on CLM SIF simulation, we run an additional CLM simulation with 
KN calibrated with data from a drought experiment (Flexas et al., 2002; van der Tol et al., 2014). In this model, 
Equations 5d and 6a are replaced by Equations 8 and 9, respectively. At a subalpine evergreen needleleaf forest 
(US-NR1, see Section 2.2), we also tested an NPQ formulation that considers sustained NPQ (i.e., the slower 
responses of NPQ at daily to monthly time scales) by Raczka et al. (2019, see Section 2.4).

𝐾𝐾𝑁𝑁 = 5.01
(1 + 10.0)𝑥𝑥𝛼𝛼

10.0 + 𝑥𝑥𝛼𝛼

 (8)



Journal of Advances in Modeling Earth Systems

LI ET AL.

10.1029/2021MS002747

7 of 27

𝑥𝑥𝛼𝛼 = exp(1.93log(𝑥𝑥)) (9)

2.1.2. Canopy Radiative Transfer

One of the major goals in this study is to provide a mechanistic way to scale SIF from leaf-level to canopy-level, 
as opposed to using an empirical scaling factor (e.g., Lee et al., 2015). Although we avoid simulating the full radi-
ative transfer of fluorescence by adopting an indirect approach (i.e., using escape probability, see Section 2.1.4) to 
scale leaf-level SIF to TOC, accurate radiative transfer simulation for scattered solar radiation is still needed. We 
have made the following improvements for canopy radiative transfer in CLM: (a) considering canopy clumping; 
and (b) adding simulation of TOC SIF at the nadir direction. To take clumping into account, clumping index is 
introduced to scale LAI and stem area index (SAI; J. M. Chen et al., 1991). To account for the impact of bidi-
rectional effect on simulation of nadir radiation, an additional flux for scattered incident radiation at the nadir 
viewing direction (Io; Equation 10c) is added using a method similar to the one used by the Scattering by Arbi-
trarily Inclined Leaves model (Verhoef, 1984). By replacing Equation 13 with Equation 33 in Verhoef (1984), 
our approach can be applied to other viewing directions as well. The modified system of equations for radiative 
transfer is:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

−�̄�𝜇
𝑑𝑑𝑑𝑑↑

𝑑𝑑(𝐿𝐿 + 𝑆𝑆)𝐶𝐶𝑑𝑑
+ [1 − (1 − 𝛽𝛽)𝜔𝜔]𝑑𝑑↑ − 𝜔𝜔𝛽𝛽𝑑𝑑↓ = 𝜔𝜔�̄�𝜇𝜔𝜔𝛽𝛽0𝑒𝑒

−𝜔𝜔⋅𝐶𝐶𝑑𝑑(𝐿𝐿+𝑆𝑆)
(10a)

�̄�𝜇
𝑑𝑑𝑑𝑑↓

𝑑𝑑(𝐿𝐿 + 𝑆𝑆)𝐶𝐶𝑑𝑑
+ [1 − (1 − 𝛽𝛽)𝜔𝜔]𝑑𝑑↓ − 𝜔𝜔𝛽𝛽𝑑𝑑↑ = 𝜔𝜔�̄�𝜇𝜔𝜔 (1 − 𝛽𝛽0) 𝑒𝑒

−𝜔𝜔⋅𝐶𝐶𝑑𝑑(𝐿𝐿+𝑆𝑆)
(10b)

−
𝑑𝑑𝑑𝑑𝑜𝑜

𝑑𝑑(𝐿𝐿 + 𝑆𝑆)𝐶𝐶𝑑𝑑
= 𝑤𝑤𝑒𝑒−𝜔𝜔⋅𝐶𝐶𝑑𝑑(𝐿𝐿+𝑆𝑆)

+ 𝑣𝑣𝑑𝑑↑ + 𝑣𝑣′𝑑𝑑↓ −𝜔𝜔𝑜𝑜𝑑𝑑𝑜𝑜 (10c)

 

where I↑ and I↓ are the upward and downward diffuse radiation fluxes per unit incident flux, respectively; Io is the 
upward flux at the nadir viewing direction; L and S are the cumulative LAI and SAI, respectively; K and Ko are 
the optical depth for radiation at the solar direction and the nadir viewing direction per unit plant (leaf and stem) 
area; 𝐴𝐴 𝐴𝐴𝐴 is the average inverse diffuse optical depth per unit plant area; ω is a scattering coefficient representing 
the fraction of intercepted radiation that is scattered; β and β0 are upscatter parameters for diffuse and direct 
beam radiation, respectively; CI is the clumping index; and v, v′, and w are the scattering coefficients that convert 
upward diffuse radiation, downward diffuse radiation, and direct solar radiation to the nadir viewing direction, 
respectively. Incoming direct and diffuse radiation are from input forcing data when CLM is not coupled with 
the Community Atmosphere Model (CAM) and calculated by CAM when CLM is coupled with it. Calculation 
of parameters besides Ko, CI, v, v′, and w exists in CLM5. Ko is calculated by Equation 11. CI is specified for 
each PFT according to He et al. (2012). v and v′ are calculated with Equation 12. Calculation of w is based on 
the method described in Verhoef (1984), here we derive the solution for fixed leaf zenith angle and nadir viewing 
direction as Equation 13 (details on the derivation of Equation 13 can be found in Text S2 in Supporting Informa-
tion S1). The solution of Equation 10 is provided in Text S4 in Supporting Information S1.

�� = �(��)∕�� (11)

where μo is the cosine of the viewing zenith angle (VZA), and G(μo) is the relative projected area of plant element 
in the viewing direction and is calculated within CLM5.

� = ���(1 − �′
�)

�′ = ����′
�

 (12)

𝑤𝑤 =

⎧

⎪

⎨

⎪

⎩

𝜌𝜌cos2𝜃𝜃𝑙𝑙 , 𝜃𝜃𝑙𝑙 ≤ 𝜋𝜋

2
− 𝜃𝜃𝑠𝑠

1

𝜋𝜋

(

cos
2𝜃𝜃𝑙𝑙[𝛾𝛾(𝜌𝜌 + 𝜏𝜏) − 𝜋𝜋𝜏𝜏] + sin 𝛾𝛾tan 𝜃𝜃𝑠𝑠sin 𝜃𝜃𝑙𝑙cos 𝜃𝜃𝑙𝑙(𝜌𝜌 + 𝜏𝜏)

)

, 𝜃𝜃𝑙𝑙 >
𝜋𝜋

2
− 𝜃𝜃𝑠𝑠

 (13)

where the calculation of 𝐴𝐴 𝐴𝐴′

𝑜𝑜 is similar to the calculation of β0 in CLM, with the sun angle replaced by the viewing 
angle (i.e., nadir in this study, see Text S3 in Supporting Information S1). 𝐴𝐴 𝜃𝜃𝑙𝑙 is the mean leaf zenith angle, θs is the 
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solar zenith angle (SZA), ρ is the weighted average of leaf and stem reflectance, τ is the weighted average of leaf 
and stem transmittance, and the weights for calculation of ρ and τ were determined based on L and S according 
to CLM5.0 Technical Description (2020), γ is calculated as:

𝛾𝛾 = arccos

(

−
cos 𝜃𝜃𝑠𝑠cos 𝜃𝜃𝑙𝑙

sin 𝜃𝜃𝑠𝑠sin 𝜃𝜃𝑙𝑙

)

 (14)

2.1.3. Total SIF Emission

In CLM5, APAR is partitioned into one layer of sunlit and shaded canopy. Therefore, total leaf-level SIF emission 
(SIFem, in the unit of W⋅m −2⋅μm −1) is calculated as the sum of SIF emitted from sunlit and shaded leaves:

𝑆𝑆𝑆𝑆𝑆𝑆em = 𝑆𝑆𝑆𝑆𝑆𝑆em,sun ⋅ 𝐿𝐿𝐿𝐿𝑆𝑆sun + 𝑆𝑆𝑆𝑆𝑆𝑆em,sha ⋅ 𝐿𝐿𝐿𝐿𝑆𝑆sha (15)

where LAIsun and LAIsha are sunlit and shaded LAI, respectively, and are calculated by Equation 16 based on 
Bonan et al. (2011) and J. Chen et al. (1999); SIFem,sun and SIFem,sha are SIF emission per unit sunlit and shaded 
LAI, respectively, and are calculated by:

���sun = ��� 1 − �−�⋅��(���+���)

�(��� + ���)

���sha = ��� − ���sun

 (16)

���em,sun = ����sun ⋅Φ�,sun

���em,sha = ����sha ⋅Φ�,sha
 (17)

where Φf,sun and Φf,sha are fluorescence yields at 740 nm calculated as described in Section 2.1.1 for sunlit and 
shaded leaves, respectively; APARsun, and APARsha are APAR per unit sunlit and shaded LAI, respectively, and 
are calculated following Bonan et al. (2011) after solving Equation 10.

2.1.4. Estimation of Escape Probability and TOC SIF

TOC SIF is calculated as the product of SIFem and escape probability (Equation 18). We simulate both TOC SIF at 
the nadir direction (SIFnadir, W⋅m −2⋅sr −1⋅μm −1) and hemispherically integrated TOC SIF (SIFhem, W⋅m −2⋅μm −1). 
Specifically, the simulation of SIFnadir is made possible with the simulation of nadir reflectance we added to CLM 
(Section 2.1.2) and the escape probability method described below.

���nadir = ���em ⋅ � esc,nadir
���

���hem = ���em ⋅ � esc,hem
���

 (18)

where 𝐴𝐴 𝐴𝐴
esc,nadir

𝑆𝑆𝑆𝑆𝑆𝑆
 and 𝐴𝐴 𝐴𝐴

esc,hem

𝑆𝑆𝑆𝑆𝑆𝑆
 are the probability that an emitted fluorescence photon escapes the canopy at the nadir 

direction and at any direction in the upper hemisphere, respectively.

The escape probability of SIF can be linked to the escape probability of scattered incident radiation and NIR 
reflectance from vegetation (NIRv; Equation 19) as demonstrated in recent studies (P. Yang & van der Tol, 2018; 
Zeng et al., 2019). This relationship is based on the similarity of the radiative transfer of emitted fluorescence 
and scattered incident radiation (P. Yang & van der Tol, 2018; Zeng et al., 2019). P. Yang and van der Tol (2018) 
found that the escape probability of fluorescence can be accurately estimated with far-red reflectance, canopy 
interceptance, and leaf albedo, assuming a non-reflecting background. And Zeng et al. (2019) further suggested 
the use of NIRv to eliminate the impact of soil background (i.e., non-zeros soil reflectance).

𝑆𝑆𝑆𝑆𝑆𝑆esc

𝑆𝑆𝑆𝑆𝑆𝑆em

= 𝑓𝑓 esc

𝑆𝑆𝑆𝑆𝑆𝑆
≈ 𝑓𝑓 esc

𝑟𝑟𝑟𝑟𝑓𝑓𝑟𝑟𝑟𝑟𝑟
=

𝑅𝑅𝑟𝑟

𝑖𝑖0𝑟𝑟𝑟𝜔𝜔
 (19)

where SIFesc is either SIFnadir or SIFhem; 𝐴𝐴 𝐴𝐴 esc

𝑆𝑆𝑆𝑆𝑆𝑆
 and 𝐴𝐴 𝐴𝐴 esc

𝑟𝑟𝑟𝑟𝐴𝐴𝑟𝑟𝑟𝑟𝑟
 are the corresponding escape probability for fluorescence 

and scattered incident radiation, respectively; Rv is the corresponding canopy-level NIRv; i0,v is the fraction of 
incident radiation intercepted by vegetation; and ω is the fraction of intercepted radiation that is scattered.
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Based on Equation 19, we estimate 𝐴𝐴 𝐴𝐴
esc,hem

𝑆𝑆𝑆𝑆𝑆𝑆
 and 𝐴𝐴 𝐴𝐴

esc,nadir

𝑆𝑆𝑆𝑆𝑆𝑆
 using i0,v, Rv for nadir radiation (Rv,nadir), and Rv for total 

upward TOC radiation (Rv,hem). i0,v is calculated by Equation 20.

𝑖𝑖0,𝑣𝑣 =

[

𝑆𝑆↓𝜇𝜇
(

1 − 𝑒𝑒−𝐾𝐾⋅𝐶𝐶𝐶𝐶(𝐿𝐿𝑇𝑇 +𝑆𝑆𝑇𝑇 )
)

+ 𝑆𝑆↓

(

1 − 𝑒𝑒
−

1

�̄�𝜇
⋅𝐶𝐶𝐶𝐶(𝐿𝐿𝑇𝑇 +𝑆𝑆𝑇𝑇 )

)]

∕ (𝑆𝑆↓𝜇𝜇 + 𝑆𝑆↓) (20)

where S↓ μ, S↓, LT, and ST are parameters in CLM5, representing direct incident radiation, diffuse incident radia-
tion, LAI, and SAI, respectively.

While Zeng et al. (2019) suggested estimating Rv as the product of canopy NIR reflectance and the normalized 
difference vegetation index according to Badgley et al. (2017) for studies based on remote sensing, we are able 
to simulate Rv based on radiative transfer as we are using a forward model. Rv,nadir and Rv,hem are calculated as the 
difference between total TOC reflectance and the contribution of soil to TOC reflectance (Equation 21).

��,nadir = ��,nadir −��,nadir

��,hem = ��,hem −��,hem
 (21)

where Rc,nadir and Rc,hem are TOC nadir reflectance and hemispherically integrated reflectance, respectively. Rs,nadir 
and Rs,hem are the contribution of soil to Rc,nadir and Rc,hem, respectively. Rc,nadir and Rc,hem can be easily derived 
from solutions of Equation 10 (see Text S4 in Supporting Information S1), Rs,nadir and Rs,hem are calculated by 
Equation 22

��,nadir =
[

�↓� ⋅ �−�⋅��(�� +�� ) ⋅ ��
� + �↓ ⋅ �−

1
�̄ ⋅��(�� +�� ) ⋅ ��

]

⋅ �sn∕ (�↓� + �↓)

��,hem =
[

�↓� ⋅ �−�⋅��(�� +�� ) ⋅ ��
� + �↓ ⋅ �−

1
�̄ ⋅��(�� +�� ) ⋅ ��

]

⋅ ��ℎ∕ (�↓� + �↓)
 (22)

where 𝐴𝐴 𝐴𝐴
𝜇𝜇
𝑔𝑔 and αg are parameters in CLM5, and they are soil reflectance for direct incident radiation and diffuse 

incident radiation, respectively. Tsn and Tsh are transmittance coefficients that represent probabilities for radiation 
from soil to escape the top of canopy (directly or after scattering) at the nadir direction and at any direction in the 
full upper hemisphere, respectively.

Here we provide a new way to calculate Tsn and Tsh efficiently: as there is no vertical variation of canopy struc-
tural and optical properties in CLM, Tsn and Tsh can be derived from the corresponding downward transmittance 
coefficients as in Equation 23.

�sn = ��� + ���

��ℎ = ���

 (23)

where Tin is the downward diffuse flux below canopy per unit nadir incident radiation; Tnn is the probability that 
downward nadir flux reaches soil without interception by the canopy; and Tii is the downward diffuse flux below 
canopy per unit incident diffuse flux. Tii is calculated when solving Equation 10, Tin and Tnn are calculated by 
implementing part of the procedure for solving Equation 10 with solar angle set to nadir.

Equation 23 can be derived by solving radiative transfer equations (see Text S5 in Supporting Information S1). 
Simulation by the SCOPE model showed that the difference between Tsh and Tii is less than 10 −15, which can be 
attributed to the precision of numeric values. The difference between Tsn and Tin + Tnn is less than 0.004, which is 
mainly numerical error associated with the use of limited number (i.e., 60) of elementary layers when calculating 
Io with SCOPE. Increasing the number of layers to 200 decreased the maximum error to less than 0.001. We also 
provide an intuitive illustration of Equation 23 in Text S5 and Figure S1 in Supporting Information S1.

Note that theoretically, 𝐴𝐴 𝐴𝐴
esc,nadir

𝑆𝑆𝑆𝑆𝑆𝑆
 and 𝐴𝐴 𝐴𝐴

esc,hem

𝑆𝑆𝑆𝑆𝑆𝑆
 for 740 nm should be used. But as only a visible band (0.4–0.7 μm) 

and a NIR band (0.7–4.0 μm) are available in CLM, the NIR band is used to calculate 𝐴𝐴 𝐴𝐴
esc,nadir

𝑆𝑆𝑆𝑆𝑆𝑆
 and 𝐴𝐴 𝐴𝐴

esc,hem

𝑆𝑆𝑆𝑆𝑆𝑆
 . Our 

simulation showed that the NIR escape probability was a good estimate of the escape probability at 740 nm (rela-
tive error generally less than 5%, see Text S8 and Figure S2 in Supporting Information S1).
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2.1.5. Other Modifications

A few additional modifications are made for CLM simulations: (a) the ratio between incident photosynthetically 
active radiation (PAR) and shortwave radiation was set to be 0.435 instead of 0.5 for the simulation of photosyn-
thesis and SIF based on measurements from 31 AmeriFlux sites (Text S6 and Table S1 in Supporting Informa-
tion S1); (b) the calculation of APAR was modified so that PAR absorbed by snow and stem would not affect 
the calculation of photosynthesis and fluorescence (details provided in Text S6 in Supporting Information S1); 
(c) using updated leaf and stem optical parameters (visible and NIR reflectance and transmittance) for each PFT 
from Majasalmi and Bright  (2019); and (d) using observation-based maximum rate of carboxylation at 25°C 
(Vcmax) values for each PFT as described in Bonan et al. (2011) for simulations by the CLM5 satellite phenology 
(SP) version.

2.2. Observation Data

CLM SIF simulation was evaluated at five flux tower sites (Table 2) and at the global scale. The Virginia Forest 
Research Facility (hereafter referred to as Pace Forest) and Harvard forest sites are located in temperate mixed 
forest, US-NR1 in a subalpine needleleaf evergreen forest, US-NE3 in a cropland, and BR-Sa1 in a tropical 
evergreen forest. Ground SIF measurements are available at Pace Forest, Harvard Forest, US-NR1, and US-NE3. 
Site information and the years used for evaluation are summarized in Table 2. The FluoSpec system was used to 
measure SIF at the Harvard forest site (X. Yang et al., 2015), the FluoSpec2 system was used for Pace Forest and 
US-NE3 (X. Yang et al., 2018), and PhotoSpec was used for US-NR1 (Grossmann et al., 2018). SIF measured at 
760 nm was converted to 740 nm by SIF740 = 1.56⋅SIF760 according to Köhler et al. (2018).

Satellite SIF observations were used for model evaluations at both the site-level and the global scale. GOME-2 
onboard MetOp-A is a UV/visible spectrometer and provided global coverage with a spatial resolution of 
40 × 80 km 2 in 1.5 days (before July 2013) or a spatial resolution of 40 × 40 km 2 in 3 days (after July 2013). 
Its SIF product version 28 by Joiner et al. (2013) was mainly used for evaluation due to its longer time span, 
which overlaps with the years forcing data is available for CLM (before 2014). We also used SIF products from 
OCO-2 and TROPOMI to investigate whether the inconsistency between different SIF products affects model 
validation. OCO-2 and TROPOMI are recent instruments that have higher spatial resolution compared with 
GOME-2. Details about SIF products from OCO-2 and TROPOMI can be found in Sun et al. (2018) and Köhler 
et al.  (2018), respectively. We used the level 2 ungridded MetOp-A GOME-2 SIF product (version 28), grid-
ded nadir OCO-2 product (B8100), and the ungridded TROPOMI SIF product. The ungrided GOME-2 and 
TROPOMI data were filtered and gridded according to the grid of CLM output with the gridding tool provided 
by Frankenberg (2020, https://github.com/cfranken/gridding). For GOME-2, only the measurements with VZA 
smaller than 20° and quality flag equals 2 (passed all quality control checks and cloud check) were used. For 
TROPOMI, only the measurements with VZA smaller than 20° were used, and measurements affected by the hot 
spot effect (phase angle smaller than 20°) were filtered out. OCO-2 SIF was converted to 740 nm with a factor of 
1.56 according to Köhler et al. (2018). The daily (24-hr) mean SIF from these products was used for global-scale 
evaluations. TROPOMI SIF was used for evaluation at the Pace Forest site, while GOME-2 SIF was used for 

Site
Latitude 

(°N)
Longitude 

(°E) Vegetation Year Tower SIF Satellite References

Virginia Forest Research 
Facility (Pace Forest)

37.9229 −78.2739 Mixed forest 2019 Available TROPOMI X. Yang et al. (2018)

Harvard Forest (Barn) 42.5378 −72.1715 Mixed forest 2013 Available GOME-2 Richardson and Aubrecht (2017) and 
Tang (2017)

US-NR1 40.0329 −105.5464 Evergreen 
Needleleaf forest

2017–2018 Available GOME-2 Blanken et al. (2020), Magney, Frankenberg, 
et al. (2019), and Munger (2020)

US-NE3 41.1797 −96.4597 Crop (Maize) 2017 Available GOME-2 Miao and Guan (2020) and Suyker (2021)

BR-Sa1 −2.8567 −54.9589 Evergreen broadleaf 
forest

2011 Not available GOME-2 Pastorello et al. (2020) and Saleska (2011)

Table 2 
Information of Flux Tower Sites and the Years and Satellites Used for Evaluation of SIF Simulations

https://github.com/cfranken/gridding
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evaluations at other sites where TROPOMI data was not available. Instantaneous SIF at 13:30 was used for all 
site-level evaluations, where instantaneous TROPOMI SIF was directly used and GOME-2 SIF was converted to 
13:30 by the first-order approximation based on the cosine of SZA according to Frankenberg et al. (2011).

2.3. Evaluation of the Upscaling Method

We used the SCOPE model to evaluate the escape probability method (Section 2.1.4) that upscales SIF from 
leaf-level to TOC. A total of 10,000 cases were generated by randomly varying leaf biochemical and biophysical, 
canopy structural, soil, and atmospherical parameters (see Table S2 in Supporting Information S1 for the param-
eters and their ranges). SIFnadir and SIFhem at 740 nm were simulated by two approaches: (a) using the original 
SCOPE model with the complete radiative transfer of fluorescence; (b) implementing the escape probability 
method (Section 2.1.4) in SCOPE. Coefficient of determination (R 2), relative root-mean-square error (RRMSE), 
and bias of SIF simulated by the escape probability method as compared with SIF simulated with complete radi-
ative transfer were calculated.

2.4. Evaluation of SIF Simulations

CLM simulations were performed on the Cheyenne high-performance computer provided by the National Center 
for Atmospheric Research (Computational and Information Systems Laboratory, 2019). We mainly tested our 
model using CESM2's land-only satellite phenology (CLM5SP) component set for the present day. In this version 
of the model, monthly LAI and SAI data for each PFT were prescribed based on Moderate Resolution Imaging 
Spectroradiometer (MODIS) satellite estimates. Therefore, the evaluation of the model is more straightforward 
as the uncertainty of LAI in CLM5SP is smaller compared with in a fully prognostic model. The model was run 
at the five flux tower sites (Table 2), as well as at the global scale.

For site-level simulations, meteorological data from the towers and the MCD15A2H Version 6 LAI product from 
the MODIS (DAAC, 2017; Myneni et al., 2015) were used to drive CLM5SP single point simulation. As usually 
only one PFT is present in the field of view of the tower SIF sensors and for simplifying the comparison with 
SCOPE, land cover for the simulations were set to be 100% broadleaf deciduous tree for Pace Forest and Harvard 
Forest, 100% needleleaf evergreen tree for US-NR1, 100% C4 crop for US-NE3, and 100% broadleaf evergreen 
tree for BR-Sa1. Simulated instantaneous SIF (at 13:30) was compared with SIF simulated by the SCOPE model, 
observed at towers (if available), and observed by satellites. SCOPE simulations were driven by the same mete-
orological and LAI data as CLM simulations. The SCOPE model was modified to take tower PAR measurements 
instead of shortwave radiation as input, and LAI was scaled by the clumping index for the corresponding PFT to 
take the effect of clumping into account. Leaf angle distribution and Vcmax (except for US-NR1) for SCOPE simu-
lations were set according to the parameters for the corresponding PFTs in CLM. For US-NR1, leaf chlorophyll 
content and Vcmax were set as 25 μg⋅cm −2 and 30 μmol⋅m −2⋅s −1 according to Parazoo et al. (2020). The key param-
eters used for SCOPE simulations for the five sites are summarized in Table S3 in Supporting Information S1. 
The default values were used for other parameters. The higher-resolution TROPOMI SIF product was used for 
comparison at the Pace Forest site. GOME-2 product was used for other sites as there was no overlap in the time 
span between TROPOMI SIF and tower SIF observations. APAR, Φf, 𝐴𝐴 𝐴𝐴

esc,nadir

𝑆𝑆𝑆𝑆𝑆𝑆
 , and nadir reflectance simulated by 

CLM5SP and SCOPE were also compared in Figures S4–S7 in Supporting Information S1.

Global-scale CLM simulations used climate forcing data (radiation, precipitation, and temperature) from the 
Global Soil Wetness Project forcing data set. The model was run at 0.9° (latitude) by 1.25° (longitude) spatial 
resolution with a time step of 30 min from 2008 to 2014. Simulations stopped in 2014 due to the unavailability of 
forcing data. The Leaf Use of Nitrogen for Assimilation (LUNA) model was turned off so that prescribed Vcmax is 
used. To isolate the impact of each modification we made, we ran simulations with all modifications incorporated 
and with each of the modifications individually excluded. We also tested the model with an alternative fluores-
cence yield model (Equations 8 and 9). To evaluate the ability of a fully prognostic model to simulate SIF, we 
also ran a simulation with the active biogeochemistry version of CLM (CLM5BGC). In this model, LAI and SAI 
are simulated prognostically, and a prognostic crop model (Lombardozzi et al., 2020) is used. Vcmax is determined 
based on leaf nitrogen while the LUNA model is still turned off. The simulation experiments are summarized in 
Table 3. GOME-2 SIF from 2008 to 2014, OCO-2 SIF from September 2014 to April 2018, and TROPOMI SIF 
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product from April 2018 to March 2020 were used for evaluation. We compared the spatial pattern of the mean 
annual SIF at the global scale and the seasonal variations of SIF for several PFTs: broadleaf deciduous temperate 
tree, needleleaf evergreen boreal tree, broadleaf evergreen tropical tree, crop, and C3 non-arctic grass. All pixels 
dominated (defined as occupying >70% land unit according to the land cover data set used as CLM input) by the 
corresponding PFT were used for the analysis of seasonal variation. Only the pixels and months with SIF data 
available from both CLM simulations and satellite products were used for comparison.

3. Results
3.1. Evaluation of the Escape Probability Method With SCOPE

Across a wide range of model inputs corresponding to different leaf, canopy, soil, and atmospherical conditions, 
SIFhem and SIFnadir at 740 nm simulated with the new escape probability approach incorporated into SCOPE 
(Section 2.1.4) closely matched those simulated with rigorous radiative transfer by the original SCOPE model 
(Figure 2 and Figure S3 in Supporting Information  S1, r 2 > 0.994, RRMSE < 6%, bias <0.8%). Thus, it is 

Simulation Model KN Modifications

CLM5SP-exp1 CLM5SP Equations 5d and 6a All modifications incorporated

CLM5SP-exp2 CLM5SP Equations 5d and 6a The bidirectional anisotropic effect not considered 
(SIFnadir calculated as SIFhem/π)

CLM5SP-exp3 CLM5SP Equations 5d and 6a Canopy clumping not incorporated

CLM5SP-exp4 CLM5SP Equations 5d and 6a Correction of PAR not incorporated

CLM5SP-exp5 CLM5SP Equations 5d and 6a Modifications for APAR calculation not incorporated

CLM5SP-exp6 CLM5SP Equations 5d and 6a Leaf optical properties were not updated

CLM5SP-exp7 CLM5SP Equations 5d and 6a Original Vcmax values were used

CLM5SP-exp8 CLM5SP Equations 8 and 9 All modifications incorporated

CLM5SP-exp9 a CLM5SP Raczka et al. (2019) All modifications incorporated

CLM5BGC-exp1 CLM5BGC Equations 5d and 6a All modifications incorporated

Note. CLM, Community Land Model; PAR, photosynthetically active radiation; APAR, absorbed photosynthetically active radiation.
 aOnly for site-level evaluation at US-NR1.

Table 3 
CLM Simulation Experiments

Figure 2. Evaluation of the escape probability method that we have incorporated in the Community Land Model version 
5 with the Soil Canopy-Observation of Photosynthesis and Energy fluxes model for (a) hemispherically integrated solar-
induced chlorophyll fluorescence (SIF) at top-of-canopy (TOC) (SIFhem) and (b) TOC SIF at the nadir direction (SIFnadir). 
Large SIF values not expected to be found in observations are simulated with combinations of extreme input parameter 
values. Evaluation with a more realistic SIFnadir range of 0–10 W⋅m −2⋅sr −1⋅μm −1 is provided as Figure S3 in Supporting 
Information S1.
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expected that little bias would be introduced by using the efficient escape probability method for CLM SIF simu-
lations as compared with simulating the full radiative transfer of SIF as SCOPE does.

3.2. Evaluation of SIF Simulations

3.2.1. Site Level

SIF simulated by CLM5SP-exp1 matched those simulated by SCOPE well except at US-NR1 (R 2 > 0.91, RMSE 
< 0.19 W⋅m −2⋅sr −1⋅μm −1, Figure 3). Relatively larger deviations were found between simulations by both models 
and tower observations (RMSE ranged from 0.30 to 0.53 W⋅m −2⋅sr −1⋅μm −1), while the day-to-day variation of 
SIF were generally captured except at US-NR1 (R 2 ranged from 0.56 to 0.84, Figure 3). The magnitude of satellite 
SIF was similar to that of tower SIF at Pace Forest, Harvard Forest, and US-NE3, while much larger day-to-day 
variation was observed for satellite SIF (Figure 3). At the temperate forest sites (Pace Forest and Harvard Forest), 
SIF simulated by CLM5SP-exp1 and SCOPE correlated very well and had similar magnitudes (R 2 > 0.98, RMSE 
< 0.13 W⋅m −2⋅sr −1⋅μm −1, Figures 3a, 3b, 3d and 3f). The models also captured the day-to-day variations of SIF 
observed from the towers at the two sites (R 2 = 0.69 and 0.84 for Pace Forest and Harvard Forest, respectively), 
while both models overestimated observed SIF (by 0–1.5 W⋅m −2⋅sr −1⋅μm −1, Figures 3a, 3c, 3d and 3f). At the 
evergreen needleleaf forest site (US-NR1), SIF simulated by CLM was lower than that simulated by SCOPE, 
and the correlation between SIF simulated by the two models was lower compared with other sites (R 2 = 0.45, 
Figures  3g and  3h). This can be explained by the large difference between the optical properties of needle-
leaves simulated by SCOPE and prescribed in CLM5 and the impact of snow on CLM simulation in winter (see 
Section 4.1 and Figures S4–S7 in Supporting Information S1). SIF simulated by CLM5SP-exp1 at US-NR1 was 
also higher than SIF observed from tower and satellite and did not fully capture the drop of SIF in winter observed 
by the tower (R 2 = 0.12, Figures 3g–3i). However, the winter drop of SIF can be captured by CLM5SP-exp9 with 
the sustained NPQ formulation by Raczka et al. (2019) (R 2 = 0.57, Figures S8 and S9 in Supporting Informa-
tion S1). SIF simulated by CLM5SP-exp1 and SCOPE correlated well at cropland (US-NE3, R 2 = 0.96, RMSE 
= 0.13 W⋅m −2⋅sr −1⋅μm −1), and the magnitudes of simulated and observed SIF were similar (Figures 3j–3l). While 
only moderate correlation was observed between SIF simulated by CLM5SP-exp1 and observed from tower, this 
can be partially explained by the relatively smaller variation of SIF magnitude as only data from doy 198–258 
was available (Schober et al., 2018). At BR-Sa1, tower SIF measurement was not available. The magnitude of 
SIF simulated by CLM5SP-exp1 and SCOPE matched (R 2 = 0.91, RMSE = 0.18 W⋅m −2⋅sr −1⋅μm −1), while the 
models overestimated SIF observed by GOME-2. While the magnitudes of satellite SIF retrievals are generally 
comparable with tower SIF observations, the correlations between satellite SIF and both tower SIF and simulated 
SIF were low (R 2 < 0.6), which can be explained by the large pixel size and low single-observation precision of 
satellite observations (Joiner et al., 2013).

3.2.2. Global Scale

The increase in simulation time was less than 3% when the simulation of SIF was incorporated. Spatial patterns 
of the multi-year average SIF (2008–2014) simulated by CLM and observed by GOME-2 were generally simi-
lar, while the magnitude of SIF was different in some regions (Figures 4a, 4c and 4f). CLM simulations and 
GOME-2 observations showed the same geographic locations of the SIF hotspots and coldspots (i.e., highest 
SIF in tropical forests and lower SIF in barren regions). Compared with GOME-2 SIF, both CLM5SP-exp1 and 
CLM5BGC-exp1 overestimated SIF in boreal (by ∼40%) and tropical (by ∼20%) regions (Figures 4e and 4h) and 
underestimated SIF in croplands (by 0%–80%). CLM5BGC-exp1 underestimated SIF in tropical savannas while 
CLM5SP-exp1 overestimated SIF.

Both CLM5SP-exp1 and CLM5BGC-exp1 SIF simulations correlated well with GOME-2 SIF at the annual 
scale (R 2  =  0.8 for CLM5SP-exp1 and R 2  =  0.7 for CLM5BGC-exp1, Figure  5). Overall, CLM5SP-exp1 
provided SIF with similar magnitude as observed by GOME-2 (with a slope of kfit = 1.01 and an intercept of 
0.03 W⋅m −2⋅sr −1⋅μm −1 for the fitted line between CLM SIF and GOME-2 SIF), while CLM5BGC-exp1 underesti-
mated SIF (with kfit = 0.86 and an intercept of 0.02 W⋅m −2⋅sr −1⋅μm −1). When we excluded some radiative transfer 
processes or one of the modifications of CLM parameterization (CLM5SP-exp2-CLM5SP-exp6), CLM5SP SIF 
and GOME-2 SIF were also highly correlated (R 2 ≥ 0.79, Table 4), but the magnitude of simulated SIF differed 
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(kfit ranged from 0.93 to 1.35. Ignoring the bidirectional effect, canopy clumping, or excluding the correction of 
PAR (CLM5SP-exp2-CLM5SP-exp4) resulted in SIF 34%, 9%, and 12% higher than that simulated by CLM5SP-
exp1, respectively. The improvements by considering bidirectional effect were most significant in the subtropical 
grassland region where LAI was lower and leaves were more vertical (Figure S10d in Supporting Information S1), 
consistent with the expectation that the impact of viewing angle is the largest when LAI is low and leaves are 
vertical (Biriukova et al., 2020). The improvements by considering clumping index can be seen in most regions 
where CLM overestimated SIF (Figure S10e in Supporting Information S1). And the impact of the correction of 
PAR was most significant in tropical forests, where vegetation productivity are radiation limited (Figure S10f in  

Figure 3. Comparisons between nadir solar-induced chlorophyll fluorescence at 13:30 simulated by the Soil Canopy-Observation of Photosynthesis and Energy fluxes 
model (blue solid lines), simulated by CLM5SP-exp1 (orange dash-dotted line), observed from the tower (green dashed lines) and observed from satellites (asterisks, 
corrected to 13:30 for Global Ozone Monitoring Instrument 2) at Pace Forest (a–c), Harvard Forest (d–f), US-NR1 (g–i), US-NE3 (j, k, l), and BR-Sa1 (m and n).
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Supporting Information S1; Nemani et al., 2003). Modifications of APAR did not change the simulated APAR 
substantially in most scenarios, and thus had little impact on the SIF simulations (CLM5SP-exp5). The modifica-
tion of leaf and stem optical properties increased simulated SIF by around 7%, and thus increased kfit (CLM5SP-
exp1 as compared with CLM5SP-exp6). Modification for Vcmax had minor impact on SIF simulations (CLM5SP-
exp7, this may not be true if other fluorescence models are used, see Section 4.1). Modeling of NPQ also affected 
SIF simulation: CLM5SP simulated SIF was 17% lower when KN was adapted to measurements from a drought 

Figure 4. Global maps of (a) multi-year average solar-induced chlorophyll fluorescence (SIF) from Global Ozone Monitoring Instrument 2 (GOME-2) product 
(2008–2014), (b) zonal mean of nadir SIF observed by GOME-2 (blue solid line), simulated by CLM5SP-exp1 (orange dash-dotted line), and simulated by CLM5BGC-
exp1 (green dashed line), (c) multi-year average nadir SIF simulated by CLM5SP-exp1 (2008–2014), (d) difference between CLM5SP-exp1 SIF and GOME-2 SIF, 
(e) relative difference between CLM5SP-exp1 SIF and GOME-2 SIF, (f) multi-year average nadir SIF simulated by CLM5BGC-exp1 (2008–2014), (g) difference 
between CLM5BGC-exp1 SIF and GOME-2 SIF, and (h) relative difference between CLM5BGC-exp1 SIF and GOME-2 SIF. In panels e and h, relative differences are 
calculated as (CLM − GOME)/CLM. In panels d, e, g, and h, pixels with CLM SIF less than 0.1 W⋅m −2⋅sr −1⋅μm −1 are masked in gray.

Figure 5. Scatter plots between multi-year average (2008–2014) Global Ozone Monitoring Instrument 2 (GOME-2) solar-
induced chlorophyll fluorescence (SIF) and (a) CLM5SP-exp1 SIF (b) CLM5BGC-exp1 SIF. Pixels dominated (>70% land 
unit) by several plant functional types (PFTs) are colored according to the legend. Gray dots indicate pixels not dominated by 
any listed PFTs. The means and standard deviations of CLM5SP SIF and GOME-2 SIF for each PFT are shown as squares 
and error bars, respectively.
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experiment (CLM5SP-exp8) than when KN was adapted to a cotton data set with measurements with varying light, 
temperature, and CO2 conditions (CLM5SP-exp1). The multi-year mean SIF simulated by CLM5SP-exp1 corre-
lated well with those observed by OCO-2 and TROPOMI (R 2 = 0.84 for OCO-2 and R 2 = 0.82 for TROPOMI), 
even though model simulations and satellite products cover different periods of time (CLM: 2008–2014, OCO-2: 
September 2014 to April 2018, TROPOMI: April 2018 to March 2020). SIF simulated by CLM was generally 
lower compared with OCO-2 observations while provided similar magnitude as TROPOMI observations (with kfit 
of 0.85 and 0.95, respectively, and intercepts of around 0.05 W⋅m −2⋅sr −1⋅μm −1, Table 4).

The relationships between SIF simulated by CLM and observed by satellites were different depending on the 
PFT. While seasonal variations of SIF were captured by CLM for most PFTs, the magnitude of SIF was not 
accurately simulated for some PFTs (Figure 6). Both CLM5SP-exp1 and CLM5BGC-exp1 underestimated peak 
growing season SIF for broadleaf deciduous temperate tree (by ∼20%), overestimated SIF for tropical tree (by 
∼30%), underestimated SIF for crop during the growing season (by ∼40%), and estimated SIF relatively accurate 
for C3 non-arctic grass (Figures 5 and 6). For needleleaf evergreen boreal tree, CLM5SP-exp1 overestimated 
SIF throughout the year, while CLM5BGC-exp1 overestimated SIF during boreal winter and underestimated 
SIF during the growing season. Trends of seasonal variations were similar when CLM SIF was compared with 
OCO-2 SIF and TROPOMI SIF (see Figures S11 and S12 in Supporting Information S1).

4. Discussions
This study incorporates simulation of nadir SIF at 740 nm into CLM5 with improved representation of radiative 
transfer (Table 1). The strong agreement between simulations by SCOPE and CLM (except in needleleaf forest) 
indicates that the key radiative transfer processes were properly taken into account, despite using a more effi-
cient approach based on escape probability instead of the full radiative transfer scheme to scale leaf-level SIF 
to observed canopy-level SIF. While CLM simulations generally captured the spatial and seasonal variations 
of observed SIF, discrepancies between simulations and observations were observed for some sites and PFTs, 
suggesting uncertainties in model simulations, which will be discussed in the following sections. By providing 
better representation of the radiative transfer of SIF, our work is a step toward better SIF simulation by LSMs and 
the use of satellite SIF observations for constraining or evaluating GPP simulations.

4.1. Impacts of Key Radiative Transfer Processes and Model Parameterizations on SIF Simulation

Compared with previous works that incorporate simulation of SIF into LSMs (Table 1), our model provides 
a mechanistic way to scale SIF from leaf-level to TOC at the nadir direction by taking into account canopy 

Simulation Satellite Slope (kfit) Intercept (W⋅m −2⋅sr −1⋅μm −1) R 2 RMSE (W⋅m −2⋅sr −1⋅μm −1)

CLM5SP-exp1 GOME-2 1.01 0.03 0.80 0.0661

CLM5SP-exp2 1.35 0.04 0.82 0.0843

CLM5SP-exp3 1.11 0.04 0.80 0.0723

CLM5SP-exp4 1.17 0.03 0.80 0.0765

CLM5SP-exp5 0.99 0.03 0.79 0.0671

CLM5SP-exp6 0.93 0.03 0.79 0.0624

CLM5SP-exp7 1.02 0.03 0.80 0.0665

CLM5SP-exp8 0.84 0.03 0.82 0.0521

CLM5BGC-exp1 0.86 0.02 0.70 0.0747

CLM5SP-exp1 OCO-2 0.85 0.05 0.84 0.0582

CLM5SP-exp1 TROPOMI 0.95 0.05 0.82 0.0639

Note. SIF, solar-induced chlorophyll fluorescence; CLM, Community Land Model.

Table 4 
Statistics for Comparisons Between SIF Simulated by CLM and Observed by Satellites
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scattering, the bidirectional effect, corrections for PAR and APAR, and canopy clumping (Sections 2.1.2–2.1.5). 
We also updated some model parameterizations (leaf optical properties and Vcmax) according to recent data sets. 
Some of the processes and parameterizations (bidirectional effect, canopy clumping, incident PAR, plant optical 
properties, and parameterizations of photosystem-level fluorescence model) have significant impacts on SIF 
simulations, and need to be properly taken into account.

When the bidirectional anisotropic effect is not considered, SIF radiance observed by sensor is usually esti-
mated as SIFhem/π by assuming isotropic SIF signal at TOC. However, model simulations, field measurements, 
and satellite observations have shown that observed SIF varies with viewing angle (Biriukova et al., 2020; Liu 
et al., 2016; Zeng et al., 2020; Zhang et al., 2018; Zhao et al., 2016): SIF is usually lower when observed at small 
VZA and higher when observed at large VZA, indicating that nadir SIF is usually lower than SIFhem/π. Consistent 
with these studies, our simulations showed that not considering the bidirectional effect resulted in an increase of 
simulated nadir SIF by 34%. The hot spot effect also affects the variation of SIF with viewing angle. This effect 
is not considered in this study for simplicity. Our CLM simulations were compared with satellite observations by 
filtering out observations at small phase angles (Section 2.2). However, if satellite observations with small phase 
angles are used, the impact of hot spot might need to be taken into account.

While natural vegetation canopies are heterogeneous (in terms of leaf and stem distribution), most LSMs assume 
canopy structure to be homogeneous due to limited computational capacity and the lack of 3D canopy struc-
ture data. However, the 3D distribution of plant materials affects observed SIF by affecting both incident PAR 
on leaves and the radiative transfer of SIF toward the sensor. Studies have suggested significant differences 
between SIF simulated with a homogeneous canopy scene and a heterogeneous scene with 3D canopy structure 
when other canopy properties were kept identical (Hernández-Clemente et al., 2017; Zeng et al., 2020; Zhao 
et al., 2016). The heterogeneity of canopy can be partially characterized by clumping index in analytical radia-
tive transfer models (J. M. Chen et al., 1991). We introduced a simple PFT-specific clumping index in CLM5, 
which resulted in lower SIF values compared with when clumping was not considered (∼9% at the global scale, 
CLM5SP-exp1 compared with CLM5SP-exp3, Table 4). It should also be noted that the PFT-specific clumping 
index cannot fully characterize the heterogeneity of canopy. For instance, studies have shown that clumping 

Figure 6. Comparison between seasonal variations (average of 2008–2014) of solar-induced chlorophyll fluorescence observed by Global Ozone Monitoring 
Instrument 2 (blue solid lines), simulated by CLM5SP-exp1 (orange dashed lines), and simulated by CLM5BGC (green dash-dotted lines) for (a) broadleaf deciduous 
temperate tree, (b) needleleaf evergreen boreal tree, (c) broadleaf evergreen tropical tree, (d) crop, and (e) C3 non-arctic grass. All pixels dominated (>70% land unit) 
by the corresponding plant functional type were used for comparison, locations of the pixels are the same for CLM5SP and CLM5BGC and are shown in panel (f): 
blue: broadleaf deciduous temperate tree, cyan: needleleaf evergreen boreal tree, green: broadleaf evergreen tropical tree, yellow: crop, and red: C3 non-arctic grass.



Journal of Advances in Modeling Earth Systems

LI ET AL.

10.1029/2021MS002747

18 of 27

index varies with SZA, and considering this angular dependency may improve the simulation of photosynthesis 
(Braghiere et al., 2020; Ryu et al., 2010).

Incident PAR is one of the key drivers of SIF. When not coupled with the CAM, the original CLM estimates 
incident PAR by assuming a fixed ratio of 0.5 between incident PAR and shortwave radiation (CLM5.0 Tech-
nical Description, 2020). However, the ratio (0.5) is too high according to literature, especially when PAR is 
defined as 400–700 nm as in CLM (Tsubo & Walker, 2005). Based on measurements at 31 AmeriFlux sites 
(Table S1 in Supporting Information S1), we set the ratio between incident PAR and shortwave radiation to 
0.435 for simulation of photosynthesis and fluorescence (except CLM5SP-exp4). This correction had a notable 
impact (16% decrease, Table 4) on simulated SIF. We also note that the ratio we used was derived from meas-
urements from flux towers across the Americas only, and the ratio varies spatially and temporally (Tsubo & 
Walker, 2005). More comprehensive observation data set or simulations based on atmospheric radiative transfer 
is needed to provide more accurate incident PAR for CLM. If CLM is coupled with the CAM, this correction 
we made would not be needed as CAM would provide incident PAR simulated based on radiative transfer as 
input for CLM.

We made two modifications to the calculation of APAR in CLM (except for CLM5SP-exp5). (a) We used PAR 
absorbed by leaf only for simulation of photosynthesis while the original CLM5 uses PAR absorbed per unit plant 
(leaf and stem) area to approximate PAR absorbed per leaf area. As leaf absorption is higher than stem absorption 
in the visible region, APAR per unit leaf area is slightly greater than APAR per unit plant area. Therefore, distin-
guishing PAR absorbed by leaf and by stem leads to greater APAR and thus an overall slight increase in simulated 
SIF (kfit increased from 0.99 to 1.01, Table 4). Note that the relatively small impact of this modification on SIF 
simulation is due to the small impact of the modification on APAR simulation itself, and this does not indicate 
SIF simulation is not sensitive to APAR. (b) We excluded PAR absorbed by snow in the calculation of photo-
synthesis and SIF. Due to the lower APAR, simulated SIF was lower in boreal winter compared to SIF simulated 
without the modification (25% and 0.06 W⋅m −2⋅sr −1⋅μm −1 in CLM5SP for needleleaf evergreen deciduous tree, 
Figure S14 in Supporting Information S1). Stem and snow are not present in SCOPE. The absence of stem may 
also explain the higher APAR and escape probability simulated by SCOPE compared with that by CLM (5%–15% 
at sites except for US-NR1 in the growing season, Figures S4 and S6 in Supporting Information S1). And, snow 
explains the fluctuation of escape probability and nadir reflectance simulated by CLM for US-NR1 (Figures S6 
and S7 in Supporting Information S1).

Leaf and stem optical properties affect the radiation absorbed and scattered by the canopy, and thus affect the 
simulation of GPP and SIF. However, the leaf and stem optical properties used in the original CLM are from 
data sets produced in the 1990s or earlier (Asner et al., 1998; Majasalmi & Bright, 2019; Sellers et al., 1986). 
Recently, Majasalmi and Bright (2019) revisited the values used by CLM5. They found that the optical properties 
in the visible band in the original CLM5 fell within the range of measured values, but those in the NIR bands 
were notably different from measured values. Measured leaf single scattering albedo (the sum of reflectance and 
transmittance) was more than 60% larger than CLM default values for conifer PFTs and more than 10% larger 
for broadleaf PFTs (Majasalmi & Bright, 2019). Using leaf and stem optical properties provided by Majasalmi 
and Bright (2019) instead of the default values induced notable difference in simulated SIF (kfit increased from 
0.93 to 1.01, Table 4). Besides, the PROSPECT model (Féret et al., 2017) used by SCOPE is more suitable for 
simulating leaf optical properties for broad leaves than for needles. In addition to the absence of stem in SCOPE, 
the difference between leaf optical properties simulated by SCOPE and that in CLM contributed to the large 
difference (around 35% in the growing season) in APAR and SIF simulated by the two models for the needleleaf 
US-NR1 site. With the availability of hyperspectral data from airborne and satellite missions (e.g., AVIRIS-NG, 
Surface Biology and Geology, and EnMap), the plant optical properties in future generations of models could be 
constrained by observed canopy reflectance.

Sensitivity analyses with SCOPE have shown that the sensitivity of simulated SIF to Vcmax is different when 
different models are used to simulate fluorescence yield (Verrelst et al., 2015). Variations in Vcmax contributed 
less than 2% variability of simulated SIF for the model we used (except for CLM5SP-exp8), while contributed 
around 10% variability for three other models (Verrelst et al., 2015). This difference can be mainly attributed to 
the difference in the calculation of KN in these models and is further discussed in Section 4.2. Consistent with 
Verrelst et al.  (2015), we only found a minor impact (less than 1.5% impact on fitted line between CLM5SP 
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SIF and GOME-2 SIF) of changing the default PFT-specific Vcmax values in CLM to those provided by Bonan 
et al. (2011) on SIF simulation (Table 4).

4.2. Uncertainties in SIF Simulations

We have shown that SIF simulated by CLM5SP-exp1 agreed well with SIF simulated by the widely used SCOPE 
model at sites except for US-NR1, but some discrepancies where found between model simulations and obser-
vations at both site-level and the global scale. Below we discuss the sources of uncertainty in SIF simulations.

First of all, the choice of fluorescence emission model has large impact on SIF simulation. Multiple models 
have been developed to simulate fluorescence yield at the photosystem-level (Bennett et al., 2018; Johnson & 
Berry, 2021; Lee et al., 2013; Porcar-Castell, 2011; van der Tol et al., 2014; Zaks et al., 2012). Most models 
focus on photosystem II or do not distinguish fluorescence emission from the two photosystems due to the lack 
of available data (Porcar-Castell et al., 2021; van der Tol et al., 2014). However, the distribution of fluorescence 
emission from the two photosystems is one of the challenges for interpreting and accurate simulating fluores-
cence emission (Porcar-Castell et al., 2021). Another source of uncertainty is from the modeling of NPQ (e.g., 
Equations 5d and 8 in Section 2.1.1), which is also the major difference between the models. NPQ is typically 
related to relative light saturation and the level of environmental stress. Various empirical relationships have 
been built based on measurements with different species and environmental settings (Lee et al., 2013; van der 
Tol et al., 2014). We found that the magnitude of CLM5SP simulated SIF was 17% smaller when KN was adapted 
to the drought data set (CLM5SP-exp8) compared with when it was adapted to the cotton data set (CLM5SP-
exp1). Some models further take into account slower changes in NPQ (sustained NPQ), which is important for 
temporal and boreal evergreen species (Raczka et al., 2019). Studies at US-NR1 have shown notable impact of 
the modeling of sustained NPQ on SIF simulated by LSMs for evergreen needleleaf forest (Parazoo et al., 2020; 
Raczka et al., 2019). At US-NR1, SIF simulated with the sustained NPQ formulation (CLM5SP-exp9) captured 
the seasonal day-to-day variation of tower SIF observation better than CLM5SP-exp1 (R 2 = 0.57, compared with 
R 2 = 0.12, Figure 3 and Figure S9 in Supporting Information S1). However, it is challenging to apply the models 
with sustained NPQ to larger scales as they rely on calibration with experimental data sets (Porcar-Castell, 2011; 
Raczka et al., 2019) and it is uncertain how the parameters vary spatially. As all the photosystem-level fluo-
rescence models were calibrated with limited measurements on only a handful of species, it is uncertain which 
model is more appropriate for global-scale simulations. Thus, there is a need for a more comprehensive data set 
of leaf-level measurements that covers various PFTs and different environmental conditions (Helm et al., 2020; 
Magney et al., 2017).

Another major source of uncertainty in SIF simulation is the fluorescence quantum efficiency (FQE) in models, 
which is linearly correlated with the absolute SIF value (Vilfan et al., 2016). A fixed FQE (i.e., the default value 
of 0.01) is usually used in SIF simulations. But studies have shown that using the fixed value can lead to system-
atic deviation in simulated SIF, and there can be a seasonal variation in FQE (Hu et al., 2018). So far, there are 
very few observational constraints on the magnitude and seasonal variations of FQE. Besides, there is uncertainty 
associated with the leaf-level fluorescence yield under dark-adapted condition 𝐴𝐴

(

Φ𝑓𝑓𝑜𝑜,740

)

 . In the SCOPE model, 
𝐴𝐴 Φ𝑓𝑓𝑜𝑜 is determined by leaf biochemical and biophysical parameters (e.g., leaf pigment content, water content, dry 

matter content, and leaf structure), FQE, and the spectral distribution function for fluorescence emission (Vilfan 
et al., 2016). Due to the absence of these parameters in CLM, we obtained an empirical 𝐴𝐴 Φ𝑓𝑓𝑜𝑜 using the LOPEX93 
data set and SCOPE simulations (Section 2.1.1). As there is limited observations of 𝐴𝐴 Φ𝑓𝑓𝑜𝑜,740 , it is uncertain whether 
the value is representative for various biomes. 𝐴𝐴 Φ𝑓𝑓𝑜𝑜,740 simulated by default SCOPE input is also lower than the 

𝐴𝐴 Φ𝑓𝑓𝑜𝑜,740 value we used for CLM simulations due to the deviation of leaf dry matter content in the LOPEX93 data 
set from the default value in SCOPE, contributing to the difference between Φf simulated by CLM and SCOPE 
(Figure S5 in Supporting Information S1).

In this study, the new spectral distribution of fluorescence emission calibrated with measurements from soybean 
leaves was used for SCOPE simulations and deriving 𝐴𝐴 Φ𝑓𝑓𝑜𝑜,740 as recommended by SCOPE v1.73 (van der Tol 
et al., 2019). This new spectral distribution function simulates SIF with spectral shape more in line with meas-
urements from soybean leaves and does not distinguish the two photosystems as the previous versions do 
(van der Tol et al., 2019). However, the change in spectral distribution also leads to 𝐴𝐴 Φ𝑓𝑓𝑜𝑜,740 around 30% higher 
than that simulated based on the previous version of spectral distribution function (Figure S13 in Supporting 
Information S1), and the magnitude of SIF simulation based on the new spectral shape has not been well evalu-
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ated (van der Tol et al., 2019). When the previous version of spectral distribution function was used, simulated 
SIF was more in line with tower observations compared with when the new version of spectral distribution 
function was used except at US-NE3 (Figure S13 in Supporting Information S1). For instance, simulated SIF 
was around 0.5 W⋅m −2⋅sr −1⋅μm −1 higher than tower observation at Pace Forest in peak growing season when the 
old spectral distribution function was used, while around 1.2 W⋅m −2⋅sr −1⋅μm −1 higher when the new version was 
used (Figure S13 in Supporting Information S1). More observations are needed to evaluate the FQE value and 
the spectral distribution of SIF emission.

Besides, LSMs cannot accurately represent all processes, and model parameterizations can be inaccurate. Thus, 
it is not expected that CLM SIF would perfectly match observed SIF even when the simulation of fluores-
cence yield and the observation of SIF is accurate. As biases are found in CLM5 GPP simulations (Lawrence 
et al., 2019), simulations of SIF, which is closely linked to GPP, can also be biased. On the other hand, models 
can get simulations close to observations for the wrong reason. Biases in SIF simulations are not necessarily 
bad as they open up windows for improving the models and using satellite observations to constrain model 
simulations of SIF and GPP. As discussed in Section 4.4, inaccurate model parameterizations (e.g., LAI and 
leaf angle distribution) likely caused some biases in SIF simulation. The lower correlation between CLM5BGC 
SIF and GOME-2 SIF compared with the correlation between CLM5SP SIF and GOME-2 SIF (Table 4) may 
also indicate that the larger uncertainty in the fully prognostic CLM5BGC (e.g., in simulation of LAI) could 
lead to larger uncertainty in SIF simulation. The accuracy of the land cover data prescribed for CLM5SP or 
simulated by CLM5BGC can also affect SIF simulation. Besides, there is no seasonal or interannual variation 
of leaf optical properties and leaf angle distribution in CLM5SP and CLM5BGC and no interannual variation 
of LAI in CLM5SP, which may introduce errors in SIF simulation. Ground-based measurements of the season-
ality of leaf optical properties are needed but have rarely been collected (X. Yang et al., 2016). Future satellite 
observations from the Surface Biology and Geology mission can provide canopy spectra at a temporal resolu-
tion of around 16 days and may be used for parameterization in models. Furthermore, a more complex canopy 
representation can improve model performance. Considering a multilayer canopy as opposed to a one-layer 
canopy with sunlit and shaded leaves (as used by CLM5) has been shown to improve the simulation of canopy 
fluxes (Bonan et al., 2018, 2021; Wang & Frankenberg, 2021). And, simpler canopy representations in models 
can overestimate SIF according to simulations by P. Yang, Verhoef, and van der Tol  (2017) and Wang and 
Frankenberg (2021).

4.3. Uncertainties in Satellite SIF Products

Uncertainties in satellite SIF products should also be taken into account when comparing model simulated SIF 
and satellite SIF products. While multiple SIF products have been produced with measurements from different 
satellites, substantial discrepancies across products have been observed (Parazoo et al., 2019). The discrepan-
cies can be attributed to differences in sensor characteristics and retrieval algorithms (Parazoo et al., 2019). For 
instance, OCO-2 and GOSAT SIF are higher compared with GOME-2 SIF in the pan-tropics (Sun et al., 2018), 
and GOME-2 SIF produced with different retrieval algorithms reveals a difference in magnitude of up to a factor 
of 2 (Parazoo et al., 2019). Our results also showed different biases in CLM5SP-exp1 SIF when compared with 
different SIF products (Table 4). CLM5SP-exp1 SIF agreed better with GOME-2 SIF and TROPOMI SIF than 
with OCO-2 SIF in terms of magnitude (note that OCO-2 SIF and TROPOMI SIF were from different years 
compared with CLM SIF). Another uncertainty associated with OCO-2 SIF is that the original OCO-2 product 
is SIF retrieved at 757 nm and it was converted to 740 nm with a factor of 1.56 according to Köhler et al. (2018) 
for the comparison with CLM SIF. However, while multiple studies have made conversions between satellite 
observed SIF at 757 nm and at 740 nm, there is no consensus on the conversion factor: the ratio between SIF at 
740 nm and at 757 nm used ranges from 1.50 to 1.69 (Köhler et al., 2018; Parazoo et al., 2019; Sun et al., 2018). 
Moreover, while satellite products are TOC SIF, most of these conversion factors were derived from leaf-level 
measurements and thus do not account for the canopy-scale scattering and reabsorption. Considering that reab-
sorption is stronger at 740 nm than at 757 nm, the conversion factor at the canopy scale may be lower than the 
reported leaf-level factors. The conversion factor may also vary spatially and temporally due to variations of 
canopy structure and leaf biochemical and biophysical properties. The illumination conditions for CLM simula-
tions and satellite observations are also not identical, as all satellite SIF products applied cloud filtering while no 
filter was applied to CLM simulations based on illumination conditions (Zhang et al., 2020). This can contrib-
ute to discrepancies between simulated and observed SIF and lead to clear-sky bias when linking satellite SIF 
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observation with GPP. Filtering simulations based on cloud condition may improve the comparison between 
simulations and observations and the assimilation of observed SIF. And, the clear-sky bias can be mitigated by 
applying corrections to SIF simulations (Hu et al., 2021; Zhang et al., 2020). The spatial resolutions are also 
different between the satellite SIF products and CLM simulations, and may affect the simulation-observation 
comparisons.

4.4. Analysis for Different PFTs

The agreement between SIF simulations and observations varied depending on the PFT and the types of models 
and observations. At sites where tower SIF was measured from broadleaf deciduous temperate tree (Pace Forest 
and Harvard Forest), SIF simulated by CLM5SP-exp1 generally matched that simulated by SCOPE (R 2 > 0.98, 
RMSE < 0.13 W⋅m −2⋅sr −1⋅μm −1, Figures 3a–3f). However, the models overestimated SIF at site level compared 
with tower and satellite observations, while CLM5SP-exp1 slightly underestimated SIF for broadleaf deciduous 
temperate tree at the global scale (Figures 3a, 3d and 6). Further investigation is needed to determine the cause of 
the discrepancies between simulated and observed SIF. Some potential factors include: the discrepancy between 
the footprints of the tower-based observations and CLM, resulting in a wide range of mismatch (e.g., MODIS 
LAI and LAI in the field of view of SIF sensor at the towers); uncertainties in fluorescence emission model (as 
described in Section 4.2); the lack of seasonality in leaf optical properties in the models; and the absence of some 
key parameters affecting SIF simulations such as chlorophyll content in CLM (Verrelst et al., 2015). Besides the 
above-mentioned factors, the different performance of simulation at the sites and at the global scale might relate 
to the different locations of the sites and the pixels used for global-scale analysis: while there was only deciduous 
trees in the field of view of the SIF sensors, the sites locate in mixed forests; however, only 11 pixels dominated 
by broadleaf deciduous temperate tree were used for the global-scale analysis (Figure 6).

At the subalpine needleleaf evergreen forest site (US-NR1), SIF simulated by CLM5SP-exp1 was lower than 
that simulated by SCOPE while higher than that observed at the tower (Figures 3g–3i), which is consistent with 
previous studies at the site (Parazoo et al., 2020; Raczka et al., 2019). As discussed in Parazoo et al. (2020) and 
Raczka et al. (2019), various factors related to models and observations can lead to the discrepancy. Specifically, 
the smaller seasonal variation of simulated SIF compared with observed SIF can possibly be explained by the 
absence of sustained NPQ in the fluorescence model. With sustained NPQ incorporated into CLM5SP according 
to Raczka et al. (2019), CLM5SP-exp9 captured the day-to-day variation of tower-observed SIF throughout the 
year (R 2 = 0.57; Figures S8 and S9 in Supporting Information S1). At the global scale, CLM5SP-exp1 consist-
ently overestimated SIF throughout the year for needleleaf evergreen boreal tree, while CLM5BGC-exp1 simu-
lated similar multi-year average SIF as observed by GOME-2 but with smaller seasonal variation (Figure 6b). The 
large difference between SIF simulated by CLM5SP-exp1 and CLM5BGC-exp1 can be attributed to the differ-
ence between prescribed LAI used by CLM5SP and prognostic LAI simulated by CLM5BGC, neither of which 
captured the magnitude and seasonal variation of MODIS LAI (Figure S15a in Supporting Information S1). The 
smaller seasonal variation of SIF simulated by CLM5BGC can also possibly be explained by the absence of 
sustained NPQ in the fluorescence model (Raczka et al., 2019).

CLM simulations underestimated SIF in cropland during the peak growing season at both site-level and the global 
scale (Figures 3j and 6d). While both CLM5SP-exp1 and CLM5BGC-exp1 underestimated SIF, the reasons for 
the underestimation may be different. CLM5SP uses prescribed LAI and does not account for any management 
or crop-specific phenology and allocation. The underestimation of CLM5SP SIF might have resulted from inac-
curate parameterizations of LAI and LAD for crop. The peak growing season LAI used by CLM5SP for cropland 
in the United States was below 2.5  m 2⋅m −2 and relatively close to MODIS LAI (Figure S15b in Supporting 
Information S1). However, it has been shown that the peak growing season LAI should be around 5 m 2⋅m −2 
in the U.S. corn belt and that traditional LAI products (e.g., MODIS LAI) significantly underestimated LAI 
in this region (Kimm et  al.,  2020). For US-NE3, the peak LAI value from MODIS is 3 m 2⋅m −2, while field 
measurements showed a peak LAI around 4 m 2⋅m −2 (Peng et al., 2018). Besides, the mean leaf zenith angle for 
crop was set to 70° in CLM5SP, which might be too vertically oriented (Ku et al., 2010; Rosa & Forseth, 1996; 
Ross, 1981). In the global scale CLM5SP-exp1 simulation, all crop was assumed to be C3 as default, which 
can also lead to inaccurate simulations. For simulation at US-NE3, the photosynthetic pathway was set to be 
C4 for maize. For CLM5BGC, explicit crop types and management are considered, and LAI is prognostic. LAI 
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simulated by CLM5BGC was higher than that from CLM5SP and MODIS (with a peak growing season value of 
4.4 m 2⋅m −2, Figure S15 in Supporting Information S1), and may be closer to the truth. The underestimation of 
SIF by CLM5BGC may result from the LAD assigned to the relevant crop functional types. For both maize and 
soybean, the two major crop functional types in the U.S., mean leaf zenith angles were assigned to be 75°, which 
indicates even more vertical leaves than those in default CLM5SP. Using more realistic LAD would likely bring 
CLM5BGC SIF closer to observed values.

CLM5SIF-exp1 simulation generally matched SCOPE simulation at the tropical evergreen forest site BR-Sa1 
(R 2 > 0.91, RMSE < 0.19 W⋅m −2⋅sr −1⋅μm −1, Figures 3m and 3n), but both models simulated higher SIF compared 
with GOME-2 observation (Figure 3m). Simulations of SIF by CLM5SP-exp1 and CLM5BGC-exp1 were similar 
for broadleaf evergreen tropical tree throughout the year, and both overestimated SIF as compared with GOME-2 
observations (Figure 6c). Previous studies have noted the challenges of accurately simulating biological processes 
in tropical regions in LSMs (Christoffersen et al., 2014; Wu et al., 2016). Besides, one study found that OCO-2 
and GOSAT SIF products had higher values in the pan-tropics compared with GOME-2 SIF (Sun et al., 2018), 
highlighting that the satellite estimates of SIF also vary in this region. CLM5SP SIF compared better with OCO-2 
SIF in the tropics (relative error ∼10% in Figure S11 in Supporting Information  S1 as opposed to ∼30% in 
Figure 6c).

4.5. Limitations and Future Directions

Besides improvements in CLM parameterizations (e.g., for LAI and leaf angle distribution), CLM SIF simulation 
may be improved by: (a) improving the simulation of photosystem-level fluorescence yield, especially the mode-
ling of NPQ, based on more advanced models and/or more comprehensive calibration data sets; (b) considering 
the variation of dark-adapted leaf-level fluorescence yield 𝐴𝐴

(

Φ𝑓𝑓𝑜𝑜,740

)

 with PFT and season; (c) incorporating SIF 
simulation for arbitrary viewing direction so that model simulations can be compared with measurements from 
different viewing angles (e.g., measurements from the OCO-2 glint mode and the edge of swath of GOME-2 and 
TROPOMI measurements); (d) adding an additional band (740 nm or 757 nm) in the model for SIF simulation, 
thus eliminating the impact of the difference between leaf optical properties at the certain wavelength and at the 
NIR band on simulation of SIF radiative transfer. In addition, further investigation on the response of SIF and 
GPP to stress and more evaluation of SIF simulations with tower-based SIF observations are needed (H. Yang, 
Yang, et al., 2017; X. Yang et al., 2018; Magney, Bowling, et al., 2019; Miao et al., 2018; Helm et al., 2020; Marrs 
et al., 2020).

A potential of the model we developed is to constrain the simulation of photosynthesis in LSMs by assimilating 
satellite SIF observations. As the response of SIF and GPP to stress may be different (He et al., 2020; Helm 
et al., 2020; Marrs et al., 2020) and there is uncertainty in the fluorescence yield model, there may be cases where 
biases in GPP simulation do not lead to biases in SIF simulation, and vice versa. Thus, caution needs to be taken 
when assuming SIF-GPP relationship at small spatial and temporal scales. However, robust linear relationships 
between SIF and GPP has been found at larger spatial and temporal scales (Lee et al., 2013; Li et al., 2018; Miao 
et al., 2018; Magney, Bowling, et al., 2019; Magney et al., 2020; X. Yang et al., 2015). Several studies have 
demonstrated the potential of constraining GPP simulation with satellite SIF observations: MacBean et al. (2018) 
assumed a biome-specific linear relationship between SIF and GPP and showed that model estimation of global 
GPP became more in line with flux tower-based GPP when satellite SIF was used to constrain the model. Norton 
et al. (2018) conducted an error propagation study and showed that parametric uncertainty in modeled global 
annual GPP could be reduced by 73% from ±19.0 PgC⋅yr −1to ±5.2 PgC⋅yr −1 with data assimilation. Bacour 
et al. (2019) assimilated OCO-2 SIF product to constrain ORCHIDEE, and found that the optimized GPP budget 
agreed well with independent flux tower-based GPP products. Our model will further enhance the capability to 
use satellite SIF observations to constrain the simulation of GPP, as simulated and observed SIF can be better 
compared with a more mechanistic method applied to upscale leaf-level SIF to TOC nadir SIF. It is also expected 
that GPP simulations can be better constrained by using both SIF and other remote sensing products, such as 
LAI, fraction of absorbed PAR, NIRv, and fesc. Recently, advances have been made in harmonizing SIF products 
from multiple satellites and generating long-term, high spatial-resolution global SIF products (Li & Xiao, 2019; 
Parazoo et al., 2019; Wen et al., 2020). These products may also benefit the potential application of our model on 
the evaluation of GPP simulation and on data assimilation.
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5. Conclusions
We developed a scheme to incorporate the simulation of TOC nadir SIF at 740 nm into CLM5. Compared with 
previous modeling approaches, our approach takes canopy clumping and key radiative transfer processes into 
account and enables more robust comparison between simulated and satellite-observed SIF. SIF simulated by 
CLM5 agreed well with SIF simulated by the SCOPE model at the temperate forest, cropland, and tropical forest 
sites, and generally captured the spatial and seasonal patterns of satellite observed SIF. PFT-dependent discrep-
ancies where found between the magnitudes of simulated and observed SIF at both site-level and the global 
scale, which may associate with inaccurate parameterizations of the fluorescence emission model and canopy 
properties. Our findings suggested that the fluorescence emission model, canopy clumping, the bidirectional 
effect, and model parameterizations (leaf optical properties, LAI, leaf angle distribution) can significantly affect 
SIF simulation and should thus be properly taken into account. By providing improved representation of radiative 
transfer for SIF simulation, our model provides LSM SIF simulation that can be better compared with satellite 
observations, and can serve as an important step toward the use of satellite SIF observations for constraining and 
evaluating GPP modeling.

Data Availability Statement
Code and results for CLM5 SIF simulations are available at https://doi.org/10.5281/zenodo.6301355. GOME-2 
SIF data is available at https://avdc.gsfc.nasa.gov/pub/data/satellite/MetOp/GOME_F/; TROPOMI and OCO-2 
SIF data are available at ftp://fluo.gps.caltech.edu/data. SIF observation at Harvard forest is available at https://doi.
org/10.6073/pasta/99c883ee28987ac32a98d621c7ec3bb6. SIF observation at US-NR1 is available at https://doi.
org/10.22002/D1.1231. SIF observation at US-NE3 is available at https://doi.org/10.13012/B2IDB-5893373_V1.
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