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 Human beings are fundamentally social animals – our daily interactions with others 

profoundly shape our experience, and in the best of circumstances, are among the most 

rewarding aspects of life. By the same token, negative social experience and prolonged social 

isolation can breed loneliness, anxiety, and depression. Our sociality is something that we share 

with most of the animal kingdom, and it is defined ultimately by our biology and our evolutionary 

history. Yet despite our deep and intuitive social impulses, our understanding of the biological 

processes in the brain that shape social perception, cognition, and behavior is still remarkably 

limited. One of the most important goals of modern neuroscience is to clarify the biological logic 

of our social experience, and in doing so, to develop a richer understanding of ourselves and our 

place in the world. 

 The two studies presented in this dissertation are a step toward this goal. They aim to 

investigate how the brain transforms social information into behavioral decisions and how it 

coordinates the dynamic of social interaction when individuals engage with one another. Before 

describing the studies, I will first provide a discussion in chapter 1 of concepts in social 

neuroscience, giving a brief history of how the field has evolved out of the separate strands of 
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ethology and cognitive neuroscience. Chapter 1 will also contain an overview of the basic 

neurophysiology of sensory perception and social behavior that will help to contextualize the 

questions addressed in the experiments and discussion of the results. In chapter 2, I will discuss 

methodological considerations in social neuroscience, including approaches to measure and 

manipulate brain activity as well as important statistical methods used to analyze relationships 

between social behavior and the underlying neural processes.  

 In chapters 3 and 4, I will present two studies which each investigate the involvement of 

cortical dynamics in social functioning from a distinct perspective. In chapter 3, I will describe 

experiments performed in mice using microendoscopic calcium imaging that explore how one 

important social sensory feature – sex identity (male vs. female) – is encoded in the cortex of the 

brain. Linking measurements of neural encoding to behavior, we found that internal 

representations of sex identity are sexually dimorphic across male and female animals, and that 

in males, cortical representations of sex predict their preference toward opposite-sex interaction. 

Using activity-dependent optogenetic manipulations, we found that these cortical representations 

of sex identity bi-directionally modulate the behavioral preference of the animal toward male or 

female-directed interaction. This study is among the first to demonstrate a causal role for 

functionally defined neuronal populations in behavior, and the first to do so in a way that links 

native encoding of a social variable to control of social behavior.  

 In chapter 4, I will describe experiments that investigate neural activity dynamics in the 

prefrontal cortex of mice while they engage in natural, dyadic interactions. This study focuses on 

analyzing the synchronization of neural activity across brains of interacting animals, which we 

identified as an emergent multi-animal neural correlate of social interaction. By analyzing the 

activity profiles of individual neurons in the brain, we traced the emergence of inter-brain 

synchronization from specific subsets of neurons that encode the behavior of each subject animal 

and its social partner. In aggregate, the responses of these neurons give rise to a regional activity 

signal that is synchronized across animals and predicts their future interaction and social 



 iv 

relationships. This study is among the very first to examine multi-animal neural dynamics in 

animals, and it sets a foundation for deeper mechanistic investigation of neural processes that 

coordinate interaction across individuals.  
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Concepts in Social Neuroscience
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1.1: Why do social neuroscience? 

 Human beings are social animals. We are deeply embedded in a world that we have co-

created, and we are continuously shaped by our culture and our interactions with others. In the 

end, our life experience depends to a large degree on the strength of our bonds, on how we 

cultivate and navigate them, and on how they influence our choices over a lifetime 1. When we 

have intimate social connections, we feel understood, supported, resilient, and engaged. When 

we are neglected or isolated from others, we become anxious, unmoored, and listless 1. These 

facts of human existence are subjective and instinctual, but they are also empirical, rooted 

ultimately in the biology of the brain. Lack of social connection is a common feeling in people 

who lose their lives in “deaths of despair,” and is both a cause and consequence of psychiatric 

illnesses like depression 2–4. If we want to secure human flourishing and dampen these sources 

of suffering, then we must gain an understanding of our social nature, of how our social 

embeddedness affects our experiences and our choices, that is grounded in the vocabulary of 

empirical science.  

 Our social nature shapes not only our personal experience, but also how we build 

societies, organize political structures, and coordinate collective action. Indeed, to whatever 

degree it is true that man is essentially a “political animal,” this is because of our basic social 

impulse. Many of the problems that we face collectively, including existential threats such as 

global climate change and nuclear war, turn on our ability to make collective decisions and 

coordinate individual choices. If we can penetrate deeper into some understanding of how our 

decisions are conditioned by our social context, we will be able to better anticipate our limits, 



 3 

our potentialities, and the unique challenges of collective action. In the long term, this may be 

necessary to secure the survival of the human species.  

 Despite its deep importance, our social nature is not unique to us. In fact, all animals that 

sexually reproduce – that is to say, almost all species on planet earth – engage in social interaction 

in one form or another. We are not alone in this regard, and some of the biological processes 

that imbue us with feelings of empathy and loneliness are shared by species throughout the 

animal kingdom, extending beyond our primate and mammalian cousins to birds, reptiles, and 

even insects 5–9. The lens of biological science gives us an opportunity to explore these common 

social experiences and dissect the physical logic that underlies them 7. Research into how the 

brain orchestrates social behaviors and coordinates interaction can reveal conserved principles 

of neural function that shed light on our own experience and our own behavior 10. It is with this 

spirit that social neuroscientists focus their investigations of the biology of sociality across diverse 

species, from flies to humans, aiming to bring clarity to our most ancient instincts 5,10–13.  

 The studies presented in this dissertation are aimed at understanding the processes in 

the brain that integrate social information, shape behavioral choices, and coordinate social 

interaction. I have explored these in the brain of the mouse, a social creature that, despite many 

differences, has a brain that is very much like our own. The focus of these investigations in the 

mouse has allowed for precise measurements, incisive experiments, and mechanistic insights 

that could not be obtained from human subjects with modern technology 14,15. It is my belief that 

the knowledge gained from these studies moves us one step closer to a full description of the 

social brain, and that from this, we can take away a deeper understanding of ourselves.  
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1.2: A short history of social neuroscience 

 Social neuroscience, in the broadest sense, is the study of how biological processes in the 

brain enable animals to engage with other members of their species, interact, and coordinate 

their behavior toward common goals 10,16,17. In its present conception, social neuroscience takes 

a multi-level view of the biology that underlies social behavior and cognition, drawing from 

genetic, molecular, network and behavioral modes of analysis. Historically, the field has its roots 

in ethology 7, which is interested in biological and evolutionary descriptions of animal behavior. 

Although not specifically focused on social behavior, ideas developed in the field of ethology have 

played an important role in shaping how social neuroscientists frame questions about animal 

behavior and how they address those questions methodologically.  

 One of the most important ethologists (and considered one of the founders of the field), 

Niko Tinbergen, was particularly influential in the development of social neuroscience and its 

modern conception. In 1963, Tinbergen outlined “four questions” which he suggested as an 

organizational scheme for the scientific investigation of animal behavior 18,19. Paraphrased below, 

Tinbergen’s four questions are: 

1) What is a behavior’s adaptive function? This question asks about the role that a particular 
behavior plays in how an animal interfaces with its present environment. It may be, but is not 
necessarily, informed by an evolutionary perspective. A behavior’s adaptive function is not static 
but may change over time.  
 
2) What is a behavior’s evolutionary history? This question asks how a behavior came about 
through the process of evolution by natural selection with environmental pressure. What type of 
pressures and responses shaped its development over generations? 
 
3) How is a behavior controlled mechanistically? This question asks about the biological (neural) 
processes that control how a behavior is regulated and expressed in the here and now, regardless 
of its history, its function, or how it may change in the future. 
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4) How did a behavior develop biologically? This question asks how a behavior was shaped over 
the course of an organism’s lifetime. To what degree is it learned from experience, and to what 
degree is it innate? How may it continue to change in response to environmental influences? 
 

 Tinbergen proposed these “four questions” as a framework to guide experimental inquiry. 

While pragmatic considerations limit our ability to pose more than one of these questions at a 

time, they were intended to highlight complementary perspectives and to produce more 

comprehensive and integrated descriptions of behavior 18,19. The imprint of this conceptual 

structure can be clearly recognized in the directions of modern social neuroscience and its 

emphasis on neural mechanisms (particularly questions three and four) 10. While all four 

questions have not received equal attention over the years since Tinbergen outlined his 

questions, the interdisciplinary nature of the modern discipline aligns well with the spirit of his 

suggestion. 

 In addition to setting up a conceptual framework that has held up over decades, 

Tinbergen also helped to elucidate some important themes in the organization of animal 

behavior that are still influential. For example, he theorized about a hierarchical organization of 

innate and instinctual behaviors that proceed through a tree-like decision process with mutual 

inhibition between behavioral drives at the same level 7. This also led to the related idea that 

functionally related behaviors may be “grouped together” in the brain and implemented by 

overlapping neural circuits. While the brain has proven to be far more complex, modern analysis 

using genetic tools has found some support, as well as mechanistic clarity, for this type of 

hierarchical organization 10,20,21. 

 As neuroscience evolved, the adoption of tools to measure and manipulate electrical 

activity in the brains of behaving animals opened a new level of depth to the analysis of the 
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biology underlying social behavior. Using stimulation electrodes, researchers were able to link 

specific regions of the brain to behavioral drives and expression of stereotyped behavioral 

patterns. One example of this was the identification of the hypothalamic attack area, a subregion 

of the hypothalamus that, when stimulated (in cats and in rats), produced aggressive behavior 

such as hissing and biting 22,23. While this level of spatial resolution is coarse by modern standards, 

such experiments helped to generate new hypotheses about how specific social behaviors may 

be controlled by dedicated brain structures. Over the last few decades, this “brain mapping” 

approach has been immensely fruitful and has led to greater understanding of the mechanisms 

controlling diverse behaviors such as aggression 24,25, mating 26,27, and parenting 20,28,29. In many 

ways, this framework is still driving modern research programs. Modern tools such as 

optogenetics have allowed researchers to probe brain function more incisively and to define 

functional structures with far greater spatial resolution 30,31. For example, more recent studies 

have refined the “hypothalamic attack area” by clarifying the specific role of Esr1+ (estrogen-

receptor expressing) neurons in the ventrolateral portion of the ventromedial hypothalamus 

(VMHvl) in regulating aggressive behavior 25,27,32. Still, despite the success of this conceptual 

framework, the question of whether, and to what degree, the neural mechanisms that control 

social behaviors are localized in the brain is largely unclear 10. In many cases, several anatomically 

distinct circuits have been shown to play some role in a specific behavior. These may form a 

connected pathway or network of nodes that coordinate to control some behavioral process. 

Alternatively, the biological control of some behaviors may be distributed across anatomically 

distinct structures. One aim of modern social neuroscience is to bring clarity to this issue 10,12.  
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 The theoretical idea that control of social behaviors may be anatomically localized also 

coincided with a related idea that some brain structures may be specialized for general social 

functions 13,33,34. This “social brain” hypothesis was initially formulated in the context of human 

cognitive neuroscience based on observations that tasks engaging social processes (such as 

mentalization) were linked to activation of a consistent set of brain regions, including the 

amygdala, parts of temporal association cortex, and parts of the prefrontal cortex 16,34,35. The 

difficulty with this idea was noted early on. Even if one can identify patterns of neural activity 

that correlate with social stimuli or engagement in social tasks, it is difficult to experimentally 

parse whether there is anything unique about social processing, or whether those tasks simply 

engage more primitive cognitive functions like attention and motivation in a particular way to 

meet the demands of the social setting 35. Still, the idea has been influential, and even though it 

originally emerged out of work on human cognition, the vocabulary of the “social brain” is now 

infused in discussions of social behavior across diverse species 10,17,33. This intersection between 

ethology and cognitive neuroscience has produced the modern conception of social neuroscience 

as an interdisciplinary field which aims to coordinate research across species and settings to 

develop a mechanistic description of the brain processes that underlie social functions 10,16,19.  

  

1.3: The biology of social interaction and social decision making 

1.3.1: Social interaction as a dynamic feedback loop 

 What makes a behavior “social”? And what, if anything, is unique about social behavior? 

In the broadest sense, social behaviors are those behaviors that structure interaction between 

conspecifics and coordinate their actions toward common goals 10. In many animals, these goals 
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are evolutionary in nature, typically directed toward reproduction and species survival, and are 

deeply instinctual. In humans, social behavior can be directed toward much more abstract goals 

and can require coordination across large numbers of people across long timescales 36. In all cases 

though, social behavior is unique in its specific directedness toward other members of the same 

species, and because of this, often depends on communication using species-specific cues (such 

as language in humans). In addition to this, because social goals depend on coordination between 

individuals, social behaviors are also unique in their embeddedness in a context of mutual 

interaction 37–39. This context of interaction can shape the decision process for an individual in 

dramatic ways, making social behaviors highly complex in comparison to non-social behavior. 

 To illustrate this point, consider a decision made by a monkey to eat a piece of fruit on 

the forest floor. In this non-social setting, the decision to eat or not eat the fruit can be thought 

of as a computation of optimal action given the animal’s sensory inputs from the environment 

and internal state (a sensorimotor transformation – Figure 1.1A). The monkey may decide to eat 

the fruit simply because she is hungry, food is present, and there are no competing behavioral 

drives. Since the environment is relatively stable in time, the monkey does not worry about 

whether something surprising will happen when she takes a bite. The environment, devoid of 

other agents, is relatively predictable, and so the choice is conditioned on the animal’s state and 

little else. 



 9 

 

Figure 1.1: Social interaction as a dynamic feedback loop. Illustration of the decision-making 
process of an agent in a non-social (A) versus social (B) context. For simplicity, the social context 
is illustrated for a two-agent situation. The agent makes choices based on a sensorimotor 
transformation that maps an input space to specific behavioral outputs. In the non-social context, 
the agent uses feedback from the environment which is relatively stable and predictable. By 
contrast, the social context couples the agent directly to another agent whose internal states (e.g., 
goals, beliefs, etc.) are hidden. Behavior and behavioral responses from the interacting partner 
are highly unpredictable, creating a more complex decision-making processes that engages 
mentalization, dynamic prediction, and other cognitive processes.  
 

 

 By contrast, social interaction engages animals and their decision processes in a 

fundamentally different way (Figure 1.1B). In a social setting, the environment is not stable 

because it contains another agent (or several agents) making choices that are not easily 

predictable 36,40. During dyadic interaction, two agents become coupled to one another such that 
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each one’s actions become part of the immediate sensory space of the other. Because of this 

mutual coupling of sensation and action, each agent’s decisions are contingent upon the 

immediate context of another agent’s actions and potential for future action 17. This extra degree 

of complexity demands a wider scope of consideration for behavioral choices and their 

outcomes: If I engage in this behavior, then how will my social partner react? What is my social 

partner going to do next? What are they trying to achieve in this interaction? Are we acting 

collaboratively or competitively toward our goals? 

 While animals like monkeys and mice may not explicitly ask these questions, humans 

certainly do 36,40. And even still, this type of mentalization process illustrates the important 

feature of social interaction that is consistent across species – that social decisions are made 

contingently and collaboratively, and so the interactive process is co-created and coordinated 

through dynamic feedback between agents 17,39. What does this mean for the neuroscientific 

study of social interaction? At least three important implications bear consideration. 

 First, because of the interactive setting, we should consider that social decisions are 

typically made in a very rich, multimodal sensory context. While some species may depend more 

heavily on specific sensory channels for social communication, in almost all species, social 

decisions depend on more than one modality 10. Mice, for example, use olfactory channels to 

communicate information about sex, age, and hormonal states, but auditory and tactile cues are 

also critical for interaction 10. Primate interactions depend on gestures and visual cues, but 

primates also make heavy use of auditory channels to communicate through vocalizations and 

language (in the case of humans), and express both affiliative and aggressive behaviors through 

physical touch. Thus, when we study social interaction, it is important to consider – and if 
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possible, to measure – the multitude of channels through which animals may communicate 

(more on this in chapter 2). And when investigating the neural mechanisms of sensory processing, 

we should consider that the neural encoding of social features (such as social rank, for example) 

may depend on integration across several modalities 41,42. 

 Second, we should consider that the interactive context – the presence of another agent 

who responds dynamically to one’s choices – is itself a force that shapes how social decisions are 

made 17,38,39. Because of this, it is important to consider how different experimental settings that 

preserve more or less of this natural behavioral dynamic may engage the brain in distinct ways. 

For example, the neural processing of a non-social stimulus, such as a piece of food, may be 

fundamentally different in the presence of another mouse who represents competition. Of 

course, human choices are also shaped dramatically by knowledge of social context (think: how 

do we behave when we are alone vs. in social setting?), and in many cases, the social context 

itself engages specific brain processes. The effect of interactive context is an important 

consideration for experimental design. More constraint on a subject and isolation from social 

partners may afford more control to a researcher and reduce potential confounds. It may also 

obscure processes that would be engaged during real interaction, which places limitations on the 

generalizability of observations to more ecological settings 17,38,39.  

 Finally, we should consider that just as the social behaviors we observe do not occur in 

isolation, the neural processes that underlie them do not either. With a more reductive framing, 

animals engaged in interaction can be thought of as brains influencing one another through a 

limited communication channel of behavior (Figure 1.2A), and many aspects of this brain-to-brain 

interaction may not be readily observable to an outside viewer (Figure 1.2B) 39,43. Indeed, many 



 12 

processes that play an important role in shaping social interactions, such as internal states like 

motivation and attention, are not observable through simple behavioral measurement 8,44. Direct 

examination of brain activity and the relationship between neural signals across individuals may 

therefore provide insight into how brain processes are coordinated across individuals and how 

this dynamic relates to the evolution of an interaction 17,39,43,45–47.  
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Figure 1.2: Neural systems communicate through a behavioral bottleneck. Illustration of 
social communication between two interacting agents. (A) As the behavioral outputs of each agent 
form part of the other’s input space, interacting agents become coupled in an integrated system 
(Figure 1.1). The full range of neural processes that shape behavioral decisions span a higher-
dimensional space than that of expressed behavior, and communication between agents is 
therefore restricted by a channel with limited bandwidth (the communication bottleneck). (B) From 
a third-person perspective, observation of only a limited part of external communication (explicit 
behavior measured by experimenters) provides an impoverished view that lacks information about 
the underlying neural processes. Direct measure of the neural processes and their dynamical 
relationships across agents may provide additional information about unmeasured variables and 
the interaction itself. Abbreviations: High dim, high-dimensional; Low dim, low-dimensional.	 
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1.3.2: Social decisions in the brain 

 In order to understand social interaction at a mechanistic level, we need to understand 

the processes in the brain that lead to social behavioral decisions. This is clearly a complex 

problem 10,36,48. Yet with all of the considerations from the previous section in mind, it can also 

be useful (and often is necessary) to simplify in order to operationalize questions about how the 

brain works. In this spirit, I will offer a rough framework for thinking about the process of social 

decision-making in the brain, and I will describe in broad terms what is currently known about 

the underlying neurophysiology. This context will help to frame the studies described in chapters 

3 and 4 and will suggest some sense of the territory still unexplored. In very broad strokes, a 

social decision (and in fact any decision) can be thought of as a process that progresses in three 

stages – sensory transduction, internal integration, and behavioral expression – which transform 

sensory inputs from the environment into behavioral changes. In reality, the boundaries between 

these “stages” are imprecise and probably highly permeable, but the attempt to separate them 

is useful and can bring some clarity to our thinking about the overall process.  

 

1) Sensory transduction: The brain encounters, transduces, and processes sensory inputs from 

the external environment. This sensory stage depends on sense organs, such as the eyes, ears, 

and nose, to transmit spatiotemporal patterns of light, air density, and chemical compounds to 

the central nervous system by conversion into patterns of neural activity 49. Neural circuits in 

sensory regions of the brain receive and operate on these signals to extract and transform 

internal representations of sensory features 50. For example, a mouse may encounter olfactory 

and pheromonal cues by sniffing another mouse, and these cues may be integrated to extract 



 15 

complex features like sex identity 51 or social status 42. Humans and other primates integrate 

visual and auditory information to identify others based on their face and voice. 

 

2) Internal integration: Neural representations that contain social information are then 

integrated with other processes in the brain. Some brain processes, called “internal states,” are 

not expressed explicitly through behavior but may nonetheless shape behavior and physiology in 

important ways 8,44,52 Common examples of internal states include attention, motivation, and 

anxiety – in humans these are typically associated with some subjective experience or emotion. 

In animals, they cannot be measured explicitly but only inferred through their effects on behavior 

and physiology. Internal states like anxiety can interact with processed sensory inputs to 

influence behavior. For example, an encounter with an unfamiliar conspecific may cause an 

animal to run away if it is in a highly anxious state. However, in a state of low anxiety, an 

encounter with the same conspecific may instead lead to approach behavior, exploration, and 

further interaction. Thus, internal integration lends flexibility and contingency to behavioral 

decisions based on the animal’s immediate social context and state 10,44. 

 

3) Behavioral expression: Integration of sensory inputs with internal state processes culminates 

in the expression of a particular action or a change in behavior. Some sensory cues can trigger 

innate, reflexive responses, whereas others can shape behavior on a longer timescale through 

changes in internal state 10,44. For example, if a male mouse is in a highly aggressive state, then 

introduction of an intruder may trigger an immediate attack response, leading to more fighting 

behavior. By contrast, repeated defeat in conflicts between mice may lead to a sustained 
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“depressive” state in the defeated mouse that changes its motivation, social appetite, and sleep 

patterns 53. Although these two outcomes are expressed in distinct ways and over different 

timescales, both the acute attack response and sustained defeat state represent behavioral 

changes that result from social experience. 

 

1.3.3: Sensory transduction 

 The first stage in the process of social decision-making is transduction of sensory inputs 

from the environment and extraction of relevant social features and context. As discussed 

previously, social interaction often involves communication along several sensory modalities, and 

to varying degrees (in different species), they are all important for the normal social decision 

process. In this section, I will describe the basic neurophysiology for the visual, olfactory, and 

auditory pathways, with particular attention on the mouse brain. For context, I will also describe 

some of the similarities and differences between the rodent and primate physiology. 

 

1.3.3.1: Vision 

 In rodents and primates, visual information from the environment is transduced by 

neurons in the retina of the eye. Retinal ganglion cells form the main output carrying visual 

information to the rest of the brain, synapsing primarily in the lateral geniculate nucleus (LGN) of 

the thalamus, but also sending small projections to the hypothalamus and superior colliculus 49. 

LGN neurons carrying visual information from the retina send projections to the cortex, primarily 

synapsing on neurons in the primary visual cortex (V1). Like neurons in the retina, neurons in V1 

show response patterns that are largely restricted to specific areas of the visual field (the 
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receptive field), and some show stronger responses to oriented edges of luminance contrast 

(orientation tuning). While these response patterns are topographically organized in the primate 

brain (representationally tiling the visual space across the cortex), the mouse brain does not show 

clear topographic organization, although it does show some spatial clustering of orientation 

tuning 54. This marks an early stage of feature extraction and transformation along the visual 

pathway, whereby localized luminance signals in the retina are combined to produce responses 

in downstream neurons that encode more complex visual features 50.  

 In the primate brain, this organization continues along a roughly defined hierarchy of 

visual areas that receive inputs from V1. For example, in area V2 (the secondary visual cortex), 

neurons that respond to specific object borders and colors emerge 55, and in V4, neurons respond 

to different types of curvature, depth, and texture, with typically larger receptive fields 50,56. 

Visual information is a very important modality for social communication in primates, including 

in humans. For example, there is considerable evidence for specialization of certain cortical 

regions in the primate brain for processing information about faces of other individuals. Neurons 

in the monkey inferotemporal cortex (IT) of the temporal lobe show selective responses to facial 

features 57, and this “face patch” area corresponds anatomically with a region of the human brain 

in the fusiform gyrus that responds specifically to faces 58,59. 

 In rodents, less is known about the importance of visual processing for social interaction. 

Structurally, the boundaries between different visual cortical areas are less well defined, and 

neural responses to complex visual features are spatially graded across the entire posterior 

cortex 60. The rodent visual system does not appear to specifically encode social stimuli, as is 

observed in the primate temporal cortex 57. Still, information about movement is likely to 
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contribute to social decision-making. For example, stimulation of hypothalamic neurons in mice 

triggers attack behavior, even to a mirror or a moving glove, suggesting that coarse visual 

features may be integrated with other modalities to control some social behavior decisions 10,25.  

 

1.3.3.2: Olfaction 

 Olfaction plays an important role in social communication, and especially so in rodents. 

In the mouse, odor and pheromonal cues coordinate innate behaviors such as aggression and 

mating. The main olfactory bulb (MOE) and vomeronasal organ (VNO) of the accessory olfactory 

system mediate odor and pheromonal sensation. This early step of sensory transduction is 

necessary for discrimination of conspecific sex and other social sensory features. Neurons in the 

VNO respond selectively to odor cues derived from specific social stimuli, including male and 

female pheromones, pup odors, and predator cues 61,62. Because of their role in transducing 

social sensory cues, MOE and VNO neurons are also necessary for sex-typical social behavior in 

both male and female mice. For example, legions of the MOE disrupt social behavior 63, and 

knockdown of TRP2 receptors (which mediate transduction in VNO neurons) results in increased 

male aggression toward females, indiscriminate mounting behavior toward both sexes, and 

reduced parenting behavior in females 64. While MOE neurons project to the piriform cortex, 

olfactory tubercle, and cortical amygdala, VNO neurons send projections through the accessory 

olfactory bulb to two main downstream structures: the medial amygdala (MeA), and the bed 

nucleus of the stria terminalis (BNST) 10. Neurons in both the MeA and BNST show selective 

responses to male vs. female conspecifics, indicating that populations of neurons in these regions 

can represent sex identity 65–67. Discriminability of sex identity at the neural level in MeA and 
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BNST, as well as in the ventromedial hypothalamus (VMH), correlates with increased social 

behavior, including social investigation and aggressive behavior 65,68. These observations suggest 

that internal representations of sex identity may shape behavioral decisions. 

 In primates, including in humans, olfactory information is routed from the olfactory 

epithelium in the nose via the olfactory tract to the piriform cortex, the hypothalamus, and the 

amygdala 49. Like in the mouse, amygdala neurons in the primate brain have been shown to 

encode complex social information, including social attention and the rank status of other 

individuals 69,70, although the role of amygdala and hypothalamic structures in encoding sex-

specific social information is not as clear.  

 

1.3.3.3: Audition 

 In addition to visual and olfactory cues, auditory signaling is also an important 

communication channel for social interaction in many species. Humans are unique in the animal 

kingdom in their use of language, which allows for the rapid vocal communication of detailed 

plans, complex thoughts, and emotional states. However, many other species utilize vocalizations 

as signals to communicate and coordinate behavior. Rodents, for example, communicate using 

ultrasonic vocalizations to send distress calls, initiate play, and coordinate mating behavior 71. 

Sensation and perception of complex auditory signals is therefore crucial for social decision 

making. 

 In rodents and primates, auditory information is extracted in the cochlea of the ear and 

transduced into neural signals by hair cells which respond to external air vibrations as they 

propagate through endolymph fluid 49. Neurons from the cochlear nuclei carrying auditory 
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information project to the inferior colliculus of the midbrain, which in turn sends projections to 

the medial geniculate nucleus (MGN) of the thalamus. MGN neurons send projections to the 

cortex, primarily targeting neurons in the primary auditory cortex (A1) 49. Much like in the visual 

system 50, the auditory system is organized in a roughly hierarchical architecture which extracts 

acoustic features of increasing complexity. For example, in both mice and primates, including 

humans, neurons in A1 show tuning to specific acoustic features 49,72. Topographic organization 

of frequency representations (tonotopy) emerges from relatively early stages of processing, 

present already in the colliculus and extending to MGN and A1 73. Neurons in the auditory cortex 

also extract more complex acoustic features, including time-varying patterns of tones and specific 

“syllables” used for vocal communication. In the rodent, for example, neurons in A1 are tuned to 

specific vocalizations that are relevant for coordinating social behavior 71,74.  In addition, A1 

neurons in females enhance responsiveness to distress calls from pups, and these plastic changes 

are important for pup retrieval behavior 75,76.  

 In monkeys, neurons in the auditory cortex and the superior temporal sulcus (STS) 

respond to species-specific vocalizations, and in humans, parts of A1 and A2 show specific 

responses to human voice and speech. In both monkeys and in humans, neurons in early auditory 

cortex (the auditory belt) and STS send projections to parts of the ventrolateral prefrontal cortex 

(PFC), which is thought to play an important role in processing communication-relevant sounds. 

In particular, the human inferior frontal gyrus (which includes the famous Broca’s area) has been 

linked to speech and language processes. While relatively little is known about the role of frontal 

cortex in mouse auditory perception, parts of the mouse PFC have been linked to the production 
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of ultrasonic vocalizations, suggesting a role for this region in integration of auditory cues and 

generation of vocalizations.  

 

1.3.4: Internal Integration 

 Following the sensory transduction pathways outlined above, we have now traced the 

detection of sensory signals from the environment through initial processing stages along the 

visual, olfactory, and auditory pathways. All of these sensory modalities (in addition to touch) are 

used for social communication in mice and in primates. Indeed, many important social features 

(such as sex identity social status) are integrated across multiple distinct modalities 10,77,78. In 

order to affect behavior, these internal representations of social sensory features must also be 

integrated with internal state variables to be contextualized. In this section, I will discuss this 

process of internal integration and give an overview of some of the circuit processes that are 

involved. I will focus the discussion on three behavioral processes that are most relevant for the 

work presented in chapters 3 and 4. These are aggression, social status and dominance behavior, 

and mating and sexual behavior. 

 

1.3.4.1: Aggression 

 Aggressive behavior between conspecifics is ubiquitous across the animal kingdom from 

flies and rodents to humans 21. In mice, aggression between males serves to settle territorial 

disputes, to mediate conflict over resources and mating opportunities, and to establish social 

status and dominance hierarchies 79,80. In females, defensive aggression is observed during pup 

rearing toward intruders or other threats. Humans show many elaborated forms of aggressive 
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behavior, ranging from non-violent, verbal microaggression to homicide and war to settle 

disputes and establish or enforce status/dominance relationships. 

 Several different neural circuits in the brain have been found to play roles in regulating 

aggressive behavior. One of the earliest demonstrations of a circuit for aggression was the 

“hypothalamic attack area,” a region of the hypothalamus that, when stimulated electrically in 

rats and cats, was observed to trigger aggressive behavior such as hissing and biting 22,23. Using 

molecular and genetic tools in mice, studies in recent years have clarified the underlying 

physiology. Studies using photostimulation of specific subpopulations of neurons in the 

ventrolateral portion of the ventromedial hypothalamus (VMHvl – a region contained within the 

classical hypothalamic attack area) have clarified its specific role in the control of aggression 25,32. 

VMHvl neurons are active during attack behavior in both male and female mice, and their activity 

predicts the latency to and duration of future aggressive bouts. Interestingly, some of these 

neurons are also active during anticipation of aggressive interaction 81, suggesting that they may 

encode an internal representation of aggressive state. 

 In addition to the VMH, other regions in the hypothalamus and amygdala have also been 

implicated in the control of aggressive behavior. The posterodorsal portion of the medial 

amygdala (MeApd), which receives direct pheromonal information, projects both directly and 

indirectly (via the BNST) to the VMHvl. As in the VMHvl, specific subpopulations of neurons in the 

MeApd have been shown to control aggression; photostimulation of MeApd inhibitory neurons 

causes acute attack behavior, and photoinhibition of the same neurons can cause immediate 

cessation of ongoing attack behavior 24. Interestingly, both the MeApd and the VMHvl also 

contain neurons that respond selectively to cues from male and female conspecifics (encoding 
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sex identity) 65,68. This suggests that that the MeApd and VMHvl may integrate these sensory cues 

to regulate aggressive state. Indeed, discrimination between sex cues at the neural level in 

MeApd and in VMHvl correlates with aggressive behavior in males 65,68. Other circuits that are 

interconnected with the MeA and VMH have also been implicated in aggression, including the 

medial preoptic area (MPOA) and the periaqueductal grey (PAG) 10. In primates, including in 

humans, the VMH and amygdala are linked to aggression. In monkeys, temporal lobe legions 

which include the amygdala have been observed to cause a reduction in aggressive behavior. In 

humans, activity (measured by fMRI) in the hypothalamus and amygdala is higher when subjects 

act aggressively, and electrical stimulation of the amygdala induces subjective reports of anger. 

 Subcortical circuits that integrate sensory and internal state variables to modulate 

aggression also appear to be regulated by cortical inputs. In mice, stimulation of excitatory 

neurons in the medial prefrontal cortex (mPFC) reduces the intensity of attack behavior, and 

inhibition of the same neurons increases aggression 82. Consistent with this regulatory role in the 

mouse, legions of the frontal lobes in primates, including in humans, have also been associated 

with changes in aggressive behavior. Taken together, a network of interconnected limbic and 

subcortical circuits, which include the MeApd, BNST, VMHvl, MPOA, and PAG, shape aggressive 

behavior through control of an internal aggressive state 21. In mice, this state depends in part on 

integration of sensory cues from the environment, and particularly on sex-specific social cues 

from conspecifics transmitted through the olfactory pathway. Aggression is also regulated by 

other circuits, including cortical inputs from the mPFC, but the precise nature of this regulation 

is currently not well understood.  
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1.3.4.2: Social status and dominance 

 In many social species, including in mice and primates, individuals in a group organize into 

stable social hierarchies to manage limited resources, settle conflicts, and coordinate group 

behavior. While in some species, social hierarchies emerge to serve highly specific functions, 

other species use social hierarchies to organize many different aspects of group behavior, and 

hierarchical behavior can vary dramatically across males and females within a species 83,84. In 

general, Individuals learn their rank (or social status) in a hierarchy from observation or as a result 

of conflicts (not always physical) with other individuals in the group 79,85. The social status of an 

individual (whether they are relatively dominant or subordinate) can be an important 

determinant of his/her behavior toward other conspecifics, as well as susceptibility to challenges 

and stressors. In male mice for example, high social status is associated with greater aggression 

toward male conspecifics, more courtship calls toward females, and more access to limited 

resources 86,87. In other rodents, it is also associated with greater resilience to symptoms of stress 

and anhedonia that are triggered by social defeat following inter-male conflict 88,89. However, the 

relationship between social status, internal state and behavior varies widely across species and 

context 83. For example, in some monkey species, high status males have greater access to 

reproductive opportunities, but have elevated levels of stress hormones, possibly because they 

are constantly warding off challengers 90. Even in humans, measures of perceived societal status 

are anticorrelated with symptoms of depression and anxiety, suggesting some level of 

psychological resilience derived from status 90. 

 Although social hierarchies are a ubiquitous feature of social life in many species, 

relatively little is understood about the neurobiology and circuit mechanisms underlying social 
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status and the expression of dominance (or subordinate) behaviors. In crustaceans and cichlid 

fish, serotonergic (5-HT) signaling is linked to dominance behavior 91,92, and in monkeys, the size 

of the dorsal Raphé nucleus (the primary source of 5-HT neurons in the brain) correlates with 

social rank 93. This suggests that the serotonin system may play a role in processes that encode 

social status and regulate expression of dominance behaviors in some species 41,83. In rodents, 

the role of 5-HT signaling is unclear; however, recent studies have begun to dissect specific 

circuits involved in dominance behavior. In male mice, photostimulation of excitatory inputs from 

the thalamus to the mPFC increases social status 86, and single neurons in the mPFC respond 

during effortful behaviors in an inter-male dominance test 46,87. Interestingly, higher social status 

is associated with greater synaptic strength in the thalamus-mPFC synapse, a connection that is 

strengthened following winning in effortful conflict. This role for frontal cortex in the mouse is 

broadly consistent with studies in humans and non-human primates. Activity measured in the 

rostromedial PFC of humans using fMRI is elevated when subjects think about status 

relationships between individuals 78,94, and single neurons in the monkey orbitofrontal cortex 

have been found to correlate with viewing of high-status social familiars 70.  

 Less is known about how sensory cues and internal state variables are integrated to form 

a representation of social status that is stable over time. Because status is a property of 

individuals, recognition of status relationships between individuals likely depends in part on 

social memory. In mice, the CA2 region of the hippocampus supports memory of previous 

encounters with conspecifics 95. One speculation is that indirect projections from CA2 to the 

mPFC via the ventral CA1 region of the hippocampus may provide information about previous 

social encounters that could guide status-related behavior. Projections from mPFC to 
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downstream subcortical targets may also control the expression of dominance behavior in 

particular contexts. One recent study found a specific role for mPFC projections to the lateral 

hypothalamus in dominance behavior during a competition for food 96. In monkeys, information 

about relative status is encoded in the amygdala as well as in the PFC, suggesting that this region 

may also be relevant for the expression of dominance behavior in primates 70. 

 

1.3.4.3: Mating and sexual behavior 

 Mating behavior is essential for all sexually reproducing species, as it forms the basis for 

the interactions between opposite sex conspecifics that result in offspring and species survival. 

In many species, mating interactions proceed through distinct phases, from courtship behavior 

to precopulatory exploration and culminating in copulation 10. Related to mating behavior are 

other repertoires of behavior that serve to coordinate mate selection, such as the establishment 

of social hierarchies 79,83,90, and to facilitate offspring survival, such as parenting behavior 10. Thus, 

while mating involves a unique subset of social behaviors that are often stereotyped within a 

species, it is connected in important ways with other types of social behavior that facilitate 

reproduction and species survival more generally 7.  

 In mice, several limbic and hypothalamic regions have been implicated in the control of 

both male and female mating behavior. Many regions involved in mating receive input carrying 

pheromonal information from the VNO, suggesting that integration of these sensory cues is 

critical for coordination of mating behavior in mice. In females for example, neurons in the 

posteroventral region of the MeA (MeApv) are necessary for lordosis behavior 97, as are neurons 

in the downstream dorsomedial VMH (VMHdm) that receive direct and indirect inputs from the 
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MeApv 27. In males, photostimulation experiments show that MeApd neurons control mounting 

behavior 24, and specific subpopulations of neurons in the VMHvl are active during mounting (but 

not during other social behaviors, such as attack) 27,68. These findings suggest that the MeA and 

its downstream targets are involved in the integration of pheromonal sensory cues to coordinate 

mating behavior in both sexes. Consistent with this, the normal male preference for interaction 

with females depends on neural signaling in the MeA and its regulation by oxytocin 98, and 

neurons in the BNST (downstream of the MeA) are active during mating and are also required for 

opposite sex preference 66. Additionally, lesioning or silencing neural activity in the MPOA, 

another projection target of the MeA, results in reduced mating behavior in males, suggesting 

that normal mating behavior depends on integration of signals across a network of 

interconnected hypothalamic circuits 28,99. Consistent with these results from circuit analysis in 

rodents, many of the same limbic and hypothalamic regions have been implicated in sexual 

behavior in primates, including in humans. For example, fMRI studies have identified activity 

patterns in the human hypothalamus that correlate with sexual identity 100, and in both men and 

women, amygdala activation is correlated with sexual responsivity 101,102. Amygdala legions in 

humans have also been associated with abnormal sexual behavior, such as hypersexualized 

states 103. 

 Like all motivated behaviors, sexual behavior requires not only processing relevant 

sensory information but also the integration of this with reward and motivational states to 

generate a behavioral drive. Perhaps not surprisingly, the classic mesolimbic reward system has 

been implicated in the control of mating behavior in mice and primates. The ventral tegmental 

area (VTA), which contains much of the dopaminergic input to the ventral striatum and cortex, 
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receives inputs from the MeA, BNST, and MPOA. VTA dopamine signaling has been linked to 

sexual desire in humans, and activity in the nucleus accumbens (NAc/ventral striatum, a major 

projection target of VTA dopamine neurons) is correlated with sexual desire and arousal 101. In 

both male and female mice, dopamine release in the VTA-NAc pathway is increased during 

anticipation of sexual contact 104, and manipulation of this pathway bidirectionally modulates 

time spent investigating opposite sex conspecifics. And in male mice, dopamine signaling in the 

NAc in necessary for opposite sex preference 105, supporting a role for mesolimbic circuits in 

transforming integrated sensory cues (in the MeA and hypothalamic network) into motivated 

behavioral drive.  

 Finally, in addition to integration of sensory cues and mesolimbic control of sexual 

motivation, cortical circuits also appear to regulate mating behavior. In female mice, oxytocin 

signaling in the medial prefrontal cortex (mPFC) mediates social and sexual interest in male 

conspecifics 106,107. Little is known about the potential role of prefrontal circuits in male sexual 

behavior, but the control of male social status by mPFC neurons may play an indirect role in 

mating, as dominant males are more reproductively successful 42,86,87. In humans, prefrontal 

regions may participate in control of sexual behavior and sexual inhibition. Societally concordant 

social behavior depends on shaping thoughts and actions in a highly context-fluid manner, which 

demands strong executive and attentional control. Consistent with this, patients with legions in 

the orbitofrontal cortex sometimes show hypersexuality, which may be interpreted as a 

disinhibition of sexual drive 103,108. 
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1.3.5: Behavioral expression 

 Integration of social sensory inputs with the internal state of the animal allows specific 

behavioral decisions to be selected in a flexible, context-dependent manner, which is highly 

adaptive. Still, in any circumstance, only a small subset of possible behavioral changes can be 

expressed at a time. In this section, I will discuss how sensory transduction and internal 

integration lead to the selection of specific behavioral choices or internal state changes.  

 For innate behaviors such as aggression and mating/sexual behavior, a network of 

interconnected limbic and subcortical circuits appears to be involved in integrating relevant social 

cues and encoding internal states that drive those behavioral patterns. These involve primarily 

the MeA, VMH, BNST, and MPOA (described in the previous section). In this sense, these 

structures clearly play some role in the expression of social behaviors – photostimulation 

experiments suggest that activation of parts of the MeA and VMH can increase aggression and 

mating behavior 24,25, and silencing experiments indicate that activity in these brain regions is 

also necessary for the expression of normal behavior. However, despite the involvement of these 

circuits in encoding/controlling behavioral drive, downstream circuits may play a more specific 

role in the gating and expression of specific behavioral choices. For example, the periaqueductal 

gray (PAG), a region that receives input from the VMHvl and other hypothalamic regions, appears 

to be important for the coordination of attack motor patterns in male mice. Distinct from neurons 

the VMHvl that show highly mixed responses to social sensory cues and during aggressive 

behavior, neurons in PAG are specifically active during attack behavior and exhibit time-locked 

responses during biting 109. Silencing of PAG neurons in males decreases aggression, and in 

females, PAG legions increase aggression but decrease lordosis behavior. Similarly, amygdala 
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inputs to the PAG are necessary to coordinate defensive behavior across species 110,111, and 

VMHdm projections to the PAG are necessary to coordinate escape behavior 112. These 

observations suggest that, although there may be differences in how behavioral output is gated 

between males and females, the PAG plays a critical role in transforming signals from the 

limbic/hypothalamic network into directed behavioral choices.  

 Cortical circuits also play a role in gating behavioral choices. The mPFC, which sends 

projections to the PAG and other subcortical regions including the VTA and NAc, provides an 

anatomical substrate for top-down cognitive control of behavioral gating 113. In mice, neurons in 

the mPFC that project to dorsal PAG are preferentially active during shock but not during reward, 

suggesting that prefrontal input may help to coordinate responses to threats 112. Neurons in the 

mPFC are active during social approach behavior, indicating possible involvement in the decision 

to engage in social interaction 46,114. In addition, prefrontal circuits may play a role in the 

expression of social behavioral changes over a longer timescale. For example, social defeat is a 

state of decreased social preference and anhedonia in mice that can be triggered by repeated 

defeat in antagonistic encounters 53. The behavioral expression of this internal state, and 

specifically the increase in social avoidance, is mediated by inputs to the PAG from mPFC 115. 

mPFC projections to the Raphé nucleus also control effortful behavior in response to behavioral 

challenge 116, and over longer timescales, activity in mPFC neurons is correlated with increased 

resilience to defeat symptoms 117. Together, these observations suggest that the mPFC plays a 

role in the modulation of selected behavior (e.g., coordinating escape in response to threat), as 

well as in shaping internal states that affect behavior over longer timescales.  
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 Together, these three stages of sensory transduction, internal integration, and behavioral 

expression capture the core processes of decision making in the brain. Still, it bears repeating 

that these “stages” are not completely separable and not necessarily sequential. As is clear from 

the discussion, many brain regions and circuits appear to play a role in more than one, or even in 

all three, of these stages 10,118. For some behaviors, we may discover that there is some 

anatomical boundary between the circuits that process information leading to a decision and the 

circuit(s) that implement behavioral selection and expression 119. In other cases, however, we 

may find that the process is fundamentally a gradual one, with no sharp discontinuity between 

integration of information and the decision point. Future research can shed more light on the 

underlying logic of how neural circuits implement complex behavioral choices, and how exactly 

these processes of transduction, integration, and expression are intertwined.  
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2.1: Measurement of the brain and behavior 

2.1.1: The relationship between brain and behavior 

 Social neuroscience investigates how biological processes within the brain give rise to 

social behavior and social interaction. Because of this focus, many of the driving questions in the 

field are essentially relational – that is, they are concerned with the relationship between the 

brain and behavior, rather than either of these in isolation 1,2 As in any scientific field, inquiry into 

the relationship between different processes depends on both measurement and manipulation. 

In order to generate theories and hypotheses about how the brain shapes social behavior, we 

need to measure brain processes and behavior, and then analyze how they are related; in order 

to test our hypotheses, we need to manipulate the brain or the animal’s behavior, and then 

observe the consequences.  

 In this section, I will discuss the methods used in social neuroscience to measure brain 

processes and animal behavior, as well as considerations and challenges that are important in 

the study of social interaction. In the following section, I will outline a conceptual framework for 

the analysis of neural and behavioral data from social neuroscience experiments, highlighting 

three main directions of inquiry: dimensionality, relationality, and temporality. Finally, I will touch 

on methods for manipulating neural activity in the brain and considerations for experimental 

design in the context of studying social interaction. 

 

2.1.2: Measuring processes in the brain 

 In order to understand the processes in the brain that shape social behavior, we need to 

measure them. Depending on the questions driving an experiment, this can involve measurement 
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of gene expression, synaptic plasticity, hormonal and neuromodulatory signals, and in many 

cases, the activity of neurons in the brain. There are several different approaches currently 

available to measure neural activity which each carry distinct advantages and considerations. In 

human subjects, where invasive methods often cannot be used (except in rare cases with some 

clinical subjects 3,4), common methods include functional magnetic resonance imaging (fMRI), 

which measures the oxygenation level of blood in different parts of the brain as a proxy for neural 

activity 5–7, and electroencephalography (EEG), which measures changes in electrical potential of 

groups of neurons at the cortical surface of the brain 8,9. fMRI and EEG each permit different 

levels of spatial and temporal resolution, and together are very powerful methods for recording 

brain activity in human subjects and mapping behavior and cognitive processes to specific regions 

of the brain. However, both methods lack cellular-level resolution, and so make it difficult to pin 

down mechanisms of neural processes with a high degree of precision.  

 Invasive recording techniques, which can be used more readily in animal subjects, offer 

high enough spatial resolution to capture the activity of individual neurons in vivo. Probably the 

most common method used to measure single neuron activity in vivo is electrode recording. 

Electrodes implanted into the brain can measure changes in the electrical potential across the 

plasma membrane of individual neurons, and implants with multiple electrode arrays can 

measure simultaneous activity from populations of neurons in the same brain region. Using this 

method, researchers have been able to identify individual neurons that show increased activity 

during specific types of behavioral decisions 10–13 or during detection of specific social sensory 

cues 14–17. Recent developments in electrode recording technology have enabled much higher 
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yield and access to multiple regions of the brain simultaneously, opening investigation of large 

scale dynamics across the brain and between regions within the brain 18–21.  

 Optical methods have also been developed to record activity from populations of neurons 

22,23. Calcium imaging is a technique that combines microscopy with genetically encoded calcium 

indicators to measure fluorescence changes in individual neurons that are correlated with 

intracellular calcium concentrations 24. Because action potentials produce rapid changes in 

intracellular calcium (through opening of calcium channels in the plasma membrane), these 

optically recorded changes in calcium concentration can be used as a proxy for neural activity 

22,25. As calcium imaging is an optical method, it also contains information about the spatial 

arrangement of neurons in the imaging field of view, and if used in combination with molecular 

markers, can give information about cell identity 26–30. Using two-photon calcium imaging, one 

can resolve activity of hundreds to thousands of neurons, opening investigation into the 

dynamics and structure of population responses during behavior. These advantages come at a 

cost, however. Since the fluorescence signal is a measure of calcium concentration, which has 

slower dynamics than changes in electrical potential, calcium imaging cannot explicitly capture 

spiking activity. Thus, at present, electrophysiological methods are favored for investigation of 

hypotheses that involve direct examination of spiking activity. 

 In the context of social neuroscience, we are often interested in how processes in the 

brain relate to natural social behavior during interactions with conspecifics. Thus, techniques that 

enable recordings of large populations of neurons in freely behaving animals are desired. In 

recent years, technology has been developed to adapt optical methods to freely moving animals 

through the use of miniaturized light microscopes that can resolve calcium fluorescence through 
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a lens implanted in the subject animal’s brain 31–33. These “microendoscopes” enable 

investigation of large-scale neural population activity during natural animal behavior, and are 

therefore ideal for neural recordings in social neuroscience experiments 30,34,35. However, 

because the microscopy hardware must be small and lightweight, two-photon imaging is difficult 

to achieve using such as setup (though this limitation may be resolved in the near future 36,37), 

and the quality of fluorescence images acquired with “single-photon” imaging is relatively poor. 

Owing to these considerations, it may still be preferred for some applications to use 

electrophysiological methods rather than microendoscopes, especially if high temporal 

resolution and/or spiking activity is desired. 

 In the studies presented in chapters 3 and 4, microendoscopes were used to record large-

scale population activity from the prefrontal cortex of mice during unconstrained social 

interaction. This method has been previously applied in social contexts 30,34,35, and in our case, 

was chosen because of a preference for high yield recordings of hundreds of neurons at the cost 

of temporal resolution that could be afforded using electrodes. Because the social behavior 

events under examination occur over a timescale on the order of seconds, high resolution spiking 

data was not a priority when designing the experimental protocol and methods. However, 

electrode recordings, especially across multiple brain regions in the same animal 18,19, may be 

very useful in the future to investigate single-neuron coding principles and inter-regional activity 

patterns more closely.  
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2.1.3: Measuring animal behavior 

 In any experiment, it is critical to make careful measurements of the phenomena of 

interest and to quantify them precisely – this is necessary to identify patterns, formulate theories, 

and test predictions. In the context of social neuroscience, careful measurement of behavior is 

particularly important because social interaction is highly complex 38, and social behavior highly 

variable 2. 

 As discussed in chapter 1, part of the reason that social behavior is complex is that 

interaction and communication between animals often takes place across more than one sensory 

modality. This means that without substantial prior knowledge, we often do not know exactly 

which measured variables correspond to the most relevant communication channels. For 

example, two mice may use olfactory and tactile cues to coordinate behavior, but these may not 

be relevant to the same degree or at the same time. Communication channels may also change 

as an interaction evolves. For example, mice may initiate an interaction with investigatory sniffing 

and then proceed to physical engagement with vocalizations. Without measuring this 

communication space comprehensively, we may miss important information about the 

interaction and how it relates to processes in the brain.  

 In addition to this, because animal behavior is shaped by many different factors, it is also 

highly variable across time and across individuals. For example, as an animal’s internal state 

(motivation, hunger, etc.) changes over minutes and hours, its decisions during similar social 

engagements may be very different 2,39. Different animals may also have very different life 

experiences due to their previous interactions with conspecifics and other environmental factors. 

While this behavioral variability may sometimes be an experimental nuisance, it can also reveal 
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important patterns in behavior that may shed light on the underlying biological mechanisms. 

Without measuring and analyzing this variability, we may miss patterns that could lead to new 

theories and hypotheses.  

 With these considerations in mind, there are of course practical limitations on how much 

we can reasonably measure in a single experiment. One way expand our description of behavior, 

outside of expanding the repertoire of measurement tools, is to refine current approaches to 

capture more and to do so more objectively 40. Traditionally, measurement of animal behavior 

has typically been done using video capture and hand scoring of behavioral events by 

researchers. While this can be effective, variability in subjective measurement can also lead to 

inconsistencies in how behaviors are defined, and manual scoring can be prohibitively time 

consuming for some experiments. Recent advances in pattern recognition and machine vision 

technologies have enabled automated tracking of animals and in some cases automated 

identification of their behavior 41–43. These methods allow for objective quantification of animal 

behavior in place of manual scoring, dramatically increase the efficiency of behavior analysis, and 

allow for precise measure of subtle behavioral changes that may be informative but are difficult 

to identify manually.  

 

2.2: Analytical methods in social neuroscience 

 A typical set of data obtained from a social neuroscience experiment contains 

measurements of events in the environment, which include a description of the subject animal’s 

behavior, and measurements of biological processes in the animal’s brain, often of neural 

activity. Such complex datasets open a very wide range of questions that can potentially give 
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insight into how processes in the brain give rise to behavior. In this section, I will outline a 

conceptual framework (loosely inspired by Tinbergen’s four questions) to organize investigation 

of the brain and behavior using datasets obtained from measuring both. At the highest level, this 

framework considers the “question space” to be spanned by three basic directions of inquiry: 

dimensionality (how are variables related within a set of data?), relationality (how are variables 

related between sets of data?), and temporality (how does the structure of the data change over 

time?). While these three directions are not exhaustive and are an obvious simplification, I 

believe they provide a useful way to organize inquiry and help to highlight the relationships 

between different types of questions, their limitations, and their assumptions. In the following 

section, I will then give a more technical explanation of some of the important methods used in 

the studies presented in this dissertation (chapters 3 and 4). 

 

2.2.1: Dimensionality 

 The first direction in this question space, dimensionality, is concerned with the number 

of variables that the researcher has measured within a dataset and the structure of their inter-

relationships. For datasets of different sizes, different types of questions may be posed, and 

different methods may be necessary 44. In some experiments, we may only be interested in one 

behavioral variable (such as choice in a task) or neural variable (such as the activity of a neuron). 

In these cases, standard approaches for analysis of time-series data may be sufficient. In other 

cases, however, we may record dozens of behavioral events or hundreds to thousands of neural 

signals at the same time 20,21. Such datasets are called “high dimensional,” because the number 

of dimensions along which the data can vary (the number of variables) is large 20,21,45. Datasets 
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with many variables can pose unique challenges because they are difficult to visualize, and we 

often do not know beforehand which variables will be interesting or informative to look at. 

However, in many cases, measured signals are not completely independent from one another, 

but are in fact inter-related and structured in some way 46. Movement along this direction of 

inquiry from 1-dimensional data into multivariable datasets involves asking questions about how 

the measured signals are inter-related and applying methods to quantify those relationships to 

understand the data, and the system that generated it, more deeply.  

 Consider, for example, a set of data containing the weights and heights of children ranging 

from ages five to ten. We could analyze these variables separately. But we may also observe that 

weight and height are highly correlated, as they are both driven by one common underlying 

factor – age. This insight may lead us to view the data in a different way and form new hypotheses 

about how it relates to the systems under investigation. By the same token, correlational 

structure may exist in much larger datasets like the ones we get from large scale neural recordings 

20,21. In the context of the brain, this correlational structure may reflect physical relationships 

between neurons (reflecting synaptic connections, for example), architecture that constrains 

neural activity (such as common input from another brain region), or involvement in related 

computational processes. Generally speaking, strong covariance among multiple signals may 

reflect some underlying factor that governs their collective dynamics. To understand the nature 

of such a system, these underlying factors are useful to know about. Thus, methods for analyzing 

the correlation structure across multiple variables, and for identifying common underlying 

factors that can account for that structure, are incredibly useful for working with high 

dimensional data 46,47. 
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 One class of methods for identifying underlying factors or components of the data that 

explain the covariance between many measured signals is called dimensionality reduction – so 

called because these methods seek to compactly describe high-dimensional datasets using a 

smaller number of variables 46. Principal component analysis (PCA, described in detail in the next 

section) is perhaps the simplest and most intuitive method for reducing the dimensionality of 

data. Other methods, which define components based on how well they capture covariance with 

some other measured variable or variables (such as between neural activity and behavior), are 

also useful for certain questions. In the studies presented in this dissertation (chapters 3 and 4), 

dimensionality reduction is used to visualize the activity of many neurons using a small number 

of dimensions. It is also used to analyze how patterns of activity across populations of neurons 

change when an animal is exposed to different stimuli or makes behavioral decisions.  

 Finally, multivariate datasets can also be examined to understand how multiple variables 

relate to some other variable of interest. For example, multivariate regression (discussed below) 

can be used to quantify the relationship between the activity of single neurons and all the 

measured sensory and behavioral events in the external environment.  

 

2.2.2: Relationality 

 Many questions in social neuroscience are inherently relational 1,2. The second direction 

in this question space is concerned with the degree of relational structure between sets of data. 

That is, rather than analyzing the inter-relationships within one dataset (as above, with the 

concept of dimensionality), relational analyses consider the relationships between different types 

of data, with varying degrees of association strength. To illustrate, consider an experiment in 
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which we have recorded activity from one hundred neurons in the brain of a mouse engaged in 

social interaction. On one extreme, we can pose questions about the structure of the neural data 

by itself (no relationality). We can analyze the statistics of a single neuron’s activity (one variable; 

low dimensionality), or we can analyze the covariance structure of all the neurons and investigate 

their underlying factors or dynamic (many variables; high dimensionality). However, because we 

also measured the animal’s behavior, we can also ask questions about how the neural activity 

corresponds to behavioral decisions – about the relational structure between brain and behavior 

1. Further movement along this direction of inquiry brings questions about the strength of 

association between datasets, with certain types of analyses probing directed relationships 

between variables or suggesting causal relationships between variables 48–51. In the most typical 

case, this direction of inquiry concerns the relationship between brain activity and animal 

behavior, but this framing can also be used to investigate the relationship between neural 

dynamics in different parts of the brain 20,21,52, or across the brains of multiple individuals 6,53,54. 

This approach is used throughout chapter 4 to quantify the correlation of neural activity across 

brains of interacting animals 53.   

 One commonly used set of statistical methods for quantifying relational structure is 

regression analysis. A regression between some variable Y (the dependent/outcome variable) and 

another variable X (the independent/predictor variable) quantifies the degree to which changes 

in X explain changes in Y. In settings with multiple variables (high dimensionality), multivariate 

regression can be used to quantify the association between a set of explanatory variables and 

one or more dependent variables. In the context of systems neuroscience, regression analysis is 

often used to measure the relationship between neural activity and external variables. In general, 
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two classes of questions motivate this kind of analysis: 1) What events in the external world are 

driving changes in brain activity? 2) What information about the external world can be extracted 

from brain activity? 

 The first question relates to what are called encoding models, because they attempt to 

quantify the degree to which some external variable is “encoded” in brain activity. This type of 

analysis can yield insight into a neuron’s physiology, its connectivity with other neural structures, 

and the types of computational processes it may participate in. Regression analysis is one method 

that can be used to quantify the association between neural activity and external variables and 

can thus be used as a type of encoding model. In the studies described in this dissertation 

(chapters 3 and 4), regression encoding models are used to examine how activity in neurons is 

associated with social interaction, features of the social environment, and behavioral decisions. 

 The second type of question relates to decoding models, which examine how much 

information about some measured variable is contained within a neuron or neural population’s 

activity pattern. In a decoding model, some external stimulus or behavioral variable is modeled 

as a function of neural activity. Encoding models and decoding models are therefore two sides of 

the same coin, distinct in concept but closely related in their formulation. Regression, in one form 

or another, is also commonly used as a type of decoding model 17,34,35 as are some dimensionality 

reduction methods that are based on relational structure between variables  34,35,55. 

 

2.2.3: Temporality 

 The third direction in this space of inquiry is temporality, which is concerned with how 

properties of variables, or the relationship between different types of data (relational structure), 
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change over time. Analysis of temporal structure can be applied to any type of data that is 

measured across multiple time points. On one extreme, some measured signals may have 

properties that are unchanging over time or are changing so slowly that they can be treated as 

stationary. For example, a single neuron in the visual cortex may have very consistent orientation 

tuning over the course of a recording session. This relational structure – the relationship between 

the neuron’s activity and a particular external variable – could thought of as stationary. In the 

other extreme, some processes may be highly dynamic 56,57. Neurons may quickly change how 

they respond to sensory inputs during learning, for example, and animal behavior may evolve 

dramatically over the course of an interaction. In general, changes in the structure of measured 

data can take place over many different timescales and may occur continuously or discretely 56. 

Some analytical methods treat properties under investigation as stationary in the sense that they 

do not explicitly account for temporal structure – two examples of this are PCA and simple linear 

regression. Other methods attempt to account for temporal structure by modeling changes in 

correlational structure across trials (for example, using Tensor Component Analysis 58), or by 

modeling changes in relational structure (for example, using dynamic Generalized Linear Models 

59). In chapter 3, temporal structure in single neuron tuning to social stimuli is explored using 

regression across different epochs of a recording session 60.  

 

2.3: Technical explanation of applied methods 

2.3.1: Dimensionality reduction 

 Principal Component Analysis (PCA) is a method that seeks to identify components (linear 

combinations of the original variables) that explain (in a least-squares sense) the most variance 
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in the data possible while maintaining an orthogonality constraint (forming an orthonormal basis) 

61. Because the principal components of a matrix ! are orthogonal, they can be thought of as a 

“rotation” of the original coordinate system to form a new set of coordinates that best capture 

the most information in the data. The principal components can be found from an eigenvalue 

decomposition of the covariance matrix of !, Σ!, where the normalized eigenvectors of !"!	 ∝ 

Σ! are the principal components of !, and are arranged in order of descending eigenvalues. In 

the studies described in this dissertation, PCA is used as a dimensionality reduction tool to 

visualize stimulus-evoked population responses and to analyze different patterns of population 

activity. 

 In a setting where we are interested in identifying components of the data that best 

capture variance in some other variable or variables of interest, different methods may be more 

appropriate. For example, Fisher’s Linear Discriminant (FLD, also Linear Discriminant Analysis) 

provides a method for dimensionality reduction that maximizes the contrast in the data between 

samples belonging to two or more labeled classes. It is therefore a supervised multivariate 

method that, unlike PCA, is explicitly based on relational structure between datasets. Consider, 

for example, if we wanted to find the component (linear combination of neurons) of largest 

contrast between neural population activity evoked by two distinct types of stimuli. FLD identifies 

the component %&  that, when used as a projection axis, maximizes the ratio of the between-class 

covariance Σ#$%&$$' to the within-class covariance Σ&(%)('. Maximization of this ratio (*!"#$""%*$&#'&%
, 

the Rayleigh Quotient) can be thought of as maximizing the distance between the sample means 

for each class per unit variance in that direction. In the binary case, the optimal discriminant 

dimension is given by %& = Σ&(%)('+, ∗ (*- − *,), where *. denotes the mean over samples 
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belonging to class -. FLD can be generalized to deal with more than two classes by optimizing the 

same ratio. In the multi-class case (where - > 2), the set of dimensions that maximize contrast 

between all classes is given by ., the set of eigenvectors that solve the generalized eigenvalue 

problem Σ#$%&$$'. = 	ΛΣ&(%)('.. The - – 1 eigenvectors associated with the - – 1 nonzero 

eigenvalues form a set of dimensions that maximizes projected between-class variance and 

minimizes within-class variance. In chapters 3 and 4, FLD is used primarily as a tool for decoding 

models, where the projection of population activity onto the first 1-2 dimensions is used to 

discriminate sensory cues and behavioral decisions of the animal.  

 Another method that can be used for dimensionality reduction, related to both PCA and 

FLD, is called partial least-squares (or projection to latent structures) regression (PLS). PLS is 

similar to FLD in that it is fundamentally based on relational structure between datasets, but 

instead of maximizing distances between classes (one dependent variable), it seeks to maximize 

covariance between a set of independent and dependent variables. In the studies in chapters 3 

and 4, it is mostly used to visualize neural population data on components that contrast 

responses associated in time with different external events. It is also used as a processing step to 

prevent overfitting prior to construction of decoding models using FLD (PLS-FLD/PLS-LDA) 34.  

 

2.3.2: Regression  

 Regression methods are commonly used to measure the association between different 

variables or sets of variables, and so fundamentally are tools to explore relational structure. In 

the setting of systems neuroscience, a typical question is to ask how well a neuron’s activity can 

be explained by some set of external variables, such as an animal’s sensory experience and/or 
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behavioral decisions. To illustrate, consider that we want to use regression to model the response 

of a neuron (0) as a function of one or more behavioral variables measured during the 

experiment – that is, we want to construct an encoding model 0 = 1(!). 

 In the most basic form of regression, Linear Regression, the dependent variable 0 is 

estimated as a scalar multiple of ! plus some offset with gaussian error (0 = ! ∗ 3	+ 4) 61. The 

coefficient 3 is a parameter that is fit to maximize the variance explained in 0 by !, or, 

equivalently, to minimize the sum of squared error between the true 0 and our estimate of 0 

given !. In this univariate case, the coefficient 3 is given by the covariance between ! and 0, 

normalized by the variance of ! (3 = 567(!, 0)/7:;(!)). It provides information about the 

strength and direction of association between the variables of interest.  

 In a multivariate setting with < independent variables (=,, =-, …, ='), 0 is estimated as a 

linear combination of the variables with gaussian error (0 = 	=,3, + =-3- + … + ='3' + 4, or in 

matrix form, 0 = !3>	+ 4). As in simple linear regression, the coefficient vector 3>  is fit to minimize 

the total squared error between the model estimate and the true dependent variable 0. This 

least-squares optimization problem has an analytical solution given by the normal equation, 

3> 	= 	 (!"!)+,(!"0)	61. Intuitively, this can be thought of as the covariance of each predictor 

variable =' with the response variable 0, scaled by the covariance structure of the predictor 

matrix ! (the multivariate generalization of the solution for the univariate case). With a multiple 

regression model, one can ask questions about the relationship between a set of predictor 

variables ! and the response variable 0. In general, one can interpret the coefficient 3' that is 

fit to predictor =' as the expected change in 0 with a unit change in =', so the direction and 
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magnitude of each coefficient 3' gives information about the strength and direction of its 

association with 0, while also accounting for the relationships among the predictors. 

 A further augmentation of multiple linear regression, commonly used as an encoding 

model in neuroscience 27,57,59, is the Generalized Linear Model (GLM). The GLM models a response 

variable 0 as a linear combination of predictor variables passed through some function ? called 

the link function with an error term: 0 = ?+,@!3>A + 4. The choice of the link function is typically 

based on an expectation of some particular relationship between ! and 0, and/or an observation 

or expectation of non-gaussian distributed data and noise. Because single neuron activity time 

series are typically not gaussian distributed and spike generation can be idealized as a Poisson 

process, a log link function can be chosen to model single neuron activity using a GLM 57. This 

gives the Poisson Regression model: 

0 = B!/ + 	4 

In the setting of a decoding question, where we want to model some external variable as a 

function of neural activity, other link functions may be more appropriate. For example, for binary-

valued response variables (like the presence or absence of a particular behavior), the logistic 

function can be used as a link function to convert the output of the linear term into a variable in 

the range [0 1] (interpreted as a likelihood) that can be thresholded to yield a binary output. This 

version of the GLM, also known as Logistic Regression, can be written as: 

0 = B!/
1 + B!/ 	+ 	4 
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2.3.2: Decoding models 

 In contrast to encoding models, which quantify how well neural activity can be explained 

by some set of predictors (usually external measured variables), decoding models quantify how 

well some measured variable (usually stimulus or behavior) can be explained by neural activity. 

Among the simplest decoding models are forms of dimensionality reduction and regression, 

described above. FLD, for example, can be used to find components of neural data that best 

capture the contrast across different samples of data that are labeled by association with some 

other variable. This method can therefore be used to identify a neural component (or set of 

components) that best discriminate between two or more types of events (for example, different 

types of animal behavior) 35,55. The projection of the population data onto these components can 

then be used as a decoding model to quantify how well neural activity patterns can predict 

behavior. This approach is used to formulate decoding models of animal behavior in both 

chapters 3 and 4 53,60. 

 Regression methods can also be used as decoding models. For example, if the variable to 

be decoded takes on binary values, then logistic regression (described above) may be a good 

choice for a decoding model. Other related methods, such as support-vector machines (SVM) 17 

and Bayesian decoder models 62,63, can be useful under some circumstances. For example, 

methods such as PCA and the SVM can be easily adapted to capture non-linear relationships using 

kernel methods. In general, methods that can more flexibly capture complex non-linear 

relationships, such as deep neural networks, may provide greater predictive power at the cost of 

interpretability 64,65. In order to retain the interpretation of events decoded from neural 
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population activity as a biologically plausible linear readout between neural circuits, linear 

methods are used throughout chapters 3 and 4 for decoder analyses. 

 

2.4: Manipulating brain activity 

 Analysis of the relationship between brain activity and behavior helps to refine 

hypotheses about the mechanistic logic of neural structures and circuits. However, observations 

based on measured data alone are essentially correlational. Even if some observations may 

suggest causal relationships between neural processes and behavior, controlled experimentation 

is required to establish this. In the most typical social neuroscience application, we would like to 

manipulate activity in the brain with as much precision as possible, guided by a hypothesis about 

the effects, and then measure the effect this manipulation has on animal behavior.  

 Brain activity can be manipulated using several different methods. Classic experiments 

using electrical current to stimulate activity in the brain have provided some of the initial insights 

about the role of specific regions in behavior that form the foundation of modern investigation 

66,67. This method offers very high temporal specificity, but suffers from relatively poor spatial 

precision, as electrical stimulation can affect local neurons as well as axonal fiber tracts that 

spread the stimulation nonspecifically to other brain regions. Pharmacological approaches allow 

researchers to infuse neuromodulator agents which can transiently alter neural activity in 

relatively localized regions of the brain. For example, muscimol (a GABA receptor agonist) 

infusion can be used to temporarily silence a population of neurons, and infusion of agonists or 

antagonists of neuromodulators (such as dopamine and 5-HT) can be used to test the effects of 

these signaling molecules in behaving animals. While these approaches can be very specific and 
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informative for certain hypotheses, they are also relatively slow, and so obscure information 

about neuronal function on timescales faster than tens of seconds. 

 Over the past decade, optical approaches to manipulating neural activity have gained 

widespread application because they allow for a high degree of spatial and/or molecular 

specificity with high temporal specificity 23,68,69. Optogenetics is based on manipulating light-

activated ion channels, derived from photosensitive bacteria and virally introduced into neurons 

in vivo, that either trigger (photostimulation) or silence (photoinhibition) action potentials in 

response to light 70. Using genetic and molecular methods, expression of these light-activated 

channels can be targeted to specific subpopulations of neurons based on their location in the 

brain, their connectivity with other brain regions, their expression of specific molecular markers, 

or their natural activity profile 23,71. This degree of target specificity allows very precise 

manipulation of neuron activity and has allowed researchers to map functions of sensory 

processing, internal integration, and behavioral expression to highly specific circuit elements.  

 In the context of social neuroscience, we want to be able to manipulate the brain over a 

range of different timescales. While pharmacological methods may be useful to investigate how 

different hormones or neuromodulators affect behavior over longer timescales, optogenetics 

provides a way to manipulate circuitry involved in the decision-making process with sub second 

precision 72–74. Because natural social interaction is not structured explicitly by the experimenter, 

interesting behavioral decisions may be made volitionally by animals in real time. Thus, precise 

manipulations of brain activity that can be introduced in response to or in anticipation of natural 

interaction and behavioral decisions are ideally suited to studying unstructured behavior. In 

addition, the use of activity-dependent promoters to control expression of ion channels allows 
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manipulations to be targeted to populations of neurons based on their response properties in 

vivo 28,29,75,76 This permits mechanistic investigation of how specific neurons that are defined 

functionally (and possibly also anatomically) contribute to some behavioral or cognitive process. 

In chapter 3 of this dissertation, an activity-dependent optogenetics approach is used to 

manipulate neurons that encode specific social sensory cues, allowing us to test the causal role 

of native neural representations on behavior 60.  
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Cortical Representations of Conspecific Sex Shape Social Behavior   
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3.1: Abstract 
 
 A central question related to virtually all social decisions is how animals integrate sex-

specific cues from conspecifics. Using microendoscopic calcium imaging in mice, we find that sex 

information is represented in the dorsal medial prefrontal cortex (dmPFC) across excitatory and 

inhibitory neurons. These cells form a distributed code that differentiates the sex of conspecifics 

and is strengthened with social experience. While males and females both represent sex in the 

dmPFC, male mice show stronger encoding of female cues, and the relative strength of these sex 

representations predicts sex preference behavior. Using activity-dependent optogenetic 

manipulations of natively active ensembles, we further show that these specific representations 

modulate preference behavior toward males and females. Together, these results define a 

functional role for native representations of sex in shaping social behavior, and reveal a neural 

mechanism underlying male- vs. female-directed sociality. 

 
3.2: Introduction 
 
 In order to navigate the social world, animals must integrate environmental and social 

cues from conspecifics to make decisions that secure their survival, health, and reproductive 

vitality. Representation and discrimination of conspecific sex—the recognition of another as male 

or female—is critical for social interaction, including behavioral decisions to preferentially engage 

with same- vs. opposite-sex conspecifics 1,2. Previous work in mice has revealed that encoding of 

conspecific sex depends on chemosensory signaling and involves subcortical nodes including the 

amygdala and the hypothalamus 2–4, leading to a canonical view that processing of sex 

information depends primarily on subcortical circuits. However, how conspecific sex is 

represented beyond subcortical processing is poorly understood. More importantly, despite 

advances in identifying specific subcortical areas that encode conspecific sex, it is not clear 

whether representations at the level of natively active neural ensembles actually influence animal 

behavior. As neural representations of male and female may not precisely map onto molecularly 



 75 

separable cell types 5,6, direct manipulation of natively active neurons is necessary to understand 

how sex representations affect behavior. To date, this has not been explored and presents a 

critical gap in understanding how the brain shapes social decisions. 

Recent work has illuminated the role of the medial prefrontal cortex (mPFC) in encoding 

general social information and in shaping social behavior such as dominance and sexual behavior 

7–11. As sex recognition is deeply embedded in these behavioral processes, such findings raise 

the question of whether cortical circuits play a role in sex recognition and the control of sex-typical 

behaviors that drive social interaction. In this study, we employ in vivo microendoscopic calcium 

imaging in freely behaving mice to explore the involvement of dorsal mPFC (dmPFC) ensembles 

in the encoding of conspecific sex and control of social behavior. We find that conspecific sex is 

represented in the dmPFC in a distributed population code that recruits both excitatory and 

inhibitory subpopulations. Male but not female mice show a bias toward encoding of female cues, 

and this relative strength of sex representation in males predicts their sex preference behavior. 

Finally, activation of these same ensembles modulates their preference towards male vs. female, 

defining a functional role for native sex representations in shaping behavior. 

 
3.3: Materials and methods 
 
3.3.1: Experimental model and subject details 

 All experiments were carried out in accordance with the NIH guidelines and approved by 

the UCLA institutional animal care and use committee (IACUC). Subject mice were male and 

female C57BL6/J and male Vgat-Cre mice ordered from Jackson Laboratories at 8-12 weeks of 

age and 24-30 g of weight. Mice were maintained in a 12 h:12h light/dark cycle (lighted hours: 

10:00 pm – 10:00 am) with food and water ad libitum. All mice used for calcium imaging were 

individually housed for three weeks prior to experiments. Mice used for behavior experiments 

were individually housed for at least one week prior to experiments. All experiments were 

performed during the dark cycle of the animals.  
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3.3.2: Surgical procedures 

3.3.2.1: Viral injections for imaging and GRIN lens implantations 

 Mice were anaesthetized with 1.0 to 2.0% isoflurane. Viral injections and lens implantation 

in the dorsomedial prefrontal cortex (dmPFC; also prelimbic cortex, PL) were done as previously 

described 7. Specifically, we bilaterally injected 300 nl (on each side) of virus 

(AAV1.Syn.GCaMP6f.WPRE.SV40 for non-specific neuron imaging, AAV1-CaMKII-GCaMP6f-

WPRE for CaMKII+ cells, or 500 nl (on each side) of AAV1-Syn-FLEX-GCaMP6f for Vgat+ cells) 

(Penn Vector Core) at 30 nl min-1 into the dmPFC using the stereotactic coordinates (AP: +2.0 

mm, ML: ± 0.3mm, DV: −1.8mm to bregma skull surface). 1 week after injection, a 1.9mm 

diameter circular craniotomy was centered at the coordinates (AP: +2.0 mm, ML: 0.0 mm), and 

the GRIN lens (Edmund Optics; 1.8mm) was implanted above the injection site at a depth of -

1.6mm ventral to the bregma skull surface and secured to the skull using super glue and dental 

cement. Mice were given one subcutaneous injection of Ketoprofen (4mg/kg) on the same day of 

surgery and Ibuprofen in drinking water (30mg/kg) starting on surgery day for 4 days. Mice were 

individually housed after surgery for three weeks. Then, the microscope together with a plastic 

baseplate were placed on top of the lens. We adjusted the position of the microscope until the 

cells and blood vessels appeared sharp in the focal plane and secured this position using dental 

cement. 

The typical distance between the GRIN lens implant and the imaging focal plane is ~200 

um. Although some tissue above the dmPFC must be removed in order to implant the lens, we 

have established in our previous work that the implant in the dmPFC does not disrupt normal 

social interaction 7. We have also compared sex preference behavior in implanted animals with 

that of un-implanted animals (Figure 3.S4B) and found that implanted and un-implanted animals 

do not show significant differences in sex preference behavior. 
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For non-specific and CaMKII+ cell imaging, we used wild type mice, and for GABAergic 

cell imaging, we used Vgat-Cre mice. All mice were handled and habituated to wearing the head-

mounted microscope for at least 4 days before imaging experiments. While CaMKII promoter in 

AAV labels ~20% of inhibitory neurons in somatosensory cortex 12, 1-2% of CaMKII+ cells express 

GABAergic cell markers in the mPFC 13. This suggests that, while CaMKII+ cells are predominantly 

excitatory in the prefrontal cortex, a very small fraction could be inhibitory. 

 

3.3.2.2: Viral injections for activity-dependent labeling experiments 

 For activity-dependent optogenetics experiments, mice were bilaterally injected with 650 

nL (each side) of a mixture of two viruses (AAV5-E-SARE-CreER 14 and AAV2-EF1a-DIO-hChR2-

EYFP; ratio 1:5) at 40 nl min-1 into dmPFC using the stereotactic coordinates (AP: +2.0 mm, ML: 

± 0.3mm, DV: −1.8mm to bregma skull surface). Optic fiber ferrules were implanted 4mm above 

the injection site (DV: −1.4mm to bregma skull surface). In order to create enough space for 

attachment of both optic fibers, the left ferrule was implanted at an angle 20 degrees from the 

midline DV axis, to the same depth of -1.4mm to bregma skull surface. Implants were secured to 

the skull using super glue and dental cement. For recovery, mice were given one subcutaneous 

injection of Ketoprofen (4mg/kg) on the same day of surgery and Ibuprofen in drinking water 

(30mg/kg) starting on surgery day for 4 days. Mice were individually housed after surgery. The 

same procedure was followed for the E-SARE validation experiment, except that 450 nL of a 

mixture of AAV5-E-SARE-CreER and AAV2-EF1a-DIO-EYFP (ratio 1:5) was used and that no 

fiber ferrules were implanted. 

 

3.3.3: Histological analysis and E-SARE validation 

 After calcium imaging and optogenetics experiments were completed, mice were 

transcardially perfused with 4% paraformaldehyde (PFA). Brains were post-fixed in 4% PFA 

overnight at 4 °C and cryo-protected for 48-72 h in 30% sucrose at 4°C before freezing in OCT 
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on dry ice. 50-μm coronal sections were obtained using a cryostat, and sections were stained 

with DAPI (1:5,000 dilution) and mounted on slides. Images were acquired using a fluorescence 

microscope (Invitrogen EVOS FL Auto 2 Imaging System or Leica DM6 automated microscope) 

to confirm the position of lens implantation and expression of GCaMP6f (Figure 3.1C) or E-SARE-

CreER-driven ChR2-EYFP (Figures 3.S5-S6). 

For analysis of overlap between male/female-induced E-SARE-CreER and male/female-

induced Fos/Arc (Figures 3.S5C-E), coronal sections were obtained at 40 μm using a cryostat 

(Leica) at -20°C. Sections containing the dmPFC were washed in 1X PBS, blocked with 10% 

Normal Donkey Serum for 1 h at room temperature, and incubated with rabbit anti-Arc at 1:500 

and rabbit anti-Fos at 1:500. The following day, sections were incubated with donkey anti-rabbit 

Alexa 568 antibody at 1:500. Images were acquired using a confocal microscope (Zeiss LSM 

880). Overlap between EYFP+ cells and Fos/Arc+ cells was measured and quantified using 

CellProfiler 3.0 15. For each condition, ≥10 sections from four independently injected hemispheres 

were analyzed and quantified. 

For analysis of neural projections in E-SARE-CreER labeled cells (Figure 3.S6), coronal 

sections were obtained at 35 μm using a cryostat (Leica) at -20°C. Sections were washed in 1X 

PBS, blocked with 10% normal donkey serum for 1 h at room temperature, and incubated in 

chicken anti-GFP antibody at 1:500 overnight. The following day, sections were incubated with 

donkey anti-chicken Alexa 488 antibody at 1:500. Images were acquired using a fluorescence 

microscope (Leica DM6 automated microscope). Using FIJI (ImageJ), fluorescence intensity was 

measured for dmPFC injection sites, as well as the following axon terminal sites: nucleus 

accumbens, dorsomedial striatum, dorsolateral striatum, basolateral amygdala, lateral 

hypothalamus, and ventral tegmental area. For each region of interest, area (square microns) and 

raw intensity were measured for six to eight hemisections. The total area and total raw intensity 

were computed as a sum of each value for all hemisections, and total raw intensity was 
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normalized to total area. Finally, each axon terminal region was normalized to the dmPFC 

injection site. 

 

3.3.4: Behavior assays 

3.3.4.1: Home cage social investigation assay 

 For imaging during home cage social investigation, animals were outfitted with the head-

mounted microscope and briefly habituated for 2-3 minutes in their home cage. Subject animals 

were then presented manually with 8 different male and female conspecifics, as well as a novel 

object (a toy mouse), for 20-30 second periods in which they were permitted to freely investigate 

the stimuli. For each session, there were a total of 8 presentations of male conspecifics (8 unique 

and novel animals), 8 presentations of female conspecifics (8 unique and novel animals), and 8 

presentations of the toy. Conspecifics and the toy were presented in a pseudorandomized order 

such that no type of stimulus was presented twice in a row. Sessions typically lasted 12-15 

minutes. In order to preserve naturalistic behavior of subject animals as much as possible, each 

bout of social interactions is allowed for around 20-30 s, as opposed to a strictly fixed window. In 

each bout, animals were permitted to initiate investigate events at will (they were not cued or 

forced to investigate stimulus animals) and ongoing investigation events were, as much as 

possible, not artificially ended by experimenters. 

As each stimulus animal is presented for a much shorter period of time (20-30 s) compared 

to a typical resident-intruder assay, subject animals rarely display aggressive or mating behavior 

toward presented conspecifics; it usually takes a longer interaction time for these behaviors to 

occur. Because of these conditions, we did not observe aggressive or mating behavior during the 

20-30 s presentations of stimulus animals. Therefore, while aggressive and mating behaviors are 

part of the natural behaviors directed towards different conspecific sexes, the encoding of male 

or female conspecifics is not due to the presence or absence of aggressive or mating behavior. 
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3.3.4.2: Neural responses to odor cues and juvenile animals 

 In order to examine how sex-encoding dmPFC neurons respond to sex-specific odor cues, 

we performed additional sessions of the social investigation assay (described above) that were 

immediately followed by presentation of soiled bedding material gathered from cages with novel 

male or female conspecifics (Figure 3.S1I). Soiled bedding was presented to subject animals for 

20-30 s intervals during which subjects were permitted to freely investigate and sniff bedding 

material. Male and female bedding were alternately presented four separate times. All bedding 

investigation events were manually annotated. 

 We also explored how sex-encoding neurons respond during investigation of male and 

female juveniles (Figure 3.S1J). For these experiments, we performed the social investigation 

assay as described above, and immediately followed this with alternating presentations of 4 novel 

male juveniles and 4 novel female juveniles (~8 weeks of age). Juvenile investigation events were 

manually annotated using the same criteria as adult investigation events. 

 

3.3.4.3: Two-chamber social exploration assay 

 For imaging in the two-chamber assay, animals were outfitted with the head-mounted 

microscope, briefly habituated in their home cage for 2-3 minutes, and then placed in a 24’’ x 47’’ 

two-chamber arena with novel male and female conspecifics placed in opposing corners 

underneath barred pencil cups (Figure 3.4A). The subject animals were then allowed to freely 

move about the environment and investigate social stimuli at will for the duration of the session.  

 For experiments described in Figures 3.4A-B, two 20-minute sessions were performed in 

immediate succession and the positions of the male and female conspecifics were swapped in 

each one. The bottoms of pencil cups were fitted with petri dishes in order prevent excrement and 

odor cues from contaminating the floor of the arena.  

 For experiments described in Figures 3.4C-H, two-chamber sessions were 30 minutes 

long and stimulus animals were not altered in any way throughout the experiment. These 
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experiments immediately followed home cage social investigation sessions, and the microscope, 

LED power and fluorescence collection settings were not changed across the two sessions. For 

experiments presented in Figure 3.4H, datapoints from the first 20 mins were presented in Figure 

3.4H (so that comparison between conditions is consistent with other analyses in Figure 3.4I-K). 

Datapoints from the full 30 mins session was presented in Figure 3.S3E. 

 For experiments described in Figures 3.4I-K, two-chamber sessions were 20 minutes long. 

Each animal underwent one recording session in which male and female conspecifics were 

placed beneath the cups, and one recording session in which non-social novel objects were 

placed beneath the cups, on separate days. 

 For behavior experiments using non-implanted animals (Figures 3.S4C-F), two-chamber 

sessions were 30 minutes long using male/female, male/empty cup, female/empty cup, or 2 empty 

cups. For experiments used to analyze the stability of sex preference over time, animals were first 

habituated to the social chamber on the day prior to experiments, and then underwent two 

consecutive days of two-chamber experiments using novel conspecifics on both days. In each 

session, animals were first habituated to the environment using empty cups for 10 minutes. Social 

stimuli were then introduced under the cups, and animals explored for 20 minutes. 

 

3.3.5: Analysis of animal behavior 

 For the home cage social investigation assay, behavior videos were recorded with a video 

camera at 20 frames per second (fps) and manually annotated frame by frame to identify onset 

and offset times for individual investigation bouts. Investigation bouts were considered to be 

epochs of at least one second where the subject animal displayed directed interaction with the 

stimulus and its head was facing and in physical contact with the stimulus. Animals displayed 

similar frequencies of social vs. toy investigation but spent significantly more time investigating 

social stimuli per-bout than the toy (Figures 3.S1A-B). 
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 For two-chamber experiments, behavior videos were recorded at 20 fps and the location 

and pose of the animal were automatically tracked using DeepLabCut (DLC) 16, a neural network 

framework that we trained using manually annotated video frames. For each frame, we extracted 

DLC output for the animal’s nose, left ear, right ear, and tail coordinates. We considered social 

investigation events to be periods lasting at least 1 second where the animal’s head was within 3 

inches of the center of the cup, and the angle between its head and the vector between its head 

and the cup was < 90 degrees. Behavior annotations were converted into binary vectors that 

denote precisely when animals are engaged in social investigation for downstream analysis. 

 In all behavior experiments, we measured the bias between male vs. female interaction 

using a sex preference score, computed as the fractional difference in male vs. female 

investigation time (T♂-T♀) / (T♂+T♀). In the home cage social investigation assay, male and 

female investigation time were each normalized by the total amount of time male and female 

conspecifics were presented in the session. While we observed a modest female preference in 

our behavior experiments, consistent with previous reports, there was large variability in 

preference scores in individual animals that was greater than expected just from random 

movement (Figure 3.S4C). Sex preference scores of individual animals were also consistent 

across two days of testing (Figure 3.S4E) with different stimulus animals, indicating stability of the 

behavioral state. We observed no difference in sex preference behavior in animals wearing the 

microendoscope and animals without any implant (Figure 3.S4B). 

 In order to examine whether sex preference behavior in males was altered by sexual 

experience, we measured sex preference in the two-chamber assay on two consecutive days, 

between which subjects had two 30-minute exposures to novel female conspecifics in their home 

cage. During these female exposure sessions, mice were freely permitted to engage in mating 

behavior with females. We found that sex preference scores were not significantly different 
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between sessions, suggesting that sexual experience does not alter preference behavior (Figure 

3.S4F).   

 For Figure 3.1H, both male and female animals were used. For Figures 3.S1C-D and 

3.S1H, female animals were used. For all other figures, male animals were used. 

 

3.3.6: Activity-dependent labeling and stimulation of male and female cells 

 For optogenetics experiments, animals were first virally injected with Tamoxifen-inducible 

E-SARE-CreER and Cre-dependent ChR2 constructs (described above). 3 weeks after injection, 

animals underwent a social exposure paradigm in which they interacted with either male or female 

conspecifics, or they remained in their home cage with no social stimulus. On each of two 

consecutive days, animals were presented sequentially with 6 novel male or female intruders in 

their home cage and allowed 10 minutes of interaction time with each one over a total period of 1 

hour. For home cage controls, animals were left in their home cage for one hour, and an 

experimenter briefly placed their hand in the cage once every 10 minutes to control for effects 

related to human stimulus. At the end of the social exposure session on each day, animals were 

injected with 20mg/kg of 4OH-tamoxifen (4-TM). Prior to social exposure and E-SARE::ChR2 

induction, animals were habituated to the induction room for 1 week, handled for 5 days, and 

habituated to IP injection with daily saline injections for 4 days.  

 In order to validate the efficacy and specificity of the activity-dependent labeling strategy, 

we followed a previously established procedure 14 by measuring the overlap between E-SARE 

labeled cells and cells that express immediate early genes Fos and Arc following a second 

exposure (Figures 3.S5C-E). Animals first underwent the E-SARE-CreER induction as described 

above on two consecutive days. On each day, animals were exposed to either male conspecifics, 

female conspecifics, or a home cage control over a period of one hour, immediately followed by 

4-TM injection (20mg/kg). This was repeated on two consecutive days (one exposure and one 

injection on each day). Cre-dependent EYFP was used in place of ChR2 to visualize individual 
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cell bodies. Three weeks later, each animal underwent a second exposure with novel male 

conspecifics or female conspecifics. For the second exposure, four novel animals were presented 

for 15 min each for a total of one hour. One hour following this second exposure, animals were 

anaesthetized with isoflurane and were transcardially perfused with 4% paraformaldehyde (PFA). 

Brains were sectioned to perform histological analysis of E-SARE::EYFP and expression of Fos 

and Arc. 

 In order to test whether neural populations active during interaction with male or female 

conspecifics control the sex preference of animals, we optically stimulated male and female cells 

during the social two-chamber assay. After habituation to the two-chamber environment for at 

least one day with empty cups, animals were placed in the same arena with novel male and 

female conspecifics in either corner, as described above for imaging experiments. After a 10-

minute baseline period, dmPFC neurons were stimulated for 10 minutes using a 473 nm laser (4 

mW/mm2). The stimulation applied a protocol of repeated sequences of 3 seconds light-on and 2 

seconds light-off, at 20hz with 20 ms light pulses. This stimulation epoch was then followed by 

another 10-minute baseline period. These experiments were performed 4-5 weeks following 

social exposure and 4-TM injection to allow time for sufficient ChR2 expression. 

 Binary vectors denoting male and female investigation were automatically extracted using 

DeepLabCut 16 (described above). These were then smoothed using a 10-minute moving average 

window, and (T♂−T♀) / (T♂+T♀) was computed to obtain time courses for sex-preference 

behavior throughout the experiment. Male and female investigation time was computed and 

compared across 10-minute windows corresponding to the baseline and stimulation epochs. For 

each cohort, we performed sham control sessions in which animals were attached to the optic 

fiber, but no light was delivered (Figures 3.S5I-K). Two sham sessions were performed on 

different days and behavior for each animal was averaged across sham sessions. 
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While optogenetic stimulation may have an effect over a timescale of seconds, this 

temporal resolution is constrained by the experimental assays used to measure this effect. Also, 

optogenetic stimulation may or may not result in acute changes in behavior (e.g. activating the 

neurons when the animals are facing away from stimulus animals may not elicit a strong effect). 

Thus, due to the nature of the behavioral assay and its natural variability, we have to measure 

this over a period of time. This has been the typical way to operationalize and analyze sex 

preference behavior in the established literature 17,18. 

 For experiments using male-exposed animals (stimulating male cells), n = 14 animals, for 

experiments using female-exposed animals (stimulating female cells), n = 8 animals, and for 

home cage non-social control experiments, n = 9 animals. 

 

3.3.7: Extraction of calcium signals 

3.3.7.1: Motion-correction and preprocessing 

 During behavior experiments, calcium fluorescence videos were recorded through 

customized miniature microscopes (UCLA miniscope) at 30Hz using custom-written data 

acquisition software as previously described 7. Raw videos from each imaging session were 

processed using a MATLAB implementation of the NoRMCorre algorithm to correct for motion-

induced artifacts across frames 19. In order to normalize image frames prior to cell sorting, (F-

F0)/F0 (ΔF/F) was applied to each frame, where F0 was the de-trended mean frame. ΔF/F 

normalized videos were de-noised using an FFT spatial band-pass filter in ImageJ (v1.52a, U.S. 

National Institutes of Health), and spatially down sampled by a factor of 2 prior to ROI identification 

and cell sorting. 

 For comparison of cell encoding across the home cage and two-chamber assays (Figures 

3.4C-H), we performed these two experiments in immediate succession without removing the 

head-mounted microscope or changing the recording settings (Figure 3.S2F), such that identical 

cells in the same imaging view were recorded across two assays. Calcium fluorescence videos 
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from these two sessions were concatenated and preprocessed together, and single cell ROIs 

were segmented (described below) across both experiments. These procedures ensured that 

cells in both sessions were precisely aligned, allowing analysis of the exact same cells across 

sessions. 

 

3.3.7.2: Segmentation and ROI identification 

 We identified putative cell bodies for extraction of neural signals using an established 

pipeline as previously described and validated 7. Specifically, we employed an automated ROI 

detection algorithm that uses principal (PCA) and independent component analysis (ICA) to 

extract spatial filters based on spatiotemporal correlations among pixels 20. Independent 

components were manually inspected to remove components that did not represent cell bodies, 

and binary thresholding was applied to remove contributions from pixels outside the bounds of 

putative neurons. Spatial filters were then applied to the ΔF/F movie to extract the calcium traces. 

All traces from recorded cells were manually inspected to ensure quality signals. Specifically, 

putative neurons that had abnormally shaped cell bodies (abnormally large or small), or that had 

calcium transients with low signal-to-noise were excluded from further analysis (<5% of all 

putative neurons were excluded in this manner).  

 For home cage social investigation imaging experiments in Figure 3.1, a total of 5829 

(mean ± SEM = 211 ± 9) single neurons were analyzed (n = 23 males and 5 females). For imaging 

of GABAergic (Vgat+) neurons, a total of 366 (mean ± SEM = 61 ± 4) neurons were analyzed 

(9.6% ± 0.3 of all cells, n = 6 males). For imaging of glutamatergic (CaMKII+) neurons, a total of 

1373 (mean ± SEM = 229 ± 7) neurons were analyzed (25.4% ± 2.6 of all cells, n = 6 males). 

For two-chamber imaging experiments, a total of 6686 (mean ± SEM = 216 ± 6) neurons 

were analyzed (n = 14 males). For Figures 3.4A-B, n = 7 males. For figures 3.4C-H, n = 10 males. 

For Figures 3.4I-K, n = 7 males. 
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For all experiments, a single neuron refers to one calcium trace extracted from an ROI, 

identified as described above, from one recording session. 

 

3.3.8: Analysis of single cell responses during social interaction 

 Prior to downstream analysis, all ΔF/F calcium traces were z-scored and are presented 

throughout in units of standard deviation (!). Responses of single neurons during social 

interaction events were quantified using ROC (receiver operating characteristic) analysis as 

previously described 4,7. Upon application of a binary threshold to the ΔF/F signal and comparison 

with a binary event vector denoting behavior, event detection based on neural activity can be 

measured using the true positive rate (TPR) and the false positive rate (FPR) over all time-points. 

Plotting the TPR against the FPR over a range of binary thresholds, spanning the minimum and 

maximum values of the neural signal, yields an ROC curve that describes how well the neural 

signal detects behavior events at each threshold (Figure 3.1F). We used the area under the ROC 

curve (auROC) as a metric for how strongly neurons were modulated during social interaction. 

For each neuron/behavior category, the observed auROC was compared to a null distribution of 

1,000 auROC values generated from constructing ROC curves over randomly permuted calcium 

signals (traces that were circularly permuted using a random time shift). A neuron was considered 

significantly responsive (⍺ = 0.05) if its auROC value exceeded the 95th percentile of the random 

distribution (auROC < 2.5th percentile for inhibited responses, auROC > 97.5th percentile for 

excited responses).  

 We analyzed the difference in stimulus-evoked activity in dmPFC neurons over the course 

of the two-chamber session (Figure 3.4H-I, 3.S3E). We normalized differential activity in each 

epoch by the average activity of that cell. This normalization ensures that changes in differential 

activity are not due to overall changes in spontaneous activity, but rather reflect changes in the 

relative responsiveness of neurons to male and female stimuli. 
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 Because some behavior events occur at different frequencies, there may be differences 

in the effective statistical power for the bootstrap ROC analysis between different event types 

(e.g. male and female investigation). Although this is unlikely to substantially affect measures of 

significantly responsive neurons, we performed additional control analyses to confirm that 

differences in fractions of responsive neurons were not due to unequal class sampling (Figure 

3.S2A-D). To this end, we normalized male/female representation by uniformly rescaling each 

male or female investigation bout for each session (using nearest-neighbor interpolation) by 

scaling factors s♂ = mean(T♂, T♀)/T♂ and s♀ = mean(T♂, T♀)/T♀ where T♂ and T♀ are the 

fractions of total time spent investigating male and female conspecifics. Corresponding epochs of 

the neural traces were equivalently rescaled. Following this, the total number of frames within a 

session that correspond to male and female investigation are equalized. The ROC bootstrap 

analysis was then performed again using these rescaled bouts and calcium traces, and fractions 

of significant cells for each category were computed. The differences in male- and female-

responsive cells observed across all animals and in female-preferring animals were robust in this 

control analysis (Figures 3.S2A-D, 3.S4G-H). 

 In order to examine the coding consistency of sex-specific neurons across social 

investigation and two-chamber assays, we compared their stimulus-evoked activity in response 

to male vs. female stimuli in both experiments. We found that 72.2% of male-excited cells, 66.5% 

of female-cells, 64.7% of male-inhibited cells, 72.0% of female-inhibited cells (p < 0.001, bootstrap 

test) showed consistent increased or decreased activity in response to social stimulus 

investigation. 

 

3.3.9: Cell tuning analysis suing models of single neuron activity 

 In order to analyze how single dmPFC neurons change their tuning to male and female 

interaction over time, we used gaussian generalized linear models (GLM) to model calcium 
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activity in individual neurons as a function of several factors (Figure 3.S3F-K). This approach 

discounts contributions to neural activity that may be explained by other variables such as 

approach behavior or speed, so that weights fit to social interaction provide a measure of 

individual neural tuning to social stimuli. We used five variables to model cell activity: male and 

female interaction events, social approach, the animal’s speed, and the decay of overall neural 

population activity over time. Binary-valued vectors denoting interaction and approach events 

were first smoothed using an exponential filter (tau = 3 sec), and the animal’s speed was 

smoothed using a 3 sec moving average. For experiments with objects instead of conspecifics in 

the corners, behavior vectors denoted interaction with the right or left object, defined using the 

same criteria as described above for male and female interaction. GLM weights were fit using 

MATLAB (glmfit), and weights corresponding to male/female or object investigation were 

averaged across stimulus excited cells (defined using ROC analysis). Separate models were 

constructed for different epochs of the two-chamber session.  

 

3.3.10: Analysis of population dynamics during behavior 

3.3.10.1: Principal Component Analysis 

 To visualize population responses during social interaction (Figure 3.2E), we applied 

principal component analysis (PCA) to obtain components that capture the covariance of the 

neural population during interaction events 21. Calcium traces were first smoothed using a 5-

second moving window average. Trial-averaged responses were computed over a time window 

of 20 seconds after event onset for male and female investigation events and concatenated, and 

responses for each neuron were formed into a matrix to perform PCA. Population trajectories for 

individual investigation bouts were then projected onto the first 3 principal components for 

visualization (Figure 3.3.2E, one example animal), and trial-averaged responses were also 

projected in thick lines.  

 



 90 

3.3.10.2: Strength of population responses 

 In order to measure population responses associated with male and female investigation 

(Figure 3.5A-D), we used the Mahalanobis distance, which provides a measure of the separation 

between two population vectors while accounting for the covariance structure of the underlying 

distribution. The Mahalanobis distance between two population vectors was computed as: 

D!"#(x, b) 	= 	+(x − 	b)$S%&(x − 	b) 

where x is a population response vector at some timepoint, b is the average population vector 

over all baseline frames (where the animal does not exhibit social investigation behavior), and . 

is the covariance matrix computed over all baseline frames. For population response time-courses 

(Figures 3.5A, C), the Mahalanobis distance for individual investigation bouts was computed over 

a window of 10 seconds prior to 30 seconds after event onset. Here, we compared the average 

population responses evoked by male and female investigation and compared these across the 

top 25% male-preferring and top 25% female-preferring animals (Figures 3.5B, D). For each 

animal, a population preference score was defined as the fractional difference in average male 

vs. female response vectors, (R♂-R♀) / (R♂+R♀).  

 

3.3.10.3: Male vs. female population decoder analysis 

 In order to measure population-level encoding of conspecific sex by dmPFC neurons, we 

constructed statistical models to predict the sex identity (male vs. female) of events based on 

population activity. For this, we used binary Fisher’s linear discriminant (FLD) classifiers. 

For all classifiers used to quantify sex discrimination within the home cage and two-

chamber sessions, training sets and test sets were constructed using population vectors evoked 

during male and female investigation events. Classifiers were constructed separately for each 

animal and used neurons only from that animal. We used 10-fold cross validation to measure 

classifier performance. For each cross-validation fold, the test set was a continuous 10% epoch 
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of the data, and the remaining 90% training set was used to construct the model. For each fold, 

partial least-squares regression (PLS) was used to reduce the dimensionality of the training data, 

and the top 15 PLS components were retained for FLD analysis. Model performance was 

measured using the area under the ROC curve (auROC) for test data projected onto the Fisher 

discriminant. Overall model performance for each animal was calculated as the average over 50 

folds where the training and test sets were randomly redrawn, and folds where both male and 

female events were not represented in the training and test set were dropped. Models were 

compared with null models constructed using data with randomly permuted calcium traces.  

We found that decoders performed well above chance levels when constructed using a 

mixture of training data from both experiments (continuous 90% epochs) and tested on events 

from both (Figure 3.4F). For cross-session decoders (Figures 3.S3A-B), the analysis was 

performed as described above, except the training set comprised male and female investigation 

events from the entire home cage or two-chamber session, and the test set those from the entire 

other session. For each animal, the neural populations for both cross-session decoders were 

down-sampled to contain only the population of cells that were significantly responsive to social 

stimuli based on ROC analysis. Performance may be slightly higher in decoders trained on two-

chamber data and tested using home cage data because more training data is available from the 

longer two-chamber session. Figure 3.4G shows the projection of mean population vectors, from 

one example animal, associated with all investigation bouts from both home cage and two-

chamber experiments onto FLD components that are defined using data from only the two-

chamber session.  

 For the analyses in Figures 3.3L-M, where the performance of sex discrimination decoders 

using CaMKII+ neurons is compared with that of GABAergic neurons, neural populations were 

randomly down-sampled on each cross-validation fold to a subset of N neurons (on the x-axis in 

Figure 3.3L). 500 iterations of down sampling and cross validation were performed for each 

ensemble size. Partial least-squares regression for dimensionality reduction was not used for this 
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analysis, as some cell subsets smaller than 15 are sampled (the number of PLS components 

used in other decoder analyses). 

 

3.3.11: Quantification and statistical analysis 

 All statistical analyses for this study were conducted using GraphPad Prism (v8.4.0) or 

custom routines in MATLAB (Mathworks) and are described in the respective figure legends and 

Methods. All bar plots with error bars represent mean ± SEM; all box and whisker plots represent 

the median, interquartile range (box), and min and max (whiskers) of the underlying distribution. 

Statistical significance was defined with α < 0.05 using two-tailed tests unless otherwise specified. 

Full statistics for all ANOVA analyses are reported in Table S1. For comparisons of cell pairwise 

distance distributions, two-sample Kolmogorov-Smirnov tests were used. Resampling methods 

based on temporally permuting calcium traces (described in Methods) were used to assess 

significance of auROC values for social modulation of neural signals and performance of FLD 

decoders. 

 

3.4: Results 

3.4.1: dmPFC neurons encode conspecific sex 

 In order to first explore whether dmPFC neurons encode male- and female-specific 

information, we performed in vivo microendoscopic calcium imaging 22 of dmPFC neurons during 

natural investigation of male and female conspecifics (Figure 3.1A). To optically record from 

dmPFC neurons, we injected an adeno-associated virus (AAV) expressing the fluorescent 

calcium indicator GCaMP6f 23 and implanted a gradient refractive index (GRIN) lens above the 

dmPFC (Figure 3.1B). Expression of GCaMP6f and placement of the lens were confirmed 

histologically (Figure 3.1C). During imaging, we presented each subject animal with 8 novel 

males and 8 novel females interleaved with novel objects. Each stimulus animal was presented 

for 20-30 s, during which the subject animal was free to investigate. After imaging sessions, 
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activity signals associated with single cells were extracted using independent component analysis 

as previously described 7,20 and are reported throughout as relative change in fluorescence (ΔF/F) 

(Figures 3.1D-E). We recorded a total of 5897 dmPFC neurons across 28 animals, including both 

males and females. 

In order to determine whether single neurons selectively encode sex-specific information, 

we computed a receiver operating characteristic (ROC) curve for each neuron/stimulus 

(male/female/toy) relationship, which quantifies its stimulus detection strength over a range of 

binary thresholds (Figure 3.1F). Using this approach, we identified a substantial fraction (22%) of 

dmPFC neurons that showed significant responses during investigation of social stimuli (Figure 

3.1G, H). Many neurons were selectively tuned to either male or female investigation (Figures 

3.1I-J, 3.S1C-D). Interestingly, in male animals, a larger fraction of neurons showed increased 

activity during interaction with female compared to male conspecifics (Figure 3.1I), suggesting a 

bias toward encoding of female cues. However, when we examined this in female mice, we found 

that comparable fractions of neurons responded to male and female conspecifics (Figure 3.S1C-

D), suggesting that stronger encoding of female cues is specific to the male dmPFC. 

This intriguing observation raises the questions of how female and male conspecifics are 

differentially encoded in the male brain and how this representation is linked to behavior. Although 

single cells encoding sex-specific information preferentially responded to male or female cues, 

male and female cells had overall similar response amplitude and reliability (Figure 3.S1E-G), 

suggesting that their basic response properties are not significantly different. Moreover, male- 

and female-encoding cells were not selectively tuned to investigation of sex-specific odor cues 

(Figure 3.S1I), suggesting that sex representation is unlikely solely due to olfactory inputs. Lastly, 

to examine whether these neurons were intermingled or separately clustered within the dmPFC, 

we analyzed the spatial distributions of sex-encoding cells. We found no differences in the 

distributions of sex-encoding compared to non-encoding cells (Figures 3.1K-L), indicating that 

sex-encoding cells are not spatially organized. Collectively, these results show that single neurons 
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in the dmPFC encode the multisensory variable of sex, and in males, form a stronger 

representation of female compared to male cues. 
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Figure 3.1: dmPFC neurons encode conspecific sex during natural social interaction. (A) 
Schematic of social investigation assay. Eight novel male and eight novel female conspecifics are 
presented interleaved with a novel object, and the subject animal is allowed to freely investigate. 
(B) Illustration of the microendoscope placed above the dmPFC. (C) Example image showing 
expression of GCaMP6f in neuronal cell bodies. The location of the focal plane is estimated based 
on the estimated working distance of the lens. (D) Imaging field of view showing raw calcium 
fluorescence from one animal (max projection). (E) ROIs corresponding to single neurons 
extracted from the field of view in (D). (F) Receiver operating characteristic (ROC) curves 
computed from three example neurons that are female excited (auROC = 0.86), female 
suppressed (auROC = 0.17), or not responsive to female (auROC = 0.51). (G) Example calcium 
traces from social-mixed (top), male (middle), and female (bottom) neurons. (H) Distribution of 
social cells (responding to either male or female interaction) and toy-responsive cells from all 
recorded animals. (I) Fractions of male- and female-excited cells among socially responsive 
dmPFC neurons recorded from males (p = 0.0071). Mixed cells responding to more than one 
category constituted 6.29% ± 1.18% (mean ± SEM) of socially responsive cells. We also observed 
a higher fraction of female-excited cells when normalizing the sampling of male and female 
investigation. (J) Fractions of male- and female-inhibited neurons recorded from male animals (p 
= 0.59). (K) Example field of view showing spatial locations of male- and female-responsive cells. 
(L) Cumulative histogram showing the mean fraction of cells within a given pairwise distance (x 
axis), compared between subsets of functionally defined neurons. In (H), n = 28 animals (including 
males and females); (I and J) Mann-Whitney U test, n = 23 animals; (L) two-sample Kolmogorov-
Smirnov test, n = 23 animals. **p < 0.01, n.s., not significant. Scale bar, 200 mm.  
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3.4.2: Population representations in the dmPFC uniquely encode conspecific sex 

 Single neurons in the dmPFC formed largely non-overlapping subpopulations that 

responded specifically to male or female investigation (Figures 3.2A-D, 3.S1K), suggesting that 

male and female interaction may elicit unique and separable trajectories of population activity. In 

order to explore this, we projected single-trial population dynamics during investigation bouts onto 

principal components. This revealed a clear separation of single-trial responses associated with 

male vs. female interaction (Figure 3.2E-F), indicating that the population may discriminate sex 

information. Still, while this visualization suggests separable patterns of activity, sex 

representations may not be temporally stable or general enough to decode sex across time and 

across novel animals. In order to test whether sex representations are stable and general, we 

constructed linear discriminant decoders to predict the sex identity of novel animals using 

population activity. The cross-validated performance of these decoders was well above chance 

levels (Figure 3.2G), indicating that unique and stable response patterns in the dmPFC encode 

the sex of conspecifics. Importantly, the fact that sex could be decoded across novel animals 

(Figure 3.2G) suggests that different animals of the same sex evoked consistent activity patterns, 

indicating a general representation of sex itself. Consistent with male mice having more female- 

than male-responsive cells (Figure 3.1I), we also found that male animals showed higher 

amplitude population responses during female investigation compared to male investigation 

(Figure 3.2F), whereas females did not show this difference (Figure 3.S1H). Together, these 

results suggest that dmPFC neurons encode sex stably at the population level, and that in males, 

this distributed representation exhibits a bias toward encoding of female cues. 
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Figure 3.2: Population representations of male and female. (A and B) Average responses of 
male-responsive (A) and female-responsive (B) neurons centered around investigation onset. 
The top 100 neurons, sorted using rank-ordered auROC values, are shown for each cell type 
(showing excited or in- hibited responses). (C and D) Average responses of all male-excited (C) 
and female-excited (D) neurons during male and female investigation (mean ± SEM). (E) Principal 
component projection of population dynamics during individual male and female inves- tigation 
bouts (thin lines) and average responses (thick lines) from one example animal. Dots indicate 10 
s time intervals, and dotted lines indicate time before investigation onset. (F) Comparison of the 
population response ampli- tude during male versus female interaction in male animals. 
Population responses (projected to PC1–3) are measured over the first 10 s of interaction and 
averaged across bouts within each animal (Mann- Whitney U test, p = 0.0095, n = 23 animals). 
(G) Performance of Fisher’s linear discriminant (FLD) decoders trained to classify male versus 
female investigation using population dynamics. Cross- validated auROC is compared with 
performance of null models trained and tested using time-permuted calcium traces (Wilcoxon 
signed-rank test, p = 2.7e5, n = 23 animals). ***p < 0.001, **p < 0.001. 
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3.4.3: Encoding of conspecific sex across distinct subpopulations 

 Next, we sought to gain deeper insight into how sex representations are distributed across 

different dmPFC neuron cell types. While encoding of conspecific sex may be distributed broadly, 

another possibility is that specific neuronal populations may preferentially encode sex-specific 

information. To this end, we explored how excitatory and inhibitory subpopulations of dmPFC 

neurons contribute to the encoding of conspecific sex. We injected an AAV expressing GCaMP6f 

in either CaMKII+ (predominantly excitatory, Figure 3.3A) or Vgat+ (GABAergic, Figure 3.3B) 

neurons and recorded neural activity during the social investigation assay. Overall, we recorded 

from a total of 1373 CaMKII+ neurons and 336 Vgat+ neurons. 

Analysis of single neuron responses using ROC curves showed that both populations 

contained a substantial fraction of cells encoding social cues (Figures 3.3C-D). Consistent with 

our results above, we found that there were more female- than male-encoding cells in both 

subpopulations in males (Figures 3.3E-F, 3.S2C-D), indicating that the bias in encoding of female 

cues is preserved across both excitatory and inhibitory cell types. We also found that social cells 

in each subpopulation were similarly spatially intermixed (Figure 3.3G), indicating that sex 

information is distributed widely and not clustered within either subtype. Interestingly however, 

despite similarities in spatial distributions and encoding of social information, a higher fraction of 

Vgat+ compared to CaMKII+ neurons were specifically responsive to conspecific sex (Figure 

3.3H), suggesting that sex information may be more enriched in GABAergic neurons. This 

enrichment of sex encoding in GABAergic neurons was preserved across different response 

categories, and significant among male- and female-excited cells (Figures 3.3I, 3.S2E). Lastly, 

we analyzed how information at the single neuron level in CaMKII+ and Vgat+ ensembles could 

be read out at the population level to discriminate conspecific sex. To explore this, we constructed 

linear decoders and found that male vs. female investigation could be decoded from both CaMKII+ 

and Vgat+ ensembles with above chance accuracy (Figures 3.3J-K). However, when we 

examined the dependence of decoder performance on population size, we observed that 
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GABAergic neurons, when compared using the same number of neurons, were consistently better 

at discriminating conspecific sex (Figures 3.3L-M). This suggests again that sex information is 

more strongly encoded within inhibitory neurons. Taken together, these data demonstrate that 

while conspecific sex is represented more strongly in inhibitory neurons, population-level 

encoding of conspecific sex recruits both subpopulations of cells, which both exhibit a stronger 

representation of female compared to male cues.  

 
Figure 3.3: dmPFC encoding of sex is distributed across distinct neuronal subpopulations. 
(A and B) Schematic showing lens and microscope placement above dmPFC (left) and 
expression of GCaMP6f in CaMKII+ or Vgat+ neuron cell bodies (right). CaMKII-GCaMP labeled 
25.4% ± 2.6% of dmPFC cells, and Vgat-GCaMP labeled 9.6% ± 0.3% of dmPFC cells (mean ± 
SEM). (C and D) Distribution of social (male and/or female responsive) and toy-responsive 
neurons among CaMKII+ (n = 1373) or Vgat+ (n = 336) cells. (E and F) Comparison of fractions 
of male- and female-encoding cells within the CaMKII+ or Vgat+ population (E, p = 0.0001; F, p 
= 0.0015). We also observed a higher fraction of female-encoding cells when normalizing the 
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sampling of male and female investigation. (G) Cumulative histogram showing the mean fraction 
of cells within a given pairwise distance (x axis) for CaMKII+ and Vgat+ neurons. (H) Comparison 
of the percentage of social cells identified in CaMKII+ versus Vgat+ populations (p = 0.0043). (I) 
Fractions of male- and female-excited cells within the CaMKII+ and Vgat+ populations (male-
excited, p = 0.031; female-excited, p = 0.012). (J and K) Performance of Fisher’s linear 
discriminant (FLD) decoders trained to classify male versus female investigation using the 
CaMKII+ or Vgat+ population. Cross-validated auROC is compared with performance of null 
models trained using time-permuted calcium traces (J, p = 0.0312; K, p = 0.0312). (L) Decoder 
performance in CaMKII+ and Vgat+ cell populations as a function of ensemble size (mean ± SEM, 
p = 0.040 number/cell-type interaction). (M) Decoder performance of CaMKII+ versus Vgat+ cell 
populations after down-sampling ensembles to 50 neurons (mean ± SEM, p = 0.0411). In (E) and 
(F), one-way ANOVA followed by Tukey’s range test; (G) two-sample Kolmogorov-Smirnov test; 
(H), (M) Mann-Whitney U test; (I) Tukey’s range test; (J and K) Wilcoxon signed-rank test; (L) two-
way repeated-measures ANOVA. n = 6 animals for each group (CaMKII+ and Vgat+). ***p < 
0.001, **p < 0.01, *p < 0.05, n.s., not significant. Scale bar, 200 mm. See also Figure S2.  
 
 
3.4.4: Encoding of conspecific sex across distinct contexts 

In order to guide behavior in an adaptive way, one may expect representations of sex to 

generalize across different environments as well as animal identities. To determine whether 

dmPFC encoding of conspecific sex is general across different environments, we followed the 

home cage social investigation assay with a two-chamber assay in which animals freely explored 

novel male and female conspecifics placed in opposing corners in a two-chamber environment 

(Figure 3.4A). As mPFC neurons may also encode spatial information 9, we performed two 

sessions alternating the locations of male and female stimuli in the arena to dissociate encoding 

of conspecific sex from location (Figure 3.4A). We used DeepLabCut 16 to automatically track the 

location and pose of subject animals—this was then used to identify social investigation events in 

an unbiased manner (see Methods). We first confirmed that single dmPFC neurons also encode 

sex information in the two-chamber context. Individual cells responded to male or female stimuli 

across sessions with alternating locations, indicating that they encode conspecific sex irrespective 

of spatial conjunction (Figure 3.4B). By precisely mapping neuronal cell bodies across the home 

cage and two-chamber assays (Figure 3.S2F, see Methods), we found that 26% of the recorded 

cells responded selectively across both assays (Figures 3.4C-E), suggesting that single cells in 
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the dmPFC are able to encode conspecific sex consistently across different contexts. To explore 

whether the population representation within each animal could generalize across contexts, we 

trained linear decoders to discriminate male vs. female investigation across both sessions. 

Consistent with our observations of shared encoding at single neuron levels, population decoders 

could predict sex identity across both contexts (Figure 3.4F). Further, male and female 

investigation events were generally well separated by a discrimination axis defined in only one 

context (Figure 3.4G, 3.S3A-B). Together, these data suggest that dmPFC representations of 

male and female cues are general across distinct contexts. 
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Figure 3.4: Encoding of conspecific sex across contexts and experience-dependent 
changes. (A) Illustration of the two-chamber social exploration task. Male and female locations 
are switched across two sequential sessions.	 (B) Neural activity heatmaps showing mean 
responses of male-excited (top) and female-excited (bottom) neurons during the two-chamber 
assay. (C) Distribution of social (male or female responsive) dmPFC neurons that are significantly 
responsive across both the home cage social investigation and two- chamber assays. (D) 
Fractions of male- and female-excited cells that consistently encode sex information across both 
the home cage and two-chamber sessions (p = 0.031). (E) Fractions of male- and female-
suppressed cells that encode sex information across sessions (p = 0.450). (F) Performance of 
Fisher’s linear discriminant (FLD) decoders trained using data from both the social investigation 
and two-chamber assays and tested on data from both. Cross-validated auROC is compared to 
control decoders constructed using time-permuted calcium traces (p = 0.002). (G) Projection of 
mean population responses associated with male and female investigation bouts from the home 
cage (circles) and two-chamber (solid dots) sessions onto FLD components computed from two-
chamber data. Performance of cross session decoders using sex-selective cells are shown in 
Figures 3.S3A and 3.S3B. (H) Change in activity difference of male- and female-responsive cells 
evoked by male versus female investigation during different time epochs in the two- chamber 
assay (mean ± SEM, p < 0.0001). Stimulus-evoked activity in each epoch is normalized to overall 
population activity. (I) Change in activity difference of object-excited cells during investigation of 
one object versus the other object (mean ± SEM, p = 0.87). Stimulus-evoked activity in each 
epoch is normalized to overall population activity. (J) Performance of decoders to discriminate 
male versus female investigation using population dynamics during the first and second half of 
the two-chamber session (animal locations not switched, p = 0.016). (K) Performance of decoders 
to discriminate investigation of different objects using population dynamics during the first and 
second half of non-social two- chamber experiments (p = 0.69). In (D) and (E), Mann-Whitney U 
test, n = 10 animals; (F) Wilcoxon signed-rank test, n = 10 animals; (H and I) one-way ANOVA, n 
= 291 cells (H), n = 115 cells (I); (J and K) Wilcoxon signed-rank test, n = 7 animals. ***p < 0.001, 
**p < 0.01, *p < 0.05, n.s. = not significant. 
 
 
3.4.5: Representation of conspecific sex is strengthened by short-term social experience 

 Previous work has suggested that in subcortical regions, neural representations of 

conspecific sex are sharpened over the course of days or weeks 3,4. Even within the course of 

one interaction episode, accumulation of social cues may dynamically shape subsequent 

interaction. We therefore explored whether and how neural representations of sex may change 

over a faster time scale during a single exploration episode in the two-chamber. Interestingly, we 

found that the mean activity of sex-encoding cells during investigation of male and female 

conspecifics changed over the course of the session (Figures 3.S3C-D) such that the difference 

in response strength between the two stimuli grew larger (Figure 3.4H). This was not true for cells 

that responded to non-social objects (Figure 3.4I), suggesting that single cell discriminability of 

sex is specifically sharpened over time. Indeed, population decoders trained and tested during 



 103 

the first and second halves of the session showed significantly higher performance in the second 

half (Figure 3.4J), but not for decoding of two objects (Figure 3.4K), suggesting an increase in 

population-level sex discriminability that depends on social experience. These data suggest that 

although representations of sex are stable and general, they can also be sharpened by social 

experience. 

In order to further analyze how changes in responses to male and female cues affect 

neural tuning, we constructed generalized linear models (GLM) to model single neuron activity as 

a function of behavioral variables, including social investigation (Figure 3.S3F). Analysis of the 

coefficients fit to single neuron GLMs showed a significant increase in tuning to male and female 

investigation for male and female cells, respectively, over time (Figures 3.S3G-I). In contrast, 

cells that responded to objects did not show an increase in tuning (Figures 3.S3J-K), further 

indicating that encoding of conspecific sex, but not non-social stimuli, is sharpened with social 

experience. While previous work has found that subcortical encoding of social information can be 

strengthened over days 3,4, these results suggest that cortical sex representations may be more 

amenable to short-term sharpening.  

  

3.4.6: Activity of sex-encoding cells predicts behavioral sex preference 

 Internal representations of sex-specific social cues are thought to play an important role 

in driving behavior directed toward male or female conspecifics 1,2, raising the possibility that sex 

representations in the dmPFC may play a role in controlling male- or female-directed sociality. 

Based on this, we next explored the relationship between sex encoding and sex preference 

behavior in individual animals. 

 At the behavioral level, we observed a modest group-level bias in males toward female 

investigation (Figure 3.S4A), consistent with previous literature 17,18. Interestingly, we found 

earlier that dmPFC neurons encoded female more strongly in distinct cell types (Figures 3.1I, 

3.2F, 3.3E, and 3.3F), and across different contexts (Figure 3.4D), suggesting that this sex 
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encoding bias may be linked to female preference behavior in males. To rule out the possibility 

that bias toward female encoding may be due to unequal sampling of investigation events and 

resulting differences in statistical power, we controlled this analysis by normalizing the 

representation of male and female investigation (see Methods). We confirmed that a larger 

fraction of dmPFC neurons encoded females even when behavioral events were precisely 

equalized (Figure 3.S2A-D).  

 However, beyond this group-level female preference, individual males displayed a wide 

range of preference scores, with some displaying a preference for males (Figure 3.S4A). When 

social stimuli were absent, the variability in behavioral preference in the two-chamber assay was 

significantly reduced (Figure 3.S4C), indicating that individual preferences for male or female are 

driven by the presence of conspecifics and not simply by random movement. Moreover, this 

individual behavioral preference is relatively stable—sex preference of individual animals was 

significantly correlated within sessions and across consecutive days (Figures 3.S4D-E), 

indicating that sex preference in individuals reflects a consistent behavioral state. 

Interestingly, when we compared animals that displayed a stronger preference for female 

vs. for male interaction, female-preferring animals had significantly more female-responsive 

neurons than male-preferring animals (Figure 3.S4G-H), suggesting that the relative strength of 

male vs. female representations is linked to behavioral preference. In light of this, we next 

explored the relationship between population-level encoding of sex and preference behavior. To 

analyze the strength of male and female representations, we measured the population response 

amplitude during each male/female investigation event as the Mahalanobis distance between the 

stimulus-evoked population vector and baseline activity. While female-preferring animals showed 

a stronger population response during female interaction (Figures 3.5A-B), male-preferring 

animals showed a stronger response during male interaction (Figures 3.5C-D). Taken together, 

these data suggest that a preference state is encoded in the relative activity of neural sex 

representations that predicts sex preference behavior (Figure 3.5E). 
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Figure 3.5: dmPFC neurons encode a sex preference state. (A and C) Average population 
response, measured as the Mahalanobis distance between trial response vectors and baseline 
(see STAR Methods) for male-preferring (A) and female-preferring (C) animals evoked during 
male or female interaction (mean ± SEM). (B and D) Average responses in (A) and (C) quantified 
over the first 10 s following interaction (mean ± SEM, Mann-Whitney U test, p = 1.26e4, n = 46 
male bouts and n = 42 female bouts [B], p = 0.0195, n = 60 male bouts and n = 66 female bouts 
[D]). (E) Schematic showing how the relative strength of sex-specific responses predicts individual 
sex preference. ***p < 0.001, *p < 0.05. 
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3.4.7: Male and female neural representations modulate sex preference behavior 

 The strong association between the neural representation of conspecific sex and 

behavioral preference raises the possibility that ensemble representations may causally influence 

preference behavior. A typical way to examine causal influence of neural activity is to activate an 

anatomically or genetically defined subset of neurons 24–26. However, accumulating evidence 

points to an increasingly common picture in which one neuronal subpopulation may participate in 

multiple representations, and one representation may recruit multiple subpopulations 5,6,27. 

Indeed, we found that sex representations in the dmPFC are distributed across excitatory and 

inhibitory subpopulations (Figure 3.3). This underscores the necessity of directly controlling 

neuronal populations defined by natural activity rather than by specific molecular markers.   

 Therefore, to test the functional role of sex representations in sex preference behavior, we 

employed an activity-dependent labeling strategy to express ChR2 in specific subsets of dmPFC 

neurons that were activated by male or female conspecifics (Figure 3.6A). We virally injected an 

AAV carrying E-SARE-CreER to express a Tamoxifen (4-TM)-inducible CreER driven by E-SARE, 

an activity-induced synthetic promoter that was previously shown to display greater activity-

dependent induction compared to immediate early genes such as Fos or Arc 14,28. We also co-

injected an AAV expressing Cre-dependent ChR2. This combination of AAVs allowed us to restrict 

ChR2 expression to the select neural population that was active at the time of 4-TM injection 14. 

Specific dmPFC neurons were labeled following natural exposure to either male or female 

conspecifics, and then optogenetically re-activated several weeks later in the two-chamber assay 

to measure sex preference. Histological analysis showed robust expression of ChR2 in animals 

exposed to social stimuli at the time of 4-TM induction, but not in animals lacking 4-TM injection 

(Figures 3.S5A-B), confirming specific labeling of neurons that were active during social 

interaction. 

 In order to further validate the efficacy and specificity of this strategy, we examined the 

overlap between EYFP+ cells labeled by E-SARE following social or non-social exposure and cells 
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expressing the immediate early genes Fos and Arc following a second exposure to males or 

females (Figure 3.S5C). We found that male-induced E-SARE EYFP+ cells showed a 

substantially higher overlap with male-induced Fos/Arc+ cells, compared to that of EYFP+ cells 

induced by females or in home cage controls (Figure 3.S5D). Conversely, female-induced E-

SARE EYFP+ cells showed a substantially higher overlap with female-induced Fos/Arc+ cells, 

compared to that of EYFP+ cells induced by males or in home cage controls (Figure 3.S5E). This 

suggests that the E-SARE labeling strategy captures specific ensembles of neurons that encode 

sex-specific cues across distinct social experiences. 

 We then optogenetically re-activated neurons that were naturally activated by exposure to 

females (Figure S5F-H). Stimulation of female cells resulted in an acute change in sex preference 

behavior toward female-directed interaction (Figure 3.6B, 3.S5I). This was driven by a specific 

increase in the time spent investigating the female conspecific, as male investigation time 

remained unchanged (Figures 3.6C-D). In striking contrast, stimulation of male cells had the 

opposite effect on sex preference behavior (Figure 3.6E, 3.S5J), resulting in an acute bias toward 

male interaction driven by a specific increase in male-directed investigation (Figures 3.6F-G). 

This suggests that sex preference behavior is modulated by specific subpopulations of neurons 

that are defined by their native activation in response to male or female stimuli. Indeed, 

optogenetic re-activation of neurons that were activated during a home cage exposure without 

male or female stimuli had no effect on preference behavior (Figures 3.6H-J, 3.S5K). 

 Finally, we analyzed the axonal projection patterns of male- and female-activated dmPFC 

neurons (Figure 3.S6). Both male and female cells showed broad projection patterns to several 

subcortical structures involved in social behavior and motivation. Although we observed a trend 

toward stronger nucleus accumbens and dorsal striatum projections in female cells (Figure 

3.S6B), there was no overall difference between the projection patterns of male and female cells. 

This suggests that their opposing effects on sex preference behavior are unlikely due to gross 

differences in their axonal projection patterns. 
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Together, these data demonstrate that two subsets of dmPFC neurons—which are 

separable subpopulations that are natively activated in response to sex-specific social cues—

modulate interaction with male vs. female conspecifics. These results firmly establish a functional 

role for cortical representations of conspecific sex in sex preference behavior.  

Figure 3.6: Male- and female-activated cells modulate male vs female interaction. (A) 
Experimental paradigm used to test the causal role of male and female representations in sex 
preference behavior. After viral injection of E-SARE-CreER and Cre-dependent ChR2 constructs, 
animals interact with either male or female conspecifics followed by tamoxifen injection, and 
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activity-defined cells are optically stimulated in the social two-chamber environment (see STAR 
Methods). (B, E, and H) Time course of sex preference in the male/female two-chamber session 
(mean ± SEM). Optical stimulation of female-activated cells induces a bias toward female 
interaction (B), stimulation of male-activated cells induces a bias toward male interaction (E), and 
stimulation of non-specific cells induces no bias (H). (C and D) Male or female interaction time 
before, during, and after stimulation of female-activated neurons (mean ± SEM, p = 0.004, 
light/sex interaction in two- way repeated-measures ANOVA; C, p = 0.84, D, p = 0.016, Wilcoxon 
signed-rank test; n = 8 animals). (F and G) Male or female interaction time before, during, and 
after stimulation of male-activated neurons (mean ± SEM, p = 0.033, light/sex interaction in two-
way repeated-measures ANOVA; F, p = 0.042, G, p = 0.50, Wilcoxon signed-rank test; n = 14 
animals). (I and J) Male or female interaction time before, during, and after stimulation of non-
specific neurons (mean ± SEM, p = 0.63, light/sex interaction in two-way repeated-measures 
ANOVA; I, p = 0.36, J, p = 0.32, Wilcoxon signed-rank test; n = 9 animals). ***p < 0.001, *p < 
0.05, n.s., not significant. 
 
 
3.5: Discussion 

 Using microendocsopic calcium imaging, we found that the dmPFC uses a distributed 

neural code, which recruits both excitatory and inhibitory subpopulations, to represent conspecific 

sex. While both male and female dmPFC encodes conspecific sex, an overall stronger encoding 

of female conspecifics is specifically observed in males but not females, and the relative strength 

of male vs. female representations predicts sex preference behavior. Further, using activity-

dependent optogenetic manipulations of natively active ensembles, we found that cortical 

representations of conspecific sex modulate sex preference behavior in males. Together, these 

results demonstrate a functional role for neural representations of sex in shaping behavior and 

present a neural mechanism for cortical control of male- and female-directed sociality.  

 

3.5.1: Cortical representation of conspecific sex 

 To navigate the social world, animals must be able to recognize conspecific sex, an 

essential feature that defines social relationships and shapes interaction between conspecifics. 

Previous studies have contributed to a classic view that processing of sex-specific social cues 

depends almost exclusively on subcortical circuits 2–4. In contrast, growing appreciation for the 

role of prefrontal circuits in social behavior has spurred an effort to explore native mPFC activity 

during social interaction 7–9. As mPFC circuits have been implicated in the control of social 
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motivational states 29, social dominance 7,11, and sexual behavior 10, complex social information 

must be integrated by mPFC neurons for animals to make adaptive decisions. Still, the basic 

question of whether cortical neurons play a role in sex recognition has not been addressed. Here, 

we found that a substantial fraction of neurons in the dmPFC of both male and female mice 

respond preferentially to male vs. female interaction. 

Recent work has shown that neurons in the mPFC respond similarly to both male and 

female odor cues 30. Our study shows that, during natural interaction with conspecifics, males and 

females are encoded in largely non-overlapping sets of neurons that form unique population 

representations. This suggests that natural social stimuli may drive neural responses differently, 

and perhaps more strongly, than simple odor cues. Furthermore, we found that in the brains of 

male but not female mice, prefrontal neurons exhibit a bias toward stronger encoding of female 

cues which is maintained at the population level. This representational dimorphism may reflect 

distinct mechanisms underlying sex encoding and preference behavior in males vs. females. 

Indeed, subcortical sex representations, which also show a bias toward encoding of female cues 

in males, are selectively regulated by oxytocin signaling in males but not females 4,17. More 

generally, whether and how cortical sex representations differ from sex encoding in subcortical 

regions such as the amygdala and hypothalamus 3,4 also deserve future attention. While 

subcortical representations are shaped over the course of days with social experience, we found 

that neurons in the dmPFC sharpen their sex-specific tuning on a faster timescale of 10-20 

minutes. This may suggest that cortical representations of sex are more flexible, and may be more 

amenable to conjunctive coding schemes that link social stimuli with contextual or spatial cues 9. 

 We also leveraged the optical recording approach to investigate how different populations 

of dmPFC neurons contribute to sex representations. By imaging both excitatory (CaMKII+) and 

inhibitory (Vgat+) neurons, we found that both subpopulations encode male and female cues and 

discriminate conspecific sex. Interestingly, while sex information was distributed across both 

subpopulations, male and female cues were represented more strongly by GABAergic neurons, 



 111 

suggesting that sex-specific social information is enriched in inhibitory neurons. These results 

illustrate the neural heterogeneity of native sex representations, highlighting the limitations of 

defining functional circuitry based molecular or anatomical profiles. 

 

3.5.2: Neural representation of behavioral sex preference 

 Despite our current understanding of how neurons encode sex cues in the brain, how 

native neural representations are related to social behavior, such as opposite-sex preference, 

remains poorly understood. Previous studies have looked into the group-level bias that animals 

display toward interaction with opposite-sex conspecifics 17,18,31. However, this has left open the 

question of how male- vs. female-directed social interaction is actually controlled in individual 

animals. Here, we show that besides the group-level preference for females, individual males 

naturally exhibit distinct preferences for either male or female interaction. At the neural level, we 

observed a stronger representation of female in male animals across multiple contexts, and 

across both excitatory and inhibitory subpopulations, linking neural representations of sex to a 

group-level behavioral preference toward females. Yet beyond this overall enrichment of female 

cells in males, dmPFC ensembles also encode individuals’ sex preference states in the relative 

activity of male vs. female population responses. While female-preferring animals showed a 

stronger neural response to female conspecifics, male-preferring animals in fact showed a 

stronger response to males. Collectively, these data support the idea that behavioral sex 

preference is closely linked to a particular representation of conspecific sex in the prefrontal 

cortex, which separately controls male- vs. female-directed sociability. 

 

3.5.3: Control of sex preference by native ensemble representations 

 Although some molecularly defined neural populations have been linked to social 

behaviors, it has been challenging to establish causal roles for native ensemble representations 

of sex information. In part, this is because neural representations of social features such as 
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conspecific sex are often distributed across distinct neuronal cell types that defy precise molecular 

or anatomical distinction 5,6,27. Indeed, we show here that cortical representations of conspecific 

sex are distributed across both excitatory and inhibitory neural subpopulations. In the context of 

early sensory and valence processing, activity-dependent labeling has been used to re-activate 

native neural representations, yielding insights into circuit function that may be missed by more 

traditional approaches 32–35. Using activity-dependent labeling coupled with optogenetic 

stimulation, we show that neurons encoding male and female are directly involved in social 

behavior, providing a critical missing link between native sex representations and control of 

behavior. When optogenetically re-activated weeks later, neural populations that were natively 

activated during interaction with male or female conspecifics acutely and specifically increased 

male or female interaction, respectively. The fact that each subpopulation only increased social 

interaction with a specific sex demonstrates that male- and female-directed sociality is regulated 

by separable prefrontal representations. Together, the activity of these two representations 

effectively control a sex preference state that may be adjusted to shape behavior. As immediate 

early gene-based labeling methods cannot capture neural ensembles that show reduced activity 

during stimulus presentation, how socially-inhibited neurons play a role in sex preference behavior 

remains an open question for future studies. 

 Collectively, these results establish a novel role for the prefrontal cortex in encoding of 

conspecific sex and provide direct evidence of a functional role for native sex representations in 

shaping male- and female-directed social behavior. These findings provide new insights into how 

the brain transforms social information into adaptive behavior. 
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3.6: Supplemental data 

 
Figure 3.S1: Analysis of social investigation and firing properties of male- and female-
encoding cells. (A) Comparison of the duration of male, female, and toy investigation bouts in 
the home cage social investigation assay (mean ± SEM, p = 1.4e-47). (B) Comparison of the 
frequency of male, female, and toy investigation bouts. (mean ± SEM, p = 0.869). (C-D) Fractions 
of male- and female-excited (C) or suppressed (D) cells among socially responsive neurons 
recorded from female animals (C, p = 1; D, p = 0.89). Mixed cells responding to more than one 
category constituted 5.31 ± 1.96% (mean ± SEM) of socially responsive cells. (E) Distributions of 
auROC (area under ROC) values for male- and female-excited cells (p = 0.202). (F) Response 
strength of cells during social investigation computed as the average Z-scored ΔF/F activity over 
all male or female investigation bouts (p = 0.84). (G) Response reliability of cells during social 
investigation computed as the fraction of bouts where the change in activity exceeds 5% of 
maximum (p = 0.90). (H) Comparison of the population response amplitude during male vs. 
female interaction in female animals. Population responses (projected to PC1-3) are measured 
over the first 10 seconds of interaction and averaged across bouts within each animal (p = 
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0.8413). (I) Activity of male-excited and female-excited cells during investigation of adults or odors 
(using soiled bedding from male and female conspecifics) (mean ± SEM). (J) Activity of male-
excited and female-excited cells during investigation of male or female adult or juvenile 
conspecifics (mean ± SEM). (K) Average responses for male- and female-responsive neurons 
centered around onset of stimulus (male or female) and toy. The top 100 neurons, sorted using 
rank- ordered auROC values, are shown for each cell type. In (A-B), one-way ANOVA; (C-D, H) 
Mann-Whitney U test, n = 5 animals; (E-G) Mann-Whitney U test, n = 228 male-encoding cells 
and 331 female-encoding cells; (I-J) Tukey’s range test, n = 39 male-encoding cells and n = 87 
female-encoding cells (I); n = 24 male-encoding cells and n = 51 female-encoding cells (J). ***p 
< 0.001, *p < 0.05, n.s. = not significant.  

 
Figure 3.S2: Analysis of sex-encoding cells with equalized behavior sampling. (A) Fractions 
of male- and female-excited (A) or suppressed (B) cells computed using ROC analysis where 
calcium traces and behavior vectors have been normalized to equalize representation of male 
and female events (see Methods). This controls for differences that may be due to unequal 
sampling of behavior variables (A, p = 0.012; B, p = 0.42). (C-D) Fractions of male- and female-
responsive neurons in the CaMKII+ or Vgat+ population computed using ROC analysis after 
equalizing representation of male and female bouts (C, 0.0012; D, p = 0.009). (E) Fractions of 
male- and female-inhibited cells within the CaMKII+ and Vgat+ populations (p = 0.68 (male-
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inhibited), p = 0.096 (female-inhibited)). (F) Schematic showing sequential home cage social 
investigation and two-chamber experiments. The microscope is not removed between sessions, 
and fluorescence videos from each session are concatenated and processed together so that the 
same exact neurons are identified across sessions. Image shows 50 example neurons recorded 
from one animal across both sessions. Example fluorescence images for illustration only. In (A-
B) Mann-Whitney U test, n = 23 animals; (C-E) One-way ANOVA followed by Tukey’s range test, 
n = 6 animals per group. **p < 0.01, *p < 0.05, n.s. = not significant.  

 
Figure 3.S3: Encoding of social information is strengthened over time. (A) Performance of 
Fisher’s linear discriminant (FLD) decoders trained on calcium data from the home cage session 
to classify male vs. female investigation using population activity in the two-chamber session. 
Performance is compared with null models constructed using time-permuted calcium traces (p = 
0.0098). (B) Performance of decoders constructed using data from the two-chamber session to 
predict the sex identity of interaction events in the home cage, compared with performance of null 
models as in (A) (p = 0.002). (C-D) Mean activity of male-excited or female-excited neurons during 
male and female investigation events over different time epochs during the two-chamber 
experiment (mean ± SEM, p = 0.021 (C), p = 0.048 (D), time/sex interaction). (E) Change in 
differential activity of male- and female-responsive cells evoked by male vs. female investigation 
during different time epochs in the two-chamber (mean ± SEM). Stimulus-evoked activity in each 
epoch is normalized to overall population activity. (F) Generalized linear models are constructed 
to model single-neuron activity using behavior variables including male and female investigation 
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(see Methods). Model weights are analyzed to measure cell tuning to different variables over time. 
(G) Schematic showing two-chamber sessions with either male and female stimuli (top) or novel 
objects (bottom). (H) Weights from generalized linear models (GLM) fit to model single-neuron 
calcium activity as a function of task parameters in the two-chamber assay (see Methods). Plots 
show weights fit to male and female investigation for male- (blue) and female-excited (red) cells 
during different epochs of the session. (I) GLM weights fit to tuned stimuli in male- and female-
responsive cells over different epochs of the experiment (p = 0.032, time factor). (J) GLM weights 
fit to model single neuron activity as in (H) from two-chamber sessions with no social stimuli. 
Colored dots show weights fit to investigation of each of the novel objects for cells that are 
significantly active during novel object investigation. (K) GLM weights fit to model object-excited 
cells during investigation of tuned stimulus. Weights do not increase over time, as is seen with 
male- and female- responsive cells. (mean ± SEM, p = 0.047, time factor). In (A-B), Wilcoxon 
signed-rank test, n = 10 animals; (C-D) Two-way ANOVA, n = 125 cells (C), n = 166 cells (D); (E) 
One-way ANOVA followed by Tukey’s range test, n = 291 cells; (I, K) Two-way ANOVA. ***p < 
0.001, **p < 0.01, *p < 0.05, n.s. = not significant.   
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Figure 3.S4: Analysis of sex-preference behavior in the two-chamber assay. (A) Distribution 
of sex preference scores in the home cage assay [(T♂-T♀)/(T♂+T♀)]. (B) Distribution of sex 
preferences scores in the two-chamber assay for animals that were implanted and wearing a 
microendoscope and animals that were not (Mann- Whitney U test, p = 0.5629). (C) Variability 
(standard deviation) in preference scores for animals in different two-chamber conditions. The 
natural variability in sex preference during the male/female two-chamber (n = 21 animals) is 
similar to the variability in social preference elicited by male (n = 13 animals) or female (n = 13 
animals) conspecifics compared to an empty cup, but higher than when social stimuli are not 
present (n = 15 animals) (p = 0.0016). (D) Linear correlation between sex preference scores 
calculated over two halves of the two-chamber. Data is pooled across two days of testing (R2 = 
0.179, p = 0.0052). (E) Linear correlation between sex preference scores across two days of 
testing with novel stimulus animals (95% confidence interval, R2 = 0.345, p = 0.0051). (F) Sex 
preference scores for animals in a two-chamber assay before and after sexual experience with 
female conspecifics (Mann-Whitney U test, p = 0.69). (G-H) Fractions of male (G) and female (H) 
cells in male- and female-preferring animals (top and bottom 30%) computed using ROC analysis 
after equalizing representation of male and female bouts (G, p = 0.5; H, p = 0.0036). In (B), Mann-
Whitney U test, n = 21 animals per condition; (C) two-sample F-test; (D-E) Linear regression, n = 
42 sessions (D), n = 21 animals (E); (F) Wilcoxon signed-rank test, n = 6 animals; (G-H) One-
sided Mann-Whitney U test, n = 7 animals per group. **p < 0.01, *p < 0.05, n.s. = not significant.  
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Figure 3.S5: Histological analysis of activity-dependent labeling and optogenetics 
controls. (A) Expression of ChR2-YFP in dmPFC neurons in an animal that was exposed to male 
conspecifics and received injection of tamoxifen. (B) Expression of ChR2-YFP in an animal that 
was exposed to male conspecifics and received a saline injection. (C) Representative fluorescent 
images showing overlap (yellow) between cells expressing Fos/Arc (red) after exposure to male 
(top row) or female (bottom row) conspecifics, and cells tagged by E-SARE (green) weeks prior 
when exposed to male (left) conspecifics, female (middle) conspecifics, or home cage (right). E-
SARE- Cre labels 298 cells/mm2 for male exposure and 323 cells/mm2 for female exposure, and 
there is no significant difference between them (p = 0.46). (D-E) Quantification of percentage 
overlap of male-induced (D) or female-induced (E) Fos/Arc+ cells with E-SARE labeled cells 
(mean ± SEM, p < 0.0001, E-SARE x Fos/Arc interaction). (F) Fiber placement above dmPFC 
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and expression of ChR2 in female-induced cells. (G) Fiber placement and expression of ChR2 in 
male-induced cells. (H) Fiber placement and expression of ChR2 in non-social dmPFC neurons. 
(I) Time spent investigating male and female in the two-chamber assay for the cohort of female-
exposed animals in separate sham sessions where the optic fiber was attached but no light was 
delivered (mean ± SEM, p = 0.82, time/sex interaction). (J) Time spent investigating male and 
female for the male-exposed cohort in control sessions with fiber attachment and no light (mean 
± SEM, p = 0.47, time x sex interaction). (K) Time spent investigating male and female for the 
home cage control cohort in sessions with fiber attachment and no light (mean ± SEM, p = 0.93 
time, x sex interaction). In (D-E) two-way ANOVA followed by Sidak’s multiple comparison test, n 
≥ 10 sections from four independently injected hemispheres per condition (for all six conditions); 
(I-K), two-way repeated measures ANOVA, n = 8 (I), 14 (J), and 9 (K) animals. ***p < 0.001, **p 
< 0.01, n.s. = not significant. Scale bar = 200 μm (A, B, F, G, H), or 50 μm (C).  

Figure 3.S6: Axonal projections of male- and female-activated neurons. (A) Sagittal view 
showing positions of brain regions imaged to quantify fluorescence intensity of axonal projections 
expressing ChR2-EYFP. (B) Quantification of fluorescent pixels per ROI for each condition (p = 
0.20, region x cell interaction). The axon density (expressed as % dmPFC Intensity) represents 
the fraction of fluorescent pixels normalized to dmPFC intensity within each mouse. (C) 
Representative fluorescent images containing images of axon terminals in nucleus accumbens 
(NAc), dorsal striatum (dorsomedial: DMS and dorsolateral: DLS), basolateral amygdala (BLA), 
lateral hypothalamus (LH), and ventral tegmental area (VTA) from male-activated (top row) or 
female-activated (bottom row) mice. Scale bar = 500 μm.  
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Individuals 



 125 

4.1: Abstract 

 Social interactions involve complex decision-making tasks that are shaped by dynamic, 

mutual feedback between participants. An open question is whether and how emergent properties 

may arise across brains of socially interacting individuals to influence social decisions. By 

simultaneously performing microendoscopic calcium imaging in pairs of socially interacting mice, 

we find that animals exhibit interbrain correlations of neural activity in the prefrontal cortex that 

are dependent on ongoing social interaction. Activity synchrony arises from two neuronal 

populations that separately encode one’s own behaviors and those of the social partner. 

Strikingly, interbrain correlations predict future social interactions as well as dominance 

relationships in a competitive context. Together, our study provides conclusive evidence for 

interbrain synchrony in rodents, uncovers how synchronization arises from activity at the single-

cell level, and presents a role for interbrain neural activity coupling as a property of multi-animal 

systems in coordinating and sustaining social interactions between individuals. 

 

4.2: Introduction 

 Social interactions involve some of the most complex decision-making tasks that animals 

must navigate to secure their survival and reproductive success 1, as individuals must integrate 

internal state with real time decisions of their social partners in a context-dependent manner. In 

interacting dyads, individuals thus become entrained as they attend to, predict, and react to each 

other’s decisions (Figure 4.S1A) 2,3. To date, social neuroscience has mostly focused on behavior 

in individual animals to interrogate the neural computations underlying social decision-making. 

But a full understanding of the social brain requires a broader picture that reflects the dynamic 

nature of social interactions, as well as the emergent neural properties that arise from multiple 

individuals as a single integrated system 1,4–6.  

In recent years, much effort has been made to explore how neural systems coordinate 

across individuals engaged in social interaction. Simultaneous recordings from multiple human 
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subjects using non-invasive techniques (e.g. functional magnetic resonance imaging [fMRI] and 

electroencephalography [EEG]), have revealed striking patterns of interbrain neural activity 

coupling during social engagement 7–10. Despite these remarkable findings, little is concretely 

known about how interbrain synchrony arises from social interactions. Moreover, it remains 

unclear how synchrony emerges from individual neurons and neuronal populations, in part due to 

the limited spatial resolution of recording techniques in humans which cannot resolve single cell 

activity. It is also unclear whether brain synchrony is unique to primates, or whether it is a general 

phenomenon present in other social species. 

Competitive interactions are common among social species, and play an important role in 

shaping social status hierarchies 11 which influence the long-term health of individuals 12–14. 

Navigation of social interactions depends on circuitry in the medial prefrontal cortex (mPFC), 

which is implicated in the representation of social status 15–17 and shapes social and motivational 

states 18,19. However, while previous work has shown that mPFC neurons are active during social 

interaction 20,21, it has not been clear how prefrontal ensembles encode behavioral decisions 

during real-time social engagements, such as social competition. Moreover, it is, to our 

knowledge, entirely unknown whether functional brain coupling arises during social interaction in 

rodents. 

Here, we used microendoscopic calcium imaging to record from thousands of neurons in 

the dorsomedial prefrontal cortex (dmPFC) of pairs of mice engaged in social interactions. Our 

study provides conclusive evidence for interbrain activity correlations in interacting mice as well 

as a cellular level neural basis underlying this phenomenon, and identifies a critical role for 

interbrain synchrony in coordinating and facilitating social interaction. 
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4.3: Materials and methods 

4.3.1: Experimental model and subject details 

 All experiments were carried out in accordance with the NIH guidelines and approved by 

the UCLA institutional animal care and use committee (IACUC). All subject mice were male 

C57BL6/J mice ordered from Jackson Laboratories at 8-10 weeks of age and 25-30 g of weight. 

Mice were maintained in a 12 h:12h light/dark cycle (lighted hours: 10:00 pm – 10:00 am) with 

food and water ad libitum. All mice were individually housed for three weeks prior to imaging and 

behavior experiments. All experiments were performed during the dark cycle of the animals. 

 

4.3.2: Viral injections and GRIN lens implantations 

 For all surgical procedures, mice were anaesthetized with 1.0 to 2.0% isoflurane. We 

bilaterally injected 300 nl (on each side) of AAV1.Syn.GCaMP6f.WPRE.SV40 virus (titer: 

4.65 × 1013 GC per ml, Penn Vector Core) at 30 nl min-1 into the dorsomedial prefrontal cortex 

(dmPFC; also prelimbic cortex, PL) using the stereotactic coordinates (AP: +2.0 mm, ML: ± 

0.3mm, DV: -1.8mm to bregma skull surface). 30 minutes after injection, a 1.9mm diameter 

circular craniotomy was centered at the coordinates (AP: +2.0 mm, ML: 0.0 mm), and the GRIN 

lens (Edmund Optics; 1.8mm) was implanted above the injection site at a depth of -1.6mm ventral 

to the bregma skull surface and secured to the skull using super glue and dental cement. Mice 

were given one subcutaneous injection of Ketoprofen (4mg/kg) on the same day of surgery and 

Ibuprofen in drinking water (30mg/kg) starting on surgery day for 4 days. Mice were individually 

housed after surgery for two weeks. Then, the microscope together with a plastic baseplate were 

placed on top of the lens. We adjusted the position of the microscope until the cells and blood 

vessels appeared sharp in the focal plane and secured this position using dental cement. Left and 

right dmPFC were counterbalanced when choosing the field of view. The subjects included two 

mice that received a unilateral viral injection and were implanted with a 1 mm GRIN lens (Edmund 

Optics) above the right dmPFC. All mice were handled and habituated for at least 4 days before 
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experiments. We did not observe any alterations in self-directed or social behavior in implanted 

animals. 

 

4.3.3: Histology 

 Three weeks after imaging experiments, mice were transcardially perfused with 4% 

paraformaldehyde (PFA), followed by 24 h post-fixation in the same solution. 60-μm coronal 

sections were obtained using a cryostat. Finally, sections were stained with DAPI (1:5,000 

dilution) and mounted on slides. Images were acquired using a Nikon A1 confocal microscope 

to confirm the position of lens implantation and GCaMP6f expression. 

 

4.3.4: Behavior assays 

4.3.4.1: Free social interaction in the open arena 

 Two novel male mice were simultaneously placed in an open arena (32 x 20 cm) which 

allows for free social interaction. During each imaging session (10-15 minutes), calcium 

fluorescence videos from both animals and their behavior were simultaneously recorded using 

microendoscopes and a video camera, respectively. The microendoscopes were connected to a 

digital acquisition device (DAQ) through a flexible, ultra-light coaxial cable. The long cable length 

prevented cables from becoming tangled during interaction between animals, ensuring that the 

social interaction was not affected by the presence of cables. For each pair, the social interaction 

assay was followed by a 10-minute separation assay (without removing the microscopes) where 

a solid, opaque board was inserted at the midline of the arena to prevent subjects from engaging 

in social interaction. All animals were habituated to being exposed to the open arena individually 

and to wearing the miniature microscope for at least 4 days before experimentation. We imaged 

from 10 pairs of animals that naturally displayed a high level of mutual social interaction (>15% 

of total time) and 9 pairs of animals that displayed a low level of mutual social interaction (<15% 

of total time). Here, mutual social interaction is defined as moments when both animals engaged 
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in social behavior. A total of 8 implanted animals were used. Pairs that naturally displayed high 

levels of social interaction were used in further analyses of neural dynamics in Figures 4.1-4.2 

and 4.S2, except in Figure 4.S2F. When we recorded from pairs of animals that naturally 

displayed lower levels of social interactions, relatively lower interbrain correlation was observed 

(Figure 4.S2F), consistent with the notion that interbrain synchrony depends on ongoing social 

interaction. 

 

4.3.4.2: Competitive social interaction in the tube test 

 Animals were placed in a closed acrylic tube (length 60 cm; circumference 2.5 cm) with a 

1.1 cm channel cut lengthwise down the center to allow movement of the head-mounted 

microscope. The microendoscopes were connected to a DAQ through a flexible, ultra-light coaxial 

cable. During each imaging session (12-15 minutes), subjects faced a novel male conspecific and 

were permitted to freely engage the opponent mouse by approaching, pushing, or retreating. Tube 

tests have previously been implemented using shorter tubes with individual trials lasting only 

seconds 16. Here, the longer tube (60 cm) allowed us to perform longer sessions in order to permit 

each animal ample time to exhibit its full range of volitional behavior, and to respond dynamically 

to its opponent over the course of the encounter. Each session was broken into 2-5 trials, and the 

same pair of animals were manually reset to their respective end of the tube prior to each trial. All 

animals were habituated to engagement with a (different) novel male conspecific while wearing 

the miniature microscope for at least 4 days before behavior experiments. 18 pairs of mice were 

imaged using a total of 13 animals, and all pairs were used in further analyses of neural dynamics. 

For simultaneous recording with and without social contact, 10-minute imaging sessions 

were performed in 13 pairs of mice using 6 animals (from the same cohort that were used in the 

other tube test experiments), immediately followed (without removing the microscope) by another 

10-minute session after introduction of a translucent plastic separator in the center of the tube. 

Animals were free to move at will but were not in physical contact with one another. 
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4.3.5: Analysis of animal behavior 

 For both the open arena and the tube test experiments, behavior videos were recorded 

with a video camera at 20 frames per second (fps) and manually annotated frame by frame to 

identify onset and offset times for behavior of both animals. Behavior annotations were converted 

into a binary vector for each type of behavior that denotes precisely when animals are engaged 

in behavior (“1” indicates presence of a given behavior, and “0” indicates absence of that 

behavior). Epochs when animals engaged in no observable behavior or movement were 

considered to be “rest” epochs. During the “rest” epochs, the animal could observe the interacting 

partner, but was not actively behaving. 

For the open arena experiments, a total of 15 social and non-social behaviors were 

annotated. Social behaviors included attacking, approaching, chasing, escaping, sniffing, social-

grooming, defending, and mounting. Non-social behaviors included running, self-grooming, 

digging, exploration, rearing, climbing, and nesting. The level of social interaction for each pair 

was measured using the percentage of total time that both animals were engaged in social 

behaviors. 19 pairs of animals were used for basic behavior analyses shown in Figures 4.1B-D.  

For the tube test experiments, the positions of both animals were tracked automatically 

using a supervised learning algorithm. For position tracking, we employed YOLOv2 (You Only 

Look Once), a convolutional neural network (CNN) framework optimized for high accuracy object 

detection 22. We trained the CNN to detect and report bounding boxes around mice in each frame 

based on hundreds of example images. Accuracy for the automated tracking algorithm was 

confirmed by comparing the detected mouse positions with ground truth assessments in random 

samples of movie frames (>99% accuracy, Figure 4.S3A). For this analysis, individual scorers 

were blind to the identities of pairs and mice. Position vectors denoting the coordinates of each 

mouse were extracted and normalized to the length of the tube to obtain the relative tube position 

of each animal on a range from 0 (the starting end) to 1 (the opponent’s end). 



 131 

 In order to quantitatively assess the relative dominance levels of each animal within each 

pair, we calculated their average position in the tube over the entire session. Previous reports 

have associated push and retreat behavior, as well as winning in the tube test, with overall social 

dominance status among male mice 17. Because positional changes in the tube test correspond 

to gains or losses of territory that result from approach, push, or retreat behavior, each animal’s 

average tube position can be considered as a measure of its overall dominance level within the 

pair. We confirmed that animals defined in this way (one dominant and subordinate in each pair) 

had significantly different average tube positions (Figure 4.3F). To assess whether dominant and 

subordinate animals exhibited different levels of push, retreat, and approach behavior, we 

compared dominant and subordinate animals in pairs that displayed large differences in 

dominance (having a tube position difference greater than 20% of the length of the tube) (Figures 

4.3K-M). Indeed, pairs with large differences in tube position exhibited significantly different levels 

of push, retreat, and approach behavior, suggesting that the tube position metric corresponds to 

meaningful differences in behavioral repertoire that are consistent with previous studies.  

 

4.3.6: Extraction of calcium signals 

4.3.6.1: Motion-correction and preprocessing 

 During behavior experiments, calcium fluorescence videos from both animals were 

simultaneously recorded using customized miniature microscopes (UCLA miniscope) at 30Hz 

through custom-written data acquisition software. Raw videos from each imaging session were 

first processed using a MATLAB implementation of the NoRMCorre algorithm to correct for 

motion-induced artifacts across frames 23. In order to normalize image frames prior to cell sorting, 

(F-F0)/F0 (ΔF/F) was applied to each frame, where F0 was the de-trended mean image from the 

entire movie. ΔF/F normalized videos were de-noised using an FFT spatial band-pass filter 

through a custom-written script in ImageJ (U.S. National Institutes of Health), and spatially down-

sampled by a factor of 2 prior to ROI identification and cell sorting. 
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4.3.6.2: Segmentation and ROI identification 

 In order to identify putative cell bodies for extraction of neural signals, we employed an 

automated ROI detection algorithm that uses principal (PCA) and independent component 

analysis (ICA) to extract spatial filters based on spatiotemporal correlations among pixels 24. 

Independent components were manually inspected to remove components that did not represent 

cell bodies, and binary thresholding was applied to remove contributions from pixels outside the 

bounds of putative neurons. Spatial filters were then applied to the ΔF/F movie to extract the 

calcium traces. All traces from recorded cells were manually inspected to ensure quality signals. 

Specifically, putative neurons that had abnormally shaped cell bodies (abnormally large or small), 

or that had calcium transients with low signal-to-noise ratio (< 2 standard deviations above the 

mean) were excluded from further analysis. Less than 5% of all putative neurons were removed 

based on these criteria. This approach ensured that the cells we included in our analyses had 

signal that reflected real neural activity and was robust enough for downstream analyses. 

 For open arena experiments, a total of 7535 (mean ± SEM = 198 ± 5) single neurons were 

analyzed. For tube test experiments, a total of 6728 (mean ± SEM = 187 ± 10) single neurons 

were analyzed. Here, a single neuron refers to one calcium trace extracted from an ROI, identified 

as described above, from one recording session. 

 

4.3.7: Analysis of single cell responses during behavior 

 Prior to downstream analysis, all ΔF/F calcium traces were z-scored and are presented 

throughout in units of standard deviation (s.d.) unless otherwise specified. Responses of single 

neurons during behavior events (push, retreat, and approach) were quantified using an ROC 

(receiver operating characteristic) analysis, a commonly used approach that has previously been 

applied to calcium imaging data to characterize neural responses during social investigation (e.g. 

Li et al., 2017). Upon application of a binary threshold to the ΔF/F signal and comparison with a 

binary event vector denoting behavior bouts, behavior event detection based on neural activity 
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can be measured using the true positive rate (TPR) and the false positive rate (FPR) over all time-

points. Plotting the TPR against the FPR over a range of binary thresholds, spanning the minimum 

and maximum values of the neural signal, yields an ROC curve that describes how well the neural 

signal detects behavior events at each threshold. We used the area under the ROC curve 

(auROC) as a metric for how strongly neurons are modulated by each behavior. For each 

neuron/behavior category (for both subject and opponent behaviors), the observed auROC was 

compared to a null distribution of 1,000 auROC values generated from constructing ROC curves 

over randomly permuted calcium signals (that is, traces that were circularly permuted using a 

random time shift). A neuron was considered significantly responsive (⍺ = 0.05) if its auROC value 

exceeded the 95th percentile of the random distribution (auROC < 2.5th percentile for suppressed 

responses, auROC > 97.5th percentile for excited responses). Throughout, “neutral cells” refer to 

neurons that were not identified as responsive during subject or opponent behaviors. 

While the significance of the auROC values for single cells can be analytically determined 

by performing a Mann-Whitney U test, the test statistic from the U test carries a caveat of being 

highly influenced by group sample sizes. Because of the kinetics of the calcium fluorescence 

signals, treating individual frames (sampled here at 30Hz) as independent samples for a U test 

would inappropriately inflate the power of the statistical test. Instead, we chose to use the 

permutation-based resampling method described above in order to test for statistical significance, 

as this approach is not sensitive to this particular sampling issue. 

For comparison of response characteristics across subject and opponent cells (Figures 

4.S8B-C), the response strength for each neuron and each behavior was calculated as the 

average z-scored ΔF/F activity during all behavior epochs of a given type. Response probability 

for each neuron and each behavior was calculated as the percentage of behavior events with 

average neural activity that exceeded 110% of the local baseline (increased by more than 10% 

above baseline), taken over the 10 seconds preceding behavior onset. 
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In order to ensure that opponent cell responses to opponent behaviors were not 

contaminated by activity associated with overlapping subject behavior, we analyzed the mean 

activity of opponent cells during isolated subject and opponent behavior bouts (Figures 4.7H-J). 

For this analysis, all events that overlapped across subject and opponent (within 2 seconds) were 

removed. We confirmed that subject animals did not display observable behavior, and did not 

exhibit changes in movement along the tube, during opponent behaviors used for this analysis 

(Figure 4.3F-G). 

 For analysis of cells responding during opponent behavior in the open arena assay 

(Figures 4.S8D-E), ROC analysis was performed using binary behavior vectors denoting all 

pooled social behaviors from the opponent that do not overlap with subject behavior and rest. 

Observed auROC values were compared with null distributions based on randomly permuted 

calcium traces (as described above, ⍺ = 0.05). The mean activity of open arena opponent cells 

was computed over non-overlapping subject and opponent behavior, or baseline epochs. 

 Mean activity of opponent cells in the tube test was found to be significantly higher during 

social contact than after introduction of a separator to abolish contact (Figure 4.S8H), suggesting 

dependence on social context and interaction with another individual for opponent cell firing. 

 

4.3.8: Analysis of population dynamics during behavior 

4.3.8.1: Principal component analysis 

 To visualize population responses during social behavior, we applied principal component 

analysis (PCA) to obtain components that capture the covariance of the neural population during 

behavior events 26. After binning neural traces into 1-second bins, trial-averaged responses were 

computed over a time window of 40 seconds (20 seconds prior to 20 second after event onset) 

for each neuron/behavior event, and concatenated across event types (e.g., approach, push, and 

retreat). Responses for each neuron were formed into a matrix which was used to perform PCA. 

Population vectors were then averaged over individual behavior bouts and projected onto the first 
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2 principal components for visualization (Figure 4.5K). For comparison of population responses 

to different behavior types (Figure 4.5L), we calculated the pairwise Euclidean distances between 

PC-projected population vectors (using the first 3 principal components) within or across different 

behaviors. 

 

4.3.8.2: Mahalanobis distance 

 In order to visualize population response dynamics during behavior, we used the 

Mahalanobis distance, which provides a measurement of the separation between two population 

vectors while accounting for the covariance structure of the underlying distribution. This provides 

a way to quantify the strength of specific population response patterns, as opposed to simply 

measuring the average response of all neurons (Figure 4.S6A; see Li et al., 2017; Remedios et 

al., 2017). Average population vectors were constructed over frames from different behavior 

categories or over all baseline frames. The Mahalanobis distance between two vectors is 

computed as: 

 

/!"#(0&, 0') 	= 	+(0& −	0')$1%&(0& −	0') 

 

where 0( is the mean population vector over all frames for event type 2, and 1 is the covariance 

matrix computed over all baseline frames. For population response time-courses (Figure 4.5I), 

the Mahalanobis distance was measured between individual frame population vectors from a 

given class 2 and the average population vector over all baseline frames. 

 

4.3.9: Behavior decoding based on population activity 

 In order to measure population-level encoding of social behaviors among dmPFC 

neurons, we constructed statistical models to predict behavior events based on population 
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activity. For classification of individual behaviors, we used binary Fisher’s linear discriminant 

(FLD) classifiers, and to distinguish between behavior types, we used a multi-class (3-way) 

Fisher’s discriminant. 

For all classifiers, training sets were constructed using population vectors during behavior 

bouts and negative training data was sampled from baseline (rest) frames. In order to measure 

the performance of FLD models, we split the data into training and tests sets and performed cross-

validation. For each cross-validation fold, the test set represented 10% of the data drawn from 10 

uniformly distributed 1% segments, and the remaining 90% training set was used to construct the 

model. For each fold, model performance was measured using the area under the ROC curve 

(auROC) for test data projected onto the Fisher discriminant. Overall model performance for each 

animal/session was calculated as the average over 50 folds where the training and test sets were 

randomly redrawn. Models were compared with null models constructed using training data with 

randomly shuffled class labels. Sessions with fewer than 5 bouts of the modeled behavior were 

not considered for this analysis. For frame-by-frame classification and visualization of the FLD 

projection (Figure 4.5M), frames were sampled uniformly every second over the entire session 

and used to construct training data to fit models. Population activity over the session was then 

projected onto the discriminant, and class predictions for each frame were evaluated. 

For multi-class decoding of push, retreat, and approach behavior (Figure 4.5O), 3-way 

FLD models were constructed from population data using behavior vectors to define class labels, 

and cross-validation was performed as described above. Predictions were determined by taking 

the minimum Euclidean distance between test points and the mean of each class’ training set 

after projection onto the first 2 FLD components. Performance for each fold was measured using 

the average accuracy for each class (weighted by the number of examples in the test set), and 

overall model performance was taken as the average over 50 folds (as described above). Models 

were compared with null models constructed using training data with randomly shuffled class 

labels. 
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For discrimination of subject vs. opponent behaviors (Figures 4.7K-L), behavior bouts 

within each animal were pooled together. Behavior frames that overlapped (concurrent subject 

and opponent behaviors) were removed from the analysis, and the remainder were used to 

construct training and test sets using the same cross-validation method as described above. 

Dimension reduction was first performed on the training data using partial least squares 

regression (PLS), and FLD components were computed from the training data after projection 

onto the first 10 PLS dimensions. For visualization (Figure 4.7K), population vectors from the test 

set from one example session/fold were projected onto the first two FLD components. For each 

model, ROC analysis was performed to quantify discriminability of subject and opponent 

population responses, and auROC values were averaged over the holdout partitions for each 

session. Overall model performance was quantified using the average of auROC values over all 

sessions (Figure 4.7L), and was compared with null models constructed using training data with 

randomly shuffled class labels. 

 

4.3.10: Generalized linear models of single-neuron and population activity 

4.3.10.1: Modeling neural activity across brains 

 In order to gain deeper insight into correlations of dmPFC neurons across animals in the 

tube test (Figure 4.6), we constructed Gaussian-residual generalized linear models (GLM) to 

express the mean activity of all neurons in one animal as a function of individual activities of 

neurons in the opponent. After binning calcium data from both animals into 1-second bins, GLMs 

were fit as: 

3 = 45 + 7 

where 3 is the predicted mean activity in animal A, 4 is the matrix containing all normalized (to 

maximum) calcium traces from animal B, 5 is a vector of coefficients fit to each neuron in 4, and 

7 is an error term. In order to validate the predictive power of GLMs, we performed 10-fold cross 

validation by withholding 10% of the data, sampled uniformly in 1% segments, from model fitting. 
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Full predicted activity traces were constructed by concatenating test predictions from each fold, 

and the overall performance of the model was evaluated using the Pearson’s correlation 

coefficient (PCC) between the predicted activity 3 and ground truth. Model performance was 

compared to the performance of null models constructed using randomly permuted calcium 

data—97.2% of the mean activity models individually exceeded chance levels (the 95th percentile 

of the null distribution). Cross-validated R2 was also used as an alternative performance metric to 

confirm model significance and validated 97% of the mean activity models. Coefficients 5 from 

full models were z-scored before being pooled with those from other models (Figure 4.6G). For 

models of subpopulation activity (Figures 4.6H-M), the response variable 3 was the mean activity 

of the top 15 behavior-excited neurons based on their rank-ordered auROC values for a given 

behavior type, and z-scored coefficients were averaged within each session according to cell 

identity before comparison across sessions/groups. 

 

4.3.10.2: Modeling neural activity using behavior behaviors 

 To analyze the contributions of subject and opponent behaviors to the activity of individual 

neurons, we constructed GLMs using the behaviors and positions of both animals. Single-neuron 

GLMs were fit using a Poisson model with a log link function: 

ln(3) = 45 + 7 

where 3 is calcium activity from one cell and 4 is a matrix of behavior and position vectors. The 

use of a log link function for single neuron models was based on the assumption that a Poisson 

distribution best characterizes the calcium data used to fit the model, as has been made in 

previous studies 28. Binary behavior vectors were smoothed with an exponential decay function 

(: = 3 seconds). Position vectors for each animal were projected onto four Gaussian functions 

centered at four positions (;&, ;', 	;), 	;*) that uniformly tiled the length of the tube. In total, 14 

variables were used to model activity: 6 behavior vectors (corresponding to push, approach, and 
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retreat for both animals) and 8 position vectors (corresponding to the four tube positions for both 

animals). Model performance was quantified following 10-fold cross validation using the 

Pearson’s correlation coefficient (PCC) of predicted and observed activity, and was compared to 

a distribution of null models fit using randomly permuted calcium data. Models were only 

considered significant and used for downstream analysis if their performance exceeded the 95th 

percentile of the null distribution. Significance testing for individual coefficients (Figures 4.8B-C) 

was based on a likelihood ratio test (⍺ = 0.05) which compares model performance with the 

associated variable against a null model without it. For comparisons of coefficients between 

dominant and subordinate animals, coefficients were z-scored and averaged within each 

animal/session. Results of coefficient analyses shown in Figures 4.8C-D were also consistent 

with analyses performed with models identified using R2 as a performance metric (Figures 4.S8K-

L). 

 

4.3.10.3: GLM model comparison 

 In order to examine whether interbrain correlations observed in the open arena and tube 

test experiments exceeded modulations that could be only explained by observable behavior 

variables, we compared the performance of mean activity GLMs fit using both animal’s behavior 

(“behavior-only” Model 1) with the performance of models that also included mean activity from 

the opponent animal as an additional explanatory variable (“interbrain” Model 2) (Figure 4.2J; 

Runyan et al., 2017). For these analyses, GLMs were Gaussian residual models, behavior vectors 

were exponentially smoothed (: = 3 seconds), and behavior vectors and calcium activity were 

binned into 1 second bins prior to model fitting. Model performance was measured using cross-

validated PCC with 10-fold cross-validation, as described above. We measured the change in 

model performance upon inclusion of opponent activity as (Model 2 – Model 1)/Model 1 (“GLM 

performance difference” in Figures 4.2K and 4.S4G). Performance indexes were compared with 
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those of models constructed using randomly-permuted opponent activity (behavior variables were 

not permuted). 

 

4.3.11: Analysis of interbrain neural activity correlations 

4.3.11.1: Correlation of neural activity across brains 

 Because previous hyperscanning studies have investigated correlations of aggregate, 

region-level activity patterns, we used the mean activity of all z-scored ΔF/F traces in each dmPFC 

population (mean ΔF/F, effectively their summed activity normalized by the number of recorded 

neurons) as a measure of overall neural activity. For both open arena and tube test experiments, 

interbrain correlations across mouse dyads were calculated using the Pearson’s correlation 

coefficient (PCC) of the overall neural activity across the entire session. To fairly compare 

interbrain correlations across sessions with different durations (Figures 4.2F and 4.4J), we 

cropped traces to the duration of the shortest session (10 min and 0 sec for the open arena; 11 

min and 16 sec for the tube test).  Interbrain correlations for each pair were compared to the 95th 

percentile of random permutation null distributions (Figures 4.S4A-B). In order to confirm that 

changes in interbrain correlation when animals were separated were not due to changes in the 

autocorrelation of each signal, we also compared phase-randomized signals before and after 

separation in both the open arena (Figure 4.S2E) and tube test experiments (Figure 4.S4E). 

Phase-randomized surrogate signals (Figure 4.S4D) were computed by independently 

randomizing the phase of each Fourier component, which disrupts the temporal structure of the 

signal but preserves its mean, variance, and autocorrelation. For comparison of overall 

correlations with dominance relationships (Figure 4.8J), interbrain correlations were measured 

over the first 5 minutes of each session to ensure a high degree of social interaction during each 

epoch.  
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4.3.11.2: Cross-correlation of neural activity across brains 

 In order to gain more insight into the timescale at which interbrain correlations occur, we 

performed a cross-correlation analysis using the neural activity from interacting animals in both 

the open arena and the tube test. We calculated the correlation between ΔF/F activity traces with 

different time shifts, ranging from −2 minutes to +2 minutes, and plotted the correlation as a 

function of time lag (Figures 4.1M and 4.4N). For interacting animals in both experiments, the 

peak of the average cross-correlation occurred precisely at 0.0 seconds lag. For both 

experiments, we also compared the correlation at the peak with the correlation at baseline, 

assessed using ±60 or ±30 seconds lag (based on the cross-correlation functions shown in 

Figures 4.1M and 4.4N). Cross-correlations were compared with those of phase-randomized 

signals (described above) to confirm that structure in the cross-correlation is not due to 

autocorrelations in each calcium trace (Figures 4.1N and 4.4O). 

 

4.3.11.3: Interbrain correlations among subsets of neurons 

 To determine the contributions of subject-encoding and opponent-encoding neurons to 

interbrain correlations, we calculated correlations across animals after removing different types 

of cells from each neural population based on functional identity (e.g., behavior-excited or 

behavior-suppressed). While removal of behavior-excited cells resulted in a decrease in interbrain 

correlations, removal of behavior-suppressed cells did not (Figures 4.6A, 4.S7A-B, and 4.7M, 

4.S8F-G). Neutral cells were neurons that were not identified as either subject-encoding or 

opponent-encoding by the ROC analysis. For subpopulation analyses in Figure 4.7N and Figures 

4.8I, 4.8K, and 4.8O, subsets of 25 cells from each animal were used to calculate interbrain 

activity correlations in order to control for differences in correlation that could result from unequal 

population sizes. Subsets of the top behavior-encoding were selected (with the largest auROC 

values) for modulation by subject or opponent behavior. Neutral cells were defined as described 

above, and were sorted (in ascending order) and selected by |auROCsub – 0.5| + |auROCopp – 
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0.5|, where auROCsub and auROCopp are the auROC values calculated from neural responses to 

pooled subject and opponent behavior, respectively. To assess the relative contributions of 

subject and opponent cells to interbrain correlations, we also removed fixed numbers (to ensure 

a fair comparison between subject and opponent cells) of subject, opponent, or neutral cells 

(ranging from 1 to 25) from each animal and computed interbrain correlations over the down-

sampled populations (Figures 4.7O-P). 

 

4.3.11.4: Relationship between interbrain correlations and behavior interaction 

 In order to examine whether interbrain correlations could predict behavior interactions, we 

compared the degree of correlation prior to behavior in one animal to the probability of behavior 

response from the interacting partner (Figures 4.8G-I). For each behavior event (pooled across 

behavior categories) in each tube test session, the PCC of interbrain activity across the two 

animals was taken over the 30 seconds prior to behavior onset. All behavior events with any 

behavior from the interacting partner starting in the 15 seconds prior to behavior onset were 

removed from the analysis to ensure that preceding correlations were not contaminated by 

preceding behavior bouts. For each range of PCC (e.g., 0.1 – 0.2), the probability of behavior 

response in the reacting animal was calculated by summing all behavior events from the reacting 

animal over 3 seconds following the onset of its opponent’s behavior for all epochs associated 

with that PCC range, and then dividing by total the number of epochs. 

 

4.3.11.5: Interbrain correlations during matched behavior epochs across animal pairs 

 In order to address whether interbrain correlations could be accounted for simply by 

concurrent behaviors, we compared correlations of mean activity across animals during single 

epochs (30 seconds) of concurrent behavior (e.g. interacting animals A vs. B), with behavior-

matched epochs across pairs that did not interact (e.g. non-interacting animals A vs. C) (Figures 

4.2G and 4.4K). Specifically, we identified all epochs in which two interacting animals displayed 
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behavior that have concurrent onset times (within 3 seconds), and computed interbrain activity 

correlations over these epochs (A vs. B). Behavior epochs in one animal were then matched with 

behavior epochs in another non-interacting animal from a separate session (A vs. C), such that 

the behavior types and onsets were identical to those in the epoch from the interacting pair (A vs. 

B).  Other types of behaviors immediately before and after the temporally aligned behavior were 

also matched, such that overall behavior transitions, as well as the onsets of the aligned 

behaviors, were the same. The associated interbrain correlations were then compared. For the 

analysis shown in Figure 4.S4F, a single behavior bout in one animal was matched and aligned 

with an equivalent behavior bout from a separate non-interacting animal, and if multiple behavior 

bouts of the same type occurred within short intervals (1 s), they were considered as one bout. 

No other behavior bouts occurred during the epoch. For these analyses, lower PCC values are 

expected as interbrain correlation is lower in shorter temporal windows (Figure 4.S2C and 4.S4C). 

 

4.3.12: Quantification and statistical analysis 

 All analyses for this study were conducted using custom routines in MATLAB (Mathworks), 

and are described in the respective Method Details, Results, and Figure Legends. All bar plots 

with error bars represent mean ± SEM; all box and whisker plots represent the median, 

interquartile range (box), and 5th to 95th percentile (whiskers) of the underlying distribution, unless 

otherwise specified. For all statistical tests throughout, normality of the data and equal variance 

of groups were not assumed, and non-parametric (Wilcoxon rank-sum and signed-rank) tests 

were used for unpaired and paired group comparisons, respectively. Statistical significance was 

defined with α < 0.05 using two-tailed tests. For comparisons of proportions of binary-valued 

variables, Fisher’s exact test was used. For comparisons of behavior bout length and cell pairwise 

distance distributions, two-sample Kolmogorov-Smirnov tests were used. Resampling methods 

based on temporally-permuted calcium traces were used to assess significance of auROC values 

for behavioral modulation of neural signals and performance of GLM models. Statistical 
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significance of FLD classifiers was assessed by comparison with null models constructed using 

training data with shuffled class labels. The sizes of mouse groups were not pre-specified and 

approximated those of previous work. 

 

4.4: Results 

4.4.1: Correlated neural activity across animals during free social interaction 

 During natural social encounters, animals exhibit a wide range of behavior that engage 

them in complex, often reciprocal interactions. To study neural dynamics across brains of socially 

interacting mice, we first examined naturally occurring behaviors during social interactions in an 

open arena, where two novel animals were permitted to freely interact (Figure 4.1A). We 

recorded the interaction using a video camera, and annotated behaviors of both animals frame-

by-frame (Figure 4.1B). Across all sessions, we identified 15 types of behaviors that included 

both social and non-social behavior. While animals spent about 43% of the time engaged in 

observable behavior (Figure 4.1C), the majority of this (~66%) was social behavior directed 

toward the interacting partner (Figures 4.1D, 4.S2A). Thus, the open arena provides an 

unconstrained context where animals freely engage in highly diverse and naturalistic social 

interactions. 

 To investigate neural dynamics during the social interaction, we employed 

microendoscopic calcium imaging to simultaneously monitor activity from hundreds of dmPFC 

neurons in both individuals. To gain optical access to neurons below the cortical surface, we 

implanted a gradient refractive index (GRIN) lens above the dmPFC following injection of an AAV 

expressing the fluorescent calcium indicator GCaMP6f (Figure 4.1E). Lens placement and 

GCaMP6f expression were confirmed histologically (Figures 4.1F-G). Calcium fluorescence 

videos were processed using independent component analysis to identify putative cell bodies, 

which were used to extract calcium traces from single cells, expressed throughout as relative 

change in fluorescence (ΔF/F) (Figures 4.1H-I). We analyzed a total of 7535 dmPFC neurons in 
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19 pairs of animals engaged in open arena social interaction. Overall neural activity varied across 

different types of behaviors (Figure 4.S2B), suggesting that activity in the dmPFC is differentially 

modulated by social behavior. 

To explore how dmPFC neural dynamics were related across individuals, we computed 

the mean activity of neurons in each animal as aggregate signals that reflect the overall activity 

of the population (Figure 4.1J), and quantified correlations of activity (Pearson’s correlation 

coefficient, PCC) across dyads in each session. Strikingly, dmPFC populations displayed highly 

correlated activity across animals, which far exceeded chance levels (Figures 4.1K-L, 4.S2C). 

To examine the timescale of interbrain correlations, we measured the cross-correlation of dmPFC 

activity across animals (Figure 4.1M); these showed a clear peak at 0.0 s, indicating precise 

synchrony of interbrain activity. This interbrain correlation was not due to autocorrelations in each 

signal, as the cross-correlation structure was abolished when traces were phase-randomized 

(Figure 4.1N). Together, these results establish that animals engaged in free social interaction 

exhibit highly correlated dmPFC activity. 
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Figure 4.1: Correlated neural activity across brains of interacting animals during free social 
interaction. (A) Illustration of social interactions in the open arena. (B) Behavior raster plot of two 
animals interacting in the open arena. (C) Percentage of time animals engage in behavior in the 
open arena. Each dot represents one animal from one session. (D) Distribution of behaviors mice 
display in the open arena interaction. (E) Schematic of head-mounted microscope and GRIN lens 
implantation above dmPFC. (F) Example image of injection site showing expression of GCaMP6f 
in dmPFC. (G) Example image showing viral expression in dmPFC cell bodies. Green, GCaMP6f; 
blue, DAPI. (H) Example imaging field of view with individual cell bodies. (I) Example calcium 
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traces recorded from one session.	 (J) Example trace showing overall dmPFC activity (mean 
activity of all cells) in one animal during social interaction overlaid with behavior annotations. (K) 
Example calcium traces showing overall dmPFC activity from two animals engaged in social 
interaction. (L) Interbrain correlations of overall dmPFC activity in animals, compared with those 
of temporally permuted traces. (M) Cross-correlation of dmPFC activity traces from interacting 
animals compared with that of phase-randomized traces. (N) Quantification of cross-correlations 
shown in (M) at 0 s or ± 60 s. 

 

4.4.2: Interbrain activity correlations depend on ongoing social interaction 

 Animals in a social environment are naturally inclined to engage with one another, but they 

occasionally exhibit periods of coordinated rest in which they are both quiescent (Figure 4.S2D). 

To address whether interbrain correlations could be simply explained by coordinated 

behavior/rest periods, we removed epochs in which both animals did not exhibit observable 

behavior and compared interbrain correlations during these epochs with those of full sessions. 

Activity after discounting periods of coordinated rest was as correlated as activity during full 

sessions (Figure 4.2A), suggesting that bouts of concurrent rest cannot account for activity 

correlations. 

Although animals do not tend to exhibit the same behaviors at the same time (Figure 

4.S2D), interacting animals do sometimes behave concurrently. To determine whether overall 

concurrent behavior could explain interbrain synchrony, we compared interbrain correlations 

during epochs with low vs. high levels of concurrent behavior (measured by correlation of overall 

behavior, Figure 4.2B). Again, interbrain correlations during these epochs were not different and 

were equally disrupted upon phase-randomization of activity traces. 

To explore the relationship between interbrain synchrony and social interaction, we next 

compared the degree of interbrain correlation during social vs. non-social behavior. Correlations 

were significantly higher during social behavior (Figure 4.2C), suggesting dependence on social 

interaction. However, because animals are in the same environment, there is a possibility that 

correlated activity reflects shared sensory inputs such as ambient noise or lighting rather than 

social engagement. To rule this out, we separated the animals within the same physical 
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environment using a barrier (Figure 4.2D). Abolishing social interaction significantly reduced 

interbrain correlations among dmPFC neurons (Figures 4.2E-F, 4.S2E), suggesting that 

correlated activity is not due to shared sensory input, but actually depends on ongoing interaction 

between the pair. Indeed, when we recorded from pairs of animals that naturally displayed low 

levels of social interaction, a lower degree of correlation was observed (Figure 4.S2F). 

Given this observation, another hypothesis is that interbrain correlations reflect generic 

activity associated with social interaction, such as motivational state, regardless of whether 

animals are directly engaged. To rule this out, we examined neural activity across pairs of animals 

that each engaged in social interactions, but with separate animals and not with each other 

(Figure 4.2G). Activity correlations across animals from different sessions were significantly lower 

than those across interacting pairs (Figure 4.2H), confirming that directed engagement between 

two animals is necessary for interbrain coupling. 

Moreover, it is possible that interbrain correlations could be purely explained by activity 

associated with individual coordinated behavior bouts at finer timescales. To address this, we 

computed correlations during epochs with coordinated behavior bouts, and compared them with 

correlations during behavior-matched epochs in non-interacting animals (Figure 4.2I). Activity 

from behavior-matched epochs across non-interacting pairs did not exhibit correlations; only 

those in socially interacting animals showed interbrain coupling (Figures 4.2I). This suggests that 

interbrain synchrony cannot be simply explained by overall concurrent behavior or individual 

coordinated behavior bouts, but depends upon the context of a direct, ongoing social interaction. 

For example, the same type of behavior may be associated with different patterns of activity 

depending on social context (e.g. interactions over a longer timescale or specific social 

relationships). 

Lastly, to further understand the relationship between dmPFC activity and behavior, we 

modeled activity in each animal as a function of behavior and activity recorded from the interacting 

partner. We constructed generalized linear models (GLM) to model dmPFC activity from 
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behaviors exhibited by both animals (Figure 4.2J, Model 1) and compared it to a second model 

fit using the overall activity from the interacting partner as an additional variable (Model 2). We 

reasoned that, if neural activity in one animal did not contain information relevant to activity in the 

interacting partner beyond what is explained by individual behaviors, models that included partner 

activity (Model 2) would not perform better than “behavior-only” models (Model 1). In fact, Model 

2 performed significantly better than Model 1 (Figure 4.2K), suggesting that activity in one animal 

contains additional information about activity in the other that cannot be fully explained by 

moment-to-moment behavior. This is consistent with the notion that interbrain coupling depends 

on the larger context of an ongoing interaction. 
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Figure 4.2: Interbrain correlations depend on ongoing social interaction. (A) Interbrain 
correlations of dyads during full open arena sessions or correlations after removing epochs of 
concurrent rest, defined as when both animals display no observable behavior. (B) Interbrain 
activity correlations during single epochs (1 min) with low or high behavior correlation (the PCC 
of binary vectors measuring the presence of any behavior), compared with correlations of phase-
randomized signals. (C) Interbrain correlations of epochs when one or both animals engaged in 
social versus non-social behavior. (D) Schematic of the open arena interaction with social contact 
or with separation of animals with a barrier. Head-mounted microscopes were connected via an 
ultra-light cable that is long and flexible enough to prevent tangling during the course of social 
interactions. (E) Example calcium traces of overall dmPFC activity (mean activity) in a dyad with 
or without social contact. (F) Interbrain correlations in pairs with or without social contact. (G) 
Schematic showing comparisons of correlations across pairs engaged in social interaction (within 
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pair) and across animals that each interacted with a different animal (between pair). (H) 
Comparison between interbrain correlations across interacting or non-interacting pairs. (I) 
Interbrain correlations during single epochs (30 s) with concurrent behavior bouts in interacting 
pairs or those over behavior-matched epochs in non-interacting animals.  

 

4.4.3: Behavioral dynamics during a competitive social encounter 

 To explore whether interbrain coupling was present in other contexts, such as competitive 

interaction, we adopted a social dominance assay (the tube test) that allowed us to examine 

competitive behavior and dominance relationships across dyads 30,31 (Figure 4.3A). In the tube 

test, mice are placed facing each other in a one-dimensional tube and allowed to push each other 

or retreat from conflict. Winning in the tube test (by pushing the other animal out of the tube) has 

previously been used to operationalize dominance behavior, as it correlates with other social 

status behavior in mice 17. Compared to the open arena, the tube test also offers an advantage 

of narrowing the animals’ decisions to a set of well-defined behaviors, enabling a precise 

interrogation of the relationship between interbrain synchrony and single cell encoding of 

behavioral decisions. 

To analyze behavioral dynamics during the tube test, we recorded the interaction using a 

video camera, and developed an automated tracking algorithm using a convolutional neural 

network 22 to track the positions of both animals (Figures 4.3B-C), which we validated by 

unbiased visual assessment (>99% accuracy; Figure 4.S3A). We also manually annotated 

videos frame-by-frame to identify the onset and duration of behaviors in both animals. We 

observed that animals displayed three distinct types of behavior in the tube test: approach, a 

forward approach toward the opponent; push, a forceful push against the opponent sometimes 

resulting in forward movement; and retreat, a backward retreat away from the opponent. This 

parcellation, together with the position tracking, allowed us to examine how competitive 

interactions lead to gains or losses in territory for each animal. 
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On average, animals spent 23% of the time engaged in observable social interactions 

(Figure 4.3D), the majority of which (71%) was push behavior (Figure 4.3E). Although not all 

behavioral decisions lead to positional changes between the pair, position changes represent 

gains or losses of territory that result from competitive interaction. That is, each animal’s position 

can be considered as a function of its individual decisions to approach, push, or retreat from 

conflict, thus characterizing its overall level of relative dominance. Within each pair, we identified 

the more dominant animal as the one who gained more territory on average, and confirmed that 

dominant and subordinate animals exhibited large differences in tube position (Figure 4.3F). 

In any complex social engagement, reciprocal interaction is a common feature. Indeed, 

dyads behaved reciprocally in a fraction of the total time (Figure 4.3G), indicating that their 

behavioral decisions depended on one another. To examine how animals reacted to each other, 

we analyzed how the probability of each behavior in one animal changed following opponent 

behavior (Figures 4.3H-J). Overall, push behavior was followed by a probabilistic increase in 

retreat behavior in opponents, indicating that, while not all pushes result in opponent reactions, 

push and retreat behavior are sometimes linked (Figure 4.3H). There was also an increase in 

approach behavior following opponent retreats (Figure 4.3I), suggesting that animals were 

generally motivated to engage with their opponent. 

Because dominants and subordinates exhibit similar levels of behavior overall (Figure 

4.S3B), we reasoned that differences in tube position likely reflect differences in the distributions 

of displayed behavior. Indeed, dominants pushed more, retreated less, and approached more 

than subordinates (Figures 4.3K-M). We found no differences between the per-bout durations of 

behaviors displayed by dominants and subordinates (Figures 4.S3C-E), suggesting that 

differences in dominance (i.e. territory gained) depend mostly on the frequency of different social 

decisions. 

Differences in overall dominance may also depend on how animals react to behavior from 

their opponent. To explore this, we constructed time-courses of animals’ change in retreat 
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probability following opponent push behavior. While both dominants and subordinates showed a 

probabilistic increase in retreats following opponent pushes, subordinates were more likely to 

retreat reactively (Figures 4.3N-O). Collectively, this analysis shows that outcomes of dominance 

encounters between mice depend not only on different behavioral choices in each animal, but 

also on how each animal responds to its opponent. 

 

Figure 4.3: Dynamics of social behaviors during competitive interaction. (A) Cartoon of mice 
engaged in the tube test. (B) Illustration of the neural network used for automated tracking of 
mice. (C) Behavior annotations and position trajectories of a pair of mice in the tube test. (D) Total 
percentage of time animal pairs (either animal) engaged in social interaction. (E) Distribution of 
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time animals displayed different behaviors. (F) Average tube positions in dominant or subordinate 
animals. (G) Fraction of interaction time when only one or both animals are behaving. (H–J) 
Change in probability of opponent animal behavior with respect to subject animal push (H), retreat 
(I), or approach (J). (K–M) Percentage of time spent pushing (K), retreating (L), and approaching 
(M) in dominants or subordinates in pairs that displayed a large difference in dominance. (N) 
Change in relative probability of dominant or subordinate retreat behavior following opponent 
push. (O) Probability of retreat in dominants or subordinates 1 s following opponent push. ***p < 
0.001, **p < 0.01, p > 0.05, n.s. (D, F, and N) Mean ± SEM. 

 

4.4.4: Animals display interbrain correlations during social competition 

 To determine whether mice engaged in social competition also display interbrain coupling, 

we simultaneously imaged dmPFC activity using microendoscopes in animal dyads during the 

tube test (Figure 4.4A). As in the open arena, overall dmPFC activity was highly correlated across 

interacting animals in the tube test, far exceeding chance levels (Figures 4.4B-C, 4.S4A-C). 

 We first ruled out the possibility that correlated activity in this context is due simply to 

concurrent behavior or rest: neural activity correlations were consistently higher than correlations 

of overall behavior (Figure 4.4D), removing coordinated rest epochs did not reduce neural 

correlations (Figure 4.4E), correlations remained high when only one animal was behaving 

(Figure 4.4F), and activity correlations were higher than chance even during epochs with a lower 

level of concurrent behavior (Figure 4.4G). These suggest that interbrain coupling is not simply 

due to concurrent behavior or rest. 

 To confirm, as in the open arena, that interbrain coupling is not due to similar sensory 

inputs from a shared environment, we separated animals inside the tube so that both could freely 

move but could not interact (Figure 4.4H). Activity correlations were significantly reduced after 

separation (Figures 4.4I-J, 4.S4D-E), indicating that brain coupling in a competitive context also 

depends on ongoing interaction. In addition, comparisons of activity correlations in interacting vs. 

non-interacting pairs (Figure 4.4K) revealed that social engagement in the same encounter is 

necessary for correlated activity (Figure 4.4L). In support of this, while behavior epochs in 
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interacting pairs had correlated activity, behavior-matched epochs in non-interacting pairs did not 

(Figures 4.4M, 4.S4F). 

 As in the open arena, dmPFC activity from interacting animals also exhibited peak cross-

correlation at 0.0 s (Figure 4.4N), indicating that interbrain activity is precisely synchronized. 

However, the cross-correlation was disrupted upon phase randomization, and not significantly 

higher at zero time lag than at a lag of 30 s (Figure 4.4O), indicating a strong reduction in 

interbrain correlation. 

 Collectively, these results demonstrate that mice engaged in a competitive social 

encounter reliably display correlated activity across dmPFC neurons that depends on ongoing 

interactions in a larger social context and cannot be simply explained by overall concurrent 

behavior or individual coordinated behavior. 
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Figure 4.4: Correlated neural activity across animals during competitive social interaction. 
(A) Cartoon showing simultaneous imaging of two mice during the tube test. (B) Example traces 
of overall dmPFC activity (mean of all neurons) from two animals during the tube test. (C) 
Interbrain correlations in interacting pairs or correlations of randomly permuted traces. (D) 
Comparison of correlations of behavior (PCC of binary event vectors) across animals versus 
correlations of dmPFC activity. (E) Interbrain correlations during the tube test or after removing 
concurrent rest epochs when both animals display no observable behavior. (F) Interbrain 
correlations during tube test sessions or during epochs (R1 min) when one animal is behaving 
while the other is resting (displaying no observable behavior), compared with phase randomized 
controls. (G) Interbrain correlations during single epochs (1 min) of low or high overall behavior 
correlation (PCC of binary vectors measuring the presence of any behavior), compared with those 
of phase-randomized traces. (H) Schematic showing introduction of a separator in the tube test 
to abolish social contact. (I) Example traces showing dmPFC activity across two animals with or 
without social contact. (J) Interbrain correlations with or without social contact. (K) Schematic 
showing pairs engaged in social interaction (within pair) or pairs that each interact with a different 
animal (between pair). (L) Interbrain correlations across interacting or non-interacting animals. 
(M) Interbrain correlations during single epochs (30 s) with concurrent behavior bouts in 
interacting pairs or during behavior-matched epochs in non-interacting animals. (N) Cross-
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correlation of dmPFC activity from pairs of mice in the tube test and that of phase-randomized 
controls. (O) Quantification of cross-correlations shown in (N) at 0 s versus ± 30 s. ***p < 0.001, 
**p < 0.01, p > 0.05, n.s. (C and L–N) Mean ± SEM. 

 

4.4.5 dmPFC neurons encode distinct social behaviors during competitive interaction 

 Overall activity patterns of a brain region arise from individual cells, but a cellular-level 

basis for interbrain synchrony remains elusive. To explore how activities in single cells contribute 

to synchronous activity across animals, we first examined whether dmPFC neurons encode 

distinct social behaviors. dmPFC neurons as a whole exhibited time-locked excitation during 

push, retreat, and approach behavior (Figure 4.5A). However, this raises the question of whether 

behavioral decisions are associated with uniform activation of the dmPFC, or are encoded 

uniquely by distinct subsets of dmPFC neurons. 

 To address this, we examined whether single cells responded during specific behaviors. 

Using a receiver operating characteristic (ROC) analysis (Figures 4.5B, 4.S5A), we identified 

subsets of neurons that were excited or suppressed during push, approach, or retreat behavior 

(Figures 4.5C-F, 4.S5B). Of all recorded neurons, 29% encoded social behaviors (Figure 4.5D), 

and among these, ~76% showed selective tuning to specific behaviors. Cells that were not 

identified as behavior-encoding (hereafter referred to as “neutral cells”) were just as active, 

overall, as behavior cells (Figure 4.S5C), indicating that behavior encoding was due to specific 

time-locked responses. Interestingly, while behavior cells included both excited and suppressed 

ones, the majority were excited (Figure 4.5E). Overall, we found no differences in the spatial 

distributions of behavior cells compared with neutral cells (Figures 4.5G-H), indicating that 

behavior cells are spatially intermixed. These results demonstrate that a substantial fraction of 

dmPFC neurons selectively encode social behaviors in the tube test. 

 Information can be more robustly encoded at the population level than among single, 

highly tuned cells 32. We next investigated whether neurons in the dmPFC formed stable activation 

patterns encoding social behaviors that could be read out at the population level. We examined 
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how population response dynamics differed between types of behaviors using the Mahalanobis 

distance between behavior-evoked responses and baseline activity (Figures 4.5I, 4.S6A). Again, 

we found that all behaviors elicited time-locked responses. Interestingly, push and approach 

elicited stronger response patterns than retreat (Figure 4.5J), consistent with the idea that distinct 

behaviors are encoded differentially rather than as an aggregate of ensemble activity. To analyze 

the separability of population dynamics during behavior, we visualized population responses 

using principal component analysis (PCA); this revealed a clear separation of activity clusters 

based on behavior type (Figures 4.5K, 4.S6B-D). Further, the distance between different 

behaviors was significantly larger than within-behavior distances (Figure 4.5L), indicating that the 

separation of responses is not due to trial variability, but reflects unique patterns of activation that 

distinguish social behaviors. 

Finally, to explore the robustness of behavior representations, we constructed decoders 

using Fisher’s discriminant to predict the occurrence of behavior events based on population 

activity. Each behavior could be predicted by decoders (Figures 4.5M, 4.S6E-G), which 

significantly outperformed models constructed using randomized training data (Figure 4.5N). 

Moreover, multi-class decoders trained to predict specific behaviors among push, retreat, and 

approach achieved significantly higher performance than chance (Figure 4.5O), again indicating 

that neural representations are distinct and stable. Taken together, these results show that 

dmPFC neurons encode social behaviors at both the single-cell and population levels. 
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Figure 4.5: dmPFC neurons encode social behaviors during competitive interaction. (A)	
Mean trial-averaged response of dmPFC neurons (normalized to the 15 s preceding behavior) 
centered at onset of social behaviors. (B) ROC curves from example neurons for push behavior. 
(C) Examples of single cells that selectively encode different behaviors. (D) Distribution of 
behavior-encoding neurons. (E) Distribution of excited and suppressed cells within each behavior 
category. (F) Trial-averaged responses of example behavior cells. (G) Example field of view 
showing spatial distribution of behavior cells. (H) Cumulative fraction of pairwise distances among 
different subsets of behavior cells, compared with neutral cells (Kolmogorov-Smirnov test). (I) 
Population responses during behavior events (Mahalanobis distance between trial population 
vectors and baseline activity), averaged across sessions. (J) Population responses (as in I) during 
different behaviors over 3 s following behavior onset. (K) Principal component (PC) separation of 
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behavior-evoked population responses from one session; each dot is the mean response from 
one behavior bout. (L) Euclidean distance between PC-projected population vectors within or 
between behavior types, averaged within each session. (M) FLD decoders trained to predict 
different behaviors from rest using population activity. Plots: projections of population activity onto 
the linear discriminant; dark patches: annotated behavior; light patches: frame-by-frame 
predictions of example classifiers. (N) Performance of FLD decoders exemplified in (M), 
compared with models constructed using shuffled class labels. (O) Performance of 3-way multi-
class FLD decoders trained to distinguish between push, approach, and retreat behavior. Red 
line: expected chance level in the three-way decoder. ***p < 0.001, **p < 0.01, p > 0.05, n.s. (A 
and I) Mean ± SEM. (A, C, and F) DF/F calcium traces are presented in units of SD. 

 

4.4.6: Interbrain activity correlations depend on cells encoding social behavior 

 To determine how interbrain coupling depends on activity in individual cells, we next 

examined whether interbrain correlations arise from uniform dmPFC activation or specific subsets 

of cells (e.g. behavior cells). Removal of behavior cells resulted in a marked reduction in the 

activity correlation across animals (Figure 4.S7A), and this was driven specifically by behavior-

excited cells, as removal of behavior-suppressed cells did not affect interbrain correlations 

(Figures 4.6A, 4.S7B). Moreover, interbrain correlations were equally disrupted upon removal of 

behavior cells in only one animal, indicating that brain coupling requires encoding of social 

information in both animals simultaneously. In contrast, removing neutral cells did not reduce 

activity correlations. This was not due to neutral cells being unresponsive, as their overall activity 

was as high as that of behavior cells (Figure 4.S5C). Instead, this suggests that correlated brain 

activity depends on subsets of cells encoding social information, rather than uniformly distributed 

neural dynamics. 

 Following this, we next examined correlations between specific subpopulations of 

behavior-encoding cells. Indeed, certain categories of behavior cells exhibited elevated interbrain 

correlations (Figures 4.6B-D). In particular, push-vs-retreat subpopulations were more highly 

correlated across animals than were neutral cells, consistent with our observation that these 

behaviors are sometimes coupled (Figure 4.3H). Interestingly, the synchronization of push and 

retreat cells was unidirectional across dyads, such that only push cells in dominants, but not in 
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subordinates, were more correlated with retreat cells in the opponent. This suggests that 

interbrain correlations not only depend on specific subsets of cells, but that neurons encoding 

specific behavior interactions contribute preferentially to brain coupling. 
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Figure 4.6: Interbrain correlations depend on neurons encoding one’s own social behavior. 
(A) Interbrain activity correlations after removal of behavior-excited (Bv) or neutral (Neu) cells 
from both animals. (B–D) Interbrain correlations between the mean activity of subsets of push- 
(B), approach- (C), and retreat- (D) excited cells (the top 15 cells based on area under the ROC 
curve [auROC] values). (E) Schematic of models of interbrain activity across animals. The mean 
activity of all neurons in one animal (top) is modeled as a function of single-cell activities in the 
interacting partner (bottom) using a GLM. (F) Performance (cross-validated PCC) of GLMs to 
predict activity in one animal using single-cell activities from the other, compared with that of 
models using randomly permuted controls. (G) Weight contributions of behavior (Bv) and neutral 
(Neu) cells in GLMs of overall activity in (F), computed as the average of Z-scored coefficients fit 
to Bv or Neu cells in each model. (H–J) Performance of GLMs modeling the mean activity of 
subsets of push (H), approach (I), and retreat (J) cells, as in (B)–(D), compared with that of GLMs 
modeling the mean of neutral cells. (K–M) Weight contributions of behavior (push-, approach-, or 
retreat-excited) cells fit to models of push (K), approach (L), and retreat (M) cells in (H)-(J), 
computed as the average of z-scored coefficients for each cell type. (N) Correlation between the 
percentage of highly correlated single-cell pairs (>99th percentile of random distribution, see 
Figures 4.S7E and 4.S7F) and the interbrain activity correlation across pairs. (O) Fraction of 
behavior cells that belong to an interbrain cell pair with low (bottom 20% of random distribution) 
or high (top 20% of random distribution) correlations. (P) Fraction of behavior cells in highly 
correlated (>99th percentile of random distribution) cell pairs in dominants and subordinates. ***p 
< 0.001, **p < 0.01, p > 0.05, n.s. (A, F, and P) Mean ± SEM. 

 

4.4.7: Interbrain activity correlations arise from single cell dynamics 

 To gain more insight into how interbrain correlations emerge from single dmPFC neurons, 

we constructed GLMs to express the overall dmPFC activity in one animal as a function of single 

cells in the interacting opponent (Figure 4.6E). These GLMs performed significantly better than 

chance (Figure 4.6F), suggesting that a weighted combination of individual cell activities in one 

animal could provide a good model of overall activity in the opponent. Moreover, behavior cells 

had significantly higher weight contributions in the models than neutral cells (Figure 4.6G), 

consistent with our results that interbrain correlations depend on behavior cells. 

We next constructed GLMs using single cells from one animal to model subsets of 

behavior cells in the other (Figure 4.S7C), and found that these models performed significantly 

better than models of neutral cells (Figures 4.6H-J, 4.S7D). Examination of subpopulation models 

in dominants and subordinates revealed further asymmetries that mirrored unidirectional behavior 

interactions displayed by the dyads (Figures 4.6K-M): while the push-encoding population in 
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dominants was best explained by subordinate retreat cells, the retreat-encoding population in 

subordinates was better modeled by dominant push cells. This further suggests that interbrain 

correlations in dmPFC arise from unique subpopulations in each animal that preserve individual 

differences in behavior. 

 Lastly, we investigated whether interbrain correlations were related to correlations 

between single pairs of cells across animals. Interacting animals contained more highly correlated 

cell pairs than expected by chance (Figures 4.S7E-F), and the fraction of highly correlated cell 

pairs in each dyad was itself correlated with the degree of overall brain coupling between them 

(Figure 4.6N), supporting the notion that correlated activity at the population level arises from 

subsets of single cells. Moreover, behavior cells were enriched among more highly correlated cell 

pairs (Figure 4.6O). In particular, in dominants, a larger fraction of push and approach cells were 

highly correlated with cells in subordinates, possibly reflecting a greater influence of behaviors of 

dominants on opponent responses (Figure 4.6P). 

Taken as a whole, these results show that interbrain correlations in the dmPFC arise from 

specific subsets of cells encoding distinct behaviors in both animals, and reflect ensemble 

correlations that extend to the single-cell level. 

 

4.4.8: Interbrain correlations depend on cells encoding behaviors of the social partner 

 The observation that interbrain coupling depends on subsets of behavior-encoding 

neurons raises the possibility that correlated activity could be completely explained by activity in 

these cells. However, our findings that (1) the degree of activity correlation consistently exceeds 

behavior correlations (Figure 4.4D), (2) activity correlations cannot be explained simply by 

concurrent or coordinated behavior bouts (Figure 4.4M), and (3) activity correlations persist when 

only one animal is behaving (Figure 4.4F), raise the alternative possibility that other information 

in the circuit also contributes to interbrain coupling. In particular, one hypothesis is that some 
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correlated activity arises from subsets of dmPFC neurons that encode the behavior of the 

interacting partner. 

To examine this hypothesis, we first asked whether any dmPFC neurons contained 

information about opponent behavior. Using ROC analysis, we identified a fraction of dmPFC 

neurons that responded specifically during opponent behavior, but not during subject behavior 

(Figures 4.7A-B), which constituted 8% of all recorded cells. On the other hand, 21% responded 

only during subject, but not opponent, behavior. We hereafter referred to neurons that only 

encoded opponent behavior as “opponent cells” and neurons that only encoded subject behavior 

as “subject cells.” Of the cells that were only responsive to opponent behavior (Figure 4.S8A), 

the majority (93%) responded selectively to single categories of behavior (Figure 4.7C), with 

response characteristics that were comparable to those of subject cells (Figures 4.S8B-C). 

Subject and opponent cells were spatially intermixed within the population (Figures 4.7D-E). 

Interestingly, we also identified a comparable fraction of cells that encoded behavior of the 

interacting partner during free social interaction in the open area (Figures 4.S8D-E), suggesting 

that behavior of social partners is encoded across multiple social contexts. 

Opponent cells showed responses to specific opponent behaviors, but did not appear to 

respond during the subject’s own behavior (Figures 4.7F-G). To confirm that these cells were 

selectively active during opponent behavior, we compared their mean activity during opponent 

push, retreat, or approach with activity during subject behaviors (Figures 4.7H-J). Opponent cell 

activity during opponent behaviors (when the subject is not behaving or moving; Figures 4.S3F-

G) was significantly higher than baseline, while activity during subject behavior was not, 

confirming that opponent cells selectively encode opponent behavior. 

To further explore the population encoding of opponent behavior, we constructed 

decoders to classify the identities of subject vs. opponent behaviors (Figure 4.7K) and found that 

discrimination was significantly higher than chance levels (Figure 4.7L), indicating that neural 

responses during subject and opponent behavior form distinct population-level representations. 
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 To test whether opponent cells also contribute to brain coupling, we next examined the 

effect of removing subsets of opponent cells on interbrain correlations. As with removal of subject 

cells (Figure 4.6A), removal of opponent cells, even in only one animal, markedly decreased 

correlated activity (Figure 4.S8F), an effect that was driven specifically by opponent-excited cells 

(Figures 4.7M, 4.S8G). Conversely, examining interbrain correlations only among subject and 

opponent cells, we found that they displayed even higher correlations than the whole population, 

and that replacing these with neutral cells in either animal abolished interbrain correlations 

(Figure 4.7N). Interestingly, we also observed that removing opponent cells had a stronger effect 

(~63% more) on reducing interbrain correlations than subject cells, suggesting that they contribute 

relatively more, cell for cell, to synchronized activity (Figures 4.7O-P). 

Taken together, these results indicate that correlated brain activity depends not only on 

subject cells encoding one’s own behavior, but also on a separate subset of neurons in each 

animal that encode the behavior of the interacting partner (Figure 4.7Q). As each brain represents 

a common behavior repertoire consisting of both animals’ behavior, overall neural activity 

becomes synchronized across dyads. This offers an explanation for why interbrain synchrony 

cannot be fully explained by coordinated rest or concurrent behavior, and why it can be observed 

even when only one animal behaves. 
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Figure 4.7: Neurons encoding behavior of the social partner contribute to interbrain 
correlations. (A) Example traces from dmPFC neurons that respond during opponent behavior. 
(B) Fraction of neurons that are significantly responsive during subject, opponent, or both types 
of behavior based on ROC analysis. (C) Distribution of opponent-encoding neurons that 
selectively respond during specific behaviors. (D) Example field of view showing the spatial 
distribution of subject and opponent cells. (E) Cumulative fraction of pairwise distances among 
different subsets of cells, compared with neutral cells (Kolmogorov-Smirnov test). (F) Trial-
averaged responses of behavior-selective opponent cells. (G) Trial-averaged responses of 
example opponent push-, approach-, and retreat-excited neurons during opponent or subject 
behavior. (H–J) Mean activity of opponent push- (H), approach- (I), and retreat (J)-excited cells 
during each type of subject or opponent behavior. Behavior bouts that overlapped across subject 
and opponent were excluded to ensure that activity during opponent behavior was not 
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contaminated by subject behavior. During opponent behaviors used for this analysis, the subject 
animal did not exhibit any behavior or positional change (see Figures 4.S3F and 4.S3G). (K) 
Population responses during subject and opponent behavior (from a cross-validation test set) 
projected onto the first two FLD dimensions. (L) Performance of FLD decoders to distinguish 
between subject and opponent behavior based on population activity. (M) Interbrain activity 
correlations after removal of opponent-excited (Opp) or neutral (Neu) cells from both animals. (N) 
Interbrain activity correlations between subsets of subject and opponent (S/O) or neutral (Neu) 
cells (the top 25 cells based on rank-ordered auROC values). (O) Interbrain correlation upon 
removal of different numbers of subject, opponent, or neutral cells from each animal. (P) 
Reduction in interbrain correlation after removing 25 subject, opponent, or neutral cells from each 
animal, as in (O). (Q) Schematic showing that interbrain correlations arise from the collective 
contributions of neurons encoding subject and opponent behavior in both animals. As these 
neurons in each brain represent a common behavior repertoire (i.e., behavior of both animals), 
overall neural activity becomes synchronized across dyads. ***p < 0.001, **p < 0.01, p > 0.05, 
n.s. (F and L–O) Mean ± SEM. (A, F, and G) DF/F calcium traces are presented in units of SD. 

 

4.4.9: Dominant animals exert a greater influence on interbrain correlations than 

subordinates 

 Next, to explore whether cells in dominants and subordinates encode subject and 

opponent information differently, we constructed GLMs to model the activity of each neuron as a 

function of the behaviors of both animals and their positions in the tube (Figure 4.8A, 4.S8I). 

Overall, ~30% of all cells in both dominants and subordinates were well-modeled (Figure 4.S8J), 

and the majority of these were significantly fit by only subject behavior, opponent behavior, or a 

combination of both (Figure 4.8B). Moreover, a subset of dmPFC neurons were only explained 

by opponent – but not subject – behavior, and a substantial fraction were fit with significant 

coefficients to specific opponent behaviors (Figures 4.8C, 4.S8K), again indicating that activity in 

some dmPFC neurons is selectively modulated by opponent behavior. 

Intriguingly, models of cells in dominants placed higher weight on the subject’s own 

behavior, whereas opponent behaviors had a stronger weight contribution to cells in subordinates 

(Figures 4.8D, 4.S8L). This indicates that while cells in dominants respond more to subject 

behaviors compared to cells in subordinates, cells in subordinates respond more to opponent 

behaviors compared to cells in dominants. This possibly reflects stronger engagement of attention 

in subordinates toward dominant animal behavior. 
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These observations led us to hypothesize that dmPFC neurons might exhibit stronger 

interbrain correlations when dominants behave compared to subordinates. To test this, we 

examined interbrain correlations during epochs when one animal, but not the interacting partner, 

was behaving. Strikingly, activity correlations were higher during dominant than during 

subordinate behavior (Figure 4.8E), suggesting that interbrain correlations are driven more 

strongly by dominant animals (Figure 4.8F). 

 

4.4.10: Interbrain correlations predict social interactions and dominance relationships 

across dyads 

 The observation that dominant animals more strongly drive brain coupling suggests a 

more direct relationship between interbrain correlations and social interaction. To explore this 

more deeply, we first asked whether interbrain correlations could predict behavior interactions. 

We constructed time-courses of the probability of behavioral response in one animal as a function 

of time following partner behavior (Figure 4.8G). Decisions in one animal preceded by highly 

correlated activity were more likely followed by a behavioral reaction from the opponent. 

Moreover, the probability of behavioral response following partner behavior was positively 

correlated with the degree of synchrony preceding the interaction (Figure 4.8H), suggesting that 

correlated activity not only arises during social interaction but actually predicts future interactions. 

As expected, correlations among subsets of subject and opponent cells in each animal also 

predict future interactions (Figure 4.8I). However, this relationship was abolished when 

considering correlations with neutral cells (Figure 4.8I), again highlighting the dependency of 

activity synchrony on neurons encoding social information. 

Given that the overall dominance relationship between animals is a consequence of 

individual social interactions, we hypothesized that the degree of activity correlation across a 

dyad, which predict their interactions, may reflect their difference in overall dominance levels. 

Using average tube positions of animals as a dominance metric (i.e., territory gained), we 
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compared interbrain correlations across dyads with their difference in relative dominance. 

Strikingly, we observed a significant positive correlation across all pairs (Figure 4.8J). In 

particular, subsets of neurons encoding social behaviors of self and others significantly predicted 

differences in dominance behavior, while replacement with neutral cells in either animal abolished 

this relationship (Figure 4.8K). 

 Since brain coupling predicted future social interactions, we also asked whether 

correlations during only the initial phase of the encounter could predict dominance outcomes. 

Interestingly, the degree of interbrain correlation in just the first two minutes of each session 

predicted differences in dominance across the whole session (Figure 4.8L). Again, this 

relationship depended critically on behavior cells in both animals (Figures 4.8M-O). Despite this, 

the degree of overall behavior correlation in the first 2 minutes was unrelated to differences in 

dominance (Figure 4.S8M), suggesting that activity correlations may be a better predictor of 

dominance outcomes than behavior itself. Taken as a whole, these results demonstrate that 

activity correlations predict social interaction on timescales ranging from seconds to minutes, 

suggesting a functional role for brain coupling as an emergent property of a multi-animal system 

in coordinating social interactions and facilitating the development of social relationships (Figures 

4.S1B, 4.8P). 
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Figure 4.8: Interbrain correlations predict future interaction and dominance relationships. 
(A) Examples of neurons with activity modeled by GLMs using positions and behavior of both 
animals. (B) Distribution of single-neuron GLMs with statistically significant (p < 0.05) coefficients 
fit to subject (but not opponent) behavior, opponent (but not subject) behavior, subject and 
opponent behavior, or other variables only. (C) Distribution of cells with significant coefficients for 
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specific subject and opponent behaviors. (D) Weight contributions (the average of Z-scored 
coefficients) in single-neuron GLMs for subject and opponent behavior in dominants and 
subordinates. (E) Interbrain correlations during behaviors of dominants versus subordinates. (F) 
Schematic showing greater influence on interbrain synchrony by dominant animals. (G) Time 
courses showing the probability of behavior in one animal as a function of time following behavior 
onset in the interacting partner, color coded based on the interbrain correlation over the preceding 
30 s. (H) Correlation between the interbrain activity PCC preceding behavior in one animal and 
the response probability of the interacting partner. (I) Regression coefficients (R2) for the linear 
relationship shown in (H) using subsets of neurons (S/O, subject and opponent cells; Neu, neutral 
cells). (J) Correlation between the interbrain activity PCC across pairs and the differences in their 
mean tube position. (K) Regression coefficients (R2) for the linear relationship shown in (J) using 
subsets of neurons. (L–N) Correlation between interbrain activity PCC during the first 2 min of 
interaction and overall difference in tube position over the session using all cells (L), only subject- 
and opponent-encoding cells (M), or only neutral cells (N). (O) Regression coefficients (R2) for 
the linear relationships between interbrain activity correlations during the first 2 min of interaction 
and dominance difference using subsets of neurons. (P) Schematic showing that interbrain 
coupling is higher when one animal is significantly more dominant than its opponent, and lower 
when two animals have similar levels of dominance. ***p < 0.001, **p < 0.01, p > 0.05, n.s. (D) 
Mean ± SEM. 

 

4.5: Discussion 

4.5.1: Interbrain correlated neural activity during social interaction 

 Previous research on interbrain synchrony has illuminated the capacity for neural circuits 

to coordinate across individuals during social engagement 10,33. However, it has been largely 

unclear how region-wide interbrain correlations arise from activity patterns at the circuit or single-

cell levels. Using simultaneous large-scale recordings in interacting animal dyads, we provide 

conclusive evidence that mice exhibit interbrain correlations of neural activity in the dmPFC that 

arise from ongoing social interaction. We observed correlated activity in an unconstrained 

environment, as well as during dominance competitions in the tube test, suggesting that social 

brain coupling is a general phenomenon present in multiple contexts. Importantly, interbrain 

correlations could not be simply explained by activity associated with concurrent or coordinated 

behavior. Rather, the coupling of brain activity likely reflects specific types of meaningful 

engagement, as well as attentional entrainment across pairs of animals embedded in a larger 

social context. As interbrain coupling has only previously been observed in humans and non-
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human primates, this finding strongly suggests generality and conservation of the phenomenon 

across a wide range of animal species. 

 Importantly, rather than reflecting uniform changes in the firing patterns of cell populations, 

we find that activity synchrony depends specifically on subsets of neurons that separately encode 

behaviors of the subject animal and those of the interacting partner. These cells allow each brain 

to represent a common repertoire of behavior (behavior of both interacting animals), such that 

activity across separate brains becomes synchronized. The existence of opponent-encoding cells 

in part explains why interbrain synchrony is not simply accounted for by coordinated rest and 

concurrent behavior, and highlights the complexity of mechanisms underlying synchrony that 

invite deeper investigation at the circuit level. 

 

4.5.2: Encoding of one’s own and the social partner’s behavior in dmPFC neurons 

 In many social species, including humans, social interactions between individuals are 

shaped by status relationships and dominance competitions 11. Recent work has begun to 

investigate the neural mechanisms underlying the expression of dominance behavior 34,35. In our 

study, we identified a substantial fraction of neurons in the dmPFC that encode distinct social 

dominance behaviors during a competitive encounter. These single-cell responses collectively 

formed stable representations of push, retreat, and approach behavior, suggesting a role for 

dmPFC neurons in regulating multiple, sometimes opposing, behavioral strategies. 

 In addition to coordinating one’s own behavior, social interactions also require animals to 

anticipate and react to the decisions of their social partners. However, it is not well understood 

how neural systems represent observed behavior. Studies in humans and non-human primates 

report that prefrontal, motor, and parietal regions can respond to actions displayed by other 

individuals 36–39. Yet many of these studies were done in the context of passive and unidirectional 

behavioral observation. It is largely unclear how representations of self and others’ behavior arise 

during dynamic interactions where animals must simultaneously observe and respond within 



 173 

seconds. We find that a fraction of dmPFC neurons in mice encode specific behaviors of the 

interacting partner, and collectively form a neural response pattern that distinguishes opponent 

and subject behavior. The presence of these neurons in the rodent dmPFC suggests conservation 

of function across diverse species and sets the groundwork for deeper investigation using a 

genetically tractable animal model. 

 We also explored whether encoding of observed behavior is shaped by dominance status. 

Interestingly, while subject behavior was more strongly encoded in dominants than in 

subordinates, opponent behavior was more robustly encoded in subordinates than in dominants, 

suggesting an asymmetry in the computational structure of the dmPFC circuit based on social 

status. Moreover, synchrony was consistently higher during dominant animals’ behavior than 

during subordinate animals’ behavior. These suggest that during competitive interactions, 

subordinates may be more attentive to dominants. Indeed, in primates, subordinates pay more 

attention to the actions and gazes of dominant individuals 40,41. Our results suggest that, in 

rodents, this feature of directed social attention could be instantiated in the activity of dmPFC 

neurons. 

Animals also have the capacity to encode other information about conspecifics, such as 

their physical location or emotional state 42–44. How these processes are related to the encoding 

of volitional behavior of others is unclear and remains an exciting topic for future study. 

 

4.5.3: Interbrain correlations predict social interactions and dominance relationships 

 Beyond providing a neural basis for how interbrain synchrony arises from individual cells, 

our study also functionally links it to the coordination of social interactions—stronger interbrain 

correlations across dyads predict future social interaction. While interbrain coupling originates 

from activities in individual brains, it represents a state of multi-individual systems that operates 

at the level of the system itself and is not accessible to each brain to directly influence one’s own 

decisions. Instead, this state reflects one or several underlying neural processes within each brain 
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that operate to shape animal behavior. Given the role of opponent-encoding neurons in interbrain 

synchrony, correlated activity may in part reflect attentional engagement between animals, 

effectively coupling their decisions and increasing their behavioral reciprocity. As interbrain 

coupling both arises from and predicts dyadic behavior, the behavioral interaction and its 

interbrain neural correlate may form a bidirectional feedback loop that serves to facilitate and 

sustain ongoing interaction (Figure 4.S1B). 

 In addition to our observation that dominants drive stronger responses from subordinates, 

we also found that the degree of interbrain correlation across each pair predicted dominance 

relationships, whereas correlations between their behavior could not. This echoes previous 

reports in humans that brain coupling can predict leader-follower relationships, even before 

leadership roles are manifested 45–47. Our results suggest that synchrony across individuals with 

unequal status relationships depends on circuitry that encodes actions of social partners, and in 

such contexts, may reflect the directed engagement of “followers” toward more dominant 

individuals leading an interaction. 

Collectively, our results shed new light on the neural basis and functional role of interbrain 

synchrony in coordinating social interactions. More importantly, they set the groundwork for a 

more incisive investigation of the emergent neural properties of multi-individual systems, which 

may yet reveal a richer and deeper understanding of the social brain as it is embedded in a truly 

social world. 
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4.6: Supplemental data 

Figure 4.S1: Social behavior and interbrain coupling in interacting animals. (A) Schematic 
showing social behavioral decisions of animals engaged in dyadic social interaction. 
(B) Feedback loop between interbrain synchrony and social interactions. The coupling of activity 
between interacting animals facilitates and sustains ongoing social interaction.  
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Figure 4.S2: Analysis of behavior and interbrain correlations in the open arena. (A) Total 
time two animals spent interacting in the open arena (which includes time when a single animal 
or both animals are engaged in social behavior). (B) Mean dmPFC activity during different types 
of social (orange) and non-social (blue) behaviors across all animals engaged in open arena 
interactions (mean ± SEM). (C) Correlations of dmPFC activity (blue) and phase-randomized 
traces (red) across animal pairs at different timescales. Mean activity traces were decomposed 
into different frequency bands using a Fourier transform. Interbrain correlations are stronger at 
slower timescales, consistent with the notion that correlations depend on a larger context of 
continuous, ongoing interaction on a scale of seconds to minutes. (D) Correlation of behavioral 
activity and rest across animals interacting in the open arena (all types of behavior pooled, left) 
and correlation of specific types of behaviors across animals (right) (p*** < 0.001). This suggests 
that, across animals, behavior activity and rest are somewhat correlated (left), whereas individual 
behaviors are not correlated (right). (E) Correlations of phase-randomized activity traces across 
animals in the open arena with or without social contact (p > 0.05 – not significant). (F) 
Comparison of interbrain correlations among animal pairs that naturally displayed high or low 
levels of mutual social interaction. Pairs with a higher degree of social interaction showed higher 
interbrain synchrony, consistent with the notion that synchrony depends on ongoing interaction.  
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Figure 4.S3: Automated tracking and analysis of animal behavior during the tube 
test. (A) Performance of the convolutional neural network to automatically track the locations of 
interacting mice in behavior movies, measured by the accuracy of the algorithm to properly 
identify both mice and correctly determine their positions in a subset of randomly drawn frames, 
compared with ground truth assessment determined by an unbiased individual (mean ± SEM). 
(B) Total percentage of time spent behaving among dominant and subordinate animals across all 
pairs. For each pair, the dominant animal is the one with the greater mean tube position (mean ± 
SEM, p > 0.05; not significant). (C-E) Distribution of per-bout behavior durations for push (C), 
retreat (D), and approach (E) behavior in dominant or subordinate animals (Kolmogorov-Smirnov 
test, p > 0.05; not significant). (F) Average change in position of mice during subject push, retreat, 
or approach behavior (mean ± SEM). (G) Average change in position of mice during opponent 
push, retreat, or approach behavior (mean ± SEM; behavior bouts when subject and opponent 
behavior overlapped were removed from analysis).  
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Figure 4.S4: Analysis of interbrain correlations in the tube test. (A, B) For each animal pair, 
the observed interbrain correlation (PCC; blue dots) shown against a null distribution of PCCs. 
Boxes indicate mean ± standard deviation of the null distributions; red lines indicate 95% intervals 
(2.5th and 97.5th percentile). (A) Null distributions are generated from temporally permuted 
traces. (B) Null distributions are generated from phase-randomized traces. (C) Correlations of 
dmPFC activity (blue) and phase-randomized traces (red) across pairs at different timescales 
using Fourier decomposition of signals into different frequency bands. Interbrain correlations are 
stronger at slower timescales, consistent with the notion that correlations depend on a larger 
context of continuous, ongoing interaction on a scale of seconds to minutes. (D) Example trace 
of the average activity of all dmPFC neurons in one animal (green), and a surrogate phase-
randomized signal (red) with disrupted temporal structure but identical mean, variance, and 
autocorrelation as the original trace. (E) Interbrain correlations of phase-randomized traces from 
tube test experiments with or without social contact, as in Figure 4J (p > 0.05; not significant). (F) 
Comparison of interbrain correlations during epochs with concurrent isolated behavior bouts in 
interacting pairs in the tube test (left), and behavior-matched epochs from non-interacting pairs 
(right) (mean ± SEM). (G) The difference in performance of GLM models schematized in Figure 
2J for animals engaged in the tube test, compared with that using phase-randomized activity from 
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the interacting partner. The GLM performance difference quantifies the relative difference in 
model performance when activity from the interacting partner is included as a variable in addition 
to behavior variables (p** < 0.01).  

Figure 4.S5: Activity and spatial intermixing of behavior cells in dmPFC. (A) Distributions of 
auROC (area under the ROC curve) values for cells that are excited (top) or suppressed (bottom) 
during behavior. Significantly responsive cells were determined using permutation testing. Gray 
curve indicates the distribution of auROC values from neutral cells that do not respond during 
behavior. (B) Comparison between the percentage of behavior-excited cells identified over all 
tube test sessions and the percentage expected by chance. Chance levels were determined by 
comparing auROC values of temporally permuted calcium traces against random null distributions 
(p*** < 1.0e-10, Fisher’s exact test). (C) Average cell activities for behavior-excited, behavior-
suppressed, and neutral (behavior-unresponsive) cells. For each neuron, overall activity is 
measured as the percentage of time the calcium trace is above 10% of its maximum value (p > 
0.05; not significant).  
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Figure 4.S6: Separation of population responses encoding distinct social behaviors. (A) 
Cartoon illustration of the Mahalanobis distance and Euclidean distance between pairs of points 
on a 2D plane. The Mahalanobis distance considers the shape of the underlying distribution of 
data by scaling dimensions based on their covariance (the correlational structure of the neural 
population). Although point C is further from B than A is in Euclidean terms, A and C are 
equidistant from B using the Mahalanobis distance. (B) Percentage of the total variance of trial-
averaged population activity during behavior in tube test sessions that is captured by principal 
components (gray curves); average over all sessions shown with black curve. (C) The cumulative 
variance of trial-averaged population activity captured by principal components as a function of 
the number of components (gray curves); average over all sessions shown with black curve. (D) 
Average variance in population activity captured by the first three principal components, as shown 
in (C) (mean ± SEM). (E-G) ROC curves quantifying the performance of FLD decoders to predict 
push (E), retreat (F), and approach (G) behavior based on population activity. Thin color lines: 
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performance for each session; dark color lines: average ROC curves taken over all sessions; gray 
lines: the average of chance decoders constructed using training data with randomly shuffled 
class labels.  

Figure 4.S7: Single behavior cell contributions to interbrain correlations. (A) Interbrain 
activity correlations after removal of behavior cells (Bv; including both excited and suppressed 
cells) or neutral cells (Neu) from both animals (mean ± SEM). (B) Interbrain activity correlations 
after removal of behavior-suppressed (Bv) or neutral (Neu) cells from both animals (mean ± SEM). 
(C) Schematic of GLM fit to model mean activity of subsets of behavior-excited cells as shown in 
Figure 6H using single neuron activities from the interacting partner. Red line: modeled activity of 
the top 15 push cells from one animal/session. Black line: ground truth activity of the same group 
of cells. (D) Comparison between the performance of GLMs constructed to model the mean of 
subsets (15 cells) of randomly selected or neutral cells (p > 0.05; not significant). (E) Distribution 
of PCC of all single neuron pairs across interacting animals in the tube test (blue). Each bin 
represents one percentile of the random distribution (chance level of 1%, red) of correlations 
generated from calculating PCCs over temporally permuted calcium traces (mean ± SEM). This 
indicates that pairs of single cells across interacting animals exhibit a higher level of correlation 
than expected by chance. (F) The percentage of single cell interbrain correlations that exceed the 
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99th percentile of null distributions generated from randomly permuted calcium traces, as in (E). 
Percentage of highly correlated cell pairs is compared with the chance level of 1% (mean ± SEM, 
p*** < 105).  

Figure 4.S8: Analysis of behavior cell properties and single neuron models. (A) Distribution 
of excited (light color) and suppressed (dark color) opponent cells within each behavior category. 
(B, C) Response strength (B) and response probability (C) of subject behavior-excited and 
opponent behavior-excited cells for different behavior categories. The response strength for each 
cell is calculated as the mean activity over all behavior epochs. The response probability is 
calculated as the percentage of behavior events with neural activity exceeding 110% of the local 
baseline. (D) Percentage of neurons recorded during open arena interactions that respond 
selectively during opponent social behavior. Opponent cells in open arena interactions were 
identified using ROC analysis based on opponent behavior (not overlapping with subject 
behavior) and rest epochs. (E) Mean activity of opponent cells during subject behavior, opponent 
behavior, or rest (when neither animal is behaving) in open area interactions. (F, G) Interbrain 
activity correlations after removal of opponent cells (Opp) or neutral cells (Neu) from both animals. 
Opponent cells includes both excited and suppressed cells (F) or only suppressed cells (G). (H) 
Activity (percent of the max activity value) of all behavior-excited opponent cells during the tube 
test with or without social contact. (I) Illustration of the variables used to fit single neuron GLM 
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models. Behavior vectors denoting social behavior of each animal are exponentially smoothed, 
and position coordinates for each animal are decomposed into four positions that tile the length 
of the tube. (J) Percentage of single neurons in each tube test session that are modeled well 
(exceed chance levels based on cross-validation) by a GLM fit to the behavior and positions of 
both animals. (K) Percentage of cells fit with significant coefficients for individual subject and 
opponent behaviors, as in Figure 8C. Here, single-neuron GLMs were identified using cross-
validated R2 as an alternative performance metric. (L) Contributions of coefficients in single 
neuron GLMs for subject and opponent behavior in dominant and subordinate animals. Weight 
contribution was calculated as the average of normalized coefficients over all cells in each animal, 
as in Figure 8D. Here, single-neuron GLMs were identified using cross-validated R2 as an 
alternative performance metric. (M) Relationship between overall behavior correlation across 
pairs during the first 2 min of interaction and their overall dominance difference over the session. 
Overall behavior correlations were measured by the correlation of the presence of behaviors of 
any types, which reflects the level of overall concurrent behavior. ***p < 0.001, **p < 0.01, *p < 
0.05, p > 0.05, n.s. (B–D, F–H, J, L) Mean ± SEM.  
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5.1: Conclusions: 

 I have presented two studies in this dissertation, each focused on investigating the neural 

processes in the brain that shape social perception, behavior, and interaction between individuals. 

The first study, described in chapter 3, examined the process of social decision-making in the 

brain by exploring how a complex social variable – sex identity – is encoded in cortical neurons, 

and then linking these neural representations of sex to behavior through correlational analyses 

and optogenetic manipulations 1. One important conclusion from this study was that neurons in 

the prefrontal cortex robustly encode sex as a variable and can discriminate the sex identity of 

conspecifics (Figure 3.1). Previous work in the field had largely focused on the role of subcortical 

circuits in processing sensory cues and extracting social variables (see section 1.3.3.2) 2–5. 

Although some recent studies have pointed to a role for prefrontal cortical circuits in processing 

social information 6,7, the encoding of specific social variables such as sex had not been explored. 

In addition, our study also established a causal role for native representations of sex in the control 

of animal behavior using optogenetic manipulations (Figure 3.6). Previous studies had identified 

an association between the encoding of sex in the brain and social behavior, implying that internal 

representations of social variables play a causal role in the transformation of sensory inputs into 

behavioral changes 3,4. Although this is compelling interpretation of observational data, the idea 

that native representations of sex affect animal behavior was a hypothesis that had not been 

tested. Our study tested this hypothesis explicitly using activity-dependent expression of 

channelrhodopsin, allowing us to directly manipulate the neurons that encode male or female 

cues. These findings close an important knowledge gap in the field, and lay groundwork for more 

incisive experiments that can uncover the mechanics of how neurons encoding sex modulate 

expressed behavior.   

 In chapter 4, I presented work that investigated the synchronization of neural activity 

across the brains of animals engaged in social interaction. Over the last 20 years, a rich literature 

has emerged in human social neuroscience that has examined the relationship between brain 
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activity across interacting people, and in many cases, has linked properties of these signals (such 

as time-series correlation and coherence in specific frequency domains) to behavioral, cognitive, 

and relational variables 8–11. These interbrain dynamics are of interest because they may capture 

the relationship between internal processes within each agent that are informative about the 

interaction (such as attention) but may not be explicitly observable at the behavioral level (Figure 

1.2) 12. In principle, such signals may be useful as biomarkers for certain types of interaction, and 

they may even help to distinguish deficits in interaction that are present in individuals with 

developmental or psychiatric disorders 13,14. Despite several years of fascinating discoveries using 

this approach, two fundamental questions have remained unaddressed: 1) What is the biological 

reason that signals recorded from physically separate neural systems are correlated? 2) Why 

does the correlation or coherence between these signals contain information about behavioral, 

cognitive, or relational variables? Our study moved understanding in both of these knowledge 

gaps forward. By recording activity of hundreds of individual neurons and using these data to 

derive a “bulk” regional signal, we were able to then decompose the synchronized signals into 

their biological components and ask specific questions about which components give rise to 

correlated dynamics. In the prefrontal cortex of mice, we found that interbrain correlations emerge 

because of the coding properties of individual neurons – in this case, because single neurons 

encode the behavior of the subject animal and its social partner (Figure 4.7) 15. We also linked 

the degree of interbrain correlation to social rank relationships between pairs, echoing previous 

reports of synchronization across leaders and followers in a group (Figure 4.8) 16,17. While not yet 

tested, it appears that this activity-behavior relationship may arise because of asymmetric coding 

properties of prefrontal cortex neurons across dominant and subordinate animals (Figure 4.8). In 

general, our study models a method for analyzing how interbrain dynamics emerge from 

underlying neural components, and it demonstrates how the use of animal models can provide 

deeper insight into the biology underlying this phenomenon. It also suggests a more general 

theoretical framework for thinking about interbrain dynamics across species, contexts, and brain 



 192 

regions (elaborated in a review article entitled “A Multi-Brain Framework for Social Interaction” 12) 

– namely, that interbrain dynamics and their relationship with behavior arise because of the 

specific coding properties of the underlying neural components. This framework may be used to 

guide future research in both animals and humans toward more informed hypotheses and deeper 

mechanistic understanding. 

 

5.2: Future directions: 

 The study presented in chapter 3 leaves open several important directions of inquiry. On 

the mechanistic side, immediate directions include using anatomical tracing techniques to 

investigate the inputs to male- and female-encoding mPFC neurons and to understand how their 

sex-specific responses are shaped 18,19. An important open question on this front is whether 

encoding of sex in mPFC is shaped by one dominant sensory input (for example, pheromonal 

information routed from MeA or BNST), or is integrated across multiple sensory features. 

Clarification of how sex representations are formed in the brain may uncover more general 

principles of how complex social features, like social status and familiarity, are extracted from 

basic sensory inputs. Another important question surrounds how male- and female-encoding 

mPFC neurons affect behavior. The optogenetics experiments presented in the study indicate 

that these neurons are causally effective, but they do not indicate precisely how their projections 

to other circuits in the brain shape behavioral output. Initial circuit tracing experiments showed 

that these neurons project widely to limbic and subcortical centers, including the amygdala, lateral 

hypothalamus, ventral tegmental area, nucleus accumbens, and striatum (Figure 3.S6). Do any 

one of these projection targets specifically mediate the effects on behavior, or are the effects 

redundantly distributed across multiple downstream circuits? Optogenetics manipulations 

targeted to specific mPFC projection neurons may help to elucidate this 18,19.  

 On the more conceptual side, one important question in social neuroscience centers 

around the specificity of social processing and social functions in the brain 20. Are regions of the 
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brain that appear to process social information in some sense designed for social functions, as 

the “social brain” hypotheses suggests 21,22? Or do social interactions simply engage a specific 

set of primitive cognitive and emotional processes in a unique way that seems to suggest social-

specific functioning 23? While the issue may ultimately be semantic, it is possible and important to 

clarify how basic cognitive and emotional processes overlap with processing of social information. 

Building on the results presented in chapter 3, future experiments could use longitudinal imaging 

to examine how neural populations that represent social-sensory variables (like sex identity) are 

engaged in different types of cognitive processes. One extreme hypothesis is that neurons 

encoding social information are relatively inactive during non-social cognitive tasks (and vice 

versa), suggesting that cortical processing of social and non-social information occur in 

orthogonal subspaces of the population activity state space. The alternative is that these 

processes are overlapping, such that neurons encoding social cues are also engaged in non-

social cognitive tasks. If this is true, it would be informative to examine whether there is any 

structure in the response profiles of individual neurons across distinct types of tasks. This could 

help to refine further hypotheses about how the role of mPFC neurons in a particular task or 

context is shaped by its input architecture, by internal state variables, or other factors.  

 The investigations of interbrain synchronization presented in chapter 4 also open several 

interesting lines of inquiry. On the mechanistic side, it would be informative to trace more deeply 

the response properties of mPFC neurons from inputs, and to explore whether social information 

encoded in mPFC neurons (which gives rise to the correlational signal across animals) is enriched 

in specific subpopulations or projection pathways. While our study demonstrated that neurons 

encoding social behavior play an important role in shaping correlated dynamics, other internal 

processes may also be important 12,24,25. For example, the prefrontal cortex is known to play a role 

in the control of attention – interbrain correlations in the mPFC may also reflect the alignment of 

attention across interacting animals, possibly at a slower timescale than the encoding of individual 

behavioral choices. This and related hypotheses could begin to be tested by recording 
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neuromodulatory signals that are thought to be related to attentional processes (such as 

noradrenergic signaling) 26–28, or by recording specifically from subpopulations of neurons 

involved in attention (such as parvalbumin-positive interneurons) 29,30. 

 As discussed in the previous section, this study also presents a more general theory that 

links interbrain neural dynamics and their behavioral correlates to the coding properties of 

underlying neural components 12. While this theory is based on observations in the specific 

experiments that we performed, at this point it is only speculative, and remains to be tested 

thoroughly. One important future direction is to examine interbrain dynamics across multiple brain 

regions and in different social contexts, and to analyze how the heterogeneity in interbrain 

dynamics is related to the coding properties of individual neurons or neural populations. If our 

framework is correct, one should be able to explain regional and contextual variability in interbrain 

dynamics based on the coding structure of the underlying neural components. In principle, the 

same approach could be applied in the setting of human neuroimaging experiments using fMRI 

or EEG – agreement across studies performed in different species will be important to validate or 

revise the conceptual framework. 

 Finally, the experiments performed in this study were focused on dyadic interaction, but 

this multi-individual level of analysis is not limited to pairs. Some studies in humans have begun 

to examine group-level neural dynamics (in groups ranging from 3 to 20 and more), suggesting 

that this approach may reveal interesting neural correlates of complex group variables such as 

group learning 31–33. Although it is practically challenging in any case, simultaneous recording of 

more than two individuals is probably easier to implement in animals than it is in human subjects. 

Recent advances in wireless recording technology, including wireless microendoscopes, open 

the possibility of studying interbrain dynamics across multiple of animals during naturalistic group 

interaction. Such experiments will expand our understanding of how interbrain dynamics emerge 

from processes in individual brains and will generate new hypotheses about how these signals 

may be used to understand more about group interaction and collective behavior.  
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