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Reconsidering Causation

Stephen F. LeRoy

May 17, 2024

Abstract

Recent applied work in economics has displayed renewed interest in the problem of characterizing the

causal relations that link economic variables. However, many discussions avoid explicit specification of

what has to be true about a formal model to justify an assertion that one variable in it causes another.

Such specification is supplied here. Related topics, such as determining whether correlation implies

causation, or vice-versa, and when causal coefficients can be estimated using ordinary least squares or

instrumental variables regressions, are discussed.

In recent years economists have displayed renewed interest in the role of causation in eco-

nomic analysis (see, for example, Athey and Imbens [3] or Angrist and Pischke [1]).1 In

fields other than economics discussion has centered on causal graphs (Pearl [10]), in which

one bases an account of causation on a graph, taken as given, consisting of a series of

nodes representing variables connected by arrows indicating causal links. For the most part

economists have not found this framework congenial (see Heckman and Pinto [7]). One can

only speculate about the reasons for this, but one plausible guess is that economists are un-

comfortable with the question of where the arrows come from. Economists think of models

as being derivable from assumptions on preferences, endowments, market structure and the

like. Arrows do not appear in such derivations.

The Cowles economists, who originated the study of structural economic models, saw

the lack of clarity in discussions of causation as a serious problem. They proposed formal

characterizations of causation (see especially Simon [13]), but that research tradition has

1University of California, Santa Barbara. leroy@ucsb.edu. Some definitions are changed here, but most of the analysis in an
earlier monograph (LeRoy [9]) carries over with minor modification in the current setting.

I am indebted to Isaiah Andrews, Nancy Cartwright, Kevin Hoover, Mary Morgan, Judea Pearl and Stephen Salant for
conversations and correspondence on earlier drafts of the monograph and this paper.
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been mostly discontinued. As a result, in the contemporary literature we frequently see

discussions of ideas related to causation without any explicit characterization of causation

in terms of the formal properties of structural models.

Here this connection is supplied: causal orderings are derived from the model’s formal

structure without reference to intuitive ideas about causation drawn from outside the model.

Further, graphical representations of causal models, in which the causal arrows are derived

from the structural equations rather than specified as part of the assumed structure, are

shown to play an important role in facilitating the analysis. Finally, the exercise is based on

the assumed existence of a model that is not altered as part of the analysis of interventions;

the contrary—a presumption that causal analysis involves changing the assumed model, with

the alteration depending on the question being asked—is sometimes seen in the existing

literature.

In the usage of the Cowles economists causal analysis consists of two undertakings: (1)

formulating an explicit model assumed to generate the data, and (2) determining the causal

links implied by that model. Only the second of these projects is considered in this paper.

1 Interventions

For the Cowles economists investigation of causation consists of analysis of interventions.

An intervention consists of a modification of the structural equations intended to allow

the analyst to determine what would happen under a given hypothetical change in the

environment (Haavelmo [6]). When the cause variable is internal (that is, determined by

the equations of the model) this use of a model to analyze causation involves altering the

assumed model. The alteration consists of deleting the equations that determine the cause

variable and substituting the assumption that the cause variable is external (that is, taken

as given). Thus the alteration of the model depends on the causal question that is being

asked. But coherent causal analysis using a model is possible only if, contrary to this, the

model is defined independently of the contemplated intervention.
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The insistence of the Cowles economists on representing interventions as modifications

of structural equations led them away from a much simpler formalization of interventions

using elements of the model that are already available: external variables. Representing

interventions as hypothetical alterations of the values assumed to be taken on by external

variables means that no change in the model is involved: internal variables are not treated

as if they were external unless the structure of the model justifies doing so (that is, unless

causation is implementation neutral; see the discussion below). There is no loss of generality

in requiring that interventions be modeled as alterations of external variables since any

conceivable intervention can be accommodated by inclusion of external “shift variables” in

the model.

The first step in analyzing the effects of an intervention is to set the external variables

to preassigned values. The solution to the model under these values is termed the baseline.

Then generate an intervention by changing the assumed value of one or more of the external

variables and recomputing the solution. One then determines the effect of the intervention

by comparing the values taken on by the internal variables under the intervention with those

under the baseline specification. In linear models the causal coefficient—the ratio between

the change in the effect variable and the change in the cause variable—if uniquely defined is

the same for all specifications of the values of the external variables that are consistent with

the assumed intervention on the cause variable.

By designating a coefficient as an external variable rather than a constant or internal

variable the analyst is allowing for interventions on that variable, and is also excluding the

specification that interventions on other external variables alter the value taken on by the

variable of interest. Designating as variables the coefficients of a structural equation in an

otherwise linear model is perfectly acceptable, but doing so implies that the model is bi-

linear, not linear. These specifications are different. In a model that consists of equations

characterized as linear the coefficients are interpreted as constants. Labeling the coefficient

a constant implies that interventions on that constant are ruled out: we do not ask mathe-

maticians what would happen if π were equal to a number other than 3.1416, and economists
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should not be asking the analogous question about the constants of their models (or, more

precisely, should interpret intervening on a constant as generating a comparison of different

models, not as constituting a causal analysis of a given model).

The requirement that analysts explicitly distinguish constants from external variables

and treat each consistently, even in analyzing interventions, enforces clarity about which

contemplated interventions the analyst views as admissible and which are excluded from

consideration.2

2 Structural Models

A linear structural model can be written as

y = Ay +Bx, (1)

where y denotes the internal variables of the model (those determined by the model) and x

denotes its external variables (those taken as given). Here we are taking the term “structural”

to refer to the specification that external and internal variables are explicitly distinguished

from one another. Both x and y are vectors. Their dimensions are unrestricted. The

external variables x are assumed to be variation free, pending the stronger assumption of

independence adopted below.3 A = {αij} and B = {βik} are matrices of constants. I −A is

assumed to be invertible to assure that the solution for y in terms of x exists and is unique

(here I is the identity matrix conformable with A). A is a lower triangular matrix: αij = 0

for i ≤ j.4

2In the Cowles treatment of causation, and also in many recent discussions in the philosophy literature, analysts insisted that
causal interpretation of a model requires a property of invariance. The meaning of invariance in the context of implementing
alterations of a model’s structure was never made clear despite much discussion. However, with interventions characterized as
consisting of hypothetical changes in the values of external variables rather than as general structural changes, allegations of
failure of invariance can only consist of assertions that terms specified as constants should instead be modeled as variables.
Reminding analysts that if their models are misspecified their diagnoses of causation are likely to be wrong is hardly necessary.
We see that invariance disappears as a feature of causal attributions that requires extended discussion.

3The members of a collection of random variables are variation free if the domain of each does not depend on the domains
or the realizations of the others. Random variables that are probabilistically independent are variation free, but not necessarily
vice-versa. For example, two random variables that are distributed as bivariate normal with nonzero correlation are variation
free, but not independent.

4The extent to which the analysis here generalizes to non-triangular A is an open question. At a minimum it would be
necessary to include new symbols like←→ and⇐⇒ to represent the relation between yi and yj when both αij ̸= 0 and αji ̸= 0.
Proceeding along these lines would constitute generalizing the analysis of causation to deal with a hybrid of causation and
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The reduced form is

y = (I − A)−1Bx ≡ Gx. (2)

The Cowles economists viewed the reduced form as lacking valuable information that is

available in the structural form. It is difficult to extract from their discussions an account

of why this information disappears under the arithmetic operations involved in going from

the structural form to the reduced form. A recurrent theme has been that the structural

form coefficients can be used to analyze interventions, and therefore locate causal orderings

among internal variables, whereas the reduced-form coefficients cannot be used in this way.

There remains the question of what it is about structural models that makes this so.

We will show that a version of the Cowles argument is correct. A definition of causation

is proposed that clarifies the precise nature of the information that is lost in passing from

the structural to the reduced form.

3 Causation

We begin by establishing some terminology for structural models, starting with the idea of

connected variables. Two external variables are not (directly) connected. Two variables at

least one of which is internal are directly connected if there exists a structural equation in

which both appear. If the variables are xk and yj, an equivalent statement of the condition is

that βjk is nonzero; if they are yi and yj the corresponding condition is that either αij or αji

is nonzero. Two variables are indirectly connected if there exists a path—an ordered n-tuple

of variables—that goes from one to the other, where each variable is directly connected to its

neighbors. Assuming that indirect paths contain at least one interior variable allows them to

be distinguished from direct paths. The variables are connected if they are connected either

directly or indirectly (or both along different paths). A connectedness graph is a graph

displaying the variables of the model with an edge drawn between each pair of variables that

are directly connected.

simultaneity.
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Figure 1: Connectedness and IN-Causation

As an example, consider the linear model

y1 = β11x1 + β12x2 (3)

y2 = α21y1. (4)

The connectedness graph of this model is shown in the left panel of Figure 1.

We turn to the definition of causation. The external set of yi, denoted E(yi), is the set

of external variables xk such that xk ∈ E(yi) if and only if γik ̸= 0. Thus xk is a member of

E(yi) if and only if xk is one of the external determinants of the value of yi.

Pairs of external variables (xk, xj) are never causally related. Pairs of variables (xk, yj)

are directly causally related, with xk directly causing yj, if xk and yj are directly connected.

They are indirectly causally related if xk is not directly connected to yj but is a member of

the external set of yj. Finally, they are causally related if they are causally related either

directly or indirectly (or both, along different paths).

An internal variable yi directly IN-causes another internal variable yj if and only if (1) the

two are directly connected with αji ̸= 0, and (2) for each xk ∈ E(yi) all paths that connect

xk to yj pass through yi. An internal variable yi indirectly IN-causes a connected internal

variable yj if there exists a path that indirectly connects them, and (2) above is satisfied.

One internal variable IN-causes another if it does so either directly or indirectly (or both,

along different paths).

6



If the conditions for IN-causation are satisfied causation between yi and yj is implementa-

tion neutral : an intervention on xk ∈ E(yi) resulting in ∆yi has the same effect on yj—αji∆yi,

assuming IN-causation is direct—for each xk (here for any member of E(yi) the assumed in-

tervention is set to produce the same ∆yi). That being so, the causal relation between yi and

yj is implementation neutral in the sense that the effect on yj of an intervention resulting in

∆yi does not depend on how the intervention is implemented (that is, on which member or

members of E(yi) is the underlying intervention variable). Implementation-neutral causation

is indicated by a double arrow: yi ⇒ yj. The causal graph of the model (3)-(4) is shown as

the right-hand panel of Figure 1.

The assumption that A is lower triangular implies that if i < j yi may or may not directly

IN-cause yj, but yj never IN-causes yi. Equivalently, yi directly IN-causes yj only if i < j.

We will also write xk ⇒ yj, so that xk IN-causes yj, when xk is in the external set of yj.

This notational specification reflects the fact that yi plays the same role in yi ⇒ yj as xk

plays in xk ⇒ yj.

Frequently we have pairs of directly connected internal variables yi and yj such that

αji ̸= 0 but the condition for IN-causation that all paths connecting members of E(yi) with

yj pass through yi is not satisfied. In that case the effect on yj of an intervention represented

by ∆yi is ambiguous: different interventions consistent with a given ∆yi generate different

effects on yj. Thus causation is not implementation neutral. Members of E(yi) which have

causal paths that connect with yj without passing through yi are termed confounders. The

intervention that defines causation is restricted by holding the confounder constant. The

relevant notion of causation is called conditional causation, as opposed to IN-causation,

which occurs when there are no confounders.5 Conditional causation is indicated by a single

arrow accompanied by | and followed by a list of the confounders.6

5It might appear that the interventions that define conditional causation are not likely to be relevant in applications. This
presumption is incorrect in general. Consider a family deciding whether a prospective student should attend a high-status
private university or a cheaper public university. The decision depends on the effect of the enrollment decision on the student’s
subsequent lifetime income. Lifetime income depends on the enrollment decision, which in turn depends on current family
income. Family income also affects lifetime income directly. The family here, knowing its income, is interested in the effect of
the enrollment decision on future earnings conditional on current family income. They are interested in conditional causation,
not IN-causation, which in any case is undefined due to the role of family income as a confounder.

6 Here “conditioning” has a meaning different from that in probability theory. Of course, there is no problem in considering
the probability distribution of any internal variable conditional on any other. The context indicates which meaning of “con-
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Figure 2: Connectedness and Conditional Causation

In the model

y1 = β11x1 + β12x2 (5)

y2 = α21y1 + β22x2 (6)

the effect of ∆y1 on y2 is α21∆y1 if the alteration of y1 is due to an intervention of ∆y1/β11

on x1, or (α21 + β22/β12)∆y1 if the alteration of y1 is due to an intervention of ∆y1/β12

on x2. With β22 ̸= 0 these are different, reflecting the fact that causation of y2 by y1 is

not implementation neutral. The variable x2 is a confounder. Causation is conditional:

y1 → y2|x2, with α21 being the coefficient of conditional causation.

In graphs pairs of variables of which one conditionally causes the other are connected

by single arrows. Figure 2 shows the connectedness and causal graphs of the model just

presented.

Note that the causal graph omits specification of the confounders in the case of conditional

causation. That this omission is permissible reflects the fact that the set of confounders can

be inferred from the pattern of arrows in the causal graph, so listing the confounders explicitly

would be redundant.

We will use the language that yi directly causes yj if either yi directly IN-causes yj, or yi

directly causes yj conditional on some nonempty set of confounders. Suppose that yi directly

causes, but does not IN-cause, yj. If the confounders are held constant we have IN-causation

in the model so truncated, and conditional causation in the original model.

ditioning” is intended. The term “holding constant”, which is often taken to be equivalent to “conditioning”, has the same
double meaning.
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An external variable x causes an internal variable y if and only if there exists a causal path

(a path along which each member except the last directly causes its successor) connecting

the two. This condition is satisfied if and only if x ∈ E(y), which in turn is equivalent to

whether the appropriate element of the reduced-form coefficient matrix is nonzero. Thus

whether or not an external variable causes an internal variable can be determined from the

reduced form without reference to the structural form of a model.7

Whether or not one internal variable causes or directly causes another cannot be deter-

mined from the reduced form. This is so because in the structural form causal paths are

involved in the determination, and these are not preserved under the arithmetic operations

involved in computing the reduced form from the structural form. Most simply, internal vari-

ables are never causally related in reduced forms. These results give content to the Cowles

assertion that structural models contain causal information not available from the reduced

form alone.

Note here that the variables being conditioned upon are external. Conditioning on internal

variables is not admissible inasmuch as setting internal variables equal to zero conflicts with

the assumed dependence in the model of those variables on the members of their external sets.

Suppressing this dependence by setting these variables equal to zero constitutes alteration

of the model, and must be disallowed when model respecification is not intended.

It is now possible to demonstrate the invalidity (in general) of the common practice of

analyzing the causal dependence of one internal variable on another via respecifying the

cause variable as external and deleting the equations that determine it. There is no problem

if the cause variable IN-causes the effect variable in the original model. However, if causation

is conditional the procedure involves suppressing the dependence of the effect variable on

7The causal graph is unambiguously implied by the structural model (and vice-versa), but not necessarily by the connect-
edness graph. The model

y1 = β11x1 + β12x2 (7)

y2 = α11y1 + β22x2 + β23x3 (8)

implies y1 → y2|x2, and the model
y1 = α12y2 + β11x1 + β12x2 (9)

y2 = β22x2 + β23x3 (10)

implies y2 → y1|x2. Thus the two models have different causal orderings. However, they have the same connectedness graph.
It is seen that the causal graph, which conveys the same causal information as the structural equations, may contain strictly
more causal information than the connectedness graph.
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the confounders. Again, this constitutes an inadmissible alteration of the model.

4 Observed and Unobserved Variables

We have not distinguished variables according to whether they are observed by the analyst.

Whether or not one variable causes or IN-causes another in a model—the subject of our

discussion up to now—does not depend on whether the analyst can observe them.8 Thus we

used x and y to denote external and internal variables whether or not they are observed.

If xk is unobserved the coefficients βik and γik (i = 1, ..., n, where n is the number

of internal variables) are not identified. This being so, in one of the equations in which

an unobserved xk appears—equation i, for concreteness—one can set βik equal to 1 as an

arbitrary choice of units. Up to this point we have not been concerned with whether or not

variables are observed, so the coefficients were not normalized to 1.

Now we are passing from determining causal orderings in prespecified structural models

to testing of causal relations and estimation of causal coefficients. Causal coefficients are

identified statistically only when both the cause variable and the effect variable are observed.

Regressions can contain variables as explanatory variables only when these variables are

observed. Consequently, in any applied work related to causation the analyst must specify

which variables are observed.

We will use capital letters to denote variables observed by the analyst and lower-case

letters to denote unobserved variables (and when the discussion does not depend on whether

or not they are observed, as throughout the preceding sections).9 10

8Heckman and Pinto [7]: “Issues of identification and estimation are important for making the concept of causality empirically
operational, but not for defining it.”

9This characterization does not apply to matrices A, B and G, which are assumed to consist of unobserved constants.
10Under the received graphical treatment of causation a dashed line is sometimes used to connect two causally related variables

when one or both is unobserved. Here that notation would be unsuitable because causal links are defined independently of
which variables are observed. Observability is a property of variables, not causal links, and our avoidance of dashed lines reflects
this fact.
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5 Probabilistically Independent External Variables

It is assumed that the external variables, not being connected by causal paths, are uncondi-

tionally independently distributed random variables (of course, they are generally correlated

conditional on internal variables). The independence assumption is imposed whether or not

the variables in question are observed. Independence is a very strong assumption, and most

of the difficulty in determining causal orderings in applied work comes from the fact that it is

usually not obvious which variables are to be taken as external, given that that specification

entails the assumption that they are independent random variables (but recall that we are

(1) allowing a given external variable to appear in more than one structural equation, and

(2) allowing more than one external variable to appear in any given structural equation;

these specifications mitigate the restrictiveness of the independence assumption).11

The reason the independence assumption is needed is that without that restriction we

often find that the coefficients associated with causal orderings are not identified even if the

cause and effect variables are observed. For example, in the model Y1 = β11X1+ x2, in which

X1 IN-causes Y1, β11 is not identified if the external variables X1 and x2 are correlated.

If in a proposed model some of the variables provisionally specified as external are observed

they may have nonzero sample correlations. The population counterpart of this assertion

conflicts with the requirement just stated. The simplest way to respond to this problem is to

interpret nonzero sample correlations as reflecting sample variation, so that in the population

the correlation is assumed to be zero. All models are simplifications, and in some settings

ignoring evidence of correlations among variables labeled as external may be an admissible

procedure.

However, in many contexts taking that path is unacceptable, inasmuch as it amounts to

assuming away the question of what causal relations underlie correlations among observed

external variables. An alternative and usually preferable procedure is to assume that ex-

istence of a nonnegligible correlation between two observed variables indicates that those

11Investigators exhibit a strong preference for controlled experiments when they are feasible. This is so because when
treatments are assigned by lotteries there is no doubt about the validity of the assumption that the treatment variable is
probabilistically independent of all external variables other than the lottery outcome.
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variables cannot both be external. The assumed model is a misspecification.

At a minimum, resolving the conflict between the independence assumption and nonzero

correlations among variables provisionally classified as external involves respecifying one of

the two correlated variables as internal.12 Doing so makes it necessary to introduce a new

external variable, presumably unobserved, and augmenting the model by including a new

equation expressing the variable respecified to be internal as a function of the other of the

correlated external variables and the new external variable. The operative assumption now

is that the new external variable is independent of whichever of the correlated variables is

assumed to be external, and also of all other external variables.13 Thus all external variables

are independent in the reformulated model. Failure to do this means that the correlations

induced by explicitly modeled causal relations are conflated with unmodeled correlations

among external variables.

6 Causation and Correlation

Holland [8] cited G. A. Barnard as writing “That correlation is not causation is perhaps

the first thing that must be said.” It is often also the last thing that is said. Repeating this

mantra does not make clear what the relations are between causation and statistical measures

of association. Results from the preceding analysis allow clarification of such questions.

The assumption that external variables are independent random variables implies that an

internal variable y is probabilistically dependent on (that is, not probabilistically independent

of) an external variable x if and only if x ∈ E(y), so that there exists a causal path that

12Simpson’s Paradox refers to a setting in which failure to resolve correlations between external variables results in outcomes
that appear counterintuitive. The supposed paradox is that it is possible that a treatment that, based on correlations, appears
to be successful with both men and women taken separately may appear to be unsuccessful in a mixed population of men and
women. Under the presumption that correlations necessarily represent (unconditional) causation, this appears paradoxical. The
apparent paradox owes to the implicit specification that the treatment variable is external, despite being correlated with gender.
The resolution is obtained by recognizing that treatment is properly modeled as internal, depending on both gender and an
external shock uncorrelated with gender. A formal model incorporating this specification would specify that gender affects the
outcome both directly and via the treatment variable. The causal effect of the aggregate treatment on the aggregate outcome
is not implementation neutral: gender is a confounding variable in the causal relation between treatment and outcome. This
implies that the correlation between aggregate treatment and aggregate outcome does not have an IN-causal interpretation.
Treatment does cause the outcome conditional on gender. Therefore there is no presumption that the correlation of treatment
with outcomes has the same sign as the corresponding correlations for men and women taken separately.

13Note the contrast with regression theory. The existence of correlation between two observed explanatory variables causes
no problems in estimating coefficients in a multivariate regression. There is no conflict between this fact and the assertion here
that if two variables are correlated at least one of them should be respecified to be internal.
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connects x and y.14

The independence assumption also implies that two internal variables yi and yj are prob-

abilistically dependent if and only if for some x there exists a causal path from x to yi and

also a causal path from that same x to yj, so that the external sets of yi and yj overlap.

Consistent with E(yi) having a nonempty intersection with E(yj), one of these variables may

or may not cause the other. Thus absence of statistical dependence implies absence of cau-

sation, but the presence of statistical dependence between two variables does not imply that

either causes the other. The mantra, construed as the assertion that neither of two correlated

variables necessarily causes the other because there may exist external variables that cause

both, is correct.15

Another related result is that if yi IN-causes yj then, conditional on yi, yj is independent

of xk for each xk in the external set of yi. Thus the absence of conditional correlation is

consistent with the presence of causation. This implication of causation is emphasized in

Glymour, Scheines and Spirtes [5].

7 Regression and Implementation Neutrality

Every internal variable yj in a linear model can be written as

yj − E(yj) =
∑

xk∈E(yj)

γjk(xk − E(xk)), (11)

where the γjk are elements of the reduced form coefficient matrix. The assumption that xk

directly causes yj along a unique path (and that the xk have finite second moments) implies

γjk =
cov(yj, xk)

var(xk)
. (12)

Similarly, if we have that yi directly IN-causes yj along a unique path (the case in which yi
14This assertion must be qualified to deal with the special case in which two variables are connected along multiple causal

paths that cancel.
15In the philosophy literature this assertion is the “principle of the common cause” (Reichenbach [11]). It is correct in our

setting. Philosophers have debated whether it is true in general. See, for example, Cartwright [4] and Reiss [12].
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and yj are connected along several paths is considered in note 18) then αji satisfies

αji =
cov(yi, yj)

var(yi)
. (13)

Here we exploit the implication of IN-causation and the assumed independence of external

variables to conclude that yj differs from αjiyi by a term that has zero covariance with yi.

Taking covariances with yi, eq. (13) results. It follows that the causal coefficient coincides

with the coefficient of yi in a univariate regression of yj on yi.

It is important to note that the converse proposition does not obtain: existence of second

moments implies that yj can be regressed on yi whether or not they are causally related and,

if so, whether or not causation runs from yi to yj or vice-versa. Specifically, if we have

yj = λyi + x (14)

then λ equals cov(yj, yi)/var(yi) if and only if cov(yi, x) equals zero regardless of whether or

not there exists a causal relation in either direction between yi and yj. Thus regressing one

variable on another tells us nothing about the causal relation, or lack thereof, between the

two.16

8 Regressions Associated with Causal Equations

Under the assumption that all internal variables and a specified subset of the external vari-

ables are observed a linear structural model can be written as

Y = AY +BX + Cx, (15)

where we adopt notation that distinguishes between observed and unobserved external vari-

ables.17 As above, it is assumed that A is triangular with zeros on the main diagonal.

16Angrist and Pischke [2], p. 128, in their critique of prevailing instruction in econometrics, made the same point: “it’s hard
to see how this statement [that regression errors must be assumed to be uncorrelated with regressors] promotes clear thinking
about causal effects”.

17As a special case one might assume that C is an identity matrix, so that the number of unobserved external variables equals
the number of internal variables. Then unobserved external variables could be interpreted as observation errors.
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The j-th row of this vector-matrix equation expresses Yj as a function of the variables

that directly cause it. In general these variables consist of internal variables Yi (with i <

j), observed external variables Xk and unobserved external variables xk. It is seen that

causal equations have the same format as regressions, with the explanatory variables for the

dependent variable yj being the observed variables Y and X such that αji ̸= 0 and βjk ̸= 0,

and with the error term consisting of the unobserved external variable(s) that appear(s) in

the j-th equation.

Consider an equation j in which at least one of the right-hand side variables is observed

(so that either αji or βjk is nonzero for at least one i or k). The question is whether or

not this equation is a valid statement of causation when interpreted as a regression—that

is, whether the (population counterparts of the) values taken on by the estimated regression

coefficients equal the corresponding causal coefficients.

Most simply, if any of the observed explanatory variables directly IN-causes the dependent

variables along a unique path the regression coefficient coincides with the corresponding

causal coefficient. This was shown in the preceding section.18

The more interesting question is under what conditions the same is true for all the regres-

sion coefficients in the equation, whether or not they IN-cause the dependent variable. This

occurs if the error is independent of the explanatory variables (here we elide the distinction

between independence and mean-independence). This depends on whether the union of the

external sets of the observed explanatory variables is or is not disjoint from the union of

the unobserved variables in equation j. If these sets are disjoint it follows from the assumed

probabilistic independence of external variables that the error in the candidate regression

is independent of the explanatory variables. In that case the regression coefficients of the

observed explanatory variables coincide with the direct causal coefficients, and this is so

Under the additional restriction B = 0, so there are no observed external variables, the model could represent a vector
autoregression, following a change of notation. We do not pursue these lines.

18In the model
Y1 = x1 + x2 (16)

Y2 = α21Y1 + x3 (17)

Y3 = α31Y1 + α32Y2 + x4 (18)

Y1 IN-causes Y3, and the two variables are connected along two paths, one direct and one passing through Y2. The regression
coefficient in a bivariate regression of Y3 on Y1, equal to the term in parentheses in ∆Y3 = (α31 + α32α21)∆Y1, is seen to
coincide with the coefficient of IN-causation. It depends on the coefficients on both paths.
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whether or not causation is implementation neutral. The candidate regression is in fact a

causal regression.

This regression can be termed the associated regression for that causal equation. De-

pending on the model none, some or all of the causal equations have associated regressions.

Least squares provides consistent estimates of the causal coefficients in each causal equation

that has an associated regression. This is so whether the causation is implementation neutral

or conditional.

If the two sets just described have a nonempty intersection the error covaries with at

least one of the explanatory variables, implying that for at least one of the explanatory vari-

ables the regression coefficient differs from the corresponding causal coefficient. It remains

true that the regression coefficient of any explanatory variable that IN-causes the dependent

variable along a unique path does coincide with the corresponding causal coefficient, as seen

above (IN-causation of some explanatory variables is consistent with failure of the disjoint-

ness condition if equation j includes variables other than the cause variable as explanatory

variables).

The same point can be stated differently. In the presence of conditional causation the

confounder(s) may (but does not necessarily, as in the first example below) induce correlation

between some or all of the explanatory variables and the error. If so regression coefficients

associated with explanatory variables for which the correlation is nonzero do not coincide

with the associated causal coefficients.

In sum, it follows that regression gives a consistent estimate of the causal coefficient

associated with a particular observed explanatory variable either when causation is imple-

mentation neutral along a unique path, or for all explanatory variables in an equation when

the disjointness condition is satisfied. In the presence of confounders the regression produces

a consistent estimate of a conditional causal coefficient if the confounding path or paths

pass through other explanatory variables. This is so because in that case the error term will

still be independent of the explanatory variables. However, if instead any of the confound-

ing paths passes through the error term the regression coefficients will not coincide with
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conditional causal coefficients.

Two examples will make these results clearer. Consider the causal model

Y1 = x1 + x2 (19)

Y2 = β22x2 + x3 (20)

Y3 = α31Y1 + α32Y2 + x4. (21)

Neither Y1 nor Y2 IN-causes Y3, but each does cause Y3 conditional on x2. Here a multivariate

regression of Y3 on Y1 and Y2 is the associated regression for the causal equation (21), implying

that the regression coefficients of Y1 and Y2 coincide with the conditional causal coefficients

α31 and α32. The status of x2 as a confounder for Y1 → Y3 and Y2 → Y3 does not result in

inconsistency in the estimates of α31 and α32. This is so because for Y1 (Y2) the confounding

path from x2 to Y3 goes through Y2 (Y1), not through the error.

For an example in which the candidate regression is not an associated regression, consider

Y1 = x1 + x2 (22)

Y2 = β22x2 + x3 (23)

Y3 = α31Y1 + α32Y2 + β32x2 + x4 (24)

Here the candidate regression for the third equation involves the same observed explanatory

variables, Y1 and Y2, as above. We have Y1 → Y3|x2 and Y2 → Y3|x2, also as above. The

third equation is not an associated regression due to the fact that x2 is in the external sets

of Y1 and Y2, and is also a component of the regression error. The least-squares coefficient

estimates of α31 and α32 are inconsistent.

A regression that omits one or more of the observed explanatory variables that appear in

the causal equation will generally not produce coefficients that coincide with the correspond-

ing causal coefficients. For example, in the model just discussed a univariate regression of

Y3 on Y2, so that Y1 is omitted, will not produce the coefficient α32. Similarly, if the regres-
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sion is specified to include explanatory variables that do not appear in the causal equation,

least-squares estimates of causal coefficients will generally be inconsistent.

It was common practice two generations ago to estimate macroeconometric models by

running regressions of each internal variable on external variables and other internal vari-

ables. Routinely these estimated coefficients were interpreted as measuring causation. More

recently the same practice has been adopted in estimating structural vector autoregressions.

It was presumed that doing empirical implementations in this way is acceptable as long as

the model is correctly specified. Here we see that this presumption is in general incorrect:

even if the data were in fact generated by the assumed model, estimated regression coef-

ficients provide consistent estimators of causal coefficients only if each causal equation has

an associated regression. Even then regression coefficients may represent either IN-neutral

causation or conditional causation, as we have seen.

9 Instrumental Variables

The preceding sections involved only the estimators generated by ordinary least squares. We

have seen that in the presence of confounders these estimators may be inconsistent. In the

same settings instrumental variables that produce consistent estimates of conditional causal

coefficients may be available. In the model

Y1 = β11X1 + x2 + x3 (25)

Y2 = α21Y1 + β22x2 + x4 (26)

we have Y1 → Y2|x2 with conditional causal coefficient α21. The least-squares regression of

Y2 on Y1 is not an associated regression for the causal eq. (26), implying that the regression

coefficient of Y2 on Y1 does not equal α21. This is so because x2, a component of the error in

eq. (26), is a determinant of Y1, from eq. (25).

Despite this, α21 can be estimated consistently, implying that the effect of Y1 on Y2
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conditional on x2 can be evaluated (subject, of course, to sample variation). From the fact

that a reduced-form coefficient equals the product of the coefficients associated with the

direct causal relations along a causal path (assuming that path is unique, as the path from

X1 to Y2 is in the example), we have

α21 =
γ21
γ11

=
cov(X1, Y2)/var(X1)

cov(X1, Y1)/var(X1)
=

cov(X1, Y2)

cov(X1, Y1)
. (27)

The rightmost term in eq. (27) is recognized as the (population counterpart of the) instru-

mental variables estimator of α21, with the instrument being X1. Because X1, Y1 and Y2 are

observed the instrumental variables regression can be implemented empirically. This is so

even though x2, the variable that confounds the unconditional IN-causal relation between

Y1 and Y2, is assumed to be unobserved.

10 Nonlinearity and Causation

The discussion so far has been restricted to linear models. To what extent does it apply in

the presence of nonlinearities? If the question “What is the effect of x on y?” is read as

“What multiplicative constant reflects the causal relation between x and y?” the setting is

linear by definition. This is so because if ∆x and ∆y are causally related by some function

f(...), so that ∆y = f(...)∆x (where ∆x represents the difference between intervention and

baseline, as above), then setting f(...) equal to the constant β (as follows if the effect of x

on y is to be well-defined without specifying the value taken on by x or any other variable)

results in a difference equation that integrates to the linear equation y = βx.

It follows that introducing nonlinearities implies that characterizing causal relations be-

tween variables involves operations more complicated than multiplying the assumed change

in the cause variable by a constant. An example will make this clear. In the model (25)-(26)
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replace eq. (25) by the nonlinear equation

Y1 =

 1 if X1x2x3 ≥ 0

0 otherwise
. (28)

Characterizing the causal relation between X1 (for example) and Y1 consists of solving for

the baseline and intervention values of Y1 as functions of the baseline values of X1, x2 and

x3, and the intervention value of X1. The baseline value of Y1 is given by

Y b
1 =

 1 if Xb
1x

b
2x

b
3 ≥ 0

0 otherwise
. (29)

The intervention value Y i
1 of Y1 is the same except that Xb

1 is replaced by X i
1. The effect of

the X1 intervention on Y1 is Y i
1 − Y b

1 .

The above expressions are the counterpart in a nonlinear model of ∆y = β∆x in a linear

model. The causal constant β in the linear version is replaced by a function that, in general,

has as arguments not only the baseline and intervention values of the cause variable (and

not just their difference, as is sufficient in the linear case) but also other variables. It is seen

that in nonlinear models there may be no way to attach meaning to the causal dependence of

one variable on another short of specifying at the same time how the effect variable depends

on the assumed values of a collection of variables other than that arbitrarily labeled as the

cause variable.

These observations have an immediate implication in the analysis of treatment evaluation.

The fact that the treatment variable is usually assumed to take on one of a finite number of

values—frequently two, represented by 0 and 1—implies that the function representing the

determination of the treatment—generally referred to as the policy function—is necessarily

nonlinear (no linear function which has a nontrivial domain consisting of independent random

variables has a range {0,1}).

It turns out that the nonlinearity of the policy function causes no problems in estimating

the effect of the treatment on the outcome if the latter function is linear. To see this
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observe that in the model (28)-(26) under any baseline specification and any intervention

the term ∆Y i
1 −∆Y b

1 takes on one of the values {1,-1} (0 is disallowed because in that case

the purported intervention has no effect on the cause variable, Y1). For nonzero values of

∆Y i
1 −∆Y b

1 the linearity of eq. (26) implies that the causal coefficient of Y1 on Y2 conditional

on x2 unambiguously equals α21; despite the nonlinearity of eq. (28) α21 can be estimated

consistently.

The general result is that if a model contains some equations that are linear and some that

are nonlinear the analysis of this paper applies to causal coefficients that appear in those

equations that are linear. Analysis of causation in equations that are nonlinear requires

separate treatment.

11 Latent Variables and Identification

Up to now it has been assumed that causal models do not contain latent variables (internal

variables that are not observed). Here we consider what happens when that very strong

restriction is relaxed. As would be expected, doing so has the result that identification issues

come to the foreground. This is most easily demonstrated using an example. Consider the

model

Y1 = x1 + x2 (30)

y2 = α21Y1 + x3 (31)

Y3 = α31Y1 + α32y2 + β32x2, (32)

so that y2 is a latent variable. The fact that there are 3 internal variables implies that there

are 3 pairs of internal variables that in general may or may not be causally related, with

causal coefficients that may or may not be identified.

The presumption implicit in this assertion is that the problems of determining causa-

tion and identifying causal coefficients are different and must be determined separately (the

Cowles economists, like many more recent analysts of causation, largely missed this distinc-
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tion, essential as it is).19 Nonexistence of a causal coefficient can occur if either two variables

are not causally related or the relevant causal coefficient exists but is not identified. In the

above model the causal relations linking the members of the pairs of internal variables are

Y1 ⇒ y2, Y1 → Y3|x2 and y2 → Y3|x2. These causal relations are the same as would obtain if

y2 were observed (it was noted above that causal orderings do not depend on which variables

are observed). The constants associated with the pairs defining the causal ordering on the

internal variables are α21, α31 and α31 + α32α21, respectively. The first two of these are not

identified. The same is true of α32, the constant directly connecting y2 and Y3. The constant

α31 + α32α21 that gives the effect of Y1 on y3 (given x2) making allowance for the fact that

causation occurs both directly and indirectly is identified.

The conclusion of the exercise just discussed is that even though assumptions about the

observability (or lack thereof) of internal variables have no direct implications for the causal

ordering, such restrictions do have implications for the identifiability of causal coefficients. As

one would expect, the fewer variables are observable the larger is the set of unidentified causal

coefficients. Further, there is no obvious connection between the implementation neutrality

of causation and the identifiability of causal coefficients. In particular, as the example

illustrates, implementation neutrality is neither necessary nor sufficient for identifiability.

This is not good news: specifying that all internal variables are observed is a restriction

that one would like to avoid, but in many settings it is far from clear how this is to be

achieved.

12 Summary

The work of the Cowles economists on simultaneous equations models was well received and

was regarded as an important development at the time. Several of the major contributors

were awarded Nobel prizes for this work. It now appears that, despite this apparent success,

development based on the Cowles paradigm was terminated at an intermediate point. The

19As regards the more recent causation literature, this omission is yet another consequence of vagueness in specifying the
data-generating model.
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reasons for this abrupt shift in direction, not having been much discussed in the literature,

are not apparent. Causal attributions are now based largely on natural experiments, meaning

events that can credibly be characterized as external shocks. This is a positive development,

but it has been combined with a reluctance to specify data-generating models that clearly

distinguish between external and internal variables. Heckman and his coauthors in particular

have repeatedly pointed out that the absence of explicit specification of models has resulted

in lack of clarity in discussions related to causal issues. As a result of avoiding many of the

central points at issue, proponents of potential outcomes and their critics have spent their

time debating such semantic issues as whether controlled experiments are or are not the gold

standard in causal analysis.

We do better by resuming work along the lines the Cowles economists laid out. Doing

so involves addressing issues for which the Cowles treatment was at best indirect. In this

paper we began with supplying a definition of what it means for one variable in an explicitly-

specified model to cause another. This involved attaching a specific meaning to the assertion

that one variable is connected to another, a topic dealt with only implicitly by Simon [13].

The definition of connectedness led here in turn to definitions of the notions of IN-causation,

conditional causation and confounding variables. It was noted that these topics can be

defined and analyzed without reference to assumptions about observability or assignments

of probability distributions to external variables, a fact that guided the determination of the

order in which the respective issues were discussed above. The discussion then turned to

identification and estimation issues, for which observability and probabilities are central. A

major topic was discussion of what has to be true for statistical measures like correlation and

regression coefficients to be interpretable causally; these topics were treated only in passing

by the Cowles economists.

Until recently most economists took the view that discussion of issues related to causation

could safely be left to philosophers. The practice now is to take causation issues seriously,

but the fact remains that it is not easy to find discussions where concerns about exogeneity

and causation are dealt with explicitly and clearly. The view here is that adopting the Cowles
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analytical framework, appropriately updated, will point us in a better direction.
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