
UC Santa Barbara
UC Santa Barbara Previously Published Works

Title
Truncated ternary multipliers

Permalink
https://escholarship.org/uc/item/12p4f7b8

Journal
IET Computers & Digital Techniques, 9(2)

ISSN
1350-2387

Author
Parhami, Behrooz

Publication Date
2015-03-01

DOI
10.1049/iet-cdt.2013.0133

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/12p4f7b8
https://escholarship.org
http://www.cdlib.org/

www.ietdl.org

IE

d

Published in IET Computers & Digital Techniques
Received on 12th September 2013
Revised on 19th June 2014
Accepted on 29th July 2014
doi: 10.1049/iet-cdt.2013.0133
T Comput. Digit. Tech., 2015, Vol. 9, Iss. 2, pp. 101–105
oi: 10.1049/iet-cdt.2013.0133
ISSN 1751-8601
Truncated ternary multipliers
Behrooz Parhami

Department of Electrical and Computer Engineering, University of California, Santa Barbara, CA 93106-9560, USA

E-mail: parhami@ece.ucsb.edu

Abstract: Balanced ternary number representation and arithmetic, based on the symmetric radix-3 digit set {−1, 0, +1}, has been
studied at various times in the history of computing. Among established advantages of balanced ternary arithmetic are
representational symmetry, favourable error characteristics and rounding by truncation. In this study, we show an additional
advantage: that of lower-error truncated multiplication with the same relative cost reduction as in truncated binary multipliers.
1 Introduction

Binary, and more generally radix-2h, arithmetic is
predominant in digital systems, to the extent that we seldom
question its superiority or optimality. Decimal arithmetic,
which until recently was mostly implemented by means of
software, has emerged as a candidate for hardware
realisation, with a variety of proposed representations,
algorithms and design methods [1]. Radices other than
2h and 10 have been mostly ignored.
Early in the history of electronic computers, the choice of

number representation radix was given much attention, with
the binary system prevailing at the end [2, 3]. Historically,
ternary (radix-3) representation came quite close to being
chosen over binary as the preferred method, eventually
losing by a narrow margin. It was argued that under some
fairly realistic assumptions about circuit cost and latency,
the radix 3 is closer to the theoretically optimal radix e than
any other integer radix. However, practical engineering
considerations favoured radix-2 over radix-3 [4].
Despite the negative outcome above, the Setun computer,

working with balanced ternary arithmetic, was built in 1958
at Moscow State University and found to be quite usable
and competitive [5]. The TERNAC computer [6],
implemented at State University of New York, Buffalo in
1973, emulated ternary arithmetic operations by representing
each ternary number as two binary numbers, one positive
and the other negative. Other ternary arithmetic systems and
projects, in simple or extended form, have appeared [7–11].
Most such proposals envisage multivalued signals to encode
the digit values in balanced or standard ternary.
Unfortunately, multivalued signalling and logic, extensively
studied within a research community with conferences and a
specialised journal, and practically available for decades, has
proven uncompetitive in most instances.
The history of a balanced ternary number system and

arithmetic goes further back than the efforts just cited. In
1820, John Leslie [12] presented methods for computing in
any radix, with an arbitrary digit set. Two decades later,
Augustin Cauchy discussed signed-digit numbers in various
bases and Leon Lalanne followed by expounding on the
virtues of balanced ternary numbers. In 1840, Thomas
Fowler (1777–1843), a contemporary of Charles Babbage,
chose balanced ternary to build his calculating machine in
England [13].
A balanced ternary fraction x = (x−1 x−2… x−k)three, with

each xi being from the digit set {−1, 0, +1}, denotes the
value Σ−k≤ i≤− 1 xi3

i. Values of such k-digit fractions go
from −(1 − 3–k)/2 to (1 − 3–k)/2, a fully symmetric range
approximated by (−0.5, 0.5). Negation, or change of sign,
is a digit-wise operation. Addition of balanced ternary digits
produces a sum and a carry, both of which are of the same
kind. The product of two such digits is similarly a balanced
ternary digit. Thus, ternary arithmetic produces block
diagrams that are identical to the corresponding binary
operations: only circuit-level details within digit-operators
change. Balanced ternary arithmetic has favourable error
characteristics compared with binary. Chopping produces a
maximum error of <1/2 ulp (where ‘ulp’, or ‘unit in least
position’, is r−k when we keep k fractional digits in radix-r
representation), leading to simplified rounding in
floating-point arithmetic.
The foregoing history and list of advantages provide

motivation for investigating other potential benefits of
balanced ternary arithmetic. In this paper, we expose one
such advantage in performing truncated multiplication.
Before proceeding with the main topic of truncated

multiplication, we should note that the implementation of
radix-3 arithmetic with its three-valued digits does not
necessarily entail using ternary logic [14], in the same way
that decimal or other higher-radix arithmetic systems do not
necessitate the use of ten-valued or other non-standard
signalling and logic devices. Even though ternary logic is a
good match to the digit set used in balanced ternary
arithmetic, implementations with binary logic are likely to
be more practical and cost-effective in the near future.
Research on ternary logic has subsided since its peak in the
1980s, which included the study of low-power metal-oxide
semiconductor (MOS) variants [15], but there has been a
steady stream of new results over the past three decades,
101
& The Institution of Engineering and Technology 2015

www.ietdl.org

both with mature IC technologies (e.g. [16]) and with less
conventional and emerging nanotechnologies (e.g. [17]).

2 Truncated binary multiplication

Array and tree multipliers for k-bit fractional operands x and y
typically begin by generating the k2 bitwise product terms xiyj
and then proceed to compress these bits into two rows of bits
(carry-save result) for final processing by a carry-propagate
adder [18]. The final exact result is a 2k-bit fraction. If we
need a k-bit fraction as the final product, as is the case in
many signal processing applications, then the 2k-bit result
can be rounded to a k-bit result to obtain the most precise
possible k-bit value. Alternatively, if a slight error in the
final k-bit product is tolerable, some of the discarded k bits
at the lower end of the exact 2k-bit result can be ignored
(not produced) to save on the compression and final
addition costs [19]. This strategy often reduces latency and
power dissipation as well [20].
Referring to Fig. 1, which depicts an 8 × 8 fractional binary

multiplication, we note that up to half of the bitwise product
terms to the right of the grey vertical line can be dropped at
the cost of a few ulps of error in the final result. If we
simply do not produce those dots, that are collectively
worth 8 ulp/2 + 7 ulp/4 + 6 ulp/8 + 5 ulp/16 + 4 ulp/32 + 3
ulp/64 + 2 ulp/128 + ulp/256 = 7.004 ulp, we can reduce the
cost, latency and power requirements of the multiplier at the
expense of losing <4 bits of precision in the worst case.
The expected error would be about 7.004/4 ulp = 1.751 ulp,
a precision loss of a tad under 2 bits.
More generally, for a k × k fractional multiplication, with

the partial product terms truncated after position −k, the
maximum error εmax, in units of ulp, is

1max = k/2+ (k − 1)/22 + (k − 2)/23 + · · · + 1/2k

= k 1/2+ 1/22 + 1/23 + · · · + 1/2k
()

− (1/4) 1+ 2/2+ 3/22 + · · · + (k − 1)/2k−2[]

Instead of evaluating the expression above, it is easier for our
needs later in this paper to evaluate the more general radix-r
version, where the maximum magnitude of a dropped dot is
m, and then setting r = 2 and m = 1.

1max = m k/r + (k − 1)/r2 + (k − 2)/r3 + · · · + 1/rk
[]

= mk 1/r + 1/r2 + 1/r3 + · · · + 1/rk
[]

− (m/r2) 1+ 2/r + 3/r2 + · · · + (k − 1)/rk−2[]
Fig. 1 Truncated 8 × 8 binary multiplication

102
& The Institution of Engineering and Technology 2015
Denoting 1/r by z, the sums within square brackets can be
replaced by their closed-form equivalents

z+ z2 + z3 + · · · + zk = z(1− zk)/(1− z)

1+ 2z+ 3z2 + · · · + (k − 1)zk−2

= d z+ z2 + z3 + · · · + zk−1[]
/dz

= d z(1− zk−1)/(1− z)
[]

/dz

= 1+ (k − 1)zk − kzk−1[]
/(1− z)2

Substituting the closed-form expressions above, with z
replaced by 1/r, we can simplify εmax to

1max = m k/(r − 1)− 1/(r − 1)2 + r−k/(r − 1)2
[]

(∗)

For binary arithmetic, we have r = 2 and m = 1, leading to the
following special case of (*), again in units of ulp

1max(r:2, c:0) = k − 1+ 2−k

The notation ‘c:0’ in the preceding equation means that no
column to the right of the ulp column is formed or
evaluated in the truncated multiplier.
The preceding result shows that the maximum error for

truncated binary multiplication is ∼k− 1, when k is
relatively large, and that for k = 8, the max-error expression
evaluates to 8− 1 + 2−8 = 7.004 ulp (0.02736 in absolute
terms), matching our earlier result.
Instead of dropping all dots to the right of the ulp column,

we can keep a few columns and drop the rest, in an effort to
reduce the amount of error at the expense of more hardware/
energy and greater latency. For example, if we keep only the
ulp/2 column and drop the rest, the previously calculated
worst-case error is reduced by k/2 ulp, but then we incur an
error of up to ulp/2 when we round off the additional
product bit produced past the ulp column to derive the final
k-bit result. Thus, the max error in this case is about half
the previous value

1max(r:2, c:1)= k − 1+ 2−k − k/2+ 1/2= (k − 1)/2+ 2−k

For the preceding example, the maximum error is 3.504 ulp
for k = 8. This represents a loss of about 2 bits in precision.
The average error in this case is 3.504/4 ulp = 0.851 ulp, a
tad <1 bit loss in precision. The effect of the average or
maximum error on computation results is
application-dependent and has been studied by various
researchers in different application contexts [21–23]. An
alternative is to use fixed error compensation to transform
an asymmetric error range [0, ε] to a nearly symmetric
range [−γ, ε− γ], where the worst-case error magnitude is
max(γ, ε− γ), or to use variable compensation to reduce the
error even further. We will discuss these approaches after
discussing ternary multiplication.

3 Truncated ternary multiplication

In discussing ternary arithmetic, we opt to represent the three
digit values as N(−1), Z(0), and P(+1) to distinguish digit
values from possible encodings of these values, which may
involve the use of posibits in {0, 1} and negabits in {−1,
0} [24]. Thus, whereas −1 is one of the two possible values
IET Comput. Digit. Tech., 2015, Vol. 9, Iss. 2, pp. 101–105
doi: 10.1049/iet-cdt.2013.0133

www.ietdl.org

of a single negabit, the ternary digit N may have a 2-bit
encoding consisting of a negabit and a posibit. Using the
negabit/posibit scheme, N will be encoded as 10, Z as 00 or
11 and P as 01.
Given that the product of two balanced ternary digits is a

balanced ternary digit (Fig. 2), the multiplication dot
diagram in Fig. 1 remains valid for balanced ternary
multiplication. In fact, the balanced ternary number system
is the only non-binary representation for which the
preceding statement can be made.
If we simply do not produce the dots to the right of the grey

vertical line, that are collectively worth no more than 8 ulp/3
+ 7 ulp/9 + 6 ulp/27 + 5 ulp/81 + 4 ulp/243 + 3 ulp/729 + 2
ulp/2187 + ulp/6561 = 3.750 ulp in magnitude, we can
reduce the cost, latency and power requirements of the
multiplier at the expense of losing the equivalent of about 3
bits of precision in the worst case. Thus, the error because
of truncation is in [−3.750, 3.750] ulp, having the expected
or mean value 0.
More generally, for a k′ × k′ fractional multiplication

truncated after the k′th position, the maximum error
magnitude, in units of ulp, is obtained from (*) as

1max(r:3, c:0) = k ′/2− 1/4+ 3−k ′/4

We have used k′ instead of k to denote the number of radix-3
digits to account for the fact that, with comparable dynamic
ranges, radix-2 and radix-3 representations possess different
widths; more on this point later.
The result above shows that the maximum error is ∼k′/2−

1/4 ulp when k′ is relatively large and that for k′ = 8, the
max-error expression evaluates to 8/2− 1/4 + 3−8 = 3.750,
matching our earlier result.
Instead of dropping all the dots appearing to the right of

the ulp column, we can keep a few columns and drop the
rest to reduce the amount of error at the cost of more
hardware and greater latency. For example, if we keep
only the ulp/3 column and drop the rest, the previously
calculated worst-case error is reduced by k/3 ulp, but then
we incur an error of up to ulp/2 when we round off the
additional product bit produced past the ulp column.
Thus, the max error in this case is about one-third of the
previous value

1max(r:3, c:1) = k ′/6+ 1/4+ 2−k ′

This error is 1.587 ulp for k′ = 8. This represents a loss that is
less than the equivalent of 2 bits in precision. The average
error in this case is still 0, given that both the values
dropped and the rounding error are symmetric.

4 Error compensation

In the case of truncated binary multiplication, the error is
uniformly negative, because the dropped bits make the
Fig. 2 Truth table for balanced ternary multiplication

IET Comput. Digit. Tech., 2015, Vol. 9, Iss. 2, pp. 101–105
doi: 10.1049/iet-cdt.2013.0133
result smaller. Referring to the truncated multiplication of
Fig. 1 with worst-case error of εmax (r:2, c:0) = 7.004 ulp,
adding 4 ulp to the result, via inserting a constant ‘1’ in the
column of weight 4 ulp, modifies the error to fall in the
range [−3.004, 4.000], which has a 75.1% smaller
worst-case magnitude. This is an example of constant error
compensation [25].
In the previous example, the error compensation consisted

of inserting a single bit in the partial-product matrix, thus
having a negligible impact on cost and speed. The error
compensation constant 3.5 ulp, or 11.1 ulp in binary, would
make the final error more symmetric but it requires the
insertion of 3 bits, including a bit in the position just past
the least-significant bit, a position not being formed in this
particular example. The point is that reduction of error
comes with non-trivial costs in terms of circuit complexity
and latency, which must be carefully weighed against the
gain in accuracy.
A number of variable error compensation methods have

also been considered in which the compensation varies
according to some of the operand bits, making the
compensation adaptive and the final error smaller [26–32].
Variable compensation often entails analysing average or
mean-square error, rather than maximum or worst-case
error. The latter approach to reducing the expected error
is acceptable in some applications but may create
problems in others. It is possible to base variable
compensating term(s) on the worst-case error, but there is
no simple procedure or algorithm, other than an
exhaustive analysis, to determine the compensation term
(s). It is worth noting that the area cost, latency and
energy penalty for variable compensation methods
increases with a reduction of the target error and tends to
be greater if fully symmetric errors are desired.
In balanced ternary truncated multipliers, constant error

compensation does not make sense because the error is
already symmetric. Variable compensation, however, can be
helpful if the compensation value is of the opposite sign of
the prevailing error. Unlike the binary case, however, such
a compensation scheme cannot be based on a small, fixed
number of digits in the two operands. Intuitively, this is
because positive digits when multiplied by negative digits
produce negative digits. Thus, positive high-order digits in
one operand provide no clue as to the signs of the product
digits to be dropped.
Take the MSDs x−1 and y−1 of the two operands, for

example. In truncated binary multiplication, the values of
x−1 and y−1 are correlated with the density of 1s in the
truncated portion, enabling the designer to insert x−1 and/or
y−1 in appropriate columns to (partially) compensate for the
dropped value. In truncated ternary multiplication, it is
quite possible for the dropped value to be negative despite
both x−1 and y−1 being Ps. So, neither the values of the
MSDs nor the signs of the operands can be used to predict
the sign of the error.
For the 4 × 4 truncated ternary multiplication of Fig. 3, in

which x−1 = y−1 = P, the total worth of the dropped bits is
negative: (−4)3−1 + (−1)3−2 + (+1)3−4 ulp =−1.432 ulp.
This is only slightly less than the maximum possible
negative error −(k/2− 1/4 + 3−k/4) =−1.753 ulp. We thus
conclude that the signs of MSDs in the two operands, or
the signs of the operands themselves, cannot be used to
predict the direction of the error resulting from truncation.
As a result, variable compensation schemes for ternary
multiplication are likely to be more involved than in the
binary case.
103
& The Institution of Engineering and Technology 2015

Table 1 Maximum error values for radices 2–10

r k″ εmax 106δmax

2 16.000 15.000 228.9
3 10.095 4.798 73.2
4 8.000 10.222 156.0
5 6.891 6.641 101.3
6 6.190 10.782 164.4
7 5.699 8.299 126.7
8 5.333 11.863 181.1
9 5.047 9.844 150.3
10 4.816 13.069 199.6Fig. 3 Example truncated 4 × 4 ternary multiplication

www.ietdl.org
5 Generalisation and discussion

Our study of truncated ternary multiplication has revealed yet
another advantage of balanced ternary number representation
and arithmetic: that of smaller and symmetric error in
truncated multipliers. The error reduction, which is
comparable with the amount provided by compensation
schemes in truncated binary multipliers, is achieved at no
added cost, latency or power.
One may think that the advantage arises from the higher

radix and is not specific to balanced ternary representation.
To show that such a supposition is false, we consider the
(nearly) balanced radix-r digit set [1− r/2, r/2] if r is even
and [(1− r)/2, (r− 1)/2] if r is odd. The magnitude of the
product of two digits will reach the maximum value r2/4
and (r− 1)2/4 in the two cases, respectively. Substituting in
(*), we obtain the following radix-r error in units of ulp

1max(r,c:0)= [r2/(r−1)2][k ′′(r−1)−1+r−k′′]/4, if r is even

1max(r,c:0)= [k ′′(r−1)−1+r−k ′′]/4, if r is odd

Again, the use of k″ in lieu of k in radix-2 and k′ in radix-3 is
to remind us of the fact that the number width depends on r.
We see that the error in units of ulp increases nearly

linearly with the radix-r. However, given that k″ and thus
ulp = r−k″ changes with the radix, it is more appropriate to
compare the absolute errors δmax(r, c:0), given by

dmax(r, c:0) = 1max(r, c:0)r
−k ′′

A final observation to allow us to numerically compare
absolute errors is that the number k″ of digits in radix-r is
related to the number k of digits in radix-2 by

k ′′ = k(ln 2/ ln r) = 0.693k/ ln r

Putting the last four equations together, we tabulate the
worst-case magnitude of the absolute error for radices 2
through 10 for k = 16 in Table 1. We note that the
maximum error grows as the radix is increased, with odd
radices always being better than the adjacent even radices.
The error advantage of odd radices arises from a smaller
maximum product m, as evident from the two equations for
εmax for even and odd radices. An earlier version of this
paper also included comparisons with k″ (usually not an
integer) rounded to the nearest integer. However, given that
such comparisons between representations of different
precisions is unfair as well as misleading (because of the
more or less random rounding directions and errors for
various values of k), these comparisons were dropped in the
final version at the suggestion of the referees. It is hoped
that a more detailed comparative study can be conducted in
104
& The Institution of Engineering and Technology 2015
future to further understanding of the relative merits of
various radices and associated digit sets in designing
truncated multipliers.
The analysis presented so far and reflected in the results of

Table 1 is admittedly quite primitive, because it takes only the
maximum error into account. However, unless cost proves to
be a highly non-linear function of the dynamic range, our
conclusions should be safe.
We next present an approximate analysis that shows the

cost and delay of a multiplier with operands in a desired
dynamic range to be increasing functions of the radix-r.
This fact, along with the error results of Table 1, suggests
that there is no point in going beyond r = 3, given increases
in error, cost and delay. Binary multipliers used in practice
have circuit complexity on the order of k2, or O(k2) in
complexity theory notation. Asymptotically faster multiplier
designs are known [18], but the constants hidden by the
asymptotic notation make them impractical for
run-of-the-mill multipliers. Their advantages begin to show
up for operands that are hundreds of bits wide, where
truncation schemes do not make sense. In going from k-bit
radix-2 to k″-bit radix-r operands, the cost of forming the
partial products remains virtually the same, as the reduced
value of k″2 relative to k2 is wiped out by the increase of
the complexity of digit multiplication circuitry from 1
(a single AND gate in radix-2) to O(log2 r) =O(k″2/k2),
where log r is the number of bits in the binary
representation of a radix-r digit. The rest of the process,
that is, the compression of partial-product bits, increases in
complexity, except in radix-3 with a symmetric digit set,
and in delay, because the product of two radix-r digits,
being two digits wide, doubles the height of the matrix to
be compressed [18].
Based on the foregoing discussion, the fact that balanced

ternary arithmetic offers advantages over both r = 2 and r > 3
is evident from Table 1. Looking at the δmax values in the
last column, which are better indicators of merit than εmax

(stated in units of ulp), we see a factor of 228.9/73.2 = 3.13
improvement in error over radix-2 and a factor of 101.3/73.2
= 1.38 improvement over the next best high-radix truncated
multipliers. Even though one would not choose ternary
arithmetic based solely on advantages in truncated
multiplication, this additional benefit is significant and
should be considered in future research on high-radix
arithmetic.
6 Conclusions

A number of advantages of radix-3 arithmetic have been
discovered and explored over the years, including smaller
and symmetric computation errors and ease of rounding.
IET Comput. Digit. Tech., 2015, Vol. 9, Iss. 2, pp. 101–105
doi: 10.1049/iet-cdt.2013.0133

www.ietdl.org

We have pointed out an additional advantage of balanced
ternary arithmetic over other radices, including the
prevalent binary representation, in the design of truncated
multipliers, making it even more attractive for low-cost and/
or low-energy application domains.
One complication with ternary arithmetic arises from the

fact that the sign of a balanced ternary number depends on
all of its digits in the worst case (leading 0s must be
ignored and the sign of the first non-zero digit taken as the
number’s sign). However, circuits and design methods
developed in connection with binary signed-digit numbers
[33] can be adapted for this purpose.
We have not offered any hardware implementation or exact

cost/latency modelling in this paper. One reason is that
implementations can be quite varied, with various
organisational choices influenced by technology (binary
against multivalued logic) as well as application
requirements and characteristics. We hope to be able to
report on hardware implementation and modelling in the
near future, beginning with gate- and transistor-level
combinatorial models of the kind used by Acharyya et al.
[34]. Over time, combined cost/latency/accuracy/energy
models will be developed to allow design choices based on
cost-effectiveness and other composite criteria.
Finally, our analysis uses the simplifying, pessimistic

assumption that all dropped terms can have the worst-case
value simultaneously. This simplifying assumption can
create needlessly large error bounds. More detailed analyses
and computer simulations can be used to derive sharper
bounds for specific applications and/or implementation
technologies [32].

7 Acknowledgment

Comments by anonymous referees in two rounds of review
led to improvements in content and presentation, including
the inclusion of Table 1 and several new references. The
author is grateful to the referees for their contributions.

8 References

1 Wang, L.K., Erle, M.A., Tsen, C., Schwarz, E., Schulte, M.J.: ‘A survey
of hardware designs for decimal arithmetic’, IBM J. Res. Dev., 2010, 54,
(2), pp. 8:1–8:15

2 von Neumann, J.: ‘First draft of a report on the EDVAC’, IEEE Ann.
Hist. Comput., 1993, 15, (4), pp. 27–75. [Reproduction of the original
1945 report]

3 Burks, A.W., Goldstine, H.H., von Neumann, J.: ‘Preliminary
discussion of the logical design of an electronic computing
instrument’ (Institute for Advanced Study Report, 1947, 2nd edn.)

4 Hayes, B.: ‘Third base’, Am. Sci., 2001, 89, (6), pp. 490–494
5 Klimenko, S.V.: ‘Computer science in Russia: a personal view’, IEEE

Ann. Hist. Comput., 1999, 29, (3), pp. 16–30
6 Frieder, G.: ‘Ternary computers – part 1: motivation & part 2:

emulation’. Proc. Fifth Workshop Microprogramming, 1972, pp. 83–89
7 Halpern, I., Yoeli, M.: ‘Ternary arithmetic unit’, Proc. IEE, 1968, 115,

(10), pp. 1385–1388
8 Eichmann, G., Li, Y., Alfano, R.R.: ‘Optical binary coded ternary

arithmetic and logic’, Appl. Opt., 1986, 25, (18), pp. 3113–3121
9 Stakhov, A.: ‘Brousentsov’s ternary principle, Bergman’s number

system and ternary mirror-symmetrical arithmetic’, Comput. J., 2002,
45, pp. 221–236
IET Comput. Digit. Tech., 2015, Vol. 9, Iss. 2, pp. 101–105
doi: 10.1049/iet-cdt.2013.0133
10 Gundersen, H., Berg, Y.: ‘A novel balanced ternary adder using
recharged semi-floating gate devices’. Proc. IEEE Int. Symp.
Multivalued Logic, 2006, pp. 18–21

11 Gundersen, H., Berg, Y.: ‘A balanced ternary multiplication circuit
using recharged semi-floating gate devices’. Proc. 24th Norchip Conf.,
2006, pp. 205–208

12 Leslie, J.: ‘The philosophy of arithmetic: exhibiting a progressive view
of the theory and practice of calculation’ (1820, 2nd edn.) William and
Charles Tait

13 Glusker, M., Hogan, D.M., Vass, P.: ‘The ternary calculating machine of
Thomas Fowler’, Ann. Hist. Comput., 2005, 27, (3), pp. 4–22

14 Parhami, B., McKeown, M.: ‘Arithmetic with binary-encoded balanced
ternary numbers’. Proc. 47th Asilomar Conf. Signals, Systems, and
Computers, 2013, pp. 1130–1133

15 Balla, P.C., Antoniou, A.: ‘Low power dissipation MOS ternary logic
family’, IEEE J. Solid-State Circuits, 1984, 19, (5), pp. 739–749

16 Wu, W.W., Prosser, F.P.: ‘CMOS ternary logic circuits’, IEE Proc.
Circuits Devices Syst., 1990, 137, (1), pp. 21–27

17 Lin, S., Kim, Y.-B., Lombardi, F.: ‘CNTFET-based design of ternary
logic gates and arithmetic circuits’, IEEE Trans. Nanotechnol., 2011,
10, (2), pp. 217–225

18 Parhami, B.: ‘Computer arithmetic: algorithms and hardware designs’
(Oxford, 2010, 2nd edn.)

19 Swartzlander, E.E.: ‘Truncated multiplication with approximate
rounding’. Proc. 33rd Asilomar Conf. Signals, Systems, and
Computers, 1999, pp. 1480–1483

20 Schulte, M.J., Stine, J.E., Jansen, J.G.: ‘Reduced power dissipation
through truncated multiplication’. Proc. IEEE Workshop Low-Power
Design, 1999, pp. 61–69

21 Kidambi, S.S., El-Guibaly, F., Antoniou, A.: ‘Area-efficient multipliers
for digital signal processing applications’, IEEE Trans. Circuits Syst. II,
1996, 43, (2), pp. 90–95

22 Jou, J.M., Kuang, S.R., Chen, R.D.: ‘Design of low-error fixed-width
multipliers for DSP applications’, IEEE Trans. Circuits Syst. II, 1999,
46, (6), pp. 836–842

23 Van, L.-D., Wang, S.S., Feng, W.-S.: ‘Design of the lower error
fixed-width multiplier and its application’, IEEE Trans. Circuits Syst.
II, 2000, 47, (10), pp. 1112–1118

24 Jaberipur, G., Parhami, B.: ‘Efficient realisation of arithmetic algorithms
with weighted collections of posibits and negabits’, IET Comput. Digit.
Tech., 2012, 6, (5), pp. 259–268

25 Schulte, M.J., Swartzlander, E.E.: ‘Truncated multiplication with
correction constant’. VLSI Signal Processing VI, 1993, pp. 388–396

26 Wires, K.E., Schulte, M.J., Stine, J.E.: ‘Variable-correction truncated
floating point multipliers’. Proc. 34th Asilomar Conf. Signals,
Systems, and Computers, 2000, vol. 2, pp. 1344–1348

27 Strollo, A.G.M., Petra, N., De Caro, D.: ‘Dual-tree error compensation
for high performance fixed-width multipliers’, IEEE Trans. Circuits
Syst. II, 2005, 52, (8), pp. 501–507

28 Van, L.-D., Yang, C.-C.: ‘Generalized low-error area-efficient
fixed-width multiplies’, IEEE Trans. Circuits Syst. I, 2005, 52, (8),
pp. 1608–1619

29 Kuang, S.R., Wang, J.P.: ‘Low-error configurable truncated multipliers
for multiply-accumulate applications’, Electron. Lett., 2006, 42, (16),
pp. 904–905

30 Petra, N., De Caro, D., Garofalo, V., Napoli, E., Strollo, A.G.M.:
‘Truncated binary multipliers with variable correction and minimum
mean square error’, IEEE Trans. Circuits Syst. I, 2010, 57, (6),
pp. 1312–1325

31 Petra, N., De Caro, D., Garofalo, V., Napoli, E., Strollo, A.G.M.:
‘Design of fixed-width multipliers with linear compensation function’,
IEEE Trans. Circuits Syst. I, 2011, 58, (5), pp. 947–960

32 De Caro, D., Petra, N., Strollo, A.G.M., Tessitore, F., Napoli, E.:
‘Fixed-width multipliers and multipliers-accumulators with min-max
approximation error’, IEEE Trans. Circuits Syst. I, 2013, 60, (9),
pp. 2375–2388

33 Srikanthan, T., Lam, S.K., Suman, M.: ‘Area-time efficient sign
detection technique for binary signed-digit number system’, IEEE
Trans. Comput., 2004, 53, (1), pp. 69–72

34 Acharyya, A., Maharatna, K., Al-Hashimi, B.: ‘Algorithm and
architecture for N-D vector cross product computation’, IEEE Trans.
Signal Process., 2011, 59, (2), pp. 812–826
105
& The Institution of Engineering and Technology 2015

