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Abstract

This paper describes a catalytic asymmetric Staudinger–aza-Wittig reaction of (o-

azidoaryl)malonates, allowing access to chiral quaternary oxindoles through phosphine oxide 

catalysis. We designed a novel HypPhos oxide catalyst to enable the desymmetrizing Staudinger–

aza-Wittig reaction through the PIII/PV═O redox cycle in the presence of a silane reductant 

and an IrI-based Lewis acid. The reaction occurs under mild conditions, with good functional 

group tolerance, a wide substrate scope, and excellent enantioselectivity. Density functional theory 

revealed that the enantioselectivity in the desymmetrizing reaction arose from the cooperative 

effects of the IrI species and the HypPhos catalyst. The utility of this methodology is demonstrated 

by the (formal) syntheses of seven alkaloid targets: (−)-gliocladin C, (−)-coerulescine, (−)-

horsfiline, (+)-deoxyeseroline, (+)-esermethole, (+)-physostigmine, and (+)-physovenine.

Graphical Abstract

INTRODUCTION

Organic phosphorus compounds are powerful reagents for the construction of C═C and 

C═N bonds through Wittig and aza-Wittig reactions.1,2 Although many catalytic versions 

of these reactions have been reported to avoid the formation of phosphine oxide waste 

through PIII/PV═O redox cycling mediated by silanes,3,4 catalytic enantioselective versions 

of Wittig and aza-Wittig reactions involving PIII/PV═O redox cycling are rare.5 Werner 

et al. reported the first catalytic asymmetric Wittig reaction through desymmetrization of 

cyclopentane-1,3-dione with Me-DuPhos as the catalyst and phenylsilane as the terminal 

reductant.6 The Christmann group reinvestigated Werner’s asymmetric transformation and 

applied it in the total syntheses of ent-dichrocephone A and ent-dichrocephone B.7 The 

Voituriez group developed an asymmetric α-umpolung addition–Wittig olefination cascade 

to access chiral (trifluoromethyl)cyclobutenes using exo-anisyl-HypPhos oxide as the 

catalyst and phenylsilane as the reductant.8 The Staudinger–aza-Wittig reaction figures 
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prominently in the formation of nitrogen-containing compounds, especially heterocycles.2 

Despite the usefulness of the Staudinger–aza-Wittig reaction, asymmetric Staudinger 

processes are even rarer than asymmetric Wittig reactions.5 In early examples, kinetic 

resolution of racemic azides (Figure 1A)9 and desymmetrization of a 1,3-diketone (Figure 

1B)10 were realized by applying stoichiometric amounts of phosphines. Although Werner 

had achieved high enantioselectivity with PIII/PV═O redox cycling at high temperature 

(150 °C),6,7 it would be preferable to have milder conditions for phosphine oxide recycling 

in asymmetric transformations. We and others have demonstrated that strained phosphines 

facilitate PIII/PV═O redox cycling mediated by hydrosilanes under mild conditions.11,12 

Accordingly, in a previous study, we developed a catalytic asymmetric Staudinger–aza-

Wittig reaction of 1,3-diones, using our chiral phosphine HypPhos 1, for the synthesis of 

heterocyclic amines (Figure 1C).13 In recognition of the importance of the Staudinger–aza-

Wittig reaction for synthesizing heterocycles, we wondered whether chiral lactams could be 

accessed through a Staudinger–aza-Wittig reaction and applied to the syntheses of complex 

alkaloids.

Oxindoles and indolines bearing a C3-quaternary stereocenter are core structures of a 

diverse range of natural products and pharmaceuticals (Figure 1D).14,15 As such, many 

enantioselective processes have been developed to access chiral quaternary oxindoles,15 with 

most relying on stereoselective functionalization of pendant alkenes (e.g., through Heck-type 

reactions,16a–f cyanoamidation,16g or Ni-catalyzed dicarbofunctionalization16h,i) or existing 

oxindoles (e.g., through alkylation,17a,b Michael addition,17c Claisen rearrangement,17d 

Mannich,17e aldol,17f allylation,17g or acyl-migration17h,i approaches). Departing from 

those previous routes, we turned to a desymmetrization strategy (Figure 1D).18,19 We 

envisioned that the chiral iminophosphorane intermediate formed from a prochiral 2-(o-

azidoaryl)malonate 3 would differentiate its two ester units with enantioselective formation 

of an imidate through an aza-Wittig reaction. The resulting imidate would readily hydrolyze 

to give a lactam 4 with the quaternary stereogenic center unchanged. Previously reported 

Staudinger–aza-Wittig reactions of esters have been performed under harsh conditions 

(e.g., reflux in toluene).2,20,21 In terms of the relatively low reactivity of esters and the 

challenges of asymmetric induction, we surmised that coordination of a Lewis acid and 

a chiral iminophosphorane might facilitate the aza-Wittig reaction of unactivated esters, 

considering that both 1,3-dicarbonyl groups and iminophosphoranes are good ligands 

for Lewis acids.22,23 Moreover, Lewis acids can facilitate silane-mediated reductions of 

phosphine oxides, potentially assisting the PIII/PV═O redox cycling in this present case.4,24 

Accordingly, we applied a custom-made HypPhos oxide catalyst, 2•[O], to the synthesis of 

valuable quaternary oxindoles, with the aid of cooperative IrI–PIII/PV═O redox cycling.

RESULTS AND DISCUSSION

Initially, we tested the commercially available [2.2.1] bicyclic chiral phosphines (“HypPhos” 

derivatives) 1 and 525 for their suitability in the Staudinger–aza-Wittig reaction of the 

malonate 3a (Table 1). A stoichiometric amount of endo-phenyl-HypPhos 1 provided 

efficiency and enantioselectivity (58% ee) better than those of exo-phenyl-HypPhos 5 
(11% ee) (entries 1 vs 2). An attempt to lower the reaction temperature (from 70 to 40 

°C) to increase the enantioselectivity produced only a trace amount of product (entry 3). 
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Hypothesizing that a Lewis acid might enhance the electrophilicity of the malonate ester22,23 

and promote the silane-mediated reduction of the phosphine oxide,4,24 we surveyed a variety 

of metal salts for the reactions involving the HypPhos oxide 1•[O] (air-stable and, therefore, 

easier to handle than its tertiary phosphine counterpart) and phenylsilane.26 Because both the 

phosphine ligand and metal ion were present in the reaction, we were cognizant that “self-

quenching” might possibly preclude the Staudinger–aza-Wittig reaction.27 To our delight, 

adding both CuF2 and PhSiH3 allowed the reaction to proceed at a lower temperature (35 

°C) and produced 4a with improved enantioselectivity (78% ee) (entry 4). In the absence of 

molecular sieves, the ee of the product varied, presumably because of racemization arising 

from hydrolysis of the imidate product. Switching the solvent from toluene to less polar 

cyclohexane slightly improved the enantioselectivity (82% ee), although the conversion was 

lower and the isolated yield was only 50% (entry 5). We reasoned that the low conversion 

might have resulted from self-quenching between the metal and phosphine. To alleviate 

that deleterious effect, we designed a series of “bulkier” phosphines that would presumably 

dissociate more readily from the transition metal ion. The most straightforward approach 

was the incorporation of a bulky aryl substituent on the phosphorus atom. Again to our 

delight, the use of endo-(3,5-di-tert-butylphenyl)-HypPhos oxide (6•[O]) under otherwise 

identical conditions produced the oxindole 4a in a good isolated yield, albeit with slightly 

decreased stereoselectivity (92%, 77% ee) (entry 6).

In an attempt to increase the enantioselectivity, we modified the [2.2.1]-bicyclic skeleton 

of the catalyst, obtaining the endo-phenyl-7-trimethylsiloxy-HypPhos oxide 7•[O] from 

commercially available L-proline.26 Employing the HypPhos oxide 7•[O] improved the 

enantioselectivity (89% ee) but decreased the reaction efficiency (30% isolated yield, entry 

7). Thus, we combined a 3,5-di-tert-butylphenyl substituent on the phosphorus center and 

a trimethylsiloxy group at the apical carbon atom to assemble the phosphine oxide 8•[O], 

which admirably catalyzed the conversion of the malonate 3a to the oxindole 4a in excellent 

yield and with good enantioselectivity (95%, 87% ee, entry 8). Changing the Lewis acid 

from CuF2 to [Ir(cod)Cl]2 further improved the enantioselectivity (95%, 92% ee, entry 9). 

Here, we added tetrabutylammonium tetrafluoroborate (TBABF4), along with [Ir(cod)Cl]2, 

to facilitate its chloride ion exchange.28 In the absence of TBABF4, the reaction was very 

slow (see Table S6 for details). When we performed the reaction at 45 °C, we could decrease 

the loadings of 8•[O] and [Ir(cod)Cl]2 to 10 and 5 mol %, respectively, while maintaining 

the yield and enantioselectivity (95%, 93% ee, entry 10). A survey of various silyl groups 

indicated that the TBS unit was optimal (entries 10–13). The yield and selectivity were 

comparable when employing 3 or 4 equiv of PhSiH3 (cf. entries 14 and 12), but further 

decreasing it to 2 equiv diminished the yield (entry 15).

On examining the scope of the transformation, we found that malonates substituted with 

simple alkyl substituents (3a–e) gave their oxindoles (4a–e) in good yields (87–98%) and 

excellent enantioselectivities (92–94% ee), except in the case of the malonate with a methyl 

substituent (3b), where the selectivity was lower (68% ee) (Table 2A). A substrate having 

an acid-sensitive dimethyl acetal functional group (3f) was tolerated, with the corresponding 

oxindole 4f isolated in 88% yield and 91% ee. Substrates with silyl ether substituents (3g–i) 
also reacted well to form their oxindoles (4g–i) in good yields (97–99%) and with moderate 
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selectivity (85–87% ee). The malonate 3f substituted with a (5-triisopropylsiloxy)pentyl 

group displayed improved enantioselectivity (91% ee) but lower yield (80%). Interestingly, 

the oxindole with a (3-ethoxycarbonyl)propyl substituent (4k) was obtained with lower 

selectivity (83% ee), presumably because of coordination of the ethyl ester unit to the Lewis 

acid, diminishing the effects of the latter in promoting the reactivity and enantioselectivity 

(vide infra). Malonates possessing sterically bulkier tert-butyl ester (3l) and more-electron-

deficient phenyl ester (3m) units, which coordinate poorly when compared with ethyl ester 

units, behaved better, forming their oxindoles (4l–m) with improved yields (86–91%) and 

enantioselectivities (89–91% ee). Malonates substituted with α-benzyl groups were also 

suitable substrates (3n–u). For example, we isolated oxindoles with benzyl and fluoro- and 

pinacol boronic ester (Bpin)-substituted benzyl groups (4n–p) in good yields (68–99%) and 

excellent selectivity (90–93% ee). The specific rotation of our product (+)-4n was opposite 

to that of the known oxindole (R)-4n,29 allowing us to assign the S configuration to our 

oxindole product. In other examples, we isolated oxindoles with protected indole units (4q 
and 4r) and an aza-indole (4t) in high yields (88–98%) and good selectivity (88–91% ee). 

The substrate with an unprotected indole moiety (3s) produced its oxindole 4s in good yield 

(96%), but the enantioselectivity was lower (86% ee). When we subjected the substrate 3u 
(containing a pyridine heterocycle) to the reaction conditions, we observed the formation 

of the relatively stable imidate 11u, which could be purified through NEt3neutralized silica 

gel column chromatography in good yield (90%) and selectivity (91% ee). The isolation of 

this imidate indicated that the mechanism of our Staudinger–aza-Wittig reaction, between 

an azide and an ester, differed from those of Staudinger ligations used previously in 

chemical biology.30 For the malonates with 3-phenylpropyl (3v) and 3-(naphth-2-yl)propyl 

(3w) substituents, we isolated their oxindoles in good yields (75–80%) and excellent 

enantioselectivities (92–93% ee). We obtained the heteroatom-substituted oxindole 4x in 

excellent yield (99%) but with lower selectivity (30% ee).

Subsequently, we investigated malonates substituted with various o-azidoaryl groups (Table 

2B). Oxindoles bearing electron-donating groups at the C6 position (4y–aa) were produced 

in good yields (97–99%) and excellent enantioselectivities (90–93% ee). An aromatic 

substituent at the C6 position could be tolerated, with the oxindole 4ab obtained in 

99% yield and 90% ee. Other electron-withdrawing groups at the C6 position were also 

compatible (3ac–ae), with the corresponding oxindoles 4ac–ae isolated in good yields (83–

97%) and enantioselectivities (89–94% ee). Substrates bearing halides at the C6 position 

(3af–ah) reacted well to give their oxindoles (4af–ah) in good yields (80–88%) and 

excellent enantioselectivities (91–95% ee). The enantioselectivity for the reaction of the 

5-MeO oxindole was lower (4ai, 81% ee), but changing the MeO group to a less electron-

donating tosyl group (4aj) increased the selectivity to 91% ee. Trifluoromethyl and fluoro 

groups at the C5 position (4ak–am) were tolerated, with the corresponding oxindoles 

isolated in good yields (91–95%) and enantioselectivities (87–93% ee). We prepared the 

C7-substituted oxindole 4an in commendable yield (98%) and enantioselectivity (96% 

ee). When multiple halide atoms were present on the aromatic rings (3ao and 3ap), 

the Staudinger–aza-Wittig reactions proceeded smoothly to give the desired products 

(4ao and 4ap) in excellent yields (91–94%) and enantioselectivities (93% ee). Azido 

substrates featuring pyridine and quinoline units reacted to furnish the aza-oxindole 4aq, 
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the aza-imidate 11ar, and the fused aza-oxindole 4as in high yields (92–94%) and 

enantioselectivities (94–98% ee). Because the electron-deficiency of these heterocycles 

decreased the reactivity of the resulting iminophosphoranes, with the basic nitrogen atoms 

possibly coordinating to the Lewis acid, higher catalyst loadings {2•[O] (25 mol %), 

[Ir(cod)Cl]2 (12.5 mol %)} and a longer reaction time (72 h) were required to ensure 

high conversions. Interestingly, the imidate 11ar could also be purified, through column 

chromatography using NEt3-neutralized silica gel, in 92% isolated yield. A bidirectional 

Staudinger–aza-Wittig reaction afforded the oxindole 4at in 85% yield, with 5.3:1 dr and 

90% ee. Notably, cyclization of the amine to the oxindole 4at without the catalyst resulted in 

a 1:1.7 dr, favoring the formation of the meso-oxindole.

To demonstrate the synthetic utility of this methodology, we first performed the reaction 

of 3f on a 2.1 g scale (Scheme 1A). Using a lower catalyst loading {2•[O] (5 mol %), 

[Ir(cod)Cl]2 (3 mol %)} and longer reaction time (6 d), we isolated the desired oxindole 

(+)-4f in 81% yield and 92% ee, along with recovery of the HypPhos 2 in 82% yield. 

Crystallization of (+)-4f from cyclohexane and EtOAc yielded higher enantiopurity (97% 

ee), with X-ray crystallography confirming the absolute configuration to be S.26,29,31 

The potential utility of this method was further illustrated through the syntheses of 

several alkaloid targets (Schemes 1B–D). Reduction of (+)-4f with DIBAL-H afforded 

(+)-12 in 83% yield (Scheme 1B). After TBS protection, the Fischer indole reaction 

catalyzed by ZnCl2 yielded (+)-13, a key intermediate in the synthesis of gliocladin 

C,32,33 in 90% yield, completing the formal synthesis of (−)-gliocladin C. Gliocladin 

C is a known precursor of gliocladine C.32b Notably, the activity of (−)-gliocladine C 

(IC50: 0.35 μM) against melanoma (A2508) cell lines is better than that of natural (+)-

gliocladine C (IC50: 0.68 μM).32c Treatment of (+)-12 with MsCl and NEt3 gave (+)-14 
in 91% yield (Scheme 1C). Deprotection of the dimethoxy acetal group, using In(OTf)3 

in acetone, followed by reductive amination and spontaneous cyclization furnished (−)-

coerulescine in 64% yield.34 A two-step protocol has been reported previously for the 

preparation of horsfiline from coerulescine,34d allowing us to claim a formal synthesis of 

(−)-horsfiline. Methylation of (+)-14, reduction of the mesylate with NaBH4, followed by 

deprotection of the dimethoxy acetal group afforded (−)-15 in 54% overall yield (Scheme 

1D). Formation of the imine with MeNH2 and MgSO4 followed by in situ reduction 

with LiAlH4 and cyclization furnished (+)-deoxyeseroline in 81% yield. Following the 

reported procedure,16c,35 (+)-deoxyeseroline could be used to prepare (+)-esermethole and 

(+)-physostigmine. Interestingly, (−)-physostigmine is clinically useful as an anticholinergic 

drug for Alzheimer’s disease, whereas its enantiomer (+)-physostigmine is not, but it has 

been used experimentally to protect animals from organophosphate poisoning.36 Treatment 

of (−)-15 with LiAlH4 gave the aminal (+)-16, a known precursor of (+)-physovenine.37

We used density functional theory (DFT) calculations to elucidate the reaction mechanism 

and origin of enantioselectivity of the asymmetric Staudinger–aza-Wittig reaction (see 

the SI for computational details). We investigated the reaction of the Lewis acid–bound 

iminophosphorane 17 derived from the chiral phosphine 2 and the malonate 3a in the 

presence of phenylsilane as the reductant and [Ir(cod)Cl]2 as the Lewis acid (Figure 

2A).38 From 17, the concerted [2 + 2] cycloaddition (TS1) gives the oxazaphosphetane 
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intermediate 18 followed by stepwise retro-[2 + 2] cycloaddition39 to cleave the P–N and 

C–O bonds sequentially, via transition states TS2 and TS3, respectively. Because both of 

the enantiotopic malonate ester groups might have reacted with the two different π-faces 

of the PN bonds in the cis and trans isomers of the iminophosphorane, we considered all 

eight of these possible stereoisomeric pathways (pathways A–H). Figure 2A presents the 

reaction energy profiles of the two most favorable pathways (A and B) leading to the (S)- 

and (R)-enantiomers of the product (11 and ent-11, respectively; see Figures S2–S5 for the 

less favorable pathways). In the rate- and enantioselectivity-determining P–N bond cleavage 

step (TS2), pathway A leading to the major enantiomeric product 11 has an activation 

barrier 2.5 kcal/mol lower than that of pathway B leading to ent-11, consistent with the 

high ee we observed experimentally (93% ee). In pathway A, the ratedetermining transition 

state for retro-[2 + 2] cycloaddition (TS2-A) is stabilized by [C–H···π] interactions between 

the 7-OTBS group on HypPhos and the benzene ring on the substrate (Figure 2B). The 

computed geometry of TS2-A features a Me group on the OTBS unit positioned optimally 

from the benzene ring on the substrate (3.10 Å) to form a stabilizing [C–H···π] interaction, 

rather than a repulsive one.40 On the other hand, in TS2-B, the bulky tert-butoxy unit, rather 

than the benzene ring, is positioned toward the bicyclic framework of the HypPhos scaffold, 

leading to unfavorable steric interactions between the tert-butoxy and HypPhos units.

Next, we investigated how the Lewis acid affected the reactivity and enantioselectivity. For 

the reaction of the iminophosphorane 21 in the absence of a Lewis acid, our calculations 

indicate that the [2 + 2] and retro-[2 + 2] cycloaddition steps both occur with higher 

activation barriers and that the computed enantioselectivity (ΔΔG‡ = 0.4 kcal/mol) is 

diminished (Figure 2C). These findings are consistent with the lower reactivity and 

enantioselectivity we observed experimentally in the absence of a Lewis acid (Table 1). 

The Lewis acid not only promotes the [2 + 2] cycloaddition by enhancing the nucleophilicity 

of the carbonyl group but also facilitates the retro-[2 + 2] cycloaddition step kinetically. In 

the absence of a Lewis acid, the retro-[2 + 2]-cycloaddition occurs in a concerted manner13 

with an activation barrier of 27.2 kcal/mol. When [Ir(cod)Cl]2 was present, the retro-[2 + 

2] cycloaddition occurs through a kinetically more favorable stepwise process in which the 

Lewis acid stabilizes the negative charge in the zwitterionic intermediate 19-A.

CONCLUSIONS

In conclusion, we have developed a phosphine oxide-catalyzed asymmetric Staudinger–aza-

Wittig reaction of (o-azidoaryl)malonates, allowing access to a range of valuable chiral 

quaternary oxindoles. The reaction occurs under mild conditions, with good functional 

group tolerance, a wide substrate scope, and excellent enantioselectivity. The success 

of this reaction relies on the rationally designed HypPhos oxide 2•[O] featuring a 

strained [2.2.1]-bicyclic core structure (facilitating PIII/PV═O redox cycling) and steric 

bulk (avoiding “self-quenching” in the presence of Lewis acids {e.g., [Ir(cod)Cl]2}). The 

IrI center acts as a Lewis acid in this process, promoting the aza-Wittig reaction of 

relatively inert malonates and assisting the PIII/PV═O redox cycling in the presence of 

phenylsilane as the reductant. Through DFT-based calculations, we elucidated the origin 

of the enantioselectivity and highlighted the cooperative effects of the IrI center and our 
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designed HypPhos in facilitating the desymmetrization. Moreover, we highlight the utility 

of this methodology through (formal) syntheses of seven alkaloid targets: (−)-gliocladin 

C, (−)-coerulescine, (−)-horsfiline, (+)-deoxyeseroline, (+)-esermethole, (+)-physostigmine, 

and (+)-physovenine.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Asymmetric Staudinger processes.
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Figure 2. 
Computational study of the mechanism, origin of enantioselectivity, and effect of the 

Lewis acid of the asymmetric Staudinger–aza-Wittig reaction. All Gibbs free energies 

and enthalpies (in kcal/mol) were computed at the ωB97X-D/6-311 + G(d,p)–SDD(Ir)/

SMD(cyclohexane)//B3LYP-D3/6-31G(d)-SDD(Ir) level of theory.
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Scheme 1. 
Scaled-up Staudinger–aza-Wittig Reaction and Synthetic Applications
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Table 1.

Optimization of Reaction Conditionsa,i

entry *PR3 (mol %) Lewis acid (mol%) solvent T (°C) yieldb (%) eec (%)

1d,e,f 1 (100) tol 70 95 58

2d,e,f 5 (100) tol 70 85 11

3d,e,f 1 (100) tol 40 trace n.d.

4f 1•[O] (20) CuF2 (20) tol 35 81 78

5f 1•[O] (20) CuF2 (20) c-hex 35 50 82

6f 6•[O] (20) CuF2 (20) c-hex 35 92 77

7f 7•[O] (20) CuF2 (20) c-hex 35 30 89

8f 8•[O] (20) CuF2 (20) c-hex 35 95 87

9 8•[O] (20) [Ir(cod)Cl]2 (10) c-hex/tol (1:1) 35 95 92

10 8•[O] (10) [Ir(cod)Cl]2 (5) c-hex 45 95 93

11 9•[O] (10) [Ir(cod)Cl]2 (5) c-hex 45 98 92

12 2•[O] (10) [Ir(cod)Cl]2 (5) c-hex 45 96 93

13 10•[O] (10) [Ir(cod)Cl]2 (5) c-hex 45 88 88

14g 2•[O] (10) [Ir(cod)Cl]2 (5) c-hex 45 98 93

15h 2•[O] (10) [Ir(cod)Cl]2 (5) c-hex 45 92 92

a
Reactions performed on a 0.05 mmol scale with 4.0 equiv of PhSiH3, unless otherwise noted.

b
Isolated yield.

c
Enantiomeric excess (ee) determined using chiral-phase HPLC.

d
No PhSiH3.

e
No 4 Å molecular sieves.

f
No TBABF4.

J Am Chem Soc. Author manuscript; available in PMC 2023 December 22.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Xie et al. Page 18

g
PhSiH3: 3 equiv.

h
PhSiH3: 2 equiv.

i
TBABF4: tetrabutylammonium tetrafluoroborate; tol: toluene; n.d.: not detected; c-hex: cyclohexane; cod: 1,5-cyclooctadiene.
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