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Transcriptomic analysis of paired
healthy human skeletal muscles to
identify modulators of disease
severity in DMD

Shirley Nieves-Rodriguez1,2, Florian Barthélémy2,3,
Jeremy D. Woods4†, Emilie D. Douine2,5, Richard T. Wang1,2,
Deirdre D. Scripture-Adams2,3, Kevin N. Chesmore1,2,
Francesca Galasso1, M. Carrie Miceli2,3 and Stanley F. Nelson1,2,5,6*
1Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles,
Los Angeles, CA, United States, 2Center for Duchenne Muscular Dystrophy at UCLA, Los Angeles, CA,
United States, 3Department of Microbiology, David Geffen School of Medicine and College of Letters and
Sciences, University of California, Los Angeles, Los Angeles, CA, United States, 4Department of Pediatrics,
David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States,
5Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los
Angeles, CA, United States, 6Department of Pathology and Laboratory Medicine, David Geffen School of
Medicine, University of California, Los Angeles, Los Angeles, CA, United States

Muscle damage and fibro-fatty replacement of skeletal muscles is a main
pathologic feature of Duchenne muscular dystrophy (DMD) with more
proximal muscles affected earlier and more distal affected later in the disease
course, suggesting that different skeletal muscle groups possess distinctive
characteristics that influence their susceptibility to disease. To explore
transcriptomic factors driving differential gene expression and modulating
DMD skeletal muscle severity, we characterized the transcriptome of vastus
lateralis (VL), a more proximal and susceptible muscle, relative to tibialis
anterior (TA), a more distal and protected muscle, in 15 healthy individuals
using bulk RNA sequencing to identify gene expression differences that may
mediate their relative susceptibility to damage with loss of dystrophin. Matching
single nuclei RNA sequencing data was generated for 3 of the healthy individuals,
to infer cell composition in the bulk RNA sequencing dataset and to improve
mapping of differentially expressed genes to their cell source of expression. A total
of 3,410 differentially expressed genes were identified and mapped to cell type
using single nuclei RNA sequencing of muscle, including long non-coding RNAs
and protein coding genes. There was an enrichment of genes involved in calcium
release from the sarcoplasmic reticulum, particularly in the myofibers and these
myofiber genes were higher in the VL. There was an enrichment of genes in
“Collagen-Containing Extracellular Matrix” expressed by fibroblasts, endothelial,
smoothmuscle and pericytes, withmost genes higher in the TA, as well as genes in
“Regulation Of Apoptotic Process” expressed across all cell types. Previously
reported genetic modifiers were also enriched within the differentially
expressed genes. We also identify 6 genes with differential isoform usage
between the VL and TA. Lastly, we integrate our findings with DMD RNA
sequencing data from the TA, and identify “Collagen-Containing Extracellular
Matrix” and “Negative Regulation Of Apoptotic Process” as differentially expressed
between DMD compared to healthy. Collectively, these findings propose novel
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candidate mechanisms that may mediate differential muscle susceptibility in
muscular dystrophies and provide new insight into potential therapeutic targets.

KEYWORDS

muscle, transcriptomics, DMD, muscle susceptibility, gene expression, single nuclei
RNAseq

1 Introduction

Duchenne muscular dystrophy (DMD) is the most common
progressive muscular dystrophy with childhood onset, and is caused
by loss of function mutations in DMD (Hoffman et al., 1987),
leading to profound weakness and premature death, mainly from
cardiorespiratory failure. DMD encodes dystrophin, which plays a
critical structural role in skeletal and cardiac muscle fibers by linking
the intra-myofiber F-actin of the Z-disk to the extracellular matrix
through binding components of the dystrophin-associated
glycoprotein complex at the muscle membrane (Hoffman et al.,
1987; Way et al., 1992). Absence of dystrophin in skeletal muscle
leads to greater susceptibility to damage from contraction-induced
injury (Petrof et al., 1993), resulting in leakage of calcium into the
myofiber with a plethora of downstream consequences ultimately
leading to myofiber death and replacement with fat and fibrosis.
Fibroblasts, immune cells, and muscle stem cells are expanded,
changing the extracellular matrix (Scripture-Adams et al., 2022). A
large number of other muscular dystrophies have had their genetic
basis decoded and many are components of the dystrophin-
glycoprotein complex (Cohen et al., 2021), including Limb-girdle
muscular dystrophies (LGMDs) with similar patterns of muscle loss
from proximal to more distal.

While DMD is always degenerative and leads to premature
death, variation in disease progression between individuals in DMD
has been used to identify genetic factors correlated with disease
severity or progression. Disease severity is mitigated with residual
dystrophin expression which usually results in slowing of disease
progression (Fanin et al., 1995). However, even in cases of siblings
with DMD who have the same DMD mutation, there can be
discordance in the progression (Pettygrove et al., 2014),
indicating that environmental or other genetic factors may
modify disease severity. Various studies use variability in age at
loss of ambulation (LOA) (Pegoraro et al., 2011; Flanigan et al., 2013;
Bello et al., 2016; Weiss et al., 2018; Spitali et al., 2020) to identify
variants associated with disease progression.

The overall pattern of sequentially affected muscles in DMD is
highly similar across affected individuals and describes a distinctive
pattern of progression with more proximal muscles affected earlier
than more distal muscles (Rooney et al., 2020), suggesting that
constitutive differences in the formation of those muscle groups
encode factors that influence relative myofiber susceptibility to
damage. Therefore, the study of healthy muscle may provide
insights into susceptibility mechanisms in disease. An extreme
example of protected striated muscles in DMD across multiple
species are the extraocular muscles (EOM) (Karpati et al., 1988;
Valentine et al., 1990; Kaminski et al., 1992). However, the
functional requirements of EOM are substantially different from
limb skeletal muscle. EOM have multiple innervated fibers,
compartmentalization of layers with different fiber types,

expression of EOM-specific myosin isoforms (encoded by
MYH13, MYH15), and partial retention of embryonic and
neonatal myosin expression in mature fibers (Porter, 2002).
Differential gene expression studies in mouse (Porter et al., 2001)
and rat (Fischer et al., 2002) highlighted calcium homeostasis,
mitochondrial genes, lipid catabolism, immune processes,
apoptosis, and extracellular matrix.

Here we study healthy muscle tissue from vastus lateralis
(VL) and tibialis anterior (TA), to identify genes that alter
myofiber susceptibility to fibrofatty replacement in DMD
individuals, using paired samples from 15 donors to control
for interindividual and age differences. While TA has a much
more modest degree of protection from disease progression than
EOM, TA is substantially and consistently protected from
ongoing muscle damage in DMD relative to VL from
longitudinal imaging and spectroscopy data of children with
DMD (Rooney et al., 2020). We reasoned that the differential
expression analysis of VL and TA in healthy individuals would
provide insight into protective mechanisms relevant in the
absence of dystrophin. The difference in progression is
substantial. VL progresses faster than TA with an about 8.5-
year longer time for the TA to attain similar levels of damage as
the VL (Rooney et al., 2020). In this transcriptomic study, we
sampled VL and TA at a single timepoint from healthy young
adult volunteers. We report differentially expressed genes and
map differentially expressed genes to specific intra-muscular cell
types using single nuclei analyses.

2 Materials and methods

2.1 Muscle biopsies

Fifteen healthy individuals (age range 18–26 years) with no history
of muscle or other chronic or acute disease were consented on UCLA
protocol IRB#18-001366. Eight ambulatory DMD patients with a
confirmed nonsense DMD mutation were consented on UCLA
protocol IRB#11-001087 (age range 2–7 years). All biopsies were
obtained using a Vacora (Bard) vacuum-assisted core needle from
the VL and TA as previously described (Barthelemy et al., 2020). In
brief, before the biopsies, the participant’s leg was observed via
ultrasound to ensure that the muscle showed no excess fat or blood
vessels nearby. VL sample was obtained from about two-thirds of the
muscle length, and the TA from about one-third of the muscle length.
We chose muscle pieces that had similar muscle appearance without
visible connective tissue to reduce sample variability. Each needle
muscle biopsy core (about 125 mg) was dissected into about 25 mg
pieces and flash frozen in liquid nitrogen within tissue cassettes within
5 min of excision and stored in liquid nitrogen until RNA extraction or
sectioning for histological examination.
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2.2 RNA sequencing

Frozen skeletal muscle (8–25 mg) was homogenized on ice in
500 µL of Trizol for RNA extraction using standard protocols
(Lee et al., 2020). RNA quality was recorded by the RNA
integrity number (RIN) using the Agilent RNA 6000 Nano
chips. Healthy muscle RNA samples with RIN above 7 and
DMD muscle RNA samples with RIN above 4 were used to
prepare cDNA libraries with ribosomal RNA depletion using the
KAPA RiboErase Kit (HMR) (Roche). About 50 million 150-151
bp paired-end RNA sequencing (RNAseq) reads were generated
per RNA sample using Illumina Novaseq 6000 S4. Sequencing
reads were aligned to GRCh38 (Ensembl 105, Gencode v39)
using STAR 2.6.0c (Dobin et al., 2012; Lee et al., 2020). Data
quality control included alignment metrics (ribosomal and
globin RNA, aligned and unmapped reads, sequencing depth),
hierarchical clustering, principal component analysis and
Pearson correlation.

2.3 Single nuclei isolation and RNA
sequencing

Single nuclei were isolated from a subset of 3 paired male
healthy VL and TA frozen muscle and sequenced using the 10X
Genomics platform as described previously (Scripture-Adams
et al., 2022). Six to twelve 40 µM cross sections of frozen muscle
biopsies were collected in a sterile tube to estimate a total of 3 mg
of skeletal muscle, dounced with two cycles of strokes (one with a
loose douncer followed by one with a tight douncer) in 1%
bovine serum albumin (BSA) in phosphate-buffered saline (PBS)
with 100 U/mL of type IV collagenase and 0.5 U/µL RNAse
inhibitor, and stained with 10 μg/mL DAPI. The nuclei were
sorted by fluorescence-activated cell sorting (FACS) to separate
from debris and create a pure nuclear preparation prior to
library preparation. 10X Chromium Single cell 3′ v3 libraries
were prepared and sequenced on Illumina Novaseq 6000 S2 (2 ×
50 bp) (10X Genomics). Single nuclei RNA sequencing
(snRNAseq) reads were aligned to GRCh38 (Ensembl 105,
Gencode v39) using Cell Ranger (10X Genomics). Data was
aggregated for downstream processing and analysis. Initial cell
clustering was performed using k-means within Cell Ranger
(10X Genomics). Nuclear doublets were identified using
DoubletFinder (version 2.0.3) (McGinnis et al., 2019) with a
doublet rate of detection of 15%. Doublets as well as nuclei with
200 or fewer unique molecular identifiers (UMI), were excluded
from downstream analysis. Re-clustering was performed after
data filtering, and clustered nuclei populations were identified
using known cell-type marker genes via Loupe Browser (version
6.0.0) (10X Genomics). Downstream analysis and statistical
testing of differentially expressed genes across cell types was
performed using the R package Seurat (version 4.0.2) (Hao et al.,
2021) and the Wilcoxon statistical test. UMI-normalized average
expression across cell types was obtained from Seurat’s
AverageExpression function, which returns the average
number of transcripts per 10,000 transcripts (TP10K).

2.4 Cell deconvolution using single nuclei
RNA sequencing

Raw bulk RNAseq read counts for were obtained from the STAR
alignment (version 2.6.0c) (Dobin et al., 2012) and batch-corrected
for the two sequencing runs using CombatSeq (sva version 3.38.0)
(Zhang et al., 2020). Differential gene expression analysis across cell
types in the snRNAseq dataset identified statistically significant
(adjusted p-value <0.05) marker genes for each cell type. Highly
specific markers for a specific cell type were defined as those
expressed in less than 10% (for large cell populations) or 1% (for
small cell populations) of the other cell types. A list of 69 cell-specific
genes was obtained after further manual curation. Estimated cell
proportions for each sample were obtained with CIBERSORTx
(Newman et al., 2019) using the average expression of these
69 cell-specific genes. The parameters used for CIBERSORTx
were: Job type = Impute Cell Fractions, Batch correction =
disabled, Disable quantile normalization = true, Run mode =
relative, Permutations = 100.

2.5 Differential gene expression analysis

The R package DESeq2 (version 1.30.1) (Love et al., 2014) was
used to perform differential gene expression analysis using the raw
read counts. The covariates included in the healthy VL versus TA
analysis design were: participant study ID, RIN, and batch. The
covariates included in the DMD versusHealthy analysis design were:
batch, RIN, age, and sex. Multiple testing adjustment was done
within DESeq2 using Benjamini–Hochberg for a false discovery rate
(FDR) of less than 0.05.

Functional enrichment analysis of differentially expressed
genes was performed for all differentially expressed genes
(independent of their direction of highest expression) using
EnrichR (https://maayanlab.cloud/Enrichr/, (Chen et al.,
2013)), with all expressed genes included in the
DESeq2 analysis as background. For the genes differentially
expressed between VL and TA, we tested 4,701 terms from
GO Biological Process 2023, and 408 terms from GO Cellular
Component 2023. For genes differentially expressed between
DMD and healthy, we tested 3,133 terms from GO Biological
Process 2023, and 272 terms from GO Cellular Component 2023.
Significant gene ontology (GO) terms (adjusted p-value <0.05)
for the VL versus TA analysis were further summarized with
ReviGO (http://revigo.irb.hr/, (Supek et al., 2011)) with the
following parameters: dispensability threshold = 0.5, GO
metric = adjusted p-value (lower value is better), remove
obsolete GO terms = yes, species = Whole UniProt database,
similarity measure = SimRel.

ENCODE_and_ChEA_Consensus_TFs_from_ChIP-X enrichment
category within EnrichR (Chen et al., 2013) was used to identify
transcription factors (104 transcription factors tested) that putatively
bind to the differentially expressed genes. Pathway enrichment of
druggable genes higher in the VL was performed using EnrichR
(Chen et al., 2013) KEGG 2021 Human enrichment category
(250 terms tested).
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2.6 Differential isoform usage analysis

The VL and TA raw data was aligned using the Kallisto app
(Kallisto Quantification version 2.0.2, Kallisto 04.46.1) on the
DNAnexus platform pipeline (Bray et al., 2016) to obtain counts
and relative abundance (TPM) for each transcript (Gencode v39,
Ensembl 105).

Differential isoform usage analysis between VL and TA was
performed using the IsoformSwitchAnalyzeR (version 1.12.0) R
package (Vitting-Seerup and Sandelin, 2017). The design matrix
included: sex, sample RIN, and batch. Gencode v39 primary
assembly annotation and transcripts were used to generate the
switch list. Isoforms were prefiltered before testing for differential
isoform usage using the following parameters: gene expression
cutoff = 0.1 and isoform expression cutoff = 0, and genes with
only one isoform were excluded. Isoform switch testing was done
using DEXSeq (version 1.36.0) (Anders et al., 2012) within the
IsoformSwitchAnalyzeR package, and correction for confounding
factors indicated in the design matrix was performed simultaneously
via the limma package (version 3.46.0) (Ritchie et al., 2015). The
isoform switch analysis was limited to: switching genes (genes with
at least one isoform significantly differentially used), genes with
consequence potential (with isoforms differentially used in opposing
directions, i.e., one with increased and one with decreased usage),
and isoforms with at least two isoforms significantly differentially
used (alpha<0.05), and a difference in isoform usage between
muscles of at least 0.01 (1%).

2.7 Immunofluorescence

Skeletal muscle tissue was cross-sectioned at 10 µM thickness
after equilibration at −22°C in a cryostat and then stored at −80°C
until immunofluorescence was performed. Slides were acclimated to
room temperature and sections were circled using a hydrophobic
barrier pen. For actinin-3 staining, sections were fixed with PFA 4%
for 10 min and permeabilized using 0.5% Triton-X for 10 min at
room temperature. Sections were treated with TrueBlack Lipofuscin
Autofluorescence Quencher before blocking with 3% BSA/10% goat
serum in PBS for 1 h at room temperature, and then incubated in
primary antibody in blocking solution overnight at 4°C in a
humidified chamber. For nebulin staining, unfixed samples were
permeabilized with 0.5% Triton-X for 10 min at room temperature.
Samples were blocked with 3% BSA for 1 h at room temperature and
incubated in primary antibody solution in 3% BSA overnight at 4°C
in a humidified chamber. Primary antibodies used were: monoclonal
anti-actinin-3 (Abcam, ab68204, 1.61 μg/mL), monoclonal anti-
myosin skeletal slow (Sigma, m8421, 4.8 μg/mL), mouse anti-
NEB143(3F4) ((Lam et al., 2018), 149 μg/mL), rabbit anti-MYH1
(Sigma, SAB2104768, 5–10 μg/mL), rat anti-MYH2 clone 8F72C8
(EMD Millipore, MABT848, 40 μg/mL). Sections were then
incubated in secondary antibody in PBS for 2 h at room
temperature. For nebulin staining, secondary antibody for rat and
mouse were cross adsorbed to prevent cross-reactivity: Goat anti-
Mouse IgG (H + L) Cross-Adsorbed Secondary Antibody, DyLight
550 (Invitrogen, SA5-10173, 1:500), and Cy5 AffiniPure Donkey
Anti-Rat IgG (H + L) (Jackson Laboratories, 712-175-153, 1:300).
Slides were mounted in Antifade Mounting Medium with DAPI

(Vectashield, H-1200-10). Images were obtained using a fluorescent
microscope and processed using ImageJ (Schneider et al., 2012)
(release 1.53c).

3 Results

3.1 Identification of transcriptional
differences between VL and TA

Because of the substantial difference in the rate of
progression/damage of VL and TA in DMD (Figure 1A), we
characterized the intrinsic transcriptomic profiles of paired
healthy VL and TA using RNAseq and snRNAseq to reveal
candidate mechanisms that may underlie this differential
susceptibility to DMD (Figure 1B). VL and TA biopsies were
sampled from each of 15 healthy young adults during the same
procedure. Extraction of RNA from frozen skeletal muscle was
adequate with an average RIN of 8 across all samples (range
7.1–8.7), and an average of 54 million sequencing reads were
obtained per sample (range 45–76 million reads). One sample
that had lower sequencing depth, and two samples that were
outliers by hierarchical clustering and had relatively lower
correlation with the overall dataset were excluded. A total of
27 healthy muscle samples (26 paired VL-TA, 1 unpaired VL)
were used for further analysis. Two-dimensional principal
component analysis (PCA) on the expression of all
22,414 expressed genes among 27 samples demonstrates that
RNAseq data cluster predominantly by muscle type and that
muscles from the same individual do not cluster together
(Figure 1C). This indicates that there is more expression
similarity between unrelated individuals in either the VL or
TA than within an individual, or alternatively stated there are
more intraindividual gene expression differences between VL
and TA than interindividual differences from genetic variation.

Using DESeq2 (Love et al., 2014) with a paired analysis design,
we identified a large set of 3,410 significantly differentially expressed
genes (Supplementary Table S1), or 15.2% of all genes,
demonstrating a substantial number of gene expression
differences between the skeletal muscle groups. When we
randomize participant IDs within muscle groups such that
samples are no longer paired, and test for differential gene
expression, we do not observe as many differentially expressed
genes as we do with a paired analysis (empirical p-value = 0, n =
1,000 permutations). That is, our paired analysis of both muscles
from the same individuals allowed us to identify a larger number of
differentially expressed genes than we would have with an unpaired
design. Themost statistically significant differentially expressed gene
was the transcription factor ZNF385A, and other top differentially
expressed genes (by fold difference or p-value) included MYH1,
COL22A1, the transcription factors BNC2, SIM2 and ZNF273, and
the non-coding RNAs lnc-HLCS-1, lnc-CES1-7, lnc-APOB-2, and
lnc-RORA-1 (Figure 1D). Genes classified as protein coding by the
Ensembl automatic annotation system were more likely to be
differentially expressed, comprising 82% of all differentially
expressed genes, but a substantial number of long noncoding
RNAs (lncRNAs) are differentially expressed between the muscles
(Supplementary Table S1).

Frontiers in Genetics frontiersin.org04

Nieves-Rodriguez et al. 10.3389/fgene.2023.1216066

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1216066


Gene ontology analysis on all differentially expressed genes
revealed an enrichment of 619 biological processes and
85 cellular component categories (Supplementary Table S2A).
After summarization of redundant terms with ReviGO, the
summarized GO term list is comprised of 75 biological processes
and 28 cellular component GO terms (Supplementary Table S2B).
We further focused on GO terms with over 10 genes, such that we
could examine a larger number of genes contributing to the
enrichment, resulting in a list of 58 biological processes and
21 cellular components. For each GO category, we ranked them
by adjusted p-value, and then selected 6 relevant categories (Table 1)
based on their involvement in muscle function and the dystrophic
pathology.

3.2 Cell type differences in VL and TA

Fiber type composition varies between skeletal muscles in mice
(Terry et al., 2018) and humans (Abbassi-Daloii et al., 2023). In
humans, VL has a larger portion of fast myofibers than TA
(Edgerton et al., 1975; Jakobsson et al., 1991), whereas in mouse,
the TA is composed entirely of fast myofibers (Hämäläinen and
Pette, 1993; Scripture-Adams et al., 2022). In DMD, the differential
disease susceptibility between different skeletal muscles has been
partly attributed to the higher proportion of fast fibers, which are
more susceptible to damage in the disease course than slow fibers
(Webster et al., 1988). These differences in cell composition may
contribute to the differential disease susceptibility and be reflected in

FIGURE 1
Healthy VL and TA transcriptomes are highly different. (A) Representation of the differential progression of vastus lateralis (VL) and tibialis anterior
(TA) in DMD. The color scale indicates the progression from early stages of DMD where muscle fat fraction is minimal (illustrated in red), to late stages
where muscle fibers are completely replaced by fat (illustrated in yellow). (B) Workflow for the identification of candidate mechanisms mediating
differential muscle susceptibility to DMD. (C) The first two principal components (PC1 and PC2) are shown for batch-corrected normalized RNAseq
data expression of all expressed genes (n = 22,414) across the 27 muscle samples. (D) Volcano plot for all 22,414 genes tested for differential expression.
Dashed lines depict a fold change of 2 and a p-value of 0.05. For each muscle, the top 5 differentially expressed genes by fold difference and the top
5 genes by p-value are labeled.
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the observed transcriptomic differences. To assess the contribution
of cell composition to gene expression, we performed snRNAseq of
nuclei dissociated from a small subset of the healthy individuals.
After excluding doublets and nuclei with less than 200 UMI, the VL
and TA dataset consists of 14,887 single nuclei (5,151 VL and
9,736 TA) with a median of 386 genes and 568 UMI per nucleus,
and with a total of 25,248 genes detected within all of the nuclei.

Clustering analysis resulted in the identification of 8 known major
cell types (Figure 2A) with distinct transcriptomes (refer to
Supplementary Table S2C for a list of positive marker genes). We
compared the proportion of each major cell type within VL and TA.
Consistent with previous reports, the three VL samples had a higher
proportion of fast fibers compared to TA (paired t-test p = 4.25E-02,
average fold difference 1.82) (Figure 2C). The 3 TA samples had
1.29 times as many slow fibers, although this difference was not
statistically significant in our snRNAseq dataset (paired t-test p =
2.52E-01) (Figure 2C). Performing snRNAseq on a subset of samples
allows us to infer cell composition in bulk RNAseq. By integrating bulk
RNAseq and snRNAseq, we can explore the transcriptomic profile of our
large dataset taking into consideration if the gene is specifically expressed
in just 1 cell type, and thus map the differential expression of some genes

to cell type. The snRNAseq dataset was also used to infer the percentage
of all major cell types across our larger bulk RNAseq dataset. For this, we
used CIBERSORTx (Newman et al., 2019) to deconvolute the bulk
RNAseq data with 69marker genes that we identified and define as being
uniquely expressed within only one of the 8 major cell types (Figure 2B).
Overall, the percentage of cell types inferred by CIBERSORTx agreed
with those observed by snRNAseq in the six samples with both data types
(Pearson correlation= 0.81), andwe can infer frombulkRNAseq that TA
has a larger portion of slow fibers than VL (paired t-test p = 3.69E-05,
average fold difference 1.54) and VL has a higher portion of fast fibers
(paired t-test p = 1.93E-04, average fold difference 2.07) (Figure 2C). We
also observed a slight but significant increase in the percentage of
endothelial (paired t-test p = 4.40E-03, average fold difference 1.16),
pericytes (paired t-test p = 7.22E-03, average fold difference 1.14), and
immune (paired t-test p = 3.63E-03, average fold difference 1.16) cells in
TA compared to VL. The higher percentage of endothelial cells and
pericytes in the TA is suggestive of a higher capillarity density compared
to theVL. Similar differences in capillarity density across legmuscles have
been reported previously, with a higher density in the lower leg
gastrocnemius lateralis compared to the upper leg semitendinosus
muscle (Abbassi-Daloii et al., 2023).

TABLE 1 Differentially expressed genes are enriched within regulation of calcium, extracellular matrix and regulation of apoptosis. Significant gene ontology (GO)
terms enriched among all 3,410 differentially expressed genes (independent of the muscle where they are highest expressed) are shown. EnrichR significant GO
terms for biological process (BP) and cellular component (CC) were summarized using ReviGO. Selectedmost relevant and significant terms with over 10 genes are
shown. The top 15 genes by average fold difference between VL and TA are shown.

GO GO term Count Adjusted
p-value

Odds
ratio

Top 15 genes by average fold difference

BP Cytoplasmic Translation 71 9.77E-36 18.28 RPS15A, RPL21, RPL35, RPL9, RPL39, RPL6, RPL29, RPS3A,
RPL7, RPL27, RPLP0, MRPS12, RPS18, RPS13, RPS15

Muscle Contraction 48 7.56E-15 6.92 MYH1, RYR2, MYL6B, MYH11, MYH6, TPM1, MYH2, MYLK,
MYLK2, MYH3, MYH4, TPM4, OXTR, MYL1, TPM3

Regulation Of Cell Migration 121 2.46E-14 2.75 TBX5, EPPK1, TNC, FGF9, CCR1, NKD1, PLXNA4, SERPINE1,
NTRK3, SH3RF2, STC1, SFRP1, TPM1, TWIST2, PAK1

Regulation Of Cell Adhesion 45 3.97E-07 3.41 TNC, DACT2, PLXNA4, TPM1, PLXNB1, ADAM22, DLL1, SRC,
PDE3B, MYADM, EPHA4, EPHA2, TGFBI, PPP3CA, TGM2

Regulation Of Apoptotic Process 139 4.96E-06 1.76 EGR3, COMP, ACTN3, EGR1, SH3RF2, ANGPTL4, FRZB,
GATA6, SFRP1, MLLT11, ACTN1, TENT5B, GADD45G, MPO,
SMAD6

Regulation Of Release Of Sequestered Calcium
Ion Into Cytosol By Sarcoplasmic Reticulum

13 9.98E-05 9.05 RYR2, CASQ1, CASQ2, SLC8A1, GSTO1, ANK2, CACNA1C,
DMD, CALM2, CALM1, TRDN, PDE4D, ATP1A2

CC Focal Adhesion 156 7.17E-33 4.1 CNN1, ACTN3, TNC, CSRP1, ACTN1, SLC9A1, SPRY4, FLNA,
MCAM, BCAR3, ITGA5, THY1, LAYN, CD9, SRC

Large Ribosomal Subunit 41 3.52E-24 28.79 RPL21, RPL35, RPL9, RPL39, RPL6, RPL29, RPL7, RPL27,
RPLP0, RPL38, RPL37A, RPL7A, RPL4, RPL14, RPL24

Actin Cytoskeleton 105 8.76E-17 3.18 CNN1, ACTN3, SORBS2, TPM1, ACTN1, PAK1, FLNA, MYLK,
ABLIM1, CD274, MYL2, CNN2, TPM4, MYADM, MYLK3

Collagen-Containing Extracellular Matrix 88 2.10E-09 2.43 ACAN, COMP, TNC, LEFTY2, COL28A1, COL21A1, CCN2,
SERPINE1, COLQ, ANGPTL4, INHBE, SLPI, SFRP1, SERPINB8,
NCAM1

Sarcoplasmic Reticulum 25 3.30E-09 7.76 RYR2, ATP2A1, SLN, THBS1, ATP2A2, DMPK, CASQ1,
ATP2A3, STRIT1, JPH1, CASQ2, JSRP1, ITPR1, S100A1, ITPR3

Sarcolemma 21 6.01E-05 4.04 RYR2, ATP1A1, CAV2, SLC8A1, CACNG1, ANK2, SLC2A5,
DMD, CAV3, SGCB, SYNC, CAV1, POPDC3, RYR1, DYSF

Italic values are the gene names (gene symbols).
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3.3 Mapping of differentially expressed
genes to specific cell types within skeletal
muscles

We next sought to identify the cellular source of differentially
expressed genes identified by bulk RNAseq by interrogating their
relative expression across the 8 major cell types identified in healthy
human muscle. Out of 3,410 differentially expressed genes observed
within the bulk RNAseq data, 3,221 (94.4%) were also observed in

our snRNAseq dataset (Figure 2D). Hierarchical clustering of their
expression shows that the differentially expressed genes are typically
not expressed in all cell types, but rather the vast majority are
observed to have much higher expression in 1 cell type.

475 (14.75%) and 327 (10.15%) of the differentially expressed
genes have the highest average expression in the fast and slow
myofibers, respectively. Considering that the VL has a higher
proportion of fast myofibers than TA, we expected to observe
many genes that are higher in VL from the bulk RNA analysis to

FIGURE 2
Identification of cell composition differences and cell source of differential gene expression. (A) t-SNE projection of 14,887 nuclear transcriptomes
from 3 TA and 3 VL paired healthy muscles. (B) Heatmap of expression of 69 cell-specific marker genes of the major cell types identified. (C) Percentage
of cell types from snRNAseq (top) and percentage of cell types inferred by CIBERSORTx (bottom) for paired VL and TA samples using the 69 specific
markers in (B). Paired t-test, *: p ≤ 0.05, **: p≤0.01, ***: p < 0.001,****: p < 0.0001. (D)Heatmap of expression of 3,221 genes differentially expressed
between VL and TA in the main cell types identified in (A).
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be higher because they are expressed in fast fibers, and those higher
in TA to be highest expressed in slow fibers. In line with this, we
observed that differentially expressed genes that are higher in VL are
more often expressed highest in fast fibers (445 genes, or 80.0% of
the 556 genes higher in VL with highest expression in the myofibers)
and conversely, differentially expressed genes that are higher in TA
are most often restricted in their expression in slow fibers (216 or
87.8% of the 246 genes higher in TA with highest expression in the
myofibers). However, there are exceptions to this expected pattern of
expression based on the higher proportion of fast fibers in VL
compared to TA (Supplementary Figure S1), and these may indicate
shifts in metabolic phenotype within each muscle type. For instance,
111 of 1,559 genes higher in VL are most highly expressed in slow

fibers (Supplementary Figure S1A) and 30 of 1,851 genes higher in
TA have highest expression in fast fibers (Supplementary Figure
S1B). Interesting exceptions include CAMK2A (encoding CaMKIIα)
which is among the genes higher in the VL with higher expression in
slow fibers than fast fibers. Conversely, IRX3, encoding iroquois
homeobox 3, which has been linked to body weight
(Gholamalizadeh et al., 2019), has ten-fold higher expression in
fast fibers compared to slow fibers, but is higher in the TA muscles.

Remarkably, the remaining 75.1% of the differentially expressed
genes have highest expression in other muscle resident cell types that
are not the myofibers. Despite satellite cells, endothelial, smooth
muscle and fibroblasts accounting for 6.60%, 7.01%, 0.69% and
3.17% of total cell population in both VL and TA, the percentage of

FIGURE 3
Cell type expression of genes within enriched gene ontology categories. Heatmap of expression of genes that are both differentially expressed and
identified within select gene ontology categories shown in Table 1: (A) Regulation Of Release Of Sequestered Calcium Ion Into Cytosol By Sarcoplasmic
Reticulum, (B) Collagen-Containing Extracellular Matrix, and (C) Regulation Of Apoptotic Process. For B and C, only select genes with a fold difference
above 1.3 and average TPM in the muscle where it has highest expression above 5 are named. All data are present within Supplementary Tables
S2A, B.
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differentially expressed genes with highest expression in these cell
types were 15.71%, 14.96%, 10.87% and 8.20%, respectively,
demonstrating differences in virtually all cells between skeletal
muscle groups. Pericytes accounted for 17.57% and immune cells
for 15.79% of all cells but had fewer genes that were detected as
differentially expressed, 9.87% and 15.49%, respectively.

To determine which cell types have the highest expression of
the differentially expressed genes within functional categories, we
mapped cell expression using the single nuclei data
(Supplementary Table S1). Eight of 13 (61.54%) genes in
“Regulation Of Release Of Sequestered Calcium Ion Into
Cytosol By Sarcoplasmic Reticulum” (Figure 3A) were higher
in the VL, and these have highest expression predominantly in
fast fibers (5 genes, 38.46%). These include CALM1 and CASQ1,
encoding calmodulin 1 and calsequestrin 1, respectively. Only
PDE4D has highest expression in slow fibers, which we infer is
differentially expressed independent of the differences in fiber
type composition.

Among the genes in “Collagen-Containing Extracellular
Matrix”, 78 of 88 (88.64%) genes have highest expression in the
TA. Genes in this category have mapped highest expression in
fibroblasts (26 genes, 29.55%), smooth muscle (14 genes, 15.91%),
endothelial (13 genes, 14.77%) and pericytes (13 genes, 14.77%)
(Figure 3B). “Collagen-Containing Extracellular Matrix” genes
include metalloproteinase-2 (MMP2) which is responsible for
remodeling the muscle extracellular matrix, a process important
for proper satellite cell migration and differentiation (Chen and Li,
2009), along with tissue inhibitors of metalloproteinases, such as
TIMP1 and TIMP3. Only 2 of the genes higher in TA (2.56%) have
highest expression in myofibers, specifically in slow fibers
(Figure 3B).

Genes in “Regulation Of Apoptotic Process” are more
broadly expressed across all cell types (Figure 3C), suggesting
that differential regulation of cell death is a characteristic of all
cells in the VL and TA due to muscle origin. 22 genes have
highest expression in the myofibers, including the heat shock
protein CRYAB higher in the TA, mapping to the slow fibers and
also annotated in the biological process category “Negative
Regulation of Apoptotic Process”, which is also enriched
among the differentially expressed genes (Supplementary
Table S2A). Among genes with higher expression in other
muscle resident cells, the widely studied anti-apoptotic BCL-
xL/BCL2L1, higher in the TA, was highest expressed in
endothelial cells. Despite not being annotated in “Regulation
Of Apoptotic Process”, Hzf (encoded by ZNF385A) has been
linked to negative regulation of apoptosis. In conditions of
DNA-damaging stress, Hzf induction and binding to
p53 modulates p53-mediated transcription such that the
expression of pro-arrest p53 target genes is preferentially
activated over pro-apoptotic p53 target genes (Das et al.,
2007). ZNF385A is the most statistically significant gene with
a 4.2X higher expression in TA (p = 1.76E-102) (Figure 1D), and
has the highest expression in pericytes (average expression
0.31 TP10K) and similar levels of expression in fast and slow
fibers (average expression 0.03 TP10K in both fiber types). These
data suggest that the VL and TA have differential regulation of
apoptotic signaling, with a potentially superior negative
regulation in the TA that may be protective in DMD.

3.4 Search for transcription factors that may
underlie the differential gene expression

Using the ENCODE_and_ChEA_Consensus_TFs_from_ChIP-
X enrichment category within EnrichR (Chen et al., 2013), we
identified 45 transcription factor genes that are reported to bind
to multiple differentially expressed genes between VL and TA, and
these may thus regulate the differentially expressed genes
(Supplementary Table S2D). Because some transcription factors
can act as both positive and negative regulators of expression, we
searched for transcription factors that bind upstream of all
differentially expressed genes, independently of the muscle in
which they are highest expressed. Among these 45 transcription
factors, 38 were expressed in the VL/TA bulk RNAseq dataset, and
11 were differentially expressed. The top 6 by p-value are: TP63, AR,
GATA2, KLF4, SMC3, and SMAD4 (Supplementary Table S2D). For
each transcription factor, the putative target genes are listed in
Supplementary Table S2D. These genes are further categorized in
“Regulation Of Release Of Sequestered Calcium Ion Into Cytosol By
Sarcoplasmic Reticulum”, “Collagen-Containing Extracellular
Matrix”, and “Regulation Of Apoptotic Process” by the muscle in
which they are highest expressed and listed in descending fold
difference between the muscles (Supplementary Table S2D).

The 11 differentially expressed transcription factors were
detected by snRNAseq (Supplementary Figure S2). The
transcription factors higher in TA (ZMIZ1, FOSL2, GATA2,
KLF4 and EGR1) are mainly expressed in non-myolineage cell
types, and mainly in fibroblasts and endothelial cells, consistent
with a potential role regulating the extracellular matrix gene
expression in non-myolineage cells. Among the differentially
expressed genes in “Collagen-Containing Extracellular Matrix”
and higher in TA, the metalloprotease MMP2 is a target of
GATA2 (Supplementary Table S2D). The transcription factors
higher in VL are expressed in myolineage and non-myolineage
cell types. TP63 is restricted to the myofibers, and highest in fast
fibers, whereas AR is highest expressed from satellite cells. Among
the differentially expressed genes in “Regulation Of Release Of
Sequestered Calcium Ion Into Cytosol By Sarcoplasmic
Reticulum” is the TP63 target ATP1A2 (Supplementary Table
S2D), highest expressed in fast fibers (Supplementary Table S1),
and the AR target CALM1 (Supplementary Table S2D) with highest
expression in endothelial and fast fibers (Supplementary Table S1).

3.5 Genes that are previously reported as
DMD biomarkers and genetic modifiers are
enriched among genes differentially
expressed between healthy VL and TA

To explore potential relationships between our differential gene
expression and reported mechanisms of DMD pathology that can be
mapped to individual genes, we analyzed the differential expression
of previously reported human serum/blood DMD biomarkers
(Hathout et al., 2014; Parolo et al., 2018; Spitali et al., 2018; Al-
Khalili Szigyarto, 2020; Grounds et al., 2020; Alonso-Jiménez et al.,
2021; Wagner et al., 2021; Lee-Gannon et al., 2022; Wu et al., 2022),
and of genes modifying the phenotype of DMD in humans
(Pegoraro et al., 2011; Flanigan et al., 2013; Bello et al., 2016;
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Hogarth et al., 2017; Li et al., 2018; Weiss et al., 2018; Spitali et al.,
2020; Flanigan et al., 2023) or the mdx mouse (Deconinck et al.,
1997; Wagner et al., 2002; Han et al., 2011; Morales et al., 2013; de
Zélicourt et al., 2022), also known as genetic modifiers, across the VL
and TA and identified the predominant cell type in which they were
expressed.

Among 88 DMD biomarkers expressed in healthy muscle, 41
(46.59%) were differentially expressed between VL and TA
(Supplementary Figure S3A), a significant enrichment of this set
of genes among differentially expressed genes (only 13 expected,
p-value < 1E0-5, χ2 test). Of this set of differentially expressed
biomarkers, 20 of 41 (48.78%) have highest expression in the
myofibers, with 10 of these being more expressed in the slow and
10 in the fast fibers. Among these myofiber-derived biomarkers,
13 have the highest expression in VL, and 9 of these (69.2%) have
highest expression in the fast fibers (ALDOA, CAMK2B, ENO3,
GAPDH, LDHA, MSTN, MYL1, PYGM, TNNI2). The remaining
4 biomarkers higher in VL have either highest expression in the slow
fibers (CAMK2A, ACTA1) or are similarly expressed in fast and slow
fibers (CKM, TTN).

We also culled from the literature 18 genes described as genetic
modifiers based on either a human genetic variant association with a
DMD phenotype (SPP1, ACTN3, THBS1, LTBP4, HLA-A, DYNLT5,
CD40, NCALD, ETAA1, ADAMTS19, MAN1A1, GALNTL6,
PARD6G) or an mdx phenotype modified by concomitant
deletion of another gene (MSTN, DYSF, CCN2, UTRN, CD38)
(Deconinck et al., 1997; Wagner et al., 2002; Han et al., 2011;
Pegoraro et al., 2011; Flanigan et al., 2013; Morales et al., 2013;
Bello et al., 2016; Hogarth et al., 2017; Li et al., 2018; Weiss et al.,
2018; Spitali et al., 2020; de Zélicourt et al., 2022; Flanigan et al.,
2023). All were observable within the RNAseq and snRNAseq
datasets, except SPP1 (encoding osteopontin), which has a
median TPM of 0.01 across VL and TA RNAseq and was not
detected in snRNAseq of healthy VL and TA in any cell type. Thus,
SPP1 was below the limits of detection, and it was excluded from the
differential gene expression analysis. 11 of 17 (64.7%) remaining
DMD genetic modifiers were differentially expressed between VL
and TA (Supplementary Figure S3B). This is a larger number than
expected from a random sampling of all genes (only 3 expected,
p-value < 1E0-5, χ2 test). Of these 11 genetic modifiers with
differential expression detected, DYSF, MSTN, ACTN3, NCALD,
ADAMTS19 and CD38 were higher in the VL, and HLA-A, UTRN,
LTBP4, CCN2/CTGF, and THBS1 were higher in the TA
(Supplementary Figure S3B). This indirectly supports the
relevance of genetic variants indeed contributing to differential
disease progression across individuals. Most of the genetic
modifiers (10 of 17) had expression mainly within a non-
myofiber cell type, consistent with the known role of non-
myofiber lineage cells in orchestrating muscle remodeling during
regeneration and fibrosis (Mann et al., 2011).

LTBP4 is most expressed in fibroblasts (Supplementary Figure
S3B), consistent with prior reports on its ameliorative effect through
a reduction in TGF-β signaling in fibroblasts with the IAAM
haplotype (Flanigan et al., 2013). In addition to fibroblasts,
LTBP4 also shows high expression in satellite cells, suggesting the
potential of a modifying effect acting uponmuscle stem cells that has
not been studied previously. DYNLT5 (also known as TCTEX1D1)
has a median TPM of 0.6 in the bulk RNAseq dataset, and it was not

detected in fast or slow fibers by snRNAseq but was rather expressed
in endothelial cells. This suggests its modifying mechanism is not
due to direct expression within myofibers, or that it could be
upregulated in a cell type other than endothelial cells in DMD to
exert its modifying mechanism. NCALD, encoding the calcium-
sensing neurocalcin delta, is most expressed in smooth muscle
(7.11 TP10K), and has lower expression in fast (1.90 TP10K) and
slow (0.42 TP10K) fibers. Its proposed mechanism is via regulation
of a surrogate cGMP pathway that compensates for the defective
nitric oxide-induced cGMP production in DMD, with lower
expression of NCALD being protective (Flanigan et al., 2023).
Consistent with this proposed mechanism, NCALD is not only
higher in the VL in bulk RNAseq, but also in the VL fast (2.51X,
p = 2.11E-76) and VL slow (1.11X, p = 3.01E-02) fibers compared to
the TA fast and slow fibers, respectively. HLA-A is expressed higher
in the VL, and class I MHC expression on myofibers may influence
immune mediated mechanisms of myofiber damage in dystrophic
muscle.

Only four reported genetic modifiers, DYSF, ADAMTS19,
MSTN, and ACTN3 are observed to have the highest expression
in myofibers (Supplementary Figure S3C). The expression pattern of
DYSF, MSTN and ACTN3 is consistent with their described
modifying mechanisms (Wagner et al., 2002; Vincent et al., 2007;
Han et al., 2011).DYSF has similar expression in fast and slow fibers,
with a slight 1.2X higher expression in fast fibers. Although the
proposed modifying mechanism of ADAMTS19 is through
extracellular matrix (ECM) remodeling and TGF-β signaling
(Flanigan et al., 2023), its highest expression in healthy muscle
was not in fibroblasts (0.12 TP10K) or vasculature cells that typically
produce ECM, but rather in the fast (1.58 TP10K) and slow
(1.07 TP10K) fibers. A 13.2X higher expression of ADAMTS19 in
the fast fibers compared to fibroblasts suggests a modifying role in
the myofibers that needs further exploration. At the single cell level,
ADAMTS19 is 1.55X higher in the VL slow fibers compared to the
TA slow fibers (p = 1.18E-14), which further contributes to its higher
expression in the VL.MSTN is expressed in both fast and slow fibers,
with highest expression in fast fibers (4.4X compared to slow fibers),
a pattern of expression that contributes to it being higher in VL by
bulk RNAseq, as VL has a higher proportion of fast fibers. ACTN3 is
highly specific to fast fibers (13.3X higher in fast fibers), although not
absent in slow fibers. In addition, at the single cell level, ACTN3
expression is 1.43X higher in the VL fast fibers compared to the TA
fast fibers (p = 2.17E-11), indicating that the higher expression of
ACTN3 in VL is influenced by both a higher proportion of fast fibers
and by a VL-specific upregulation within the fast fibers.

The well-studied null allele of ACTN3 (rs1815739, NM_
001104.4:c.1729C>T, NP_001095.2:p.Arg577Ter/p.R577X) is a
common allele found in the population with a frequency of the
X allele of 0.36 (dbSNP). Actinin-3 loss was associated with a
reduced DMD severity as measured by a longer 10-min walk test
(Hogarth et al., 2017), and this was attributed to a switch to a more
protective oxidative metabolism without a shift in fiber type
distribution (MacArthur et al., 2008). To further investigate the
effects of ACTN3 expression across muscles, we genotyped
rs1815739 in the 15 individuals. We identified 3 null
homozygotes (XX), and 3 reference homozygotes (RR), and
9 heterozygotes (RX) among the 15 individuals. The expression
of ACTN3 was significantly differentially expressed dependent on
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genotype (Kruskal–Wallis p = 7.73E-04), with the RR group showing
highest expression, indicating nonsense-mediated decay of the X
allele (Figure 4A). XX homozygotes have no ACTN3 mRNA
expression for both VL and TA muscles (Figure 4A). The

expression of ACTN3 RR and RX mRNA was consistently higher
in the VL compared to TA, although only statistically significant in
the RX genotype (Wilcoxon p = 9.9E-04). For both the VL and TA,
the mean level of ACTN3 mRNA in RX heterozygotes was

FIGURE 4
ACTN3 genotype correlates with the proportion of slow fibers and with the expression of actinin-3 in slow fibers. (A) ACTN3 TPM by genotype at the
rs1815739 polymorphism locus (NM_001104.4:c.1729C>T, NP_001095.2:p.Arg577Ter/p.R577X) for all 27 samples in the bulk RNAseq dataset (RR n = 2,
RX = n = 9, XX n = 3). Percentage of all counted fibers that are actinin-3 positive (B) and type I (slow) (C). Percentage of all type I fibers that are actinin-3
positive (D). Wilcoxon test, *: p ≤ 0.05, **: p ≤ 0.01, ***: p ≤ 0.001. (E) Representative images of actinin-3 and myosin-7 staining.
Magnification = 20X. Asterisks indicate actinin-3 positive type I fibers. The bars in the box plots indicate 1.5* IQR, which is the interquartile range, or the
distance between the first and third quartiles.
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substantially lower than the expected 50% of the RR genotype
mRNA level, suggesting that the X allele reduces the expression
of the R allele through unknown mechanisms.

To validate the RNA findings and assess whether the ACTN3
genotype groups have differences in fiber type composition, we
performed immunofluorescent staining for 3 RR, 2 RX and 2 XX
individuals’VL and TA. For each sample and muscle, 3 10 µM tissue
sections were stained (total of 42 sections), and fibers were counted
across the entire sections. An average of 204 fibers were counted per
sample (range 25–758, total 8,577) (Supplementary Figure S4).
Observed differences in mRNA expression were consistent with
antibody staining for actinin-3. As expected, ACTN3 XX
homozygotes showed no detectable protein (Figures 4B,E). The
percentage of actinin-3 positive fibers was consistently higher in
the VL for both RR and RX genotypes (Figure 4B). The percentage of
type I slow fibers (positive for myosin-7) was consistently higher in
the TA across genotype groups (Figure 4C), as expected (Edgerton
et al., 1975; Jakobsson et al., 1991). There was a higher percentage of
type I slow fibers in the RX and XX groups compared to the RR
group across both muscles, although only the XX group reached
statistical significance (Figure 4C). There was also a higher
percentage of type I fibers in the XX compared to RX
group. These findings are supported by observed similar relative
expression of the myosin heavy chain genes at the RNA level
(Supplementary Figure S5). Interestingly, we also identified slow
fibers with low expression of actinin-3 (Figure 4D) in the RR and RX
genotypes but not in the XX genotypes, reflective of a low level of
expression of actinin-3 in some slow myofibers. This low level of
expression is only apparent because of the true null staining revealed
in the XX genotype individuals.

3.6 Identification of druggable targets within
differentially expressed genes

We place the list of differentially expressed genes into context as
potential for disease modification because their RNA or protein
products are targeted or ‘druggable’ with existing drugs
documented in the DrugBank database (Wishart et al., 2018).
535 of 3,410 (15.7%) differentially expressed genes are reported
targets of 1,812 known drugs (Supplementary Table S1). The
protein product of 197 genes higher in the VL are targeted by
984 drugs, and thus may constitute a set of known drugs that may
be explored to induce a shift of a VL-like susceptible state towards a
TA-like protected state in DMD. Druggable genes expressed higher
in VL are enriched in 158 pathways (Supplementary Table S2E).
Among the top 5 most significant pathways is calcium signaling
pathway, with 22 genes higher in VL that include calmodulin
(CALM1, CALM2), calmodulin-dependent kinases (CAMK2A,
CAMK2B, CAMK2G), calsequestrin (CASQ1), ryanodine receptor
(RYR1), and the dihydropyridine receptor alpha 1S subunit
(CACNA1S). These 8 genes alone are reported to be targeted by
71 drugs and may suggest ways to therapeutically regulate
intracellular and sarcoplasmic reticulum (SR) calcium
concentration in myofibers. CD38 (1.7X higher in VL) is highest
expressed in the pericytes (1.83 TP10K), but also is expressed in fast
(1.28 TP10K) and slow (0.48 TP10K) fibers. Its higher expression in
VL is also observed at the single cell level, with 1.24X higher

expression in VL fast fibers compared to TA fast fibers (p =
4.71E-04). CD38 encodes a NAD+ glycohydrolase that produces
regulators of Ca2+ signaling, and deletion of CD38 or treatment
with CD38 inhibitors restored the mdx heart, diaphragm and limb
function, reduced fibrosis and inflammation, and reduced the cycles
of degeneration and regeneration (de Zélicourt et al., 2022). DMD
myotubes treated with a monoclonal antibody against CD38
(Isatuximab) reduced the frequency of spontaneous Ca2+ waves
(de Zélicourt et al., 2022).

3.7 Identification of isoforms with
differential abundance between VL and TA

Because extensive alternative splicing is observed in developing
and mature muscle (Brinegar et al., 2017; Nakka et al., 2018),
including in genes encoding sarcomere structural (Donner et al.,
2004; Bowman et al., 2007; Lam et al., 2018; Savarese et al., 2018),
and excitation-contraction coupling proteins (Nakka et al., 2018),
we hypothesized that the VL and TA transcriptomes are also
differentially influenced by alternative splicing leading to
significant shifts in the usage of specific isoforms (isoform
switch). To identify isoform switching events between VL and
TA, we utilized IsoformSwitchAnalyzeR (Vitting-Seerup and
Sandelin, 2017), which uses the abundance (TPM) and count
data obtained from Kallisto transcript alignment. Prefiltering of
the annotated transcripts resulted in 130,664 transcripts to be
considered for isoform switch analysis. Further filtering of
transcripts for switching genes with at least two significantly
switching isoforms and with at least two isoforms preferentially
used in opposed directions (higher in one muscle, lower in the other)
resulted in 47 transcripts. Among these, 12 transcripts have a
significant isoform switch (isoform switch q-value <0.05)
between VL and TA, and these are located within 6 genes (gene
switch q-value <0.05) (Supplementary Table S2F). Two of the
6 genes with isoform switching, NPR3 and TNNT1, were
differentially expressed between VL and TA, whereas the
remaining 4 (NEB, ABCC6P2, ENSG00000288071 and MAD1L1)
did not have differential expression at the gene expression level
(Figure 5A; Supplementary Table S1). NEB is highly and similarly
expressed in slow (217.6 TP10K) and fast (185.4 TP10K) myofibers
(Supplementary Table S1). ENSG00000288071 and TNNT1 are more
highly expressed in the slow fibers (6.8X and 16.4X higher
expression in the slow compared to fast fibers), and ABCC6P2 in
the fast fibers (0.009 TP10K in fast and not detected in slow fibers)
(Supplementary Table S1). NPR3 and MAD1L1 are expressed
highest in the smooth muscle cells (Supplementary Table S1).
Four of 6 genes with isoform switch are protein coding (NEB,
NPR3, TNNT1 and MAD1L1), whereas ENSG00000288071 is a
long non-coding RNA, and ABCC6P2 is a transcribed
unprocessed pseudogene (Supplementary Table S1).

To assess potential functional consequences of the isoform
switches, we examined the biotype of each isoform in the
switching (Figure 5B). The NEB, TNNT1 and NPR3 isoform
switches are among protein coding transcripts, and that of
ENSG00000288071 is among long noncoding RNAs (lncRNA).
The remaining 2 genes (ABCC6P2 and MAD1L1) are switching
between isoforms of different biotypes (Figure 5B). ABCC6P2-202,
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FIGURE 5
NEB-207 is upregulated in the TA across all fiber types. (A) Venn diagram showing the overlap of differentially expressed genes and genes with
differential isoform abundance (isoform switch) between VL and TA. (B) For each muscle, the Ensembl transcript biotype of each preferentially used
isoform is shown for each isoform switch event. (C)Diagram of the alternative usage of exons 143 and 144 inNEB. The resulting isoform name is indicated
for each exon usage, and corresponding transcript IDs are in parenthesis. (D) Isoform fraction (usage) of expressed NEB isoforms obtained from
IsoformSwitchAnalyzeR. (E) Expression of the NEB-202 and NEB-207 isoforms obtained from the Kallisto alignment. TPM = Transcripts per million. (F)
Quantification of the overall mean immunofluorescence signal intensity of nebulin exon 143 (NEB E143) in 5 20X images for each VL and TA among
3 healthy individuals. Wilcoxon test p = 1.29E-08; ****: p≤0.0001). (G) Representative images of immunofluorescence staining of paired VL and TA
sections.
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preferentially used in TA, is a processed transcript, whereas
ABCC6P2-201, preferentially used in VL, is a transcribed
unprocessed pseudogene. MAD1L1-213, with preferential usage
in TA, is protein coding, whereas MAD1L1-216, preferentially
used in VL, is a processed transcript, which means that it does
not have an open reading frame (a start codon followed by an in-
frame stop codon (Kute et al., 2022)).

The MAD1L1 isoform switch comprises MAD1L1-213 and
MAD1L1-216 with the former used more in TA (absolute
difference isoform fraction = 0.073) and the latter in VL
(absolute difference isoform fraction = 0.043) (Supplementary
Table S2F). MAD1L1 has a relatively low expression in muscle.
The top 3 isoforms expressed in both VL and TA have an average
TPM ranging from 0.80 to 1.65. MAD1L1 encodes for the mitotic
arrest deficient-like protein 1 (also known as MAD1). In mdx,
Mad1l1 is most expressed in late activated satellite cells, myoblasts
and myocytes (Scripture-Adams et al., 2022) (data not shown),
suggesting a potential role in muscle regeneration in wild-type
muscle and in DMD, although which isoform is most important is
unknown. The MAD1L1 isoform switch involves a switch from a
protein coding isoform in TA to a processed transcript that has no
open reading frame in VL, suggesting a potential mechanism of
reducing its protein expression in the VL via alternative splicing,
an event that cannot be detected by gene expression analysis.

The gene with the most striking isoform switch is NEB. This
switch comprises the mutually exclusive exon splicing event that
occurs between exons 143 and 144 of NEB, which has been
previously described (Donner et al., 2004; Lam et al., 2018).
Exons 143 (E143, included in NEB-207) and 144 (E144, included
in NEB-202) are mutually exclusive exons (Figure 5C), such that in
the same transcript, only one of either exon is included. NEB-207
has a higher usage in TA, a 0.505 isoform fraction difference
compared to VL (Supplementary Table S2F; Figure 5D). NEB-
202 has a higher usage in VL, with a 0.443 isoform fraction
difference compared to TA (Supplementary Table S2; Figure 5D).
This difference in isoform usage is readily observed at the isoform
expression level (Figure 5E). NEB-207 has higher expression in TA,
with an average TPM of 850, compared to an average TPM of 66 in
VL. NEB-202 is more broadly expressed across both muscles but has
a preferential expression in the VL with an average TPM of 1,357,
compared to an average TPM of 641 in TA. We confirmed this
differential alternative splicing event in the RNA by semi-
quantitative reverse transcription polymerase chain reaction (RT-
PCR) using exon junction-specific primers (data not shown).

Previous reports sought to determine whether the expression
of nebulin exon 143 presents a fiber type-specific pattern in adult
human quadriceps (Lam et al., 2018). In this previous study,
E143 was found expressed more often in fast fibers compared to
slow fibers (Lam et al., 2018), although a distinction between type
IIa and type IIx fast fibers was not explored. Consequently, it was
concluded that fast fibers usually express E143, and that slow
fibers may express either E143 or E144. However, because we
observe that the VL mainly includes E144 and not E143, and
because VL has in average 1.82 more fast fibers than TA
(Figure 2C), we reasoned that the differential pattern of
expression of E143 between VL and TA is not solely
dependent on fast fiber type. Thus, we assessed the protein
expression of E143 across VL and TA in relation to type IIa

and IIx fast myosin. We examined overall E143 protein intensity
among VL and TA in 3 healthy individuals. We found low to no
E143 myofiber intracellular protein expression in the VL among
either fiber type (Figure 5G). Consistent with this observation,
overall E143 protein intensity was statistically higher in the TA
compared to the VL (Wilcoxon test p = 1.29E-08, 95% CI = 2.70-
7.04, average fold difference = 5.77) (Figure 5F). These findings
suggest that although nebulin including exon 143 is more often
expressed in the fast fibers (Lam et al., 2018), and E143 is more
consistently observed in the fast type IIx than in the slow type I
(data not shown), a fast fiber type is not the sole determinant of
its expression in human skeletal muscle. That is, that the
association between fast myosin and exon 143 of nebulin, as
described previously (Lam et al., 2018) is also muscle-type
specific, and might be regulated by specific differentially
expressed splicing factors, or their combinations.

To identify potential splicing factors underlying the alternative
splicing observed between VL and TA, we looked for splicing factors
that are differentially expressed between the muscles. Out of
66 expressed splicing factors obtained from the SpliceAid-F
database (Giulietti et al., 2013), 18 (27.3%) were differentially
expressed between VL and TA (Supplementary Table S1). Only
one splicing factor, NOVA2, is higher in TA, and the remaining
17 are higher in VL, with ESRP2 and CELF2 being the most
differentially expressed.

3.8 Comparison of VL versus TA differentially
expressed genes with DMD versus healthy
muscle differentially expressed genes

To assess whether the differentially expressed genes between
healthy muscles differentially susceptible to lack of dystrophin are
also changed in expression in the context of DMD, we generated
bulk RNAseq data of the TA from 8 young ambulatory DMD
patients (mean age 4.5 years). An average of 60 million paired
end sequencing reads were generated per sample (range
43–72 million reads). To our knowledge, this is the second and
largest reported bulk RNAseq dataset of DMD muscle (an existing
dataset can be found in SRA ID PRJNA734152), and the first of the
TA muscle.

Using DESeq2 (Love et al., 2014), we performed differential
gene expression analysis between DMD (n = 8) and healthy TA
(n = 13). 868 of 17,183 analyzed genes were differentially
expressed between DMD and healthy (Supplementary Table
S3; Figure 6A). 272 of these genes were also differentially
expressed between VL and TA (Figure 6B). Among these
overlapping genes, 67 were downregulated in DMD and higher
in the less susceptible TA or upregulated in DMD and higher in
the more affected VL (Figure 6B). Next, we assessed functional
enrichment in the genes dysregulated in DMD using EnrichR.
49 biological processes and 11 cellular component categories
were enriched among genes dysregulated in DMD (adjusted
p-value <0.05) (Supplementary Table S2G). Among these,
31 categories were also enriched among genes differentially
expressed between VL and TA. “Collagen-Containing
Extracellular Matrix” was the most significant shared term and
also the most significant term among all enriched in DMD versus
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Healthy (Supplementary Table S2G). The categories with over
30 gene members include “Collagen-Containing Extracellular
Matrix” and “Negative Regulation of Apoptotic Process”,

supporting the involvement of these gene sets in both the
differential susceptibility between VL and TA, and the
dystrophic pathology (Figure 6C).

FIGURE 6
Extracellular matrix and regulation of apoptosis are also dysregulated in DMD. (A) Volcano plot for all 17,183 genes tested for differential expression
between DMD and healthy TA. Dashed lines depict a fold change of 2 and a p-value of 0.05. For each up and downregulated genes, the top 5 differentially
expressed genes by fold change and the top 5 genes by p-value are labeled. (B) Overlap of the differentially expressed genes between VL and TA and
between DMD and Healthy. The 67 genes are those downregulated in DMD and higher in TA or upregulated in DMD and higher in VL. (C) 7 of
9 functional categories with over 30 genes that are shared between the two analyses (sorted by ascending p-value). “Nervous System Development”
(which had only VEGFA in the 67-gene list, and “Cell-Substrate Junction” (which has the same 37 genes as “Focal Adhesion”, and a larger p-value) were
excluded. (D) Single cell expression of the 67 overlapping genes. The overlapping GO terms from (C) in which each gene member is categorized among
these 7 categories are indicated. “Druggable” indicates which genes have existing drugs documented on DrugBank. “Direction” indicates the direction of
expression in both the VL versus TA and DMD versus Healthy differential gene expression analyses.
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To identify candidate susceptibility factors that are also
dysregulated in DMD, we further explored the 67 overlapping
genes. All except one gene (SBK3) were detected in the healthy
muscle snRNAseq (Figure 6D). 13 of these 67 genes are druggable
(Figure 6D). Among the overlapping protein coding genes, the
3 most dysregulated genes in DMD (by fold change) are NR4A3,
APOB and MYOC, and the 3 most differentially expressed in VL
compared to TA are APOB, SBK3 and NR4A3, highlighting the
relevance of these genes in DMD and consequently, the differential
susceptibility of VL and TA (Supplementary Table S3).

Among genes in “Collagen-Containing Extracellular Matrix”
are MYOC and CILP (Figure 6D). MYOC, encoding myocilin, is
most expressed in fibroblasts (Figure 6D; Supplementary Table
S1) and is downregulated 47.5X in DMD (Supplementary Table
S3), despite the expansion of fibroblasts within dystrophic muscle
(Scripture-Adams et al., 2022), suggesting a downregulation in
dystrophic fibroblasts. Myocilin has been widely studied in
glaucoma as a secreted protein in the trabecular meshwork
(Resch and Fautsch, 2009). Myocilin was also found to be
induced during C2C12 myoblast differentiation via regulation
of the TGF-β pathway (Zhang et al., 2021), and to interact with
the dystrophin-glycoprotein complex via syntrophin (Joe et al.,
2012). In the Human Protein Atlas (Uhlén et al., 2015),MYOC is
highest expressed in fibroblasts in skeletal muscle, and not in
myocytes, consistent with our observations. The overexpression
of MYOC increases muscle mass (Joe et al., 2012), and
downregulation of myocilin is observed in cancer cachexia,
with its loss inducing muscle fiber atrophy and an increase in
fibrotic and fatty tissue (Judge et al., 2020). Because its expression
is highest in fibroblasts, and it is found within “Collagen-
Containing Extracellular Matrix”, we hypothesize that its main
role in human skeletal muscle is in the fibroblasts, and not the
myolineage, and that its downregulation promotes fibrosis. These
data, along with the 1.77X higher expression of MYOC in the TA
(Supplementary Table S1), support myocilin as a protective
factor for the TA.

Conversely, CILP, encoding the cartilage intermediate layer
protein 1 (CILP-1), is upregulated 4.3X in DMD (Supplementary
Table S3), and is 1.27X higher in the more susceptible VL. CILP also
has highest expression in the fibroblasts in our dataset (Figure 6D;
Supplementary Table S1) and in the Human Protein Atlas (Uhlén
et al., 2015), but its role is not well understood. Upregulation of
CILP-1 occurs upon cardiac injury in fibrotic regions, and there is a
decrease in serum of patients with heart failure (Park et al., 2020). Its
anti-fibrotic effect in pressure-overload cardiac remodeling (Zhang
et al., 2018) suggests that CILP-1 is regulated in relation to processes
that involve cardiac fibrosis. Because of its upregulation in DMD and
higher expression in VL, and its restricted expression in the
fibroblasts, we hypothesize that CILP-1 is pro-fibrotic in skeletal
muscle, and a susceptibility factor for the VL.

Among other overlapping genes is SLC19A2, which is the
most statistically significantly dysregulated gene in DMD
compared to healthy TA (p = 1.59E-10), and which is
downregulated 41.77X in DMD (Supplementary Table S3).
SLC19A2 encodes the thiamine (vitamin B1) transporter 1
(THT1), which has highest expression in skeletal muscle
(GTEx), specifically in slow fibers (Figure 6A; Supplementary
Table S1). Thiamine supplementation has been shown to

improve muscle strength in myotonic dystrophy type 1
(Costantini et al., 2016). In mdx, supplementation with the
thiamine precursor benfotiamine ameliorated the dystrophic
pathology and increased grip strength (Woodman et al., 2018),
supporting a protective role for the TA compared to VL in DMD,
and potentially also in the slow fibers compared to fast fibers.
Lastly, KIF21A, highest expressed in slow fibers, is downregulated
2.91X in DMD (Supplementary Table S3), and is 1.20X higher in
the TA (Supplementary Table S1). Heterozygous mutations in
KIF21A cause autosomal dominant congenital fibrosis of
extraocular muscles (EOM) (Yamada et al., 2003). The
downregulation of KIF21A in DMD skeletal muscle, reduced
function leading to pathologic fibrosis in EOM, and its higher
expression in the TA suggest a protective role of higher KIF21A
expression within myofibers that leads to some protection from
damage in DMD. KIF21A encodes a kinesin, involved in cargo
transport between the Golgi apparatus and the endoplasmic
reticulum (Hirokawa and Noda, 2008), but its role in skeletal
myofibers is not established.

Among the 67 overlapping genes, APOE is found in “Negative
Regulation of Apoptotic Process” and is upregulated in DMD and
higher in the VL. APOE is a highly specific satellite cell marker in
healthy muscle (Figure 2B), suggesting that a potential differential
regulation of apoptotic signaling (Figure 3C) may alter the
regenerative capabilities of VL and TA.

Cell type specificity of the 67 genes differentially expressed
between VL and TA and also dysregulated in DMD (Figure 6D)
was examined within previously published single cell and nuclei
RNAseq datasets from the mouse TA (scMuscle) (McKellar et al.,
2021) and soleus (myoatlas) (Petrany et al., 2020). Using these
datasets, the cell type specificity of 17 protein coding genes was
confirmed. These includeMYOC and CILP, highest expressed in the
fibroblasts in both scMuscle (Supplementary Figure S6A) and
myoatlas (Supplementary Figure S6B) in mouse.

We note PDK4 as the most dysregulated gene within “Negative
Regulation of Apoptotic Process”, and the most dysregulated protein
coding gene among all 868 genes differentially expressed between
DMD and healthy TA in our transcriptome-wide analysis. PDK4,
encoding pyruvate dehydrogenase kinase 4, is downregulated
1,453X in DMD and only superseded by the unprocessed
pseudogene OR7E29P, which is downregulated 11,396X
(Figure 6A; Supplementary Table S3). Downregulation of PDK4
in DMD has been previously reported in the slow (type I) fibers
(1.74X, p = 2.78E-04), and upregulation in the fast type IIa and IIx
(Scripture-Adams et al., 2022). PDK4 is also downregulated in mdx
quadriceps and TA compared to age-matched controls (Matsakas
et al., 2013). PDK4 is downregulated in DMD, but higher in themore
susceptible VL (1.98X, Supplementary Table S1). Interestingly,
PDK4 is a druggable gene, with tretinoin (a vitamin A derivative)
being a known upregulator (Supplementary Table S1).

Lastly, among the 17 known DMD genetic modifiers included in
our DMD versus Healthy comparison, none were significantly
dysregulated in DMD compared to Healthy TA (Supplementary
Table S3), but some trended toward a significant upregulation after
multiple testing correction (p < 0.30), including (by ascending
p-value): LTBP4 (4.47X, p = 5.37E-02), MAN1A1 (4.01X, p =
6.21E-02), THBS1 (24.89X, p = 9.76E-02), PARD6G (3.50X,
1.54E-01), SPP1 (139X, p = 2.80E-01), and NCALD (2.39X, p =
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2.97E-02). Interestingly, all 6 genes have variants that have been
identified to modulate the disease progression in DMD patients
(versus in mdx double knockouts), supporting their relevance in
human pathology.

4 Discussion

Our goal in this study was to analyze two different healthy limb
muscles with more similar functional roles (VL and TA), which have
a consistently observed difference in disease progression, that is
more modest in degree than the greater protection from damage of
EOM compared to limb muscles in the absence of dystrophin.
Because of published longitudinal imaging data (Rooney et al.,
2020), we could select comparable muscles amenable to biopsy in
healthy adults (Barthelemy et al., 2020). The protection of TA
relative to VL is less striking than that of EOM compared to
limb but is still substantial with an estimated shift in equivalent
damage of 8.5 years in humans (Rooney et al., 2020). VL and TA
demonstrate a substantial difference in their susceptibility to lack of
dystrophin, and our transcriptomic study of paired samples from the
same healthy individuals identifies a large portion of the
transcriptome as altered, with 3,410 differentially expressed
genes. There is inherent biological variability within each large
muscle, and there is some potential variability added to
transcriptomic comparisons due to the small sample analyzed,
which may not be representative of the whole muscle. The
relatively small sampling by biopsy can introduce variability from
sampling different parts of each muscle. This could result in a
reduction in the number of differentially expressed genes, but should
not lead to false expression differences between muscle groups. We
try to limit variation by sampling the same relative location of VL
and TA, which indeed resulted in highly significant differential gene
expression detection. Because the transcriptomic differences
between muscles in this study greatly exceeded those driven by
genetic variation, we note that future studies may not require a
paired design approach that was used here to maximize discovery
and control for interindividual differences.

Our study particularly highlights calcium homeostasis, ECM,
and regulation of apoptosis, and provides a dataset for exploration to
investigate potential protective mechanisms of myofibers to loss of
dystrophin in skeletal muscle. By studying muscles that have a
substantial difference in their rate of disease progression in DMD,
we sought to identify mechanisms of myofiber protection,
complement genetic modifier studies and reveal novel therapeutic
targets. There is some overlap between prior gene expression work
comparing EOM to limb muscles and this study comparing TA to
VL, including enrichment of genes with functions related to
sarcomere structure, calcium homeostasis, muscle development,
metabolic and immune processes, vasculature development,
regulation of cell death and extracellular matrix, and thus
supports that these pathways are relevant to how muscles are
differentially susceptible to damage with lack of dystrophin.
Comparison with genes dysregulated in DMD skeletal muscle
compared to healthy further highlights the potential role of ECM
and negative regulation of apoptosis in the differential susceptibility
of VL and TA in DMD. We note that the mean age of our DMD
cohort (4.5 years) is younger than the healthy cohort (21.2 years),

and we attempted to reduce the effect of age on the identified gene
expression differences. However, age could also be contributing to
gene expression differences reported here.

Recently, a relatively higher regenerative capacity of EOM
muscle stem cells was identified and attributed to upregulation of
thyroid-stimulating hormone receptor (TSHR) signaling through
upregulation of adenylate cyclase activity in EOM relative to limb
muscle (Taglietti et al., 2023). Although TSHR is not differentially
expressed between VL and TA in our study, “Adenylate Cyclase-
Activating G Protein-Coupled Receptor Signaling Pathway” trended
toward significance among the biological process GO terms (p =
9.92E-02), with 16 of the 17 genes higher in the TA (data not
shown), suggesting a protective role in the TA and consistent with
the proposed therapeutic relevance of upregulation of adenylate
cyclase in DMD, where adenylate cyclase activation stimulates
TSHR signaling, reduces muscle stem cell senescence and
improves their proliferation (Taglietti et al., 2023).

Of note, only 24.9% of the differentially expressed genes were
highest expressed in the myofibers, indicating that many of non-
myofiber cells are likely to play an important role in protecting
myofibers from death. A caution of our work is that the healthy
muscles are sampled without active degeneration/regeneration or
induced muscle damage, which is a chronic state in DMD, and thus
our data does not necessarily reveal mechanisms that may be only
induced with muscle injury.

ECM deposition is an important component of the muscle
structure and function (Loreti and Sacco, 2022), and there is an
enrichment of differentially expressed genes that encode “Collagen-
Containing Extracellular Matrix”. ECM remodeling is necessary to
properly activate muscle stem cells during regeneration, and the
dysregulation of ECM proteins has been associated with
regeneration defects in muscle diseases (Loreti and Sacco, 2022).
In addition, the ECM stiffness, which varies depending on ECM
composition, can modulate satellite cell activity and myofiber-
generated force during contraction, and undergoes changes with
age (Sinha et al., 2020). Thus, observed differences in ECM gene
expression in VL and TA may contribute to their differential
progression in DMD and cause differences in the fibrotic
response within each muscle type. We highlight MYOC as a
potentially protective anti-fibrotic, and CILP as a potentially
damaging pro-fibrotic gene in DMD.

Myofiber death in DMD has been mainly attributed to necrosis
(Bencze, 2023). However, a higher rate of apoptotic nuclei in DMD
compared to healthy muscle has been repeatedly observed (Tews
and Goebel, 1997; Sandri et al., 1998; Serdaroglu et al., 2002),
particularly before necrosis initiates (Tidball et al., 1995). In
addition, p53 is one of the most highly induced transcription
factors in mdx (Dogra et al., 2008), and its inhibition reduced
exercise-induced necrosis in the dystrophic mouse (Waters et al.,
2010), suggesting an important role in the mdx pathology. We
identify an enrichment of “Regulation Of Apoptotic Process” genes
that are differentially expressed, and a 4.2 fold increase in ZNF385A
in TA (p-value = 1.76E-102), which is a reported modulator of
p53 that reduces pro-apoptotic signaling (Das et al., 2007). This
relatively higher expression of ZNF385A is also observed in gracilis
(Abbassi-Daloii et al., 2023) and EOM (Porter et al., 2001; Terry et
al., 2018) which are protected in DMD compared to the VL. Because
of the potential impact of ZNF385A to suppress apoptosis, ZNF385A
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may protect the TA via modulation of p53 signaling towards an anti-
apoptotic state. Further studies need to be conducted on 1) what are
the direct or indirect targets of ZNF385A in human muscle, 2)
whether up or downregulating the expression of ZNF385A has an
effect on the apoptotic rate in myotubes and muscle stem cells
exposed to an apoptotic-inducing condition, and 3) whether
inducing its expression in dystrophic myotubes protects
myofibers and other resident muscle cells from death.

DMD modifier genes were more likely to be differentially
expressed between VL and TA, supporting a functional role for
several modifiers from this orthogonal transcriptomic study.
Identifying novel genetic modifiers of DMD remains a challenge,
as studies are limited due to sample size, and thus under-powered to
detect genome-wide significance. Thus, augmenting with other data
types is relevant to increasing confidence in observed genetic
modifiers.

The higher expression of the genetic modifier LTBP4 in TA and
its restriction to fibroblasts is consistent with a role in slowing
disease progression, as it binds TGF-β and thus reduces TGF-β
signaling (Flanigan et al., 2013), a major driver of fibrosis. LTBP4
also had high expression in satellite cells, an unexpected finding.
Although TGF-β signaling is known to modulate the muscle stem
cell function, the specific role of LTBP4 in satellite cells has not been
elucidated. If LTBP4 participates in regulation of satellite cell
function, it may create differences in the muscle-specific
regenerative ability that needs further exploration, particularly in
the context of the protective IAAM haplotype.

Actinin-3 null allele has been previously reported to be
protective in DMD via a shift to a more oxidative metabolism
(Hogarth et al., 2017) characteristic of slow fibers, which are more
protected from loss in DMD. Various studies have examined
whether there is an associated change in fiber type composition
in the ACTN3 null genotype, with some finding no evidence for a
fiber type shift (MacArthur et al., 2008; Broos et al., 2016), and
others finding significant differences in the fiber type composition
across genotype groups (Vincent et al., 2007). The discrepancies
could be due to different sampling methods, such as the number of
fibers counted. The higher proportion of slow fibers in XX
individuals may be protective because slow fibers are protected
for longer in DMD (Webster et al., 1988). We detected
previously unreported expression of actinin-3 in slow fibers at
low levels, particularly in the RR and RX groups. The presence of
actinin-3 in slow fibers in the VL may render VL slow fibers more
susceptible to damage by increasing glycolytic and reducing
oxidative metabolism.

Differential mutual exclusion of exons 143 and 144 of NEB, as
we observed here, has been observed for another pair of human
muscles, and gastrocnemius (GN) preferentially includes exon
144 and TA exon 143 (Donner et al., 2004; Lam et al., 2018), the
latter being consistent with this study. Similar to the difference in
progression between the VL and TA in DMD where the TA is
delayed by about 8.5 years, the TA is delayed by 3.4 years relative
to GN (Rooney et al., 2020). Because the more affected VL and
GN preferentially include E144 and not E143, we hypothesize
that E143 included nebulin could plausibly confer different
sarcomere properties that result in protection of the muscle
membrane to contraction-induced injury in the absence of
dystrophin.

Nebulin has various roles in skeletal muscle. Although the most
commonly known role is thin filament length regulation and
stabilization, it also has been recently found to have roles in
modulating contractile force, calcium handling, and the actin-
myosin interaction (Chu et al., 2016). Mutations in NEB are the
most common cause of autosomal-recessive nemaline myopathy,
characterized by Z-disk and thin filament proteins aggregated into
nemaline bodies, Z-disk disorganization and consequently, early-
onset muscle weakness that mainly affect proximal muscles
(Lehtokari et al., 2014). Homozygous intronic mutations in
intron 144, which created an alternative donor (5’) splice site in
exon 144 and a decrease in NEB expression, were found causal in a
case of a 6-year-old boy with general muscle weakness and nemaline
bodies consistent with nemaline myopathy (Laflamme et al., 2021).
Exons 143 and 144 encode the super repeat region 21 (S21) of
nebulin (Lam et al., 2018) and how they differ functionally has not
been extensively studied. The only reported difference is in their
charge, hydrophobicity and the predicted presence of a protein
kinase C phosphorylation site in the E144 but not in the E143
(Donner et al., 2004). The central super repeat region, which has
22 super repeats in total, has been proposed to interact with KLHL40
(Garg et al., 2014). KLHL40 is located in the sarcomere I and A
bands, where it binds to nebulin (Garg et al., 2014). Similar to
mutations in the NEB exon 143-144 region, KLHL40 deficiency is
associated with nemaline myopathy (Garg et al., 2014). These data
indicate that the S21 repeat region is critical for proper sarcomere
organization, and consequently, muscle function. Nebulin
S21 isoforms with different charge and hydrophobicity can
potentially modulate the sarcomere organization, structure, and
stability and lead to a different susceptibility of the dystrophin-
glycoprotein-sarcomere link to damage in the absence of dystrophin.

Previous reports on isoform switching across leg muscles
identified 200 switching isoforms among 79 genes (Abbassi-
Daloii et al., 2023). However, we did not identify any of these
isoforms switch events between VL and TA. These findings could be
partially attributed to the different skeletal muscles studied, RNA
quality and the sequencing library type. In our study, we utilized
ribosomal depletion before cDNA synthesis. However, poly(A)
libraries can be 3’ end biased (Shi et al., 2021) and this can affect
isoform quantification.

This study further provides insights into transcriptomic
signatures of differentially affected muscle groups, at both the
gene and isoform level, and constitutes the first study, to our
knowledge, to augment transcriptomic data from different
healthy human skeletal muscles using single nuclei
transcriptomics to unravel the complexity of tissue heterogeneity
and its contribution to intrinsic transcriptomic signatures. To our
knowledge, this study also generated the second and largest reported
DMD bulk RNAseq dataset, from young ambulatory patients with
the same type of DMD mutation (nonsense mutation). An existing
dataset of 5 DMDmuscle RNAseq (sequenced muscle not specified)
can be found in the Sequence Read Archive (SRA) database
(PRJNA734152), and RNAseq for four different muscles
(1 biceps, 1 quadriceps, 1 gastrocnemius, 1 tibialis anterior) can
be found in PRJNA342787. In addition, this is the first throughput
dataset of the DMD TA. Although various other datasets of human
DMD muscle microarray are found in the Gene Expression
Omnibus (GEO) database (GSE3307, GSE109178, GSE6011,

Frontiers in Genetics frontiersin.org18

Nieves-Rodriguez et al. 10.3389/fgene.2023.1216066

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1216066


GSE1004, GSE38417, GSE13608), GSE6011 is the microarray
dataset at the earliest stage reported, and it corresponds to the
quadriceps (at times used to refer to the VL) at less than 2-year of
age. Considering that our DMD TA dataset is from muscle at
2–7 years of age, and that the TA is protected for 8.5 years
compared to the VL (Rooney et al., 2020), we estimate that the
herein generated TA dataset is the DMD whole muscle
transcriptome at the earliest stage of the disease reported to date.
Furthermore, the healthy snRNAseq and bulk RNAseq datasets
provide useful resources for identification of muscle disease genes
through transcriptomics, which require healthy reference materials
(Lee et al., 2020). In addition, the snRNAseq dataset could be used to
identify splicing factors co-expressed in single cells predominantly
expressing different isoforms, and various methods have been
developed to overcome the challenges of isoform quantification
caused by 3’ bias, low sequencing depth and dropout (Huang
and Sanguinetti, 2017; Song et al., 2017; Hu et al., 2020; Pan
et al., 2021). Establishing a single nuclei atlas of healthy human
muscles will allow for a better understanding of muscle-specific
responses to lack of dystrophin in particular cell types, how genetic
modifiers may influence these, whether there is a preferential
responsiveness of specific muscle groups to therapeutic
approaches and what the cellular underlying mechanisms are,
and how to mimic these intrinsic mechanisms to improve the
effectiveness of current therapeutics.
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