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Abstract

In high-stakes applications of machine learning models, interpretability methods
provide guarantees that models are right for the right reasons. In medical imaging,
saliency maps have become the standard tool for determining whether a neural
model has learned relevant robust features, rather than artefactual noise. However,
saliency maps are limited to local model explanation because they interpret pre-
dictions on an image-by-image basis. We propose aggregating saliency globally,
using semantic segmentation masks, to provide quantitative measures of model
bias across a dataset. To evaluate global saliency methods, we propose two metrics
for quantifying the validity of saliency explanations. We apply the global saliency
method to skin lesion diagnosis to determine the effect of artefacts, such as ink, on
model bias.

1 Introduction

Across medical imaging tasks, convolutional neural networks (CNN) have demonstrated human-level
diagnostic accuracy [7], [10]. However, these models are often not robust, learning non-generalizable
patterns and confounding visual artefacts with diseased tissue [2], [16]. Such models may perform
well on a validation set yet fail catastrophically when applied in new contexts. The standard method
to explain model predictions is to visually, individually inspect saliency maps for each image to
determine whether the most salient pixels are the most relevant for diagnosis. This practice prevents
some unexpected failures but remains subjective based on the reviewer’s judgement. Hence, we
expand on methods developed for single images and quantify model bias globally across a validation
dataset, thereby facilitating inter-model comparison of bias.

Many saliency methods exist for highlighting the areas of an image most relevant to a model’s
prediction. Consequently, a natural validity check for saliency methods involves verifying that
resulting saliency maps are compatible with known discriminatory features. Recently [1] questioned
whether saliency maps explain the predictions of a model or merely highlight the foreground of an
image. In response, we propose two metrics for quantifying how accurately saliency maps reflect
model behavior.

[14] identified ink skin markings as a confounder for automated diagnosis and evaluated their effect
by comparing predictions on inked images to predictions following ink-removal cropping. We apply
and evaluate our proposed global saliency method on a skin lesion dataset with ink artefacts.

Our key contributions are as follows:

Machine Learning for Health (ML4H) Workshop at NeurIPS 2019, Vancouver, Canada.
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• We propose a simple procedure, termed global saliency, to aggregate saliency maps within
and across images. Global saliency quantifies the effect of an artefact on a CNN’s decisions
across a dataset given segmentation masks for the artefact.

• We introduce two metrics for evaluating the quality of saliency methods: model failure
prediction and dataset bias detection.

• We apply global saliency to distinguish between modes of artefact-induced model bias.

2 Background

2.1 Skin Lesion Dataset

Table 1: Training datasets and ink-co-occurrence probabilities by class
Train set MEL NV BCC SCC AK SK Other

Baseline 58% 48% 74% 68% 76% 58% 66%
Unbiased 66% 66% 66% 66% 66% 66% 66%
Ink-Only 100% 100% 100% 100% 100% 100% 100%
Ablated 100% 100% 100% 100% 100% 100% 100%

The dataset consists of 12,563 clinical skin lesion images labelled by histopathology-verified diag-
noses (Appendix A). The labels are: melanoma (MEL), basal cell carcinoma (BCC), squamous cell
carcinoma (SCC), actinic keratosis (AK), seborrheic keratosis (SK), nevus (NV) and ‘Other’, under
which remaining less common diagnoses are grouped together. Ink markings, used to designate the
location of skin biopsy, occur as a common visual artefact across the dataset (Table 1, Row 1). We
used a BiSeNet [15] semantic segmentation network to generate masks labelling the inked pixels
within an image; below we denote these pixels by A(X) (Appendix A). All models used in the
experiments below are DenseNet-121 (Appendix A).

To address confounding via ink markings, we created three training datasets with different co-
occurrence probabilities between ink and label, as shown in Table 1 (also, Appendix A). We compared
saliency on ink across the three corresponding models to determine effects of artefact-induced bias
on model predictions.

2.2 Saliency Methods

Given a CNN, f , and an input image, X , a saliency map is a function, gf , assigning an importance
gf (X)i,j ∈ R to each pixel, (i, j). A saliency map should evaluate the counterfactual importance of a
subset of pixels, answering the question, "Would the model’s classification change if these pixels were
to be replaced by a different set of pixels?" We restrict our attention to two particular saliency maps,
grad-CAM and competitive gradient�input [9], [12]. Grad-CAM visualizes saliency by summing
weighted filter maps within a fixed layer where the filter weight is the spatial average of its gradient.
Competitive gradient�input interprets as most salient pixels where the given class has greater absolute
value than all other classes’ gradients. Both grad-CAM and competitive gradient�input compute
saliency with respect to a particular class, usually taken to be the model’s predicted class on that
image.

2.2.1 Aggregating Saliency Across Images and the Completeness Property

As saliency maps are constructed to compare pixels within an image, there is no guarantee that
saliency values may be aggregated across images. However, certain saliency maps satisfy the
completeness property: the pixel-wise sum of saliencies equals the model’s confidence for that image,∑

gf (X)i,j = max(f(X)). [9] suggests that competitive gradient�input empirically satisfies the
completeness property.

Given a pixel-wise segmentation of an artefact (in our case, ink), we compute saliency on the subset
of pixels in which the artefact is present, A(X) ⊂ X . For saliency maps satisfying the completeness
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(a) Global saliency using Competitive Grad�Input (b) Global saliency using grad-CAM

Figure 1: Global mean saliency on validation set, Z-score normalized by dataset. Mean and standard
deviation computed over all pixels in all images, by dataset. Error bars are 95% CI.

property, saliency on the artefact is normalized relative to the salience on the rest of the image (Eq.
1). Note that this normalization property does not hold for perturbative saliency methods [13].

max(f(X))−
∑

i,j∈A(X)

gf (X)i,j =
∑

i,j∈X\A(X)

gf (X)i,j (1)

3 Global Quantification of Saliency

The simplest way to aggregate saliency is to take the mean saliency, m, over the subset of pixels
corresponding to the artefact, as defined by a semantic segmentation mask.

mf,g,A(X) =
1

|A(X)|
∑

i,j∈A(X)

gf (X)i,j (2)

The values of mf,g,A(X) may be aggregated across a validation set, Xval, to quantify the global
effect of an artefact on the model which we term global saliency (Figure 1). For saliency maps which
satisfy completeness, mean aggregation may be used directly. But, for methods which do not satisfy
completeness, it is necessary to normalize either within the image or across the dataset. Alternatively,
we define an aggregation function invariant to re-scaling of the saliency map – e.g. rank the saliency
of pixels within the image, X , and evaluate what percentage of the nth percentile of most salient
pixels, Pn(gf (X)), occur within the artefact, nf,g,A(X) =

|Pn(gf (X))∩A(X)|
|Pn(gf (X))| .

3.1 Evaluating Global Saliency

[1] showed certain saliency maps that satisfy completeness do not explain differences between trained
and untrained models. For medical imaging, it is crucial that methods used to verify robustness of a
model consistently detect model failure. We propose two tests for empirically evaluating the quality
of saliency maps, using global saliency: (1) tracking dataset bias and (2) model failure prediction.

Tracking Dataset Bias: Identify the (non-)existence of undesirable bias by inferring whether the
underlying training dataset has spurious correlations between an artefact and labels.

Given a training set with a visual artefact occurring across classes (e.g. Table 1), we propose a
validity check for global saliency: Is artefactual global saliency correlated with increasing dataset
bias? For our skin lesion dataset, this corresponds to comparing saliency on ink across the baseline,
unbiased, and ink-only datasets (Table 1, Appendix A). Figure 1 shows the baseline dataset has higher
inter-class ink-saliency variance relative to the unbiased and ink-only datasets – with the exception of
the ‘Other’ class (Figure 1a). We confirm the robustness of this conclusion by comparing Figure 1 to
global saliency computed using peak saliency aggregation, nf,g,A instead of mean saliency, mf,g,A

(Appendix C). The peak saliency results are visually similar for grad-CAM, but not for competitive
saliency. For the baseline model, MEL and possibly NV/SK, consistently show higher saliency on
ink than the other classes. Possible drivers of inter-class variance in saliency on ink are discussed in
Section 4.
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(a) Val excl. MEL+SK. Kendall’s τ = -0.889, P<0.0001(b) Val MEL+SK only. Kendall’s τ = 0.806, P<0.0001

Figure 2: 3-Fold Accuracy vs ink-saliency-thresholded subsets of the validation set. Leftmost tick
corresponds to the 10th percentile of images with least saliency on ink. Error margins are 95% CI. 1

Model Failure Prediction: Predict model error due to artefact, given excessive saliency on that
artefact.

To quantify the relationship between saliency and accuracy, we evaluated the model across validation
set subsets, recording model accuracy as a function of the maximum permitted saliency on ink
(Figure 2). An ideal map maximizes the area under the response rate accuracy curve (Appendix B).

Figure 1 and Appendix C suggest the model interprets ink as evidence for MEL and SK when trained
on biased data. We test this hypothesis by calculating the correlation between model accuracy and
ink saliency separately for the MEL+SK subset of the validation set and the rest (Figure 2). For
non-MEL+SK skin lesions, excessive saliency on ink correlates with reduced accuracy whereas for
MEL+SK, the baseline model spuriously interprets ink as disease-related. This relationship holds
across saliency methods and aggregation schemes (Appendix B).

4 Applying Global Saliency to Understand and Correct Dataset Bias

Understanding Dataset Bias: Using global saliency as a measure of model bias, we compare
training subsets to understand the ink bias effect on the model. Possible explanations for how ink
biases the model include: (1) co-occurrence rates between artefact and class label, (2) variation in
appearance between artefact instances, and (3) visual similarity between artefact and class object.

It appears that co-occurrence rates drive bias in our dataset (Figure 1). However, we have not
disproven the competing hypothesis that global saliency is merely more sensitive to bias caused
by co-occurrence than items 2 and 3. To quantify the effect of intra-artefact variance, we train a
model solely on ink, with the lesion and skin blurred out (Appendix A). The lesion-ablated model
performs no better than predicting the most prevalent class, with an accuracy of 28%, refuting the
hypothesis that variation in ink appearance contributes to model bias. By exclusion, we propose
visual similarity between skin pigment and ink as an explanation for the difference in saliency on
MEL and SK compared to the other classes, but this needs to be confirmed by future experiments.

Correcting Dataset Bias: Since the co-occurrence unbiased model shows reduced saliency on ink,
we propose training using a sampling procedure such that P (c | Ink) = P (c | No-Ink) for every
class, c. This procedure requires no post-processing of the dataset, and Figure 1 shows that a dataset
which respects this property (unbiased) reduces inter-class ink-saliency variance from 0.007 to 0.003;
however, this variance reduction does not reach significance with Levene’s test W = 1.04, P = 0.33.
It is possible that bias remains present, but is no longer detected by saliency maps. To test our
sampling procedure, we evaluate the effect of lesion ablation, and these results agree with Figure 1
(Appendix A). Other solutions to model bias could involve cropping or ablating ink systematically at
training time, and these augmentations could be incorporated into an unbiased sampling scheme.

Conclusion Global saliency allows for the quantitative evaluation of artefact-induced bias across
models. The global saliency framework may also be used to evaluate the faithfulness of gradient-based
saliency maps to model behavior.

1The results shown in this figure used models trained on an expanded version of the baseline dataset for
which the corresponding global saliency figures are shown in Appendix C.
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A Dataset and Model Details

A.1 Dataset Construction Details

The skin lesion dataset consists of clinical images from [3], [6], [8] and our institution. These datasets
were aggregated into a 12,563 image baseline meta-dataset that was shuffled and then split 90/10
into train and validation subsets.

Typical examples of ink markings are shown below.

Figure 3: Two typical samples of inked skin lesions from the dataset. From left to right: input image,
BiSeNet ink segmentation mask, baseline model grad-CAM saliency overlay.

The ink-only dataset was constructed by using only the 8,319 images which BiSeNet predicted to
contain more than 100 pixels of ink.

The unbiased dataset was constructed by first including the ink-only images. Then for each class, c,
we include a randomly chosen subset cuninked of uninked images of that class where |cuninked| =
0.5 ∗ |cinked|. The 0.5 ratio was chosen to maximize the dataset size while maintaining the unbiased
property.

The ablated dataset included the same subset of images used in the ink-only dataset. These images
are then ablated by replacing pixels labelled as uninked (by BiSeNet) with the mean value pixel for
that image.

As discussed in Section 4, we evaluated both the unbiased and baseline models on the ablated
validation dataset. The baseline model predictions remained invariant under lesion ablation for 52%
of input images, whereas the unbiased model changed predictions to ‘Other’ for 79% of input images.
The ‘Other’ class may be taken as a rejection-to-predict class, and as such the behavior of the unbiased
model is preferable to that of the baseline model.

A.2 DenseNet Model Details

All experiments and results used a DenseNet-121 architecture pre-trained on the ImageNet dataset [5],
[11]. The DenseNet was trained for 50 epochs using SGD with an initial learning rate of 0.02 with
a 0.2 decay factor applied following 15 epochs of plateaued performance. Training used standard
augmentation techniques (random flipping, rotation, color jitter, and affine transformation) as well as
up-sampling of low-prevalence classes to enforce class balance.

For each model we evaluated the performance on both the inked and uninked subsets of the full
validation set. In order to compare between artefact-induced bias levels between models, it is desirable
to hold constant model performance. Performance on each training dataset was comparable.

Table 2: Validation set macro-mean AUROC by training set 2

Train set Full Val Inked Val Uninked Val

Baseline 0.757 0.744 0.773
Unbiased 0.746 0.746 0.744
Ink-Only 0.753 0.755 0.763

2Due to time constraints, some figures in the appendices do not have confidence intervals.
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A.3 BiSeNet Model Details

The BiSeNet was trained using a set of 300 openCV [4] rule-based masks selecting ink by hue and
intensity. For each of these 300 images, we manually reviewed the quality of three distinct rule-
based procedures and selected the mask which appeared most accurate. These 1/0 valued semantic
segmentation masks were then augmented by Gaussian blurring the edges of ink regions to allow for
uncertainty.

The BiSeNet was trained for 100 epochs optimized by SGD using an initial learning rate of 0.1. Learn-
ing rate was decayed by a factor of 0.2 following 12 epochs of plateaued performance. Training used
standard augmentation techniques (random flipping, rotation, color jitter, and affine transformation).

Manual review of BiSeNet masks suggests that the BiSeNet performs at human level for 95% of
images, but due to time constraints, no human-annotated validation set exists for evaluating the
pixel-level performance of the BiSeNet masks.

B Model Failure Prediction and Response Rate Accuracy Curves

An ideal saliency map would demonstrate when the ink within a given image is confounding the
model. To quantify to what extent the saliency map succeeds in identifying the degree of confounding,
we calculate the area under the response rate accuracy curve (AURRAC). The AURRAC value is
equivalent to weighing the model’s 1/0 loss on a given image by its percentile rank saliency on ink. A
greater AURRAC indicates that the saliency method provides more accurate predictions of model
failure due to ink confounding. Given a trained model, for each saliency map and global aggregation
scheme we show the corresponding AURRAC. Whereas Figure 2 showed response rate accuracy
curves separated into MEL+SK subset and the rest, the following curves show the entire validation
set. Due to time constraints, the following curves were computed on the original baseline dataset
using one train/test split.

(a) Mean saliency aggregation. (b) Peak saliency aggregation.

Figure 4: Accuracy vs ink-saliency-thresholded subsets of the validation set. Baseline model with
Competitive Grad�Input.

(a) Mean saliency aggregation. (b) Peak saliency aggregation.

Figure 5: Accuracy vs ink-saliency-thresholded subsets of the validation set. Baseline model with
grad-CAM.
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These preliminary results show peak competitive saliency achieves maximal AURRAC, thereby
predicting baseline model failure most consistently. In contrast, the curves shown in Figure 4a and 5b
do not trend downwards indicating that these global saliency methods do not predict model failure.

C Dataset Bias and Global Saliency by Class

Inter-model comparisons of global saliency using mean aggregation assume that saliency maps take
on values on the same scale. For saliency maps satisfying the completeness property, any pair of
models which have the same distribution of confidence values across a dataset will also have the
same distribution of global saliency values.

We show, empirically, that both grad-CAM and competitive gradient�input do not have comparable
global saliency distributions across models. In particular, using competitive gradient�input, we
apply the Wilcoxon signed-rank test to reject the null hypothesis that image-aggregated saliency
distributions for the unbiased and ink-only models with W = 59, 967, P < 0.0001. However, the
Wilcoxon test cannot distinguish between the confidence distributions of the unbiased and ink-only
models, W = 183, 745, P = 0.67. These differences in competitive saliency distributions suggest
that we must normalize saliency values for each model individually – even when confidence levels
are comparable.

Figure 6: Validation set confidence distributions by model

Figure 7: Validation set saliency distributions by model

We hypothesize that global saliency is largely invariant to the choice of aggregation function. Below
we plot global saliency on the skin lesion dataset using the peak saliency function defined in Section
3,

nf,g,C(X) =
|P98(gf (X)) ∩A(X)|
|P98(gf (X))|

(3)

Note that Figure 8a does not track dataset bias, i.e. the baseline model appears to have comparable
saliency on ink relative to the unbiased and ink-only models. Further research is required to determine
why competitive saliency is not compatible with the nf,g,C function. Grad-CAM saliency appears
compatible with the nf,g,C function, successfully tracking dataset bias. Taken together, the results of
Figure 1 and Figure 8b suggest that melanoma and nevus consistently show higher saliency on ink in
the baseline model (relative to the other classes).
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(a) Global saliency using Competitive Grad�Input (b) Global saliency using grad-CAM

Figure 8: Global peak saliency on baseline validation set.

Figure 2 used an expanded baseline dataset (including 8,000 more recent, additional images). The
global saliency by class remains similar, but the saliency on SK is higher relative to the other classes
when compared to the model shown in Figure 1.

Figure 9: Expanded baseline dataset. Grad-CAM saliency aggregated across 3-folds of cross-
validation.
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