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Abstract

Crossover recombination facilitates accurate segregation of homologous chromosomes during 

meiosis1,2. In mammals, poorly characterized regulatory processes ensure every pair of 

chromosomes obtains at least one crossover, even though the majority of recombination sites yield 

non-crossovers3. Designation of crossovers involves selective localization of SUMO-ligase 

RNF212 to a minority of recombination sites where it stabilizes pertinent factors, such as MutSγ4. 

Here we show ubiquitin-ligase HEI10/CCNB1IP15,6 is essential for this crossover/non-crossover 

differentiation process. In Hei10 mutant mice, RNF212 localizes to most recombination sites and 

dissociation of RNF212 and MutSγ from chromosomes is blocked. Consequently, recombination 

is impeded and crossing-over fails. In wild-type mice, HEI10 accumulates at designated crossover 

sites suggesting a late role to implement crossing-over. Like RNF212, dosage-sensitivity indicates 
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HEI10 is a limiting factor for crossing-over. We suggest SUMO and ubiquitin play antagonistic 

roles during meiotic recombination that are balanced to effect differential stabilization of 

recombination factors at crossover and non-crossover sites.

Variants of both RNF212 and HEI10/CCNB1IP1 are associated with heritable variation in 

the rate of crossing-over in humans7–10. Rnf212 and Hei10 also share structural and 

functional similarities. Both proteins have tripartite structures with RING, coiled-coil and 

tail domains, and are inferred to catalyze post-translational protein modification by 

ubiquitin-like proteins4–6,11,12. Rnf212 is implicated as an E3 enzyme for SUMO 

modification while Hei10 has ubiquitin-ligase activity4,5,11(Y.Y and N.H, unpublished 

observations). In both Hei10mei4/mei4 and Rnf212−/− mutant mice, early stages of meiosis 

occur normally and full synapsis of homologous chromosomes (homologs) is achieved4,6. 

However, crossover-specific recombination complexes, containing the MutLγ complex 

(MLH1 and MLH3) and cyclin-dependent kinase CDK2, fail to assemble4,6. Consequently, 

crossing-over fails and the animals are sterile. These similarities prompted us to examine the 

relationship between these two pro-crossover factors.

Using immunofluorescence cytology, we previously described the dynamic localization 

pattern of RNF212 to synaptonemal complexes4, the meiosis-specific structures that connect 

homologous chromosomes (homologs) along their lengths during the pachytene stage of 

meiosis. As homologs undergo synapsis during zygonema, RNF212 localizes specifically to 

the central region of synaptonemal complexes forming a punctate pattern of immuno-

staining foci. Consistent with previous analysis4, in wild-type spermatocytes at early 

pachynema, when synapsis is complete, ~150 foci are observed per nucleus (Fig. 1a,k). 

However, by mid-pachynema, most staining has disappeared and RNF212 foci are retained 

only at sites where crossovers will form (Fig. 1b,c,k). These crossover-specific RNF212 foci 

are then lost by late pachynema, prior to the disassembly of synaptonemal complexes at 

diplonema (Fig. 1d,e,k).

In spermatocytes from Hei10mei4/mei4 mice, the early staining pattern of abundant RNF212 

foci appears normal (155.9 ± 37.2 (s.d.), 20 early pachytene nuclei; versus 153.0 ± 42.8 in 

wild type, 20 nuclei; Fig. 1f,k). Strikingly, this pattern persists throughout pachynema and 

loss of RNF212 from the chromosomes is only seen when synaptonemal complexes are 

disassembled during diplonema (Fig. g,h,i,j,k). Moreover, the numbers of RNF212 foci are 

significantly higher than ever seen in wild-type spermatocytes (P = 0.0003, Mann-Whitney 

test). Thus, HEI10 is required for the post-synapsis turnover of RNF212 that culminates in 

its selective retention at future crossover sites.

To examine the consequences of persistent RNF212 for recombination in Hei10mei4/mei4 

mutants, we examined chromosomal dynamics of the MutSγ complex (Fig. 2). MutSγ 

comprises MSH4 and MSH5, two meiosis-specific homologs of the bacterial DNA 

mismatch-binding factor MutS13. Evidence to date indicates that MutSγ binds and stabilizes 

DNA strand-exchange intermediates to promote both homolog synapsis and crossing-

over14,15. We previously showed that a minority of MutSγ foci present in early pachynema 

co-localizes with RNF2124. Analysis of Rnf212−/− knock-out mice indicates that RNF212 
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acts to stabilize MutSγ and thereby designate a crossover fate to this subset of recombination 

sites.

In wild-type spermatocytes, chromosomal localization of MutSγ resembles that of RNF212: 

82.9 ± 23.4 (s.d.) MSH4 immunostaining foci are observed in late zygonema and early 

pachynema; at mid pachynema only 39.4 ± 9.6 foci are retained; and by the onset of 

diplonema, MSH4 staining has essentially disappeared (Fig. 2a–e,k). In Hei10mei4/mei4 

mutant spermatocytes, chromosomal dynamics of MutSγ are severely aberrant. Although 

normal numbers of MSH4 foci are formed, focus numbers remain high throughout 

pachynema and only decrease after homologs desynapse at diplonema (Fig. 2f–k).

Super-resolution structured illumination microscopy (SIM16) reveals that stabilization of 

MutSγ foci correlates with the degree of co-localization between MutSγ and RNF212 (Fig. 

2l–p and Supplementary Fig. 1). Consistent with our previous analysis4, around a third of 

MSH4 foci colocalize with RNF212 in late zygotene and early pachytene spermatocytes 

(Fig. 2l,m,p; Supplementary Fig. 1). In sharp contrast, in Hei10mei4/mei4 mutant 

spermatocytes, MSH4 foci show a high level of colocalization (~90%) with RNF212 at all 

stages from early zygonema through early diplonema (Fig. 2l–p; Supplementary Fig. 1). 

These observations lend further support to our inference that RNF212 stabilizes association 

of MutSγ with recombination sites4. Thus, RNF212 and HEI10 have antagonistic functions 

with respect to the stabilization of MutSγ at recombination sites. We suggest that the 

balance of these two activities underpins the temporal dynamics and spatial patterning of 

RNF212 and MutSγ seen in wild-type spermatocytes.

Meiotic recombination is initiated by the programed formation of DNA double-strand breaks 

(DSBs15). The persistence of MutSγ complexes implies that DSB-repair is delayed in 

Hei10mei4/mei4 spermatocytes. Immunostaining for DSB-induced H2AX phosphorylation 

(γH2AX) supports this inference (Fig. 3). In wild-type nuclei, γH2AX staining initially 

forms a pan-nuclear cloud, which diminishes to limited chromatin flares and foci as 

chromosome synapsis ensues, and finally disappears from autosomes around mid 

pachynema17 (Fig. 3a–e,k; note that γH2AX accumulates as a large staining body on the 

chromatin of the sex chromosomes where it facilitates transcriptional silencing18). In 

Hei10mei4/mei4 spermatocytes, although pan-nuclear γH2AX staining diminishes with 

synapsis, delayed DSB-repair is indicated by the persistence of γH2AX foci throughout 

pachynema (Fig. 3f–j,k). Ultimately, however, DSBs appear to be repaired in Hei10mei4/mei4 

spermatocytes because broken chromatids are not detected in late-stage nuclei6. Together, 

these data suggest that HEI10-dependent elimination of RNF212 from synaptonemal 

complexes is required for the timely removal of MutSγ from most recombination sites as 

pachynema progresses. This in turn allows the timely progression of recombination and 

repair of DSBs.

Despite their broadly similar phenotypes, we can now conclude that Rnf212−/− and 

Hei10mei4/mei4 mutants have distinct defects with respect to the designation of crossover 

sites. In the absence of RNF212, designation of crossover sites fails because no MutSγ 

complexes are stabilized beyond early pachynema4; whereas absence of HEI10 causes most 
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or all MutSγ complexes to be stabilized, as though all sites have been designated a crossover 

fate. This raises the question, why don’t Hei10mei4/mei4 mutants form lots of crossovers?

Insights into this question, and how HEI10 regulates the dynamics of RNF212 and MutSγ, 

came from examining the chromosomal localization patterns of HEI10. Although previous 

attempts to localize mouse HEI10 to meiotic chromosomes failed6, we were able to show 

that mouse HEI10 associates with synaptonemal complexes to form distinct immunostaining 

foci (Fig. 4a–k and Supplementary Figs. 2 and 3). Unlike RNF212, distinct foci of HEI10 

were rarely detected along nascent synaptonemal complexes during zygonema (Fig. 4a). 

Given that Hei10mei4/mei4 phenotypes are already apparent at this time (e.g. Fig. 2p), we 

infer that cytologically undetectable HEI10 regulates early-stage dynamics of RNF212 and 

MutSγ. Indeed, the possibility this function of HEI10 does not involve association with 

meiotic chromosomes cannot be ruled out. However, by early pachynema, HEI10 foci could 

be detected (Fig. 4c,d) and their numbers peaked during mid pachynema with an average of 

27 foci per nucleus (27.2 ± 8.8 (s.d.); 22 nuclei; Fig. 4e,f,k). At this stage, HEI10 focus 

numbers were quite variable, with as few as 15 and as many as 50 foci per nucleus. In late 

pachytene nuclei, the average HEI10 focus number was lower and less variable (21.1 ± 3.6 

(s.d.); 20 nuclei; Fig. 4g,h,k). At the onset of diplonema, HEI10 foci were no longer detected 

(Fig. 4i,j).

As HEI10 promotes loss of RNF212 and MutSγ from synaptonemal complexes, we 

examined co-localization with these proteins (Fig. 4l–o). In mid-pachytene spermatocytes, 

only 23% of RNF212 foci and 29% of MSH4 foci colocalized with HEI10 (respectively, 

22.6 ± 7.7% (s.d.) and 28.9 ± 15.1%, 10 nuclei each). HEI10 is required for formation of 

crossover-specific complexes containing CDK2 and MutLγ (MLH1-MLH3). In contrast to 

RNF212 and MSH4, a high degree of co-localization was seen between these crossover-

specific markers and HEI10 (Fig. 4p–s). 74.0 ± 10.7% (s.d.) of non-telomeric CDK2 foci 

and 94.3 ± 6.9% of MLH1 foci co-localized with HEI10 (10 and 19 nuclei respectively). 

These data are consistent with HEI10 foci superseding co-complexes of RNF212 and MutSγ 

at future crossover sites.

The genetic requirements for chromosomal localization of HEI10 were investigated using 

several mutant lines. SPO11 catalyzes DNA breakage to initiate recombination15. In 

Spo11−/− spermatocytes, homolog pairing is defective but a significant fraction of nuclei 

assemble incomplete synaptonemal complexes, which generally involve non-homologous 

chromosomes19,20. HEI10 foci were diminished, although not completely eliminated, in 

these nuclei (Fig. 5a,b,g). This dependency contrasts that of RNF212, which readily 

associates with synaptonemal complexes independently of recombination4. SYCP1 encodes 

a major component of the synaptonemal complex central region21. In the Sycp1 knockout 

mice, meiotic recombination initiates normally and homologs closely coalign, but synapsis 

is precluded. Also, MutLγ foci are not detected in Sycp1−/− nuclei indicating that 

designation or maturation of crossover sites fails in this mutant. Formation of HEI10 foci 

was greatly reduced in pachytene-like Sycp1−/− spermatocytes, but most nuclei contained a 

few foci (4.5 ± 3.1 (s.d.) per nucleus, 20 nuclei; Fig. 5c,d,g). In Rnf212−/− mutants, 

homologs undergo synapsis but designation of crossover sites is defective4. Similar to the 

Sycp1−/− mutant, a few HEI10 foci were detected in Rnf212−/− mutant spermatocytes (6.7 ± 
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4.9 (s.d.), 23 nuclei; Fig. 5e,f,g). We infer that initiation of recombination, homolog synapsis 

and the designation of crossover sites are important for the normal formation and/or 

stabilization of HEI10 foci.

Finally, we examined HEI10 localization in mice lacking the MLH3 component of the 

crossover-specific factor, MutLγ13. In Mlh3−/− spermatocytes, homolog synapsis and initial 

designation of crossover sites appear normal, but implementation of crossing-over fails 4,22. 

In sharp contrast to the other mutants examined, high numbers of HEI10 foci were observed 

in Mlh3−/− spermatocytes (Fig. 5h–m). Unlike wild-type, HEI10 foci were already 

detectable in zygonema (Fig. 5h,i,n), reached very high numbers during mid pachynema 

(89.9 ± 24.5 (s.d.) foci per nucleus, 21 nuclei; Fig. 4j,k,n) and persisted into diplonema (Fig. 

5l,m,n). At least half of the foci in mid pachynema were coincident with γH2AX staining 

(53.0 ± 12.5% (s.d.), 10 nuclei; Supplementary Figure 4), implying that the majority of 

HEI10 accumulates at sites of DSB repair in Mlh3−/− cells.

These data suggest that chromosomal localization of HEI10 occurs in two phases: first, 

HEI10 is licensed to accumulate into foci associated with synaptonemal complexes. These, 

normally transient, complexes may generally promote progression of recombination. In wild 

type, the relatively high and variable numbers of HEI10 foci seen in mid pachynema may be 

a manifestation of this first phase. Subsequently, stable accumulation of HEI10 specifically 

at crossover sites is directed by MLH3 (and, presumably, MLH1). Notably, MLH3 restrains 

accumulation of HEI10 during zygonema, an early function that was not anticipated from 

the timing of crossover-specific MLH3 foci, which don’t appear until early-mid 

pachynema13.

Taken together, our data imply that HEI10 functions during zygonema to limit the co-

localization of RNF212 with MutSγ-associated recombination sites and thereby establish 

early differentiation of crossover and non-crossover sites. Later, HEI10 is directed by MutLγ 

(and perhaps CDK2) to stably accumulate at designated crossover sites. Here, we propose 

that HEI10 also promotes dissociation of RNF212 and MutSγ to allow progression of 

recombination and implementation of the final steps of crossing over. CNTD1 is a cyclin-B 

related protein and the mammalian homolog of the C. elegans pro-crossover factor, 

COSA-123. Intriguingly, the meiotic phenotypes of Cntd1−/− and Hei10mei4/mei4 mice are 

remarkably similar and CNTD1 is required for chromosomal localization of HEI10, 

suggesting that the two proteins function together (P. Cohen, personal communication). The 

model in Supplementary Figure 5 synthesizes the key points of our analysis and those of 

previous studies.

Recently, recombination rate in humans has been associated with a variant in the 

untranslated 5′ region of HEI10/CNNB1IP1 (A. Kong, personal communication), which has 

the potential to alter expression level and suggests that Hei10 may be a dosage-sensitive 

regulator of crossing over. To determine whether the crossover function of mouse HEI10 is 

dosage sensitive, we analyzed spermatocytes from Hei10+/mei4 heterozygotes (Fig. 6). 

Indeed, significant decreases in the numbers HEI10 foci (20.6%), MLH1 foci (13.5%) and 

chiasmata (10%) were detected (P=0.0003, < 0.0001 and 0.0088, respectively; Mann-

Whitney test). In spermatocytes, homologs not tethered by crossovers are detected by the 
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spindle checkpoint, which triggers apoptosis24. Consistent with the reduced crossing-over 

seen in Hei10 +/mei4 heterozygotes, we detected a significant increase in apoptotic cells 

(TUNEL positive) in testes sections from Hei10+/mei4 heterozygotes (Fig. 6j–m and 

Supplementary Fig. 6; P < 0.0001 Mann-Whitney test).

Intriguingly, the crossover function of RNF212 also shows dosage sensitivity in the mouse, 

and human Rnf212 variants have been associated with changes in recombination rate4,7–9. 

These observations are consistent with the idea that the balance of SUMO and ubiquitin is a 

key aspect of crossover regulation. It will be interesting to see if human alleles of HEI10/

CNNB1IP1, RNF212 and recombination factors such as MutSγ, interact to modulate 

recombination rate, fertility and the risk of aneuploidy.

ONLINE METHODS

Mice

All mice were congenic with the C57BL/6J background. Mice were maintained and used for 

experimentation according to the guidelines of the Institutional Animal Care and Use 

Committees of the University of California, Davis and the Middlebury College Animal 

Facility. The Hei10, Mlh3, Rnf212, Spo11 and Sycp1 mutant lines and primer sequences for 

genotyping were previously described4,6,19,21,22. Male mice between 2–6 months were used 

for experimentation.

Protein blot analysis

Tissues from adult mice were sonicated in RIPA buffer, protein concentration was measured 

by the Bradford assay and 100–200 μg of protein was separated by SDS-PAGE. After 

protein transfer to nitrocellulose membranes (Waterman), blots were incubated overnight 

with the following antibodies: mouse monoclonal anti-CCNB1IP1/HEI10 (ab118999 

Abcam, 1:2000 dilution), rabbit polyclonal anti-CCNB1IP1/HEI10 (this study, 1:2000), or 

mouse anti-tubulin (BioLegend, 625902, 1:2,000). Secondary antibodies (1:10,000 dilution) 

were goat anti-rabbit or anti-mouse IgGs conjugated to horseradish peroxidase (HRP; 

SouthernBiotech, 4050-05 and 1031-05, respectively). HRP was detected using the ECL 

reagent (Pierce).

Antibody Production

A polyclonal antibody against mouse HEI10/CCNB1IP1 was raised in rabbits against a 

mixture of two C-terminal peptides. Antibodies were purified from serum using Protein A/G 

spin columns (GE Healthcare).

Cytology

Testes and ovaries were dissected from freshly killed animals and processed for surface 

spreading as described25. For all quantification, images from at least two animals (2–5) were 

analyzed. Comparisons were made between animals that were either littermates or matched 

by age. All cytological analyses were performed by two observers; the second observer was 

blind to which group/genotype was being analyzed. Immunofluorescence staining was 

performed as described26, using the following primary antibodies with incubation overnight 
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at room temperature: mouse anti-SYCP3 (sc-74568 Santa Cruz, 1:200 dilution), rabbit anti-

SYCP3 (sc-33195 Santa Cruz, 1:300), guinea pig anti-SYCE127 (1:2000)(generously 

provided by Chist Hὃὃg, Karolinska Institutet), guinea pig anti-RNF2124 (1:50), rabbit anti-

RNF2124 (1:200), rabbit anti-MSH4 (ab58666 Abcam, 1:100), mouse monoclonal anti-

CCNB1IP1/HEI10 (ab118999 Abcam, 1:150), rabbit polyclonal anti-CCNB1IP1/HEI10 

(this study,), mouse anti-MLH1 (1:50, 550838 BD Pharmingen), mouse monoclonal anti-

γH2AX (05-636 Millipore, 1:500), mouse monoclonal anti-CDK2 (sc-6248 Santa Cruz, 

1:200), guinea pig anti-H1t28 (a gift from M.A. Handel, The Jackson Laboratory; 1:1,000 

dilution). Slides were subsequently incubated with the following goat secondary antibodies 

for 1 h at 37 °C: anti-rabbit 488 (A11070 Molecular Probes, 1:1000 dilution), anti-rabbit 568 

(A11036 Molecular Probes, 1:2000), anti-mouse 555 (A21425 Molecular Probes, 1:1000), 

anti-mouse 594 (A11020 Molecular Probes, 1:1000), anti-mouse 488 (A11029 Molecular 

Probes, 1:1000), and anti-guinea pig fluorescein isothiocyanate (106-096-006 FITC, Jackson 

Labs, 1:200). Coverslips were mounted with ProLong Gold antifade reagent (Molecular 

Probes). For chiasma counts, air-dried preparations of diakinesis/metaphase I–stage cells 

were prepared as described29 and stained with DAPI.

TUNEL Assay

Testes were fixed in formalin, embedded in paraffin, sectioned and processed using the 

ApopTag Plus Peroxidase In Situ Apoptosis Detection kit (Chemicon).

Imaging

Immunolabeled chromosome spreads and DAPI-stained diakinesis/metaphase I nuclei were 

imaged using a Zeiss AxioPlan II microscope with 63× Plan Apochromat 1.4 objective and 

EXFO X-Cite metal halide light source. Images were captured by a Hamamatsu ORCA-ER 

CCD camera and processed using Volocity (Perkin Elmer) and Photoshop (Adobe) software 

packages. SIM analysis was performed using a Nikon N-SIM super-resolution microscope 

system and NIS-Elements 2 image processing software. MSH4-RNF212 colocalization was 

determined using NIS-Elements and co-foci were confirmed by visual inspection. Testes 

sections were imaged using an Axiovert 200 microscope and AxioCamMRc camera using 

AxioVision 4.4 software. Apoptotic cells were imaged and counted in representative fields 

of view.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
RNF212 fails to dissociate from synaptonemal complexes in Hei10 mei4/mei4 mutant 

spermatocytes. All nuclei were immunostained for RNF212 (green) and homolog axis 

component, SYCP3 (red). (a–e) Wild-type (Hei10 +/+) nuclei at (a) early pachynema, (b,c) 

mid pachynema, and (d,e) early diplonema. c and e show magnified views of chromosomes 

indicates by arrows in b and d, respectively. (f–j) Hei10 mei4/mei4 mutant nuclei at (f) early 

pachynema, (g,h) midpachynema, and (i,j) early diplonema. h and j show magnified views 

of chromosomes indicated by arrows in g and j, respectively. (k) Quantification of RNF212 

foci (± s.d.) at successive prophase I stages. EP, early pachynema; MP, mid pachynema; LP, 

late pachynema; ED, early diplonema. 20 nuclei were analyzed for each stage.

Scale bars, 10 μm in a,b,d,f,g,i and 1μm in c,e,h,j.

Qiao et al. Page 10

Nat Genet. Author manuscript; available in PMC 2015 March 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Persistence of MutSγ complexes in Hei10mei4/mei4 spermatocytes. (a–j) Spermatocyte nuclei 

immunostained for MSH4 (green) and SYCP3 (red). (a–e) Wild-type nuclei at (a) late 

zygonema, (b,c) mid pachynema, and (d,e) early diplonema. c and e show magnified views 

of chromosomes indicated by arrows in b and d, respectively. (f–j) Hei10me4/mei4 mutant 

nuclei at (f) late zygonema, (g,h) mid pachynema, and (i,j) early diplonema. h and j show 

magnified views of chromosomes indicated by arrows in g and j, respectively. (k) 

Quantification of MSH4 foci (± s.d.) at successive prophase I stages. LZ, late zygonema; 

EP, early pachynema; ED, early diplonema. Number of nuclei analyzed at LZ/EP, MP and 

ED: 21, 20 and 20 for Hei10 +/+; and 21, 20 and 18 for Hei10 mei4/mei4. (l–o) SIM images of 
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early pachytene nuclei immunostained for MSH4 (red) and RNF212 (green). To allow 

accurate staging, nuclei were also stained for SYCP3 (not shown). (l) Wild-type nucleus. 

(m) Magnification of the chromosome highlighted by the arrow in l. (n) Hei10me4/mei4 

mutant nucleus. (o) Magnification of the chromosome highlighted by the arrow in n. (p) 

Percentage of MSH4 foci (± s.d.) that colocalize with RNF212 at successive prophase 

substages determined by SIM analysis. EZ, early zygonema; LZ, late zygonema; EP, early 

pachynema; MP, mid pachynema; LP, late pachynema; ED, early diplonema. Number of 

Hei10+/+ nuclei analyzed at EZ, LZ, EP and MP, respectively: 10, 5, 10, and 7. Number of 

Hei10mei4/mei4 nuclei analyzed at EZ, LZ, EP, MP, LP and ED, respectively 5, 6, 25, 14, 9, 

9.

Scale bars, 10 μm in a,b,d,f,g,i,l,n and 1μm in c,e,h,j,m,o.
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Figure 3. 
Repair of DSBs is delayed in Hei10mei4/mei4 spermatocytes. All nuclei were immunostained 

for γH2AX (green) and SYCP3 (red). (a–e) Wild-type nuclei at (a) early pachynema, (b,c) 

mid pachynema, and (d,e) diplonema. c and e show magnified views of chromosomes 

indicates by arrows in b and d, respectively. (f–j) Hei10mei4/mei4 mutant nuclei at (f) early 

pachynema, (g,h) mid pachynema, and (i,j) early diplonema. h and j show magnified views 

of chromosomes indicates by arrows in g and j, respectively. (k) Quantification of γH2AX 

foci (± s.d.) at successive prophase I stages. MP, mid pachynema; LP, late pachynema; D, 

diplonema. Number of nuclei analyzed at MP, LP and D: 15, 11 and 10 for Hei10 +/+; and 

10, 10 and 10 for Hei10 mei4/mei4.

Scale bars, 10 μm in a,b,d,f,g,i and 1μm in c,e,h,j.
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Figure 4. 
HEI10 localization to synaptonemal complexes and crossover sites. (a–j) Representative 

SIM images of wild-type spermatocyte nuclei immunostained for HEI10 (green) and SYCP3 

(red) at (a) leptonema, (b) late zygonema, (c,d) early pachynema, (e,f) mid pachynema, 

(g,h) late pachynema, and (i,j) early diplonema. (d, f, h, j) Magnified views of the 

chromosomes indicated by arrows in c, e, g, i, respectively. Arrowheads highlight HEI10 

foci. (k) Numbers of HEI10 foci per nucleus at successive prophase stages (Z, zygonema; 

EP, early pachynema; MP, mid pachynema; LP, late pachynema; ED, early diplonema). 

Horizontal bars represent means ± s.d. Numbers of nuclei analyzed at Z, EP, MP, LP and 

ED, respectively: 13, 8, 22, 20 and 11. (l,m) Mid-pachytene spermatocyte immunostained 

for HEI10 (green), RNF212 (red), and SYCP3 (grey). (m) Magnified view of the 

chromosome indicated by the arrow in l. (n,o) Mid-pachytene spermatocyte immunostained 

for HEI10 (green), MSH4 (red) and synaptonemal complex central element protein, SYCE1 
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(grey). (o) Magnified view of the chromosome indicated by the arrow in n. (p,q) Mid-

pachytene spermatocyte immunostained for HEI10 (green), CDK2 (red), and SYCE1 (grey). 

(q) Magnified view of the chromosome indicated by the arrow in p. (r,s) Mid-pachytene 

spermatocyte immunostained for HEI10 (green), MLH1 (red), and SYCE1 (grey). (s) 

Magnified view of the chromosome indicated by the arrow in r. The arrowhead highlights a 

small MLH1 focus that colocalizes with HEI10.

Scale bars, 10 μm in a, b, c, e, g, i, l, n, p, r; 1 μm in d, f, h, j, m, o, q, s.
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Figure 5. 
Genetic requirements for HEI10 localization. (a–m) Representative spermatocyte nuclei, 

from indicated mutant lines, immunostained for HEI10 (green) and SYCP3 (red). (a,b) 

Spermatocyte nucleus from a Spo11−/− mouse. (b) Magnification of the chromosome 

indicated by the arrow in a. (c,d) Spermatocyte nucleus from a Sycp1−/− mouse. (d) 

Magnification of the chromosome indicated by the arrow in c. (e,f) Spermatocyte nucleus 

from a Rnf212−/− mouse. (f) Magnification of the chromosome indicated by the arrow in e. 

(g) Numbers of HEI10 foci per nucleus in mid-late pachytene spermatocytes from wild-type, 

Spo11−/−, Sycp1−/− and Rnf212−/− mice. Bars represent means ± s.d. Numbers of nuclei 

analyzed: wild-type, 20; Spo11−/−, 27; Sycp1−/−, 20; Rnf212−/−, 23. Analysis of Spo11−/− 

was confined to nuclei with high levels of synapsis, predicted to be the equivalents of mid 

pachynema nuclei. Similarly, only Sycp1−/− nuclei with a high degree of pseudo-synapsis 

were analyzed. However, true equivalents of wild-type mid pachynema nuclei may not be 

represented in Spo11−/− and Sycp1−/− testes due to apoptosis18,20. (h–m) Representative 

spermatocyte nuclei from the Mlh3−/− mutant. (h) Late zygotene nucleus. (i) Magnification 

of the chromosome indicated by the arrow in h. (j) Mid-pachytene nucleus. (k) 

Magnification of the chromosome indicated by the arrow in j. (l) Mid-diplotene nucleus. (m) 

Magnification of the chromosome indicated by the arrow in m. (n) Numbers of HEI10 foci 

per nucleus (± s.d.) at successive prophase stages in wild-type and Mlh3−/− mice. MZ, mid-

zygonema; MP, mid pachynema; D, diplonema. Number of nuclei analyzed at MZ, MP and 

D, respectively: 20, 22 and 20 for wild-type (Mlh3+/+); and 20, 21 and 21 for Mlh3−/−.

Scale bars, 10 μm in a,c,e,h,j,l and 1μm in b,d,f,i,k,m.
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Figure 6. 
Dosage sensitivity of the HEI10 crossover function. (a,b) Mid-pachytene nuclei from (a) 

wild-type (Hei10+/+) and (b) Hei10+/mei4 heterozygous mice immunostained for HEI10 

(green) and SYCP3 (red). The arrows in b highlight chromosomes that lack HEI10 foci. (c) 

Numbers of HEI10 foci (± s.d.) per nucleus in mid-pachytene cells (23 wild-type and 33 

Hei10+/mei4 nuclei). (d,e) Mid-pachytene nuclei from (d) wild-type and (e) Hei10+/mei4 

heterozygous mice immunostained for MLH1 and SYCP3. The arrows in e highlight 

chromosomes that lack MLH1 foci. (f) Numbers of MLH1 foci per nucleus (± s.d.) in mid-

pachytene cells (20 wild-type and 23 Hei10+/mei4 nuclei). (g, h) Chromosome spreads of 

diakinesis/metaphase I spermatocytes from (g) wild-type and (h) Hei10+/mei4 heterozygous 

mice stained with DAPI. (i) Numbers of chiasmata per nucleus (± s.d.) in diakinesis/

metaphase I spermatocytes (25 wild-type and 29 Hei10+/mei4 nuclei). (j–l) TUNEL stained 

Qiao et al. Page 17

Nat Genet. Author manuscript; available in PMC 2015 March 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



testis sections from (j) Hei10+/+, (k) Hei10+/mei4 and (l) Hei10mei4mei4 animals. (m) 

Quantification of TUNEL-positive apoptotic cells (± s.d.) in spermatocyte sections.

Scale bars, 10 μm in a,b,d,e,g,h and 100 μm in j,k,l.
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