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nitrogenase Fe protein in Escherichia coli
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ABSTRACT The functional versatility of the Fe protein, the reductase component 
of nitrogenase, makes it an appealing target for heterologous expression, which 
could facilitate future biotechnological adaptations of nitrogenase-based production 
of valuable chemical commodities. Yet, the heterologous synthesis of a fully active Fe 
protein of Azotobacter vinelandii (AvNifH) in Escherichia coli has proven to be a challeng
ing task. Here, we report the successful synthesis of a fully active AvNifH protein upon 
co-expression of this protein with AvIscS/U and AvNifM in E. coli. Our metal, activity, 
electron paramagnetic resonance, and X-ray absorption spectroscopy/extended X-ray 
absorption fine structure (EXAFS) data demonstrate that the heterologously expressed 
AvNifH protein has a high [Fe4S4] cluster content and is fully functional in nitrogenase 
catalysis and assembly. Moreover, our phylogenetic analyses and structural predictions 
suggest that AvNifM could serve as a chaperone and assist the maturation of a cluster-
replete AvNifH protein. Given the crucial importance of the Fe protein for the func
tionality of nitrogenase, this work establishes an effective framework for developing a 
heterologous expression system of the complete, two-component nitrogenase system; 
additionally, it provides a useful tool for further exploring the intricate biosynthetic 
mechanism of this structurally unique and functionally important metalloenzyme.

IMPORTANCE The heterologous expression of a fully active Azotobacter vinelandii Fe 
protein (AvNifH) has never been accomplished. Given the functional importance of this 
protein in nitrogenase catalysis and assembly, the successful expression of AvNifH in 
Escherichia coli as reported herein supplies a key element for the further development of 
heterologous expression systems that explore the catalytic versatility of the Fe protein, 
either on its own or as a key component of nitrogenase, for nitrogenase-based bio
technological applications in the future. Moreover, the “clean” genetic background of 
the heterologous expression host allows for an unambiguous assessment of the effect 
of certain nif-encoded protein factors, such as AvNifM described in this work, in the 
maturation of AvNifH, highlighting the utility of this heterologous expression system 
in further advancing our understanding of the complex biosynthetic mechanism of 
nitrogenase.

KEYWORDS nitrogenase, Fe protein, NifH, heterologous expression, assembly

T he Fe protein of nitrogenase is a versatile FeS enzyme that is crucial for small-mole
cule activation under ambient conditions (1–3). Recognized mainly for its role as 

the reductase component of nitrogenase, the Fe protein of the Mo-dependent nitroge
nase from the diazotrophic bacterium Azotobacter vinelandii (designated AvNifH) is an 
~60 kDa homodimer that features a subunit-bridging [Fe4S4] cluster and an MgATP-bind
ing site within each subunit (1–7). In the nitrogenase reaction, AvNifH works in concert 
with its catalytic partner, MoFe protein (designated AvNifDK), to enable ATP-dependent 
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electron transfer from the [Fe4S4] cluster of AvNifH, through the [Fe8S7] P-cluster, to the 
[(R-homocitrate)-MoFe7S9C] M-cluster of AvNifDK, where the reduction of various 
substrates, such as N2, H+, C2H2, and CO, occurs under ambient conditions (Fig. 1A) (3, 
5, 8–13). In addition to its essential role as an electron donor to its catalytic partner 
during substrate reduction, AvNifH can act as an independent reductase and catalyze 
the in vivo and in vitro transformation of CO2 to CO at its [Fe4S4] center in the presence 
or absence of ATP (Fig. 1B) (14, 15). Extending its functions from catalysis to biosynthe
sis, AvNifH also plays a key role in the maturation of both P- and M-clusters, the two 
unique, high-nuclearity metal centers within AvNifDK that are central to the reactivity 
of nitrogenase. Regarding P-cluster assembly, AvNifH facilitates the coupling of a [Fe4S4] 
cluster pair into a P-cluster at the α/β-subunit interface of AvNifDK (Fig. 1C) (16–19). 
In the context of M-cluster assembly, AvNifH assists in inserting Mo and homocitrate 
(20–22) into an [Fe8S9C] precursor on AvNifEN (23, 24), a biosynthetic protein with strong 
sequence and structural resemblance to AvNifDK (25), to generate a mature M-cluster 
that is subsequently delivered to the cofactor-binding site within AvNifDK (Fig. 1D) (3, 
26). In both biosynthetic processes, AvNifH likely interacts with its assembly partners in 

FIG 1 Roles of the Fe protein in substrate reduction and metallocluster assembly. Shown are the functions of Fe protein (NifH) as (A) an electron donor 

for its catalytic partner, MoFe protein (NifDK), in nitrogenase catalysis; (B) an independent reductase for the reduction of CO or CO2 into hydrocarbons 

(HCs); (C) an insertase of Mo/homocitrate (hc) for the maturation of an L-cluster (i.e., M-cluster precursor [Fe8S9C]) into a fully assembled M-cluster ([(R-homoci

trate)MoFe7S9C]) on a biosynthetic scaffold, NifEN; and (D) a maturase for the reductive coupling of a P*-cluster (i.e., P-cluster precursor; an [Fe4S4]-like cluster 

pair) into a P-cluster ([Fe8S7]). All functions of the Fe protein require an electron source (A–D) and, while its functions in nitrogenase catalysis (A) and biosynthesis 

(C and D) also rely on ATP hydrolysis, its function as an independent reductase (B) can be accomplished with or without MgATP. For the purpose of simplicity, only 

one αβ-dimer is shown for the tetrameric NifDK in (A). The atoms of the metalloclusters are colored as follows: Fe, orange; S, yellow; Mo, cyan; C, light gray; Mg, 

green; O, red; Al, dark gray; F, light blue; and P, dark orange.
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a way that mirrors its interaction with its catalytic partner during substrate turnover, 
functioning as an ATP-dependent reductase to enable the maturation of the 
complex P- and M-clusters of AvNifDK.

The ability of the Fe protein to act as a multifunctional reductase hinges on the 
capability of its [Fe4S4] cluster to undergo facile redox changes. In the case of AvNifH, 
its [Fe4S4] cluster is known to adopt three different oxidation states: the oxidized state 
([Fe4S4]2+), reduced state ([Fe4S4]1+), and the super-reduced, all-ferrous state ([Fe4S4]0) 
(1, 2, 11, 27). While ferredoxins or flavodoxins are likely to function as the physiological 
electron donors for AvNifH under in vivo conditions, chemical reductants are typically 
used as the artificial electron donors for AvNifH under in vitro conditions (3–5, 11). An 
example of the chemical reductants is EuII-DTPA (with E1/2 = −1.14 V at pH 8) (2, 28, 29), 
which is employed with or without ATP in the in vitro reduction of CO2 by AvNifH. In this 
process, the [Fe4S4] cluster of AvNifH exists in the all-ferrous ([Fe4S4]0) state, which can 
undergo a reversible one- or two-electron redox transition of the cluster to the reduced 
([Fe4S4]1+) or oxidized ([Fe4S4]2+) state to enable substrate reduction (14, 30). Another 
commonly used chemical reductant is dithionite (e.g., with E1/2 = −0.47 V at 2 mM 
dithionite at pH 8), which is used along with MgATP to facilitate the in vitro reduction 
of N2 by the complete nitrogenase enzyme. In this case, the [Fe4S4] cluster of AvNifH is 
maintained in the reduced ([Fe4S4]1+) state, which can undergo a reversible one-electron 
redox reaction to the oxidized ([Fe4S4]2+) state to enable ATP-dependent electron transfer 
to the active-site cofactor of AvNifDK for substrate reduction (11). It should be noted 
that the binding of MgATP induces a conformational change of AvNifH concomitant 
with a decrease of the midpoint potentials of its associated [Fe4S4] cluster by 140 mV 
(to ca. −430 mV) (4), which facilitates the protein-protein interaction between AvNifH 
and AvNifDK while promoting the inter-protein transfer of electrons from the former to 
the latter (1–6, 11). Interestingly, while AvNifH interacts with its catalytic and assembly 
partners in an analogous, ATP-dependent manner, a recent study using a [Fe4Se4] 
substituted AvNifH as a probe has revealed a difference in the redox requirements of 
these events, with the catalytic reactions by nitrogenase necessitating a lower reduction 
potential than the assembly processes of its metalloclusters (29).

The functional versatility of Fe protein makes it an appealing target for heterologous 
expression in a genetically amenable host like Escherichia coli, which could prove useful 
for developing nitrogenase-based biotechnological adaptations for the production of 
valuable chemical commodities in the future. Yet, the heterologous synthesis of a fully 
functional Fe protein in E. coli has thus far met with mixed results. Previous efforts have 
led to the heterologous expression and partial purification of the Klebsiella pneumoniae 
NifH protein from E. coli, as well as the successful purification and characterization of the 
methanogen NifH protein expressed in the same heterologous host (31–33). In the case 
of A. vinelandii, however, the heterologous expression of AvNifH with a high FeS content 
has not been demonstrated in a foreign host like E. coli. The challenge posed by this task 
has motivated the consideration of two key parameters for the successful heterologous 
synthesis of this unique metalloenzyme. One of them is the [Fe4S4] cluster of AvNifH, 
the synthesis of which is carried out by NifS/U in the native A. vinelandii host, with 
NifS acting as a pyridoxal 5′-phosphate-dependent cysteine desulfurase enzyme that 
provides sulfur to the scaffold protein NifU for the sequential synthesis of [Fe2S2] and 
[Fe4S4] clusters. For the heterologous expression of many FeS proteins in E. coli, IsuS/U—
the homologs of NifS/U—have been successfully used to supplement the endogenous 
FeS assembly pathways in the expression host and bolster the FeS contents of the 
heterologously expressed proteins (34–37). The other parameter is the protein scaffold 
of AvNifH, the proper folding of which requires NifM, a protein with a partial sequence 
similarity to known peptidyl-prolyl isomerases and therefore, presumed to enable a 
cis-trans isomerization of the conserved prolines in AvNifH to facilitate its assembly. Given 
these considerations, it can be rationalized that co-expression of AvNIfH with AvIscS/U 
and AvNifM could result in the heterologous synthesis of a functional, FeS-cluster replete 
form of AvNifH in E. coli.
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Here, we report the successful synthesis of a fully active AvNifH protein upon 
co-expression of this protein with AvIscS/U and AvNifM in E. coli. Our metal, activity, 
electron paramagnetic resonance (EPR), and XAS (X-ray absorption spectroscopy)/EXAFS 
data demonstrate a high occupancy of [Fe4S4] clusters and a full spectrum of catalytic 
and biosynthetic activities of the heterologously expressed AvNifH protein. Moreover, 
our phylogenetic analyses and structural predictions lead to the proposal that AvNifM 
functions as a chaperone that assists the maturation of a cluster-replete AvNifH protein. 
As such, this work provides a useful platform for developing an expression system for the 
heterologous synthesis of a complete nitrogenase while supplying an effective tool for 
further investigating the biosynthetic mechanism of this important metalloenzyme.

RESULTS AND DISCUSSION

Co-expression of AvNifH with AvIscS/U and AvNifM in E. coli strain BL21(DE3) resulted in 
a brown, soluble protein (designated AvNifHEc) that was purified at a yield of ∼100 mg 
protein per 35 g wet cells. A homodimer comprising subunits of ~30 kDa (Fig. 2A), 
the heterologously expressed AvNifHEc shows a metal content of 3.3 ± 0.2 mol Fe/mol 
protein, ~85% of the metal content of 3.9 ± 0.3 mol Fe/mol protein for the AvNifH protein 
isolated from the native A. vinelandii host (Table S1). Given the presence of one [Fe4S4] 
cluster in this protein, the Fe content of AvNifHEc suggests an occupancy of >80% of 
the single [Fe4S4] cluster-binding site at its dimeric interface (see Fig. 1). Such a cluster 
assignment of AvNifHEc also aligns well with its respective activities in CO2-reduction (as 
an independent enzyme), C2H2- and N2-reduction (with AvNifDK as its catalytic partner), 
and P- and M-cluster maturation (with precursor-containing AvNifDK and AvNifEN as its 
respective biosynthetic partners), which range from 77% to 104% of those of its native 
AvNifH counterpart (Fig. 2B; Table S1).

FIG 2 Biochemical and catalytic analyses of AvNifHEc. (A) SDS-PAGE of the heterologously expressed AvNifHEc. (B) Specific 

activities of C2H2-reduction (to C2H4; light gray), N2-reduction (to NH3; dark blue), CO2-reduction (to CO; dark red), M-cluster 

maturation (dark gray), and P-cluster maturation (dark green) by AvNifHEc as compared to those by its native AvNifH 

counterpart. Shown above the bars are the activities expressed in percentages, with the activities of AvNifH set as 100% and 

the activities of AvNifHEc calculated relative to those of AvNifH (see Table S1 for details). The specific activities are normalized 

based on the Fe contents of AvNifHEc (3.3 ± 0.2 mol Fe/mol protein) and AvNifH (3.9 ± 0.3 mol Fe/mol protein). The data points 

shown in panel (B) represent biological replicates (n = 3) and are expressed as mean ± standard deviation.
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The [Fe4S4] cluster of AvNifHEc has the same ability as that of its native AvNifH 
counterpart (1, 2, 11, 27) to adopt three oxidation states: the oxidized (+2) state, the 
reduced (+1) state, and the super-reduced, all-ferrous (0) state. Accordingly, like the 
native AvNifH, AvNifHEc is EPR-silent in the oxidized state (Fig. 3A, “Ox”) but displays a 
mixture of S = 3/2 (g = 5.9, 4.3) and S = 1/2 (g = 2.04, 1.94, 1.86) perpendicular-mode EPR 
signals in the reduced state (Fig. 3A, “Red”) (11) as well as a g = 16.4 parallel-mode signal 
in the super-reduced, all-ferrous state (Fig. 3B, “SR”) (27). Other than a slightly stronger g 
= 4.31 feature of its S = 3/2 signal in the reduced state, the EPR features of AvNifHEc are 
comparable in magnitude to those of its native AvNifH counterpart, with the intensities 
of the S = 3/2 (reduced), S = 1/2 (reduced), and g = 16.4 (super-reduced) signals of 
AvNifHEc being 149%, 102%, and 109%, respectively, of those of the corresponding 
features of AvNifH (Fig. 3A and B).

The close resemblance between the AvNifHEc- and AvNifH-associated clusters is 
also reflected by a high degree of similarity between the Fe K-edge XAS/EXAFS data 
of reduced AvNifHEc and AvNifH, both showing a primary component in the Fourier 
transform (FT) that requires Fe–S scattering pathways of ~2.3 Å, as well as a smaller 
secondary feature in the FT that requires two sets of Fe–Fe scatterers: one at 2.5 Å and 
the other at 2.7 Å (Fig. 4; Tables S2 to S4). There is a minor shift in the Fe K-edge energy 
of AvNifHEc (7,118.3 eV) from that of AvNifH (7,117.9 eV) (Table S2); however, the overall 
similarity between the Fe K-edge XAS/EXAFS data of AvNifHEc and AvNifH, along with the 
similarities among their metal contents, activities, and EPR features, suggests that the 
cluster environments in these proteins are highly similar.

The absolute requirement of AvNifM for the successful expression of AvNifH in E. coli 
points to a crucial role of AvNifM in facilitating the maturation of AvNifH into a functional 

FIG 3 EPR analyses of AvNifHEc. (A) Perpendicular- and (B) parallel-mode EPR spectra of indigo 

disulfonate-oxidized (Ox), dithionite-reduced (Red), and super-reduced (SR) forms of AvNifHEc (blue) as 

compared to those of its native AvNifH counterpart (black). The signal intensities of the EPR spectra are 

normalized based on the Fe contents of AvNifHEc (3.3 ± 0.2 mol Fe/mol protein) and AvNifH (3.9 ± 0.3 mol 

Fe/mol protein). The percentages of the signal intensities of AvNifHEc as compared to those of AvNifH 

(set at 100%) are indicated below the EPR traces. Note the characteristic shallow, broad S = 3/2 signals 

observed in the spectra of both AvNifH and AvNifHEc in the dithionite-reduced state, which are shown at 

10-fold enhanced intensities in Fig. S1.
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protein. Previous sequence alignment and mutagenic analysis have led to the proposal 
that AvNifM is a peptidyl-prolyl isomerase (PPIase) involved in the transition between the 
cis- and trans-forms of the peptide bond of the conserved Pro258 residue in AvNifH (38). 
Yet, Pro258 is nearly 100% conserved in the NifH species from organisms with or without 
NifM, casting doubt on the proposed PPIase activity of NifM. Interestingly, based on the 
structural predictions available in the AlphaFold database (39, 40), AvNifM not only 
possesses a C-terminal domain with a PPIase fold but also has an N-terminal domain with 
striking resemblance to SurA and PrsA, two proteins known to facilitate protein folding 
(Fig. 5). A periplasmic chaperone found in many Gram-negative bacteria (e.g., E. coli), 
SurA possesses two PPIase domains but shows no in vivo PPIase activity (41); instead, it is 
known to facilitate the folding of outer membrane proteins in the periplasm (42, 43). 
Similarly, PrsA is an extracellular foldase that is best studied in certain Gram-positive 
bacteria (e.g., Bacillus subtilis) and, despite possessing the characteristic PPIase domain, it 
serves to assist the folding of a wide range of proteins, including pathogenicity factors 
and cell wall synthesis proteins (44–46). Given its architectural similarity to SurA and PrsA, 
it is likely that NifM also functions as a chaperone that is indispensable for the maturation 
of a soluble, cluster-replete form of NifH. The exact mode-of-action of NifM in this 
process, however, remains unclear.

It is interesting to note that while certain diazotrophs (e.g., A. vinelandii) require NifM 
for the maturation of NifH, most Nif (or homolog) possessing organisms do not contain 
NifM (Fig. 6A). The presence of NifM is largely limited to a subset of Proteobacteria (i.e., 
Gammaproteobacteria and Betaproteobacteria) and only occasionally observed in 
Alphaproteobacteria and other phyla (Fig. 6A). Despite the similarity of its C-terminal 
domain to PPIase, the N-terminal domain of NifM does not seem to be homologous to 
any known protein. As such, the evolutionary origin of this protein is unknown. Notably, 
the gene encoding NifM is almost always present alongside those encoding NifZ and 
NifW, two nitrogenase assembly/accessory proteins (Fig. 6B); moreover, the three nif 
genes are almost always grouped in the same genomic architecture: nifWZM. Given the 
participation of NifZ and NifW in the maturation of the catalytic NifDK component of A. 
vinelandii (47, 48), such a conserved genomic arrangement of nifWZM could imply a 
functional “grouping” of maturation proteins of nitrogenase and thereby offer additional 
support for the proposed role of NifM as a chaperone for the maturation of NifH. The 
question of why NifM is specifically required for the expression of certain NifH species, 
but not others, requires further investigation.

FIG 4 Fe K-edge XAS analysis of AvNifHEc. Shown are the Fourier-transformed (A) and k3-weighted (B) EXAFS data (dotted) 

and best fits (solid) of AvNifHEc (blue) as compared to those of its native AvNifH counterpart (black). See Fig. S2 for Fe K-edge 

absorption spectra, Table S2 for Fe K-edge energies, and Tables S3 and S4 for details of fits.
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Conclusion

In this work, we have successfully synthesized a fully active AvNifH with a high cluster 
occupancy upon co-expression of this protein with AvIscS/U and AvNifM in E. coli. Our 
biochemical and spectroscopic data confirm the structural and functional competence of 
this heterologously expressed AvNifH protein, and our phylogenetic analyses and 

FIG 5 Structural comparison of AvNifM with SurA and PrsA. (A) AlphaFold structural prediction of AvNifM. 

Model confidence: blue, very high; cyan, confident; yellow, low; and orange, very low. (B and C) Overlay 

of the predicted N-terminal (left) and C-terminal (right) domains of AvNifM with those of (B) SurA (PDB: 

1M5Y) or (C) PrsA (PDB: 6VJ4). The domains of NifM, SurA, and PrsA are colored blue, light brown, and 

dark brown, respectively.
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FIG 6 Phylogenetic tree of 943 organisms containing a total of 1,502 nifH homologs in their genomes. (A) Of these nifH containing organisms, 122 contain nifM 

sequences (indicated by blue stars). The percentages of nifM sequences found in 4 of the 11 identified taxonomic groups are shown in blue. The Pro258 residue 

of AvNifH, which has been proposed to be the substrate of NifM, is conserved in 99.5% of the NifH homologs (indicated by closed red circles). (B) Of these nifH 

(Continued on next page)
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structural predictions suggest a role of AvNifM as a chaperone for the maturation of a 
cluster-replete form of AvNifH. Given the crucial role of NifH in nitrogenase catalysis and 
assembly, this work supplies an essential component for piecing together a complete 
pathway for the heterologous expression of an active nitrogenase, an ongoing effort that 
involves further optimization of key parameters and, particularly, the FeS supplies in the 
expression system (49–53). Such an expression system of the two-component nitroge
nase, along with that of its NifH component alone (as reported herein), could prove 
useful for the future development of biotechnological applications that harness the 
reducing prowess of nitrogenase for the production of valuable chemical commodities. 
Moreover, the expression system described in this work provides a useful tool for tackling 
the impact of maturation factors, such as AvNifM, in the synthesis of a functional AvNifH, 
as well as the relationship of various Nif proteins and homologs during evolution, which 
could prove instrumental in decoding the biosynthetic mechanism of nitrogenase while 
unraveling the evolutionary origins of this important metalloenzyme.

MATERIALS AND METHODS

All the chemicals were purchased from Sigma-Aldrich (St. Louis, MO) and Thermo 
Fisher Scientific (Waltham, MA), except when noted otherwise. The experiments were 
performed either in a glove box or on a Schlenk line, under an atmosphere of Ar with an 
O2 concentration of <3 ppm.

Strain construction

The genes encoding A. vinelandii NifH and NifM proteins were synthesized, codon-opti
mized for E. coli expression, and then cloned into pET-14b and pRSFDuet-1 vectors, 
respectively (GenScript, Piscataway, NJ). These constructs were then co-transformed 
along with a plasmid containing iscSUA and hscABfdx genes from A. vinelandii, which 
encodes a group of proteins responsible for FeS cluster assembly (34–37), into the E. 
coli strain BL21(DE3), resulting in a strain (YM565EE) that expresses His-tagged AvNifH 
(designated AvNifHEc) when induced with isopropyl β-D-1-thiogalactopyranoside (IPTG). 
The plasmid carrying the iscSUA and hscABfdx genes was kindly provided by Prof. Silke 
Leimkhüler from the University of Potsdam, Germany.

Cell growth and protein purification

In a BIOFLO 415 fermenter (New Brunswick Scientific) operated at 37°C with 200 rpm 
agitation and 10 L/min airflow, the E. coli strain YM565EE was cultivated in 10 L batches 
in LB medium (Difco) supplemented with 50 mM MOPS/NaOH (pH 7.4), 25 mM glucose, 
2 mM ferric ammonium citrate, 19 mg/L kanamycin, 28 mg/L chloramphenicol, and 
75 mg/L ampicillin. When optical density (OD600) reached 0.5, the airflow was termina
ted, and the fermenter was purged with N2 (ultra-high purity) at a rate of 1.5 L/min; 
additionally, the temperature was lowered to 24°C before 25 mM sodium fumarate, 
2 mM cysteine was added to the culture, and the expression of His-tagged AvNifHEc was 
induced upon addition of 250 µM IPTG. The protein was expressed for 16 h before the 
cells were harvested through centrifugation using a Thermo Fisher Scientific Legend 
XTR centrifuge. Subsequently, the protein was isolated using immobilized metal affinity 
chromatography using a method adapted from the purification of His-tagged nitroge
nase proteins from A. vinelandii (54).

In a 200-L fermenter (New Brunswick Scientific) operated at 30°C with 100 rpm 
agitation and 30 L/min airflow, the A. vinelandii strains DJ1162, DJ1141, DJ1143, DJ1165, 

FIG 6 (Continued)

containing organisms, 456 contain nifZ sequences (indicated by green squares). Analysis of the genomic neighborhoods of nifZ sequences has identified the 

presence of nifW sequences (indicated by black squares) in 159 organisms. Abbreviations: FCB_group, Fibrobacterota-Chlorobiota-Bacteroidota and PVC_group, 

Planctomycetota-Verrucomicrobiota-Chlamydiota.
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and DJ1041 expressing His-tagged AvNifH, AvNifDK, P-cluster precursor (i.e., P*-cluster, a 
[Fe4S4]-like cluster pair) containing AvNifDK, P-cluster containing AvNifDK, and M-cluster 
precursor (i.e., L-cluster, a [Fe8S9C] cluster) containing AvNifEN (47, 55), respectively, 
were grown in 180-L batches in Burke’s minimal medium supplemented with 2 mM 
ammonium acetate. Cell growth was monitored at OD436 using a Spectronic 20 Genesys 
spectrometer (Spectronic Instruments), and following the exhaustion of ammonia, the 
cells were de-repressed for 3 h before being harvested with a flow-through centrifugal 
harvester (Cepa). Published methods were used to purify His-tagged AvNifH, AvNifDK, 
and AvNifEN proteins (47, 55).

Metal analysis

The Fe contents of AvNifH and AvNifHEc were analyzed using inductively coupled 
plasma optical emission spectroscopy (ICP-OES) with an iCAP7000 ICP-OES instrument 
(Thermo Scientific). The calibration of the instrument was carried out using standard 
solutions made from dilution of a 1 mg/mL stock solution of elemental Fe (Thermo-
Fisher Scientific). The analysis began by combining the protein sample with 100 µL 
of concentrated sulfuric acid (H2SO4) and 100 µL of concentrated nitric acid (HNO3), 
followed by heating at 250°C for 30 min. This process was repeated until the solution 
turned colorless. Subsequently, the solution was allowed to cool to room temperature, 
followed by dilution of the solution to a total volume of 7.5 mL with 2% HNO3 and 
determination of the metal content.

Substrate reduction assays

C2H2- and N2-reduction assays were performed at 30°C in 9.5-mL vials fitted with rubber 
serum stoppers and metal caps (DWK Life Science, Millville, NJ). The C2H2-reduction 
assay contained an atmosphere of 0.1 atm C2H2 and 0.9 atm Ar, while the N2-reduction 
assay contained 1.0 atm of N2. Each reaction contained 25 mM Tris–HCl (pH 8.0), 2.5 mM 
ATP, 5.0 mM MgCl2, 30 mM creatine phosphate, 0.125 mg of creatine phosphokinase, 
and 20 mM sodium dithionite (Na2S2O4) in a total volume of 1 mL. The reaction was 
initiated by the addition of 2.4 mg of AvNifDK and 0.36 mg of AvNifH or AvNifHEc, 
incubated at 30°C for 10 min, quenched with EDTA, and analyzed for product formation. 
To detect C2H4 as a product of C2H2-reduction, 250 µL of the headspace was injected 
into a GC-FID (SRI Instruments, Torrance, CA) equipped with a packed Poropak N column 
(Restek, Bellefonte, PA). Calibration was achieved by injecting 15 ppm C2H4 gas standard 
under the same conditions. To detect NH3 as the product of N2-reduction, 100 µL of 
the reaction was added to an o-phthalaldehyde (OPA) solution that contained, in a total 
volume of 1 mL, 10 mM OPA and 2.5 mM 2-mercaptomethanol in a 50 mM potassium 
phosphate buffer (pH 7.8). The mixture was allowed to sit at room temperature for 
3 h, followed by measurement using a fluorescence spectrophotometer (RF-5301PC, 
Shimadzu Co., Ltd., Japan) using an excitation wavelength of 361 nm and an emission 
wavelength of 423 nm.

P-cluster maturation assays

Each assay contained 25 mM Tris–HCl (pH 8.0), 0.45 mg of P-cluster precursor (i.e., 
P*-cluster; 2 × [Fe4S4]) containing, yet cofactor-deficient NifDK from A. vinelandii 
nifH-deletion strain DJ1165 (47), 0.5 mg of AvNifH or AvNifHEc, 20 mM Na2S2O4, 0.8 mM 
ATP, 1.6 mM MgCl2, 10 mM creatine phosphate, 8 units of creatine phosphokinase, and 
10 mL of isolated M-clusters (56) in a total volume of 0.9 mL. The reaction was incubated 
at 30°C for 60 min and subsequently split into triplicates in three 9.5-mL vials, each 
containing 1.05 mg of NifH, 25 mM Tris–HCl (pH 8.0), 2.5 mM ATP, 5.0 mM MgCl2, 30 mM 
creatine phosphate, 0.125 mg of creatine phosphokinase, and 20 mM Na2S2O4 in a total 
volume of 0.7 mL, and either C2H2 or N2 in the headspace as the substrate of the C2H2- 
or N2-reduction assay. The reaction mixture was then incubated at 30°C for 10 min and 
analyzed for product formation as described above.
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M-cluster maturation assays

Each assay contained 25 mM Tris–HCl (pH 8.0), 0.45 mg of P-cluster containing, yet 
cofactor-deficient NifDK from A. vinelandii nifB-deletion strain DJ1143 (47), 1.2 mg of 
AvNifH or AvNifHEc, 1.0 mg M-cluster precursor (i.e., L-cluster [Fe8S9C]) containing NifEN 
from A. vinelandii strain DJ1041 (55), 0.4 mM homocitrate, 0.4 mM Na2MoO4, 2.4 mM 
ATP, 4.8 mM MgCl2, 30 mM creatine phosphate, 24 units of creatine phosphokinase, 
and 20 mM Na2S2O4 in a total volume of 0.9 mL. The reaction was incubated at 30°C 
for 60 min and subsequently split into triplicates in three 9.5-mL vials, each containing 
1.05 mg of NifH, 25 mM Tris–HCl (pH 8.0), 2.5 mM ATP, 5.0 mM MgCl2, 30 mM creatine 
phosphate, 0.125 mg of creatine phosphokinase, and 20 mM Na2S2O4 in a total volume 
of 0.7 mL, and either C2H2 or N2 in the headspace as the substrate of C2H2- or N2-reduc
tion assay. The reaction mixture was then incubated at 30°C for 10 min and analyzed for 
product formation as described above.

EPR analysis

EPR samples were assembled and flash frozen in liquid nitrogenase in a glove box 
(Vacuum Atmospheres) filled with Ar and maintained at an O2 concentration of <3 ppm. 
Three types of samples were prepared for EPR analysis as follows: (i) reduced (Red) 
samples, which contained 10% (vol/vol) glycerol, 250 mM imidazole, 2 mM Na2S2O4, and 
25 mM Tris–HCl (pH 8.0); (ii) oxidized (Ox) samples, which were prepared by incubating 
the reduced samples with excess indigo disulfonate for 5 min; and (iii) the super-reduced 
(SR) samples, which were prepared by adding excess europium (II) ethylene glycol-bis(β-
aminoethyl ether)-N,N,N′,N′-tetraacetic acid (Eu-EGTA), followed by removal of Eu-EGTA 
on a G25 desalting column (Sigma-Aldrich).

EPR spectra were recorded by an ESP 300E spectrometer (Bruker) interfaced with 
an ESR-9002 liquid-helium continuous-flow cryostat (Oxford Instruments). The measure
ments were taken using a microwave power of 50 mW, a gain factor of 5 × 104, a 
modulation frequency of 100 kHz, and a modulation amplitude of 5 G. Five scans 
of perpendicular-mode EPR spectra were recorded for each sample at 10 K (reduced 
samples) or 15 K (oxidized samples) using a microwave frequency of 9.62 GHz; and eight 
scans of parallel-mode EPR spectra were recorded for each sample at 10 K (super reduced 
samples) using a microwave frequency of 9.38 GHz.

XAS spectra

Fe K-edge, XAS spectra were collected with a SPEAR3 storage ring current of ~500 mA 
and an energy level of 3.0 GeV at two SSRL (Stanford Synchrotron Radiation Lightsource) 
beamlines: beamline 7-3, which uses a 30-element solid-state Ge detector (Canberra) and 
beamline 9-3, which uses a 100-element Ge monolith solid-state detector (Canberra). For 
the Fe scans, an Fe foil was positioned in the beam path before the ionization chamber 
(I0) and scanned simultaneously for energy calibration, with the first inflection point 
of the edge assigned to 7,112.0 eV. The potential occurrence of photoreduction was 
closely monitored by scanning the same spot on the sample twice, which allowed for a 
comparison between the first derivative peaks associated with the edge energy during 
the data acquisition process.

The detector channels from the scans were inspected, calibrated, and averaged using 
the software EXAFSPAK (23). Subsequently, the data were processed for EXAFS analysis 
with PYSPLINE (57) to obtain χ(k). PYSPLINE was employed to subtract a second-order 
background across the entire data range and to create a spline function that modeled 
the background absorption throughout the EXAFS region. A four-region spline was 
selected, utilizing polynomials of orders 2, 3, and 3 over the post-edge region, and the 
data were normalized to obtain an edge jump of 1.0 at 7,130 eV. For a specific absorber-
scatterer pair, theoretical phase and amplitude parameters were computed using FEFF 
8.40 (58). Parameters for each species were calculated based on a suitable model derived 
from the crystal structure of the [Fe4S4] cluster in NifH (PDB code 1G5P) (59).
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In every analysis conducted, the coordination number of a specific shell (N) was kept 
as a fixed parameter and changed iteratively in integer steps, while the bond lengths 
(R) and mean-square deviation (σ²) were permitted to vary without restriction. The 
estimated uncertainties in R, σ², and N are 0.02 Å, 0.1 × 10⁻³ Å², and 20%, respectively. For 
the Fe K-edge data, the amplitude reduction factor S₀ was set at 1.0, while the edge-shift 
parameter ΔE₀ was allowed to vary as a singular value across all shells. Therefore, in any 
particular fit, the number of variable parameters typically equaled two times the number 
of shells plus 1. The goodness of fit parameters were determined in accordance with the 
following formulae:

F = k6 χexp − χcalc 2,F′ = k6 χexp − χcalc 2/ k6χexp2 .
Analysis of the pre-edge was carried out on the Fe K-edge fluorescence data, which 

was normalized to achieve an edge jump of 1.0 at 7,130 eV in PYSPLINE. The features 
of the pre-edge were fit within the energy range of 7,108 to 7,117 eV using methods 
detailed elsewhere (60, 61). The fitting was conducted using the Fityk program (62), with 
pseudo-Voigt functions comprising a mixture of Gaussian and Lorentzian functions at a 
50:50 ratio.

AlphaFold models

The structural information of AvNifM was retrieved from the AlphaFold Protein Structure 
Database for entry P14890 (39, 63). The predicted structure of the N-terminal domain 
of AvNifM was then submitted to NCBI VAST (64), which resulted in a hit for the crystal 
structure of a truncated SurA (PDB code 2PV3) (65) and, consequently, a comparative 
structural analysis between AvNifM and the full-length SurA structure (PDB code 1M5Y) 
(66). Further analysis of the predicted structure of AvNifM using FoldSeek (67) led to the 
identification of PrsA (PDB code 6VJ4) as another close structural homolog of AvNifM 
(68). PyMOL was used to facilitate structural analysis and visualization (69).

Phylogenetic analysis

The NifH sequences were retrieved from InterPro family IPR005977 (containing AvNifH) 
(70) and filtered through Reference Proteomes from UniProt (71) to decrease the total 
number of sequences, which resulted in the identification of 1,502 NifH homolog 
sequences from 943 organisms. The phylogenetic tree of the organisms was generated 
based on NCBI taxonomy with phyloT (database version 2022.3) (72) and visualized and 
annotated in iTOL version 6.7.3 (73). To investigate the presence or the absence of the 
residue corresponding to Pro258 of AvNifH, the NifH sequences were aligned with MAFFT 
(74) using automatic settings, and the alignment was trimmed with trimAl (75). The 
presence or the absence of NifM was investigated by retrieving NifM sequences from 
InterPro family IPR014282 (containing AvNifM) and matching the sequences by the taxon 
IDs of the organisms. Similarly, the presence or the absence of NifZ was investigated 
by retrieving NifZ sequences from InterPro family IPR007415 (containing AvNifZ). The 
identified NifZ sequences were then submitted to EFI-Genome Neighborhood Tool (76, 
77), and the NifW sequences neighboring NifZ were annotated accordingly. In cases 
where more than one NifZ homolog was present in a given organism, the organism was 
annotated as containing NifW if at least one of the NifZ homologs had a neighboring 
NifW sequence.
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