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Abstract 

Transcription with Incremental Presentation of the Stimulus 
(TIPS) is a novel approach relying on micro-behaviours 
proposed by Colarusso and colleagues (2023) to study users’ 
cognition with data visualizations. The study in this paper has 
two primary objectives: (a) investigate whether TIPS can 
measure an individual’s competence with data visualizations; 
and (b) explore the potential enhancement of TIPS measures 
by normalizing them with the individual’s performance on tests 
of visuo-spatial abilities and memory capacity. We test 30 
participants with different expertise and cognitive skills. 
Results reveal that TIPS provides some promise for individual 
competence assessment, but only when normalized with the 
individual’s performance on a test of rigid transformation of 
mental images. Other tests measuring visuospatial abilities or 
memory capacity did not produce effective normalizations.  

Keywords: Competence Assessment, Individual Differences, 
Spatial Cognition, Learning Analytics, Visualization 
Competence, Graph Comprehension.  

Introduction 
Visualization literacy is distinguished from visualization 
competence. While visualization literacy entails the ability 
and skills to read, interpret  and extract information from data 
visualizations (Lee et al., 2017), visualization competence 
refers to the cognitive processes and practices needed to 
adequately use and fluently transform visual display in the 
form of tables, diagrams and graphs (Gilbert, 2005; Gilbert et 
al., 2008). Four major components constitute visualization 
competence: constructing (i.e., generating a set of external 
representations to form graphs or diagrams), interpreting 
(i.e., understanding the meaning), transforming (i.e., creating 
new external visualizations to replace or complete the 
original), and critiquing (i.e., evaluating external 
representations) (Chang & Tzeng, 2018). This paper 
concerns graph comprehension, an important aspect of 
visualization competence. As defined by Fox (2023), graph 
comprehension is the process of deriving meaningful insights 
from graphs, a task deeply anchored in visuospatial 
processing that develops through a blend of guided learning 
and practice. 

As confirmed by previous studies (Gilbert, 2005; Hinze et 
al., 2013; Nitz et al., 2014) users’ prior knowledge plays a 
crucial role in visualization competence. Similarly, graph 

comprehension theories (Freedman & Shah, 2002; Hegarty, 
2005; Kriz & Hegarty, 2007) underscore that the interaction 
between prior knowledge and graphical features is vital for 
effective chunking operations, enabling a proficient 
comprehension of the visual display. However, they did not 
investigate the role of spatial processing in graph 
comprehension (Ratwani et al., 2008).  

Previous research has shown the importance of spatial 
transformation processes in graph comprehension and in 
predicting user performance with information visualization. 
This has been demonstrated through various methods 
including: verbal protocols (Trafton & Trickett, 2001; 
Trickett & Trafton, 2004; Trickett & Trafton, 2006) and 
spatial transformation tests such as the Mental Rotation and 
Paper Folding (Luo, 2019; Stewart et al., 2008; Tandon et al., 
2023; VanderPlas & Hofmann, 2016; Vicente et al., 1987). 
Spatial transformations are cognitive operations executed on 
both external (i.e., visualization) and internal representation 
in order to improve the comprehension of graphical displays 
through manipulations (i.e., adding or removing features) and 
comparison of representations (Stewart et al., 2008; Tandon 
et al., 2023; Trafton et al., 2002; Trafton et al., 2005; Trickett 
& Trafton, 2006). These operations are essential in graph 
comprehension tasks as they facilitate the construction, 
interpretation, transformation, and critique of external 
representations. 

There is a limited number of methods to assess graph 
comprehension, and these can be categorized into four 
groups: (a) self-assessment (Xi, 2016), (b) multiple choice 
questions (MCQ) (Cui et al., 2023; Feeney et al., 2000; Fox, 
2019; Ge et al., 2023; Lee et al., 2017), (c) written 
descriptions (Carswell et al., 1993; Golparvar & Azizsahra, 
2023) and (d) oral descriptions (Shah & Freedman, 2011; Xi, 
2016). However, these methods can be time-consuming 
because many MCQs are needed or need manual grading by 
an instructor.  

An alternative approach, Transcription with Incremental 
Presentation of the Stimulus (TIPS) (Colarusso et al., 2023) 
was recently introduced to measure graph comprehension. 
TIPS quantify the users’ familiarity with a given visualization 
by recording and analysing keystrokes and pen-strokes data 
during cycles of viewing and drawing, providing a direct and 
quantitative approach for competence assessment. 
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Since copying requires the construction of a visual 
representation through spatial processing, as well as the 
hierarchical organization of motor chunks for execution 
(Sommers, 1989), TIPS could be a suitable tool to measure 
graph comprehension.  

Visualization competence using micro-behaviours  
TIPS is a member of the Competence Assessment by Chunk 
Hierarchy Evaluation with Transcription-tasks (CACHET) 
family of methods that were designed to assess competence 
of technical skills (Cheng, 2014; Colarusso et al., 2023). 
CACHET and TIPS can assess a users’ competence by 
focusing on micro-behavioural signals, that is interactions 
occurring in the range between 100ms to 2s duration.  

Previous CACHET research evaluated competence on 
linear notations (e.g., strings of code, mathematical 
equations, and formulas). Various designs were investigated, 
including: constantly available stimulus presentation (Cheng, 
2014); voluntary stimulus presentation controlled by the user 
(Albehaijan & Cheng, 2019); or response verification with 
sequential multiple-choice items (Ismail & Cheng, 2021). 
The first attempt to apply CACHET to graphical material 
was conducted by Colarusso and colleagues (2021) revealing 
chunking operations in copying a line graph and a bar chart. 
However, a noisy micro-behavioural signal was reported due 
to the different drawing strategies used by the participants. 
These limitations have been addressed by introducing TIPS 
(Colarusso et al., 2023) and allowing a dynamic stimulus 
presentation under the user control to amplify the chunking 
signal while limiting individual differences in drawing 
strategies. The results highlighted the effectiveness of TIPS 
to study the users’ familiarity with a given visualization.  

The TIPS design (Figure 1) has three main phases: 
Familiarization, Visualization, and Copying. It starts with a 
brief familiarization of the stimulus (Figure 1, step [1]), to 
form an overall mental image. Afterwards, a blank mask is 
shown in step [2]. Next, the users’ task is to display the 
amount of information that they are able to copy in one burst 
by pressing the View-Key (i.e., Right arrow key) 
consecutively (steps [3-5]). Subsequently, they choose to 
start copying (step [6]) the displayed information by pressing 
the Draw-Key (i.e., Down arrow key). Once they finish 
copying, they can view more of the stimulus (step [7]), 
repeating the process until the whole stimulus has been 
copied. Colarusso and colleagues (2023) demonstrated the 
strengths of this design by applying a Cognitive, Perceptual 
and Motor GOMS (CPM-GOMS) model (John & Kieras, 
1996) to reveal the cognitive processes occurring during the 
pauses in the Visualization Phase (Figure 1, steps [3-5]). 
Shorter View Pauses (steps [3-4]) reflecting quicker 
recognition processes for familiar stimuli were found, while 
longer Draw Pauses (steps [5-6]) were required to integrate 
the displayed items before copying. 

What is the theory underpinning the design of CACHET 
and TIPS? As people’s expertise increases, they are able to 
process more information and organize it more efficiently in 
their memory. Hence, micro-behaviours recorded during the 

task can provide insights about (i) how much information a 
user is able to process, and (ii) the structure of the information 
stored in memory. Several theories from Cognitive Science 
support this approach. First, according to the working 
memory chunking theory (Cowan, 2001; Miller, 1956), the 
information is processed by the mind as chunks, clusters of 
information where intra-chunk elements have stronger 
semantic associations between them than elements belonging 
to different chunks. Furthermore, according to the long-term 
memory chunking theory (William G. Chase & Herbert A. 
Simon, 1973; Gobet et al., 2001; Johnson, 1970), learning 
increases the hierarchical chunks of information stored in 
memory. Hence, expertise in a particular domain can be 
explained by different hierarchical sub-chunk sizes where 
experts have bigger sub-chunks that enable to recognize 
meaningful patterns more quickly when compared to novices, 
whose smaller sub-chunks rely on perceptual features. 
Hence, the hierarchical organization of chunks can be studied 
using micro-behavioural signals in the form of pauses 
between actions (W. G. Chase & H. A. Simon, 1973; Cheng 
& van Genuchten, 2018; Cheng & Rojas-Anaya, 2007; Egan 
& Schwartz, 1979; Obaidellah & Cheng, 2015; Roller & 
Cheng, 2014; Thompson et al., 2017). Experts have bigger 
chunk sizes showing few long inter-chunk pauses and many 
short intra-chunk pauses. In contrast, due to the smaller 
amount of information recalled within each chunk, novices 
exhibit more and short intra-chunk pauses (W. G. Chase & 
H. A. Simon, 1973; Gobet & Simon, 1996) with many inter-
chunk pauses longer than those of the experts (Cheng & van 
Genuchten, 2018). Previous evaluations of CACHET have 
produced correlations in the range of 0.6-0.7 between 
independent measure of competence and the micro-
behavioural chunk-based measures in various domains such 
mathematics (Cheng, 2014, 2015; Cheng & Rojas-Anaya, 
2007), programming (Albehaijan & Cheng, 2019), and 
English (Cheng & Zulkifli, 2009; Ismail & Cheng, 2021). 

Those theories inspired the design of two categories of 
competence measures within CACHET and TIPS: (i) chunk 
size and (ii) temporal micro-behaviours (Figure 1D). A 
descriptive list of each measure is provided.  

(1) Viewing Episode Size: the number of consecutive View-
Key presses for each Visualization phase (Figure 1, steps     
[3-5]). It may reflect chunking as it represents the amount of 
information a user is able to display before starting the 
Copying Phase.  

(2) Viewing Time: the duration of each Visualization Phase 
(Figure 1B). Its duration is influenced by the number of 
elements that are encoded. 

(3) Number of Drawing Episodes: the total count of 
Copying phases for each stimulus (Figure 1, step [6]). It may 
reflect chunking being inversely proportional to the amount 
of information that is processed. A larger amount of chunk 
content suggests a smaller Number of Drawing Episodes to 
copy the stimulus.  

(4) Drawing Time: the duration of the Copying phase 
(Figure 1, step [6]). This reflects chunking as a larger chunk 
content implies a longer drawing time. 
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(5) View Pause: the duration before pressing the next 
View-Key within the same Viewing Episode (Figure 1, steps 
[3-4]). A shorter View Pause indicates quicker recognition 
processes when the user is familiar with the displayed 
information before pressing the next View-Key.  

(6) Draw Pause: the duration of time before starting the 
Copying phase by pressing the Draw Key (Figure 1, steps     
[5-6]). A longer Draw Pause reflects the integration processes 
to combine the to-be-copied chunk contents into a new 
representation.  

(7) Pauses_between_pen-strokes: the duration of the 
pauses among all the pen-strokes performed to draw each 
stimulus. It may reflect the participants hierarchical 
organization of chunks.   

(8) Very first pause of the drawing: the time between the 
Draw-key press and the very first pen-stroke of each copying 
phase after viewing the stimulus. This represents the 
cognitive effort required to recall the to-be-copied chunk 
contents.  

Given this wide set of measures designed to decode 
different facets of expertise, the first set of research questions 
motivating the experiment is:  

RQ1) Can TIPS be used to measure graph comprehension? 
What are the TIPS measures that best correlate with users’ 
experience in using graphs?  

Refining competence via Normalization 
Alongside prior knowledge and expertise, visuo-spatial 
abilities also play an important role in graph comprehension 
tasks (Stewart et al., 2008; Tandon et al., 2023; Trickett & 
Trafton, 2006). Hence, they may mask the true relationship 
between the participants’ expertise and TIPS measures, 
compromising our RQ1. Several psychometric tests 
measuring visuo-spatial abilities were included in this 
experiment with the aim to improve the accuracy of any 
correlations between our independent measure of 
competence and TIPS’ dependent measures of competence. 
By normalizing, we aim to increase the strength of the graph 
comprehension signal by controlling the influence of 
potential masking variables that may affect the direct 
relationship between our variables of interest.  

In previous CACHET experiments (Cheng, 2014, 2015), 
dependent measures of competence were normalized in order 
to improve the accuracy of temporal chunk signals during the 
copying, by removing the impact of individual differences 
due to underpinning skills. Specifically, the third quartile 
(Q3) of the pauses distribution during the copying of basic 
mathematics skill was subtracted from the Q3 of the pauses 
distribution derived by the copying of complex equations. 
This subtraction resulted in a new normalized value that 
better correlated with the independent measures of 
competence. Hence, there is a second research question to be 
investigated:  

RQ2) Does normalizing TIPS measures of competence 
with visuo-spatial abilities measures enhance the accuracy of 
the baseline graph comprehension signal? 

Experiment 

Design 
The experiment has a within-participants design with 4 
stimuli featuring line graphs and bar charts of different 
complexity already used in previous TIPS pilot work 
(Colarusso et al., 2023). The line graph in Figure 1 is an 
example. The other three stimuli are: (i) a bar chat with an 
inverted U-shaped distribution; (ii) a line graph with two bell 
curves, two sigmoid functions and one irregular trend; (iii) a 
bar chart showing separate distributions such as bimodal, 
negative skewness, normal, and uniform. The self-
assessment questionnaire already used by Colarusso et al. 
(2023) serves as the independent measure of competence. It 
features a 7-point scale comprising three sub-scales: (i) 
experience using graph (GE), (ii) graph reading ability 
(GRA) and the (iii) typical reactions to graphs (GR). TIPS 
measures will be the dependent variables (Figure 1D). Visuo-

 
 
Figure 1: The TIPS method applied to a simple line graph. 
TIPS is an interactive task, based on cycles of stimulus 
viewing (Panel B) and copying (Panel C). The users choose 
how much of the stimulus to reveal incrementally in the 
Visualization Phase by pressing the View Key multiple 
times. Afterwards, they press the Draw Key to start copying 
the remembered elements. A list containing the competence 
measures recorded by TIPS is provided (Panel D). 
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spatial ability tests are used for the normalization to address 
potential masking variables.  

Participants 
The experiment was conducted with 30 university students at 
University of Sussex. All of them received a £15 Amazon 
voucher as compensation for their time. We recruited 
participants with a wide range of experience with graphs by 
targeting students from STEM and NON-STEM 
departments. Ethics clearance was obtained by the 
appropriate committee of the University. An a priori power 
analysis was conducted using G*Power version 3.1.9.6 (Faul 
et al., 2007) to determine the minimum sample size required 
to test the research questions. Results indicated the required 
sample size to achieve 80% power for detecting a large effect 
(i.e., 0.5), at a significance criterion of α = .05, was N = 29 
for a two-tailed correlation. Thus, the collected sample size 
of N = 30 is adequate to study the research questions. 

Questionnaire and Cognitive Assessment  
Similar to previous CACHET research (Albehaijan & Cheng, 
2019), the experiment began with an online questionnaire on 
Qualtrics where the participants provided demographic 
information and self-assessed themselves on our independent 
measure of competence. Afterwards, they completed the 
Mental Rotation test (MRT) (Shepard & Metzler, 1971; 
Vandenberg & Kuse, 1978) and Paper Folding test (PFT) 
(Ekstrom, 1976), each comprising 20 items.  

Next, the participants completed two additional visuo-
spatial working memory tests in our lab using the Corsi Block 
Tapping Test (Corsi, 1972) and the Visual Pattern Test (Della 
Sala et al., 1999). Both tests were administered digitally on 
an iPad Pro. The Corsi Block Tapping Test was administered 
in its forward (CF) and backward (CB) version using 
Psytoolkit (Stoet, 2010, 2017). This spatial-working memory 
test records the participants’ spatial span by requiring them 
to tap sequences of blocks of increasing complexity, from a 
3-block series to a 9-block sequence. Visual working memory 
was measured on a different online platform (Castro-Alonso 
et al., 2018) using the Visual Pattern Test (VPT). VPT 
records the participants percentage of correctness in 
memorizing and recalling visual patterns of different 
complexity ranging from a 2x2 grid to 6x5 grid. These tests 
were also used for the normalization of TIPS measures. 

Material and TIPS procedure 
Once the cognitive assessment in the lab was completed, 
participants started the TIPS copying task on a laptop   
running InteractLog version 2.31 together with a Cintiq 16 
Wacom tablet. Prior training with example stimuli was 
provided in order to familiarize participants with the TIPS 
procedure. Stimuli used for the copying task were 
randomized and interaction logs from each participant were 
collected. These interactions were used to compute the eight 
TIPS competence measures, as listed in Figure 1D. For each 

 
1 https://github.com/rrgrau/InteractLog. 

measure, the median value was recorded, except for the 
Number of Drawing Episodes, where the total was calculated.  

Results 

Graph Familiarity Questionnaire 
The correlations between the three sub-scales were calculated 
to determine the most appropriate independent measure of 
competence. All correlations were strong and statistically 
significant (d.f.= 28, two-tailed, rcrit= 0.570, p<.001). 
Specifically, GE showed a correlation of r= 0.65 with GRA 
and r= 0.70 with GR. Additionally, a correlation of r= 0.69 
was found between GRA and GR. Given these strong and 
significant correlations, and as chunking involves efficient 
organization and processing of information based on prior 
knowledge and experience, GE alone was chosen as the most 
appropriate sub-scale to be the independent measure of 
competence.  

RQ1: Correlations among GE and TIPS measures 
Our first research question (RQ1) examined the feasibility of 
using TIPS as a tool for measuring graph comprehension.  

The initial baseline correlations between GE and TIPS 
measure of competence were investigated for each stimulus 
(Figure 2, top bar (brown) in each group). To facilitate the 
interpretation, all correlations are shown as absolute values 
(GE is negatively correlated with Number of Drawing 
Episodes, View Pause, Pauses_between_pen_strokes, and 
Very First Pause of the drawing). This is of no consequence 
for RQ1. Overall, weak baseline correlations were found 
between GE and TIPS measures of competence on each 
stimulus with only 05/32 correlations being significant. The 
Number of Drawing Episodes and the Viewing Episode Size 
were the only TIPS measures that were significant. 
Specifically, the Number of Drawing Episodes had 
significant correlations, on the simple bar chart r(28) =. 40,   
p < .05, complex bar chart r(28) =. 42, p<.05 and complex 
line graph r(28) = .43, p < .05; all two tailed. Significant 
correlations for the Viewing Episode Size were found on the 
simple bar chart r(28) = .46, p < .05, and complex line graph 
r(28) = .39, p<.05. Thus, the reported ratio of 05/32 
significant baseline correlations showed that TIPS works 
poorly to reveal the participants’ graph comprehension with 
the give visualizations since the only two measures with 
significant correlations are the Number of Drawing Episodes 
and Viewing Episode Size, and only on specific stimuli. 

RQ2: Normalization with cognitive measures 
RQ2 concerns the investigation of normalization methods, 
using visuo-spatial ability tests, to improve the baseline graph 
comprehension signal. Normalized values are adjusted values 
that eliminate the effect of potential masking variables in the 
data, which allows a more accurate interpretation. In our case, 
we want to make TIPS measures regardless of visuo-spatial  
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ability in order to isolate the correlations between GE and 
TIPS measures. This investigation is carried out in three steps 
examining: (i) individual differences between High and Low 
Competence participants on cognitive tests, (ii) the 
relationship between the GE and cognitive abilities, (iii) the 
normalization of TIPS measures by removing the influence 
of visuo-spatial abilities. 
 
Differences between groups on cognitive tests. The dataset 
was divided applying the median split method based on GE, 
our independent variable. Participants with a score above the 
median were labelled as High Competence (HC) (N= 14) 
whereas those with a score below as Low Competence (LC) 
(N= 16). Normality assumptions were met for MRT, PFT and 
VPT (p>0.05) but not for CF (p<0.01) and CB (p<0.001). 
Hence, the non-parametric Mann-Whitney U test was used 
(instead of t-test) to compare the two groups. Superior 
performance of HC group was found on all the cognitive 
tests. Comparing the two groups on MRT, HC scored higher 
(M = 8.36, SD = 3.56) than LC (M = 5.88, SD = 2.94) 
showing a statistically significance difference (t = -2.06,          
p < 0.05, Cohen's d = 0.76). Differences on the border of 
significance were found for PFT (t = -2.02, p = 0.05, Cohen's 
d = 0.73) and VPT (t = -2.04, p = 0.05, Cohen's d = 0.73), 
with HC outperforming LC (PFT: M = 12.86, SD = 3.21 vs. 
M = 10.31, SD = 3.68; VPT: M = 84.86, SD= 6.13 vs. M= 
79.06, SD = 9.28). No statistically significant difference was 
found between the two groups on CF (U-value = 87, p = 0.29, 
HC median = 6.5, LC median = 5.5) and CB (U-value = 88, 
p = 0.30, HC median = 5.5, LC median = 5.0). 

In summary, the superior performance of HC on all the 
cognitive tests, while borderline or not significant in some 
cases (i.e., PFT, VPT, CF, CB), provided a first indication 
about the role of visuo-spatial abilities as masking variables.  

Correlation between GE and cognitive tests. To continue 
the detection of potential masking variables, the correlations 
between GE and visuo-spatial ability tests were also 
investigated. A moderate and significant correlation was 
found between GE and MRT r(28) = .49, p<.01, indicating a 
meaningful relationship between graph experience and 
performance on MRT. However, weaker and non-significant 
correlations were reported between GE and the PFT             
r(28) = .30, p>.05, VPT r(28) = .26, p>.05, CF r(28) = .09, 
p>.05, and CB r(28) =.11, p>.05. Thus, considering both 
results provided by the comparisons and correlation analysis, 
the normalization of TIPS measures by using the cognitive 
measures is warranted.  
 
Correlations post normalizations using cognitive tests.  
We now directly address RQ2 regarding the impact of 
normalizing TIPS measures of competence with visuo-spatial 
ability tests (i.e., MRT, PFT, VPT, CF, and CB) to enhance 
their initial baseline correlations with GE. All the variables 
were standardized using their z-scores. TIPS measures 
positively correlated with GE (i.e., Viewing Episode Size, 
Drawing time, Viewing time, Draw Pause), were normalized 
by summating them with each cognitive measure, while 
negatively correlated measures (i.e., Number of Drawing 
Episodes, Pauses_between_pen strokes, View Pause, Very 
First Pause of the drawing) were adjusted by subtraction. 

Correlations pre and post normalization are presented in 
Figure 2. Alongside the proportion of 05/32 significant 
correlations between GE and the TIPS measures (brown bar 
on each stimulus), the correlations adjusted to account for the 
individual differences in visuo-spatial abilities are presented 
in different colors (Figure 2). The proportion of significant 
correlations is given for each cognitive measure. The best 
improvement from the baseline correlations was obtained 

 

 
Figure 2: Correlations between Graph Experience (GE) and TIPS measures on each stimulus across different normalization 
approaches. The results are plotted using the absolute values of the correlations. The best improvement from the baseline 
correlations (brown bars) was obtained by normalizing with MRT (blue bars). All TIPS chunk size measures improved 
significantly across the stimuli by normalizing with MRT. However, some temporal micro-behaviours were not significant 
(i.e., View Pause: simple line graph, complex bar chart; Very First Pause of the drawing: simple and complex bar chart).  
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when normalizing with MRT (28/32) (blue bars). Minor 
improvements were reported for PFT (06/32) (orange bars) 
and VPT (06/32) (green bars), while no notable changes 
occurred for CF (0/32) (purple bars) and CB (0/32) (red bars). 

A repeated measures ANOVA was applied to investigate 
whether there are significant differences in scores pre versus 
post normalization, as well as to examine variations between 
TIPS measures of competence too. A within-subject factor 
included baseline and post-normalization correlations values 
using MRT, PFT, VPT, CF, and CB. Additionally, a between-
subject factor incorporated TIPS measures of competence. 
Assumption checks identified a violation of the sphericity 
assumption, addressed with Greenhouse-Geisser correction 
(ε = 0.291). The analysis revealed significant main effects of 
correlations pre-post normalization and TIPS measures 
(p<.001), without an interaction effect. Post hoc tests using 
Bonferroni correction indicated significant differences 
between baseline correlations and post-normalization 
correlations using MRT, PFT, and VPT (p<.001). Notably, 
no significant difference was found for CF (p = 0.256) and 
CB (p = 1.000). The most substantial improvement was 
observed for MRT with a mean difference from the baseline 
of -0.235. Smaller improvements were observed for PFT         
(-0.107) and VPT (-0.082), while no improvement was found 
for CF (0.033) and CB (0.017). These results emphasize the 
MRT normalization's effectiveness in refining the graph 
comprehension signal compared to other cognitive measures. 
Thus, when evaluating graph comprehension with TIPS, 
accounting for both individual differences in prior knowledge 
and spatial processing is essential for an accurate results 
interpretation. 

DISCUSSION 
This paper evaluated and extended TIPS (Colarusso et al., 
2023), a computerized learning analytics tool for assessing 
graph comprehension. Two research questions were posed.  

RQ1 aimed to determine if TIPS can measure graph 
comprehension and find out which of the TIPS measures 
would be most effective for this (Figure 1D). When applied 
to linear notations, the typical range of correlations in 
CACHET was 0.6-0.7. Hence, the findings for RQ1 yielded 
limited support for TIPS as graph comprehension 
measurement tool, with only 05/32 within a range of 0.4-0.5 
being significant across the four data graphs stimuli.  

As TIPS targets visualizations and given that spatial 
processing is important for graph comprehension (Stewart et 
al., 2008; Tandon et al., 2023; Trickett & Trafton, 2006) and 
copying tasks (Sommers, 1989), it is possible that individual 
differences in visuo-spatial processing may have influenced 
the chunking signal upon which the TIPS measures rely. RQ2 
aimed to enhance the baseline graph comprehension signal 
by normalizing with visuo-spatial abilities tests. 
Normalization with MRT revealed a substantial improvement 
from the baseline with 28/32 significant correlations in a 
range of 0.4-0.5, showing that TIPS has some potential and 
somewhat supporting RQ1. Notably, within this proportion, 
all TIPS chunk size measures turned out significant on each 

stimulus. However, some temporal micro-behavioral 
measures during the visualization and copying phase did not 
yield significant results. Specifically, the View Pause was not 
significant with the simple line graph and complex bar chart 
while the Very First Pause of the Drawing did not turn 
significant on the simple and complex bar chart. 

While both MRT and PFT assess spatial transformation 
abilities, normalization with MRT proved to be more 
effective due to its alignment with the TIPS design. MRT 
requires rigid transformations (i.e., distances between points 
in an object is preserved) that correspond to the spatial 
transformations required by TIPS in both internal and 
external representation every time the View Key is pressed. 
Although TIPS may seem to require non-rigid 
transformations as the PFT probes, the Draw Pause allows 
participants to apply rigid spatial transformation to integrate 
the displayed information into a new mental representation 
that is then used for the Copying phase. For instance, similar 
to the MRT, once the amount of chunk contents that is going 
to be used for the Copying Phase is displayed (Figure 1), 
participants may use the Draw Pause to compare and combine 
the items displayed into a unified mental representation. In 
line with previous research, (Chen, 2000; Toker et al., 2013; 
Velez et al., 2005; Vicente et al., 1987) VPT is less relevant 
to reveal performance with information visualization than 
spatial transformation tests. In addition, the Corsi Tests may 
have not worked due to their simplicity compared to MRT, 
PFT and the visuo-spatial processing required by TIPS. 
Moreover, to the best of our knowledge, this is the first 
application of the Corsi tests in visualization research. 

The experiment has a number of limitations. First, this 
study only employed a small range of visualizations such as 
line graphs, bar charts and histograms. Further investigations 
on different visualizations such as stacked bar charts, box 
plots, chord or Sankey diagrams will be needed. Second, 
stimuli complexity has to be considered. The simplicity of 
some stimuli (e.g., line graph) could be the reason for the 
absence of any chunking signal in the baseline measures and 
weaker correlations than found in previous CACHET 
experiments.  

Although successfully employed in previous CACHET 
research (Albehaijan & Cheng, 2019), another limitation 
concerns the self-assessment questionnaire used as an 
independent measure in this experiment. Unlike data 
visualization literacy tests  that measure different skills in 
reading and extracting information from data (Cui et al., 
2023; Lee et al., 2017), the items included in the adopted 
questionnaire are rather generic and do not aim to measure 
any specific skills involved in graph comprehension. Given 
the importance of chunking and micro-behaviours in the 
TIPS design, a tailored test assessing key aspects represented 
by the visualizations is needed. This includes pattern 
recognition and users’ knowledge of the visualization being 
used in TIPS. For instance, recognizing a negative skew in a 
plot of a distribution and what a negative skewness 
represents, could provide a more accurate measure of 
familiarity with a given visualization. 
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