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Abstract

In higher-dimensional supersymmetric theories gauge couplings of the effective four-dimensional theory are de
by expectation values of scalar fields. We find that at temperatures above a critical temperatureT∗, which depends on
the supersymmetry breaking mass scales, gauge couplings decrease likeT−α , α > 1. This has important cosmologic
consequences. In particular it leads to a relic gravitino density which becomes independent of the reheating tempe
TR > T∗. For small gravitino masses,m3/2 �mg̃ , the mass density of stable gravitinos is essentially determined by the g

mass. The observed value of cold dark matter,ΩCDMh
2 ∼ 0.1, is obtained for gluino massesmg̃ = O(1 TeV).

 2003 Published by Elsevier B.V.Open access under CC BY license.
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In higher-dimensional supersymmetric theories [
where the standard model emerges as low-energ
fective theory, gauge and Yukawa couplings are de
mined by expectation values of gauge singlet ‘m
uli’ fields. In a cosmological context, this implies th
generically all couplings depend on the parameter
the cosmological evolution, such as the Hubble pa
meter, temperature, or the cosmological constant.

In the following we study the dependence
gauge couplings on temperature. As we shall s
this has important consequences for the productio
gravitinos in the early universe. ‘Vacuum alignme
at high temperatures causes a power-like decreas
gauge couplings. This then leads to a relic gravit
density which becomes independent of the rehea
temperatureTR above a critical temperatureT∗.

E-mail address: buchmuwi@mail.desy.de (W. Buchmüller).
0370-2693 2003 Published by Elsevier B.V.
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As a specific example, consider gaugino media
[2,3] which is an attractive mechanism to gener
a realistic mass spectrum of gauginos, higgsinos
scalar quarks and leptons in the supersymmetric s
dard model. The source of supersymmetry breakin
the vacuum expectation value of a gauge singlet ch
superfieldS,

(1)〈S〉 = S0 + θθFS,

which is localized on a four-dimensional (4d) bra
embedded inD-dimensional spacetime. The coupli
to bulk gauge fields, expressed in terms of 4dN = 1
superfields, is given by

ID =
∫
d4x dD−4y d2θ

{
1

4g2
D

WaWa

(2)

+ δ(D−4)(y − yS)
1

4M
SWaWa + · · ·

}
+ h.c.,
 license.
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whereWa is the supersymmetric field strength.M is a
mass scale in the range between the compactifica
scale and theD-dimensional Planck mass,

(3)
1

V 1/(D−4)
< M <MD <MP.

HereV = ∫
dD−4y is the volume of the compact d

mensions, MD = (VMD−4
D )−1/2MP and MP =

(8πGN)−1/2 = 2.4 × 1018 GeV is the 4d Planck
mass. For instance, with 1/V 1/(D−4) �MGUT = 2 ×
1016 GeV one obtainsMD = 2×1017 GeV in the case
D = 6.

Inserting the expectation value (1) in the action
one obtains for the 4d gauge coupling and for
gaugino mass,

(4)
V

g2
D

+ φ0

M
= 1

g2
0

,

(5)mg̃ = g2
0

2

FS

M
,

whereφ0 = ReS0. For the SU(3) gauge coupling o
the standard model one hasg2

0(µ) � g2
0(MGUT) �

1/2. The gravitino mass is given by

(6)m3/2 = η
FS

MP
,

where η � 1/
√

3. The smallest gravitino mass
obtained ifFS is the only source of supersymmet
breaking, which is the case in gaugino mediation. T
gravitino mass is then always smaller than the gaug
massmg̃ ,

(7)

mg̃ �
g2

0

2

FS

MD

=
√

3

2
g2

0

(
VMD−4

D

)1/2
m3/2>m3/2,

since the volume enhancement factorρ = (VMD−4
D )1/2

is larger than 2/(
√

3g2
0) � 4/

√
3. For instance, in

D = 6 one hasρ ∼ 10.
The 4d effective action for the zero modes conta

a coupling of the scalar fieldφ to the supersymmetri
gauge kinetic term,

I4 =
∫
d4x

{
−1

4
FaµνF

aµν − iλaσµ(Dµλ̄)a

− 1

2
mg̃
(
λaλa + λ̄a λ̄a

)

+ g2
0
φ

M

(
−1

4
FaµνF

aµν − iλaσµ(Dµλ̄)a
)

(8)+ · · ·
}
;

hereFa is the field strength of the vector potent
Aa , andλa denotes the gaugino. At finite temperatu
the gauge kinetic term acquires an expectation va
which leads to a force on the scalar fieldφ. This ex-
pectation value can be easily calculated by making
of the anomalous divergence of the supercurrent [4

(9)�Dα̇Jαα̇ = 1

3

β(g0)

g0
DαW

aWa,

which contains the trace anomaly of the energ
momentum tensor,

(10)

T µµ = −2
β(g0)

g0

(
−1

4
Fµνa F aµν − iλaσµ(Dµλ̄)a

)
,

where β(g0) is the usualβ-function of the gauge
coupling.

The thermal average of the energy–momen
tensor is determined by energy density and pressu

(11)
〈
T µµ

〉
T

= ε − 3P,

which are related by

(12)ε = −P + T s = −P + T
∂P

∂T
.

The pressure has been calculated in perturbation
ory for a gauge theory with fermions in the fundame
tal representation [5]. Correcting for the colour cha
of the gauginos one obtains for a pure supersymme
gauge theory,

(13)P = (
a0 − a2g

2
0(T )+ · · ·)T 4,

with

(14)a0 = π2

24
nA, a2 = 1

64
TAnA.

HereTA is the Dynkin index of the adjoint represe
tation andnA = dimG, i.e., the number of gluons
For SU(N ) one hasTA = N andnA = N2 − 1. From
Eqs. (10)–(13) one obtains for the thermal expecta
value of the gauge kinetic term,

(15)

〈
−1

4
FaµνF

aµν − iλa
(
σµDµλ̄

)a〉
T

= a2g
2
0T

4.
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Note that the sign of the expectation value is posi
and that there is no dependence on theβ-function.
Because of the anomaly one no longer hasP = ε/3.

The mass of a chiral superfield, whose vacu
expectation value breaks supersymmetry, is gene
controlled by the supersymmetry breaking mass sc
i.e., mφ ∝ m3/2. Small fluctuations around the min
imum are then described by the lagrangian (cf.
(15)),

(16)L = 1

2
(∂φ)2 − ξ

2
m2

3/2φ
2 + a2g

4
0T

4 φ

M
.

Hence, the thermal fluctuations of gauge bosons
gauginos induce a negative linear term in the effec
potential forφ. In many models the parameterξ is
O(1).

The negative linear term in the effective potent
leads to an increase of the fieldφ. Its equilibrium value
at finite temperature is given by

(17)φT = a2g
4
0

ξ

T 4

m2
3/2M

.

Note that the fluctuations ofφ are not in therma
equilibrium and thatφ does not acquire a therm
mass. According to (4) the shift inφ changes the gaug
coupling tog(φT ),

(18)
1

g2
0

+ φT

M
= 1

g2(φT )
.

This change of the gauge coupling becomes signific
at a temperatureT∗ whereφT /M ∼ 1/g2

0, i.e.,

(19)T∗ =
(

ξ

a2g
6
0

)1/4

(m3/2M)
1/2.

Here we have assumed thatFS does not depend o
temperature, as in the Polonyi model. Using Eqs.
and (6) the mass scaleM can be expressed in terms
gaugino and gravitino masses, which yields

(20)T∗ =
(

ξ

a2g
2
0η

2

)1/4(m2
3/2MP

2mg̃

)1/2

.

Extrapolating Eqs. (17) and (18) to temperatures la
thanT∗ leads to a rapid decrease of the gauge coup
asg2(φT )∝ 1/T 4.

However, at large values ofφT /M the effective
lagrangian (16) is no longer appropriate. First,
decrease of the gauge coupling reduces the force o
thermal bath on the fieldφ. This backreaction can b
taken into account by using as effective potential
free energy density of the thermal system evalua
with the field-dependent gauge coupling,

(21)f = −P = (−a0 + a2g
2(T ,φ)+ · · ·),

whereg(T ,φ) has to be determined from the equ
tions of motion. Second, for large values ofφ, higher
powers ofφ/M have to be taken into account. Th
leads to the effective lagrangian

(22)�L = 1

2
(∂φ)2 − 1

2
m2

3/2h(φ)− a2g
2(T ,φ)T 4,

where

(23)g2(T ,φ)= g2
0(T )

1+ g2
0(T )k(φ)

,

h(φ)= ξφ2

(
1+O

(
φ

M

))
,

(24)k(φ)= φ

M

(
1+O

(
φ

M

))
.

k(φ) replaces the linear termφ/M in Eq. (8). The
equilibrium value ofφ is now determined by th
equation

(25)
h′(φT )(1+ g2

0k(φT ))
2

k′(φT )
= 2a2g

4
0
T 4

m2
3/2

.

For small values ofφ one recovers Eq. (17). Neglec
ing correctionsO(φ/M) for h(φ) andk(φ), keeping
only the effect of the back reaction, one obtains
large temperaturesφT ∝ T 4/3 and correspondingly fo
the gauge couplingg2(T ,φT )∝ T −4/3. This decrease
with temperature is much weaker than theT −4 fall-off
obtained in the linear approximation. We expect t
the true decrease, which is determined by the back
action together with the behaviour ofh andk at large
values ofφ, lies somewhere in between.

The time evolution of the fieldφ is determined by
the equation of motion

φ̈ + 3Hφ̇+ 1

2
m2

3/2h
′(φ)

(26)− a2g
4
0

(1+ g2
0k(φ))

2
k′(φ)T 4 = 0,
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whereH is the Hubble parameter. ForH > m3/2 the
motion is damped whereas forH < m3/2 the fieldφ
oscillates. During the period of reheating the Hub
parameter generally depends not only on the ther
bath, but also on the time evolution of other field
in particular the inflaton. The detailed analysis of t
time evolution ofφ is beyond the scope of this Lette
In the following we shall assume that at the end
reheating thermal equilibrium is achieved and th
to good approximation,φ is close to its equilibrium
valueφT .

The power-like fall-off of gauge couplings at hig
temperature,g2 ∝ T −α with α > 1, has important cos
mological implications. An immediate consequenc
that one loses thermal equilibrium at a temperatureTeq
much below the unification scaleMGUT. For instance
for α = 2,mg̃ � 1 TeV andm3/2 � 100 GeV, one ob-
tainsΓ (Teq) � H(Teq) at Teq ∼ (m2

3/2M
2
P/mg̃)

1/3 ∼
1012 GeV. The decrease of the gauge coupling a
crucially affects the production of gravitinos after i
flation [6] which we now discuss.

The thermal production of gravitinos by gluon
gluinos, quarks and squarks is governed by the Bo
mann equations. The collision term has been ca
lated to leading order in the gauge coupling. For
gauge group SU(N ), with 2nf chiral multiplets in the
fundamental representation, one has [7],

dn3/2

dt
+ 3Hn3/2

= C3/2(T ,φ)

(27)= 3ζ(3)

32π3 g
2(N2 − 1

) T 6

M2
P

(
1+ m2

g̃

3m2
3/2

)
F(T ),

where

F(T )=
(

ln

(
T 2

m2
gluon(T )

)
+ 0.3224

)
(N + nf )

(28)+ 0.5781nf ,

with the thermal gluon mass

(29)m2
gluon(T )=

g2

6
(N + nf )T

2.

For the gauge coupling we useg(T ,φT ), except in
case of the gluon mass which enters only logarith
cally.
In the supersymmetric standard model gravit
production is dominated by QCD, the strong inter
tions, where we haveN = 3 andnf = 6. If the grav-
itino is the LSP and the GUT relations for gaugi
masses hold, one hasm3/2 �mg̃ . Integrating Eq. (27)
up to a reheating temperatureTR > T∗, assuming a
power decrease of the gauge coupling,

(30)g2(T ,φT )� g2
0(T )

1+ (T /T∗)α
,

one obtains a number density to entropy density r
of gravitinos which is independent ofTR ,

(31)
n3/2

s

∣∣∣∣
T0

= C3/2(T∗,0)
s(T∗)H(T∗)

I(α).

HereT0 is the present temperature,s = (2π2/45)×
g∗(T )T 3 is the entropy density, withg∗(T∗)= 915/4
in the supersymmetric standard model, and

(32)I(α) =
∞∫

0

dz

(1+ zα)3
= 0.50–0.73,

for α = 1, . . . ,4. Inserting the expression for th
collision term in Eq. (27) one finds for the e
ergy density to entropy density ratio of gravitin
(TR > T∗),

ρ3/2

s

∣∣∣∣
T0

= 135
√

10ζ(3)

64π6

N2 − 1

g
3/2∗ (T∗)

T∗m2
g̃
(T∗)

MPm3/2

(33)× I(α)g
2
0(T∗)F(T∗).

At temperaturesTR much larger thanT∗ also contribu-
tions involving Yukawa interactions may become i
portant, which remains to be studied.

One can now insert the relation (20) between
temperatureT∗ and gluino and gravitino masses in
Eq. (33), which yields the result (TR > T∗),

ρ3/2

s

∣∣∣∣
T0

= 135
√

5ζ(3)

64π6

N2 − 1

g
3/2∗ (T∗)

(34)×
(
m

3/2
g̃
(µ)

M
1/2
P

)(
ξ

a2η2

)1/4

I(α)F̂(T∗).

Here we have used the gluino mass at a scaleµ as
parameter, and̂F(T∗) = F(T∗)g9/2

0 (T∗)/g3
0(µ) is a

factor O(1) which takes gauge couplings and th
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running into account. Remarkably, inρ3/2/s the de-
pendence on the gravitino mass has dropped out.
the dominant QCD contributionN = 3 anda2 = 3/8
(cf. (14)). Dividing by the critical densityρcrit/s =
3.65h2 × 10−9 GeV [8] one finally obtains (TR > T∗),

Ω3/2h
2 = 0.1×

(
mg̃(1 TeV)

1.0 TeV

)3/2

(35)×
(
ξ

η2

)1/4

I(α)F̂(T∗).

For gaugino mediation one hasξ/η2 = O(1); in the
temperature rangeT∗ = 104–1012 GeV we estimate
I(α)F̂(T∗) = 0.5–2. It is then very astonishing ho
close the obtained value forΩ3/2h

2 is to the observed
one for cold dark matter for gluino massesO(1 TeV).
The WMAP Collaboration recently obtained (2σ er-
ror),ΩCDMh

2 = (Ωm−Ωb)h
2 = 0.113+0.016

−0.018 [9]. The
relic gravitino densityΩ3/2h

2 is shown in Fig. 1 as
function of the reheating temperatureTR for differ-
ent values ofmg̃ andm3/2. At TR � T∗ the density
reaches a plateau whose value is essentially inde
dent ofTR andm3/2. The figure clearly shows the sca
ing T∗ ∝m3/2/

√
mg̃ .

One may also use Eq. (35) to determine the ra
of gluino masses consistent with the WMAP result
cold dark matter. VaryingΩCDMh

2 andI(α)F̂(T∗) in

Fig. 1. Relic gravitino densityΩ3/2h
2 as function of the reheat

ing temperatureTR for different gravitino and gluino masse
m3/2 = 20 GeV withmg̃ = 1.5 TeV (dashed line),mg̃ = 1.0 TeV
(full line), mg̃ = 0.5 TeV (dotted line), andm3/2 = 200 MeV with

mg̃ = 1.0 TeV (dashed-dotted line);ξ/η2 = 1, α = 2. Ω3/2h
2

reaches a plateau atTR � T∗ ∝m3/2/
√
mg̃ . The band denotes th

WMAP result for cold dark matter with a 2σ error.
-

the ranges specified above we find,

(36)mg̃ = (0.5–2.0) TeV

(
η2

ξ

)1/6

.

Hence, the hypothesis that gravitinos are the domin
component of dark matter will be tested at LHC!

The range for the gluino mass given in Eq. (36) h
been obtained in the case of gaugino mediation wh
m3/2 = (2η/g2

0)(M/MP)mg̃ (cf. (5) and (6)), with
η = O(1). For gravity mediation [10], one obtain
the same results withη replaced byη′ = ηMP/M.
m3/2 andmg̃ now have the same order of magnitud
but the gravitino can be the LSP without fine tunin
The range for the gluino mass remains unchan
unlessM is smaller thanMP by several orders o
magnitude. In the case of gauge mediation [1
η has to be replaced byη′ = η8π2〈X〉/M where
〈X〉 is the messenger scale. The mass range
for the gluino mass is then obtained ifM is of
order 8π2〈X〉. Note that the rapid decrease of gau
couplings at high temperature occurs independent
the supersymmetry breaking mechanism.

Our results have important consequences for le
genesis [12] where the typical baryogenesis temp
ture isTB = O(1010 GeV) or larger [13]. According
to previous studies this implies that unstable grav
nos have to be heavier than a few TeV [14,15]. S
ble gravitinos may have masses belowO(1 keV) [16]
so that their mass density is below the critical den
even when they are thermalized. Further, it has b
shown that also gravitino massesm3/2 ∼ 10–100 GeV
can be consistent, which then constrains masses
couplings of other neutralinos and sleptons [17,18

Our analysis shows that there is no constraint
the reheating temperature for gluino masses be
O(1 TeV) (cf. Fig. 2) if the gravitino is the lightes
supersymmetric particle. Formg̃ = O(1 TeV) and
reheating temperaturesTR > T∗ we find Ω3/2h

2 �
ΩCDMh

2 � 0.1, independently ofm3/2.
The maximal value of the critical temperatureT∗

is obtained forM ∼MP andm3/2 ∼ 100 GeV, so tha
the gravitino can still be the LSP for a gluino ma
O(1 TeV). This yieldsT max∗ ∼ 1010 GeV, which hap-
pens to coincide with the typical leptogenesis temp
ature. Hence, for a reheating temperatureTR larger
than the leptogenesis temperatureTB , relic gravitinos
always have the observed dark matter energy den
ΩCDMh

2 if the gluino mass isO(1 TeV). In this way
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Fig. 2. Relic gravitino density for different values of reheati
temperature and gravitino mass.ξ/η2 = 1. mg̃ = 1 TeV, which
implies m3/2 < 0.1 TeV for a stable gravitino. ForTR > T∗,

Ω3/2h
2 is independent ofTR andm3/2.

the supersymmetry breaking scale in the observ
sector is directly determined by the dark matter den
ΩCDMh

2, independently of the supersymmetry bre
ing scale in the hidden sector!

The interplay of particle physics and cosmology
lates some properties of the universe to propertie
elementary particles. Of particular interest is the co
position of the present energy densityΩh2. Leptogen-
esis explains the baryon densityΩbh

2 in terms of neu-
trino masses and mixings. As we have seen, for
ble gravitinos the dark matter densityΩCDMh

2 is then
determined by the gluino mass, i.e., the supersym
try breaking scale in the observable sector, which m
also be responsible for the dominant contribution
Ωh2, the cosmological constant.
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