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ABSTRACT

Being embedded in the physical world, sensor networks ptese
wide range of bugs and misbehavior qualitatively differéom
those in most distributed systems. Unfortunately, due sousce
constraints, programmers must investigate these bugs amith
limited visibility into the application. This paper pressrihe de-
sign and evaluation of Sympathy, a tool for detecting andudeb
ging failures in sensor networks. Sympathy has selectedignet
that enable efficient failure detection, and includes arréitlym
that root-causes failures and localizes their sourcesdaerdo re-
duce overall failure notifications and point the user to alsmesn-
ber of probable causes. We describe Sympathy and evalsigierit
formance through fault injection and by debugging an actipe
plication, ESS, in simulation and deployment. We show tbataf
broad class of data gathering applications, it is possibléetect
and diagnose failures by collecting and analyzing a minisealbof
metrics at a centralized sink. We have found that there iagetr
off between natification latency and detection accuracst &éudi-
tional metrics traffic does not always improve notificatiatehcy;
and that Sympathy’s process of failure localization redymémary
failure notifications by at least 50% in most cases.

Categories and Subject Descriptors: D.2.5 [Software Engi-
neering]: Testing and Debugging-Bistributed debuggingC.2.4
[Computer Communication Networks]: Distributed Systems

General Terms: Design, Reliability

Keywords: sensor networks, debugging, failure detection, fail-
ure localization, root causes

1 INTRODUCTION

Developing and debugging sensor network applications iy-a d
namic, distributed, and resource-constrained embeddeidorn
ment is an iterative and sometimes laborious processaliaifipli-
cation development can use a protected and interactiveatiom
Once an application is physically deployed, however, axdtvity
and visibility are greatly reduced, and it becomes diffi¢alde-
tect and pinpoint problems when they occur. For example,pa ga
in returned sample data may be caused by a critical nodedailu
a transient change in link connectivity, or some other useigu
combination of inputs. Responding to a failure can requingsizal
access to a node; depending on the deployment scenariopbven
taining access can be expensive and difficult—or, worseysecaf
additional failures [17]. A sensor network system shouletéfiore
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help narrow down failures and diagnose their causes, as @sich
possible, with minimal physical access and interactivity.

This problem is not new, of course. Many network software and
hardware tools help IP network administrators diagnoséwar
issues. Unfortunately, these tools often require network rode
resources not available to embedded network sensors, emass
networks that are more stable than sensor networks, whaseEsno
frequently become inaccessible and have poor connectivitifed
power, and memory resources. Such tools may also ignoretiie c
of transmitting debugging information, another significeancern.

This paper presentBympathya prototype tool for detecting and
debugging failures in pre- and post-deployment sensor ar&sy
More specifically, Sympathy is designed for data collecappli-
cations, which gather distributed data at a centralizekl Isication
for analysis. (Most of today’s deployed sensor networksit tle-
scription, as will many networks deployed in future.) Nogesi-
odically send metrics back to a sink, which combines thisrinf
mation with passively-gathered metrics to detect failanes deter-
mine their causes.

Given sensor hardware and network limitations, these mans
ted metrics must be minimized. Thus, Sympathy must find the de
bugging information that provides the maximum leverage:ith
formation that allows the most precise and meaningful failde-
tection and localization for the lowest overhead. We chostios
using a simple insight: in a data-collection network, thsr@direct
relationship between the amount of data collected at tHe amal
the existence of failures in the system. Insufficient dathaisink
implies failure; sufficient data at the sink implies accepganet-
work behavior. Thus, Sympathy can limit its metrics coliectto
information about connectivity and data flow. Furthermavben
a failure occurs, the user’s goal is to restore data cotlactbym-
pathy’s algorithms for localizing failures thus have therenepe-
cific and limited goal of telling the user which node or pathés
sponsible for missing data. Of course, this excludes someski
of network misbehavior, such as overenthusiastic trarsansand
resulting reduced battery lifetime. However, our expeseemith
Sympathy—both when deployed alone and when deployed in con-
cert with a real application [8]—indicates that many fadlsiren-
countered in today’s networkiofit our model, making Sympathy’s
debugging support largely sufficient as well as useful.

Sympathy gathers and analyzes general system metrics such a
nodes’ next hops and neighbors. Based on these metricseitde
which nodes or components have not delivered sufficienttdatee
sink and infers the causes of these failures. Experimentatnd
actual deployments show that Sympathy can help detecnaiter
failures whose causes in most cases would not be readilyempa

Our deployment experience centers on the Extensible Sensin
System (ESS), which gathers environmental data for usdy-ana
sis [8]. ESS-Sympathy deployments are intended for 10 todi€0
tributed sensor nodes routing data through a multihop teak b
to a sink. During one deployment, Sympathy discovered dista d
ruption due to excessive flux in the routing table. Intuiiyehis
is most likely due to poor link quality, due either to a badioad
or an ill-defined beacon period; Sympathy’s analysis detezth



that transmissions from most nodes to a shared next-hoplaig
were resulting in many CRC errors, and thus pinpointed cetime
as the cause of data disruption. Since errors happened dipleul
nodes, a bad radio was unlikely. We thus added jitter to query
sponse transmissions, which, as expected, solved thespnobl
In the rest of this paper, we discuss related work (Section 2)

then describe Sympathy’s definitions of failures and faiswurces
(Section 3). Section 4 then describes the Sympathy arthiteand
implementation, including the network metrics it colleetsd its
algorithms for pinpointing failures. Section 5 evaluatgspathy,
based on repeated fault injection tests and anecdotes frttuala
deployments. Finally, we discuss future work and conclude.

2 RELATED WORK

The current state of the art in sensor network debuggingaises-
bination of simulation, visualization tools, log files, pag mon-
itoring, and tracing programs. Sympathy combines aspecadl o
these techniques. Simulation [13, 18] is critical for rddgcthe
length of the development cycle and for repeatable expertine
(which we make use of in our evaluation), but clearly doesgrt
place debugging on the actual hardware; it is impossibléntois
late real-time network dynamics, dynamic environmentsl am-
merous timing, MAC, and hardware-related details. Whitgfites
can capture historical perspective and context, they coeteces-
sive and unfiltered data that can obfuscate important evieisis-
alization tools can aid real-time debugging but often ddwigh-
light events that may indicate a failure or capture histontext.
For example, the Emstar visualizer [5, 6] shogither link qual-
ity or neighbor-level connectivity; conflicts in these propestiea
node that has no neighbors despite relatively high-quiatikg, for
example—are difficult to see. Sympathy runs and producesiluse
results in both simulation and deployment.

The Nucleus network management system (NMS) infrastractur
helps sensor network applications export debugging andtaren
ing information [20]. Nucleus’s support for exporting coers and
statistics and recording application metrics is both easyse and
lightweight. With minimal modification, we could replace 8y
pathy’s homegrown logging mechanism and application fater
with Nucleus. NMS also exports specific metrics but does not p
vide infrastructure to analyze these metrics. Furthermtirese
metrics consume more than double the RAM required for thie res
of the stack [20]. Our contributions lie in determining thenimal
metrics to export, consuming on the order of 50 bytes of RAM fo
all Sympathy mote code, and in defining algorithms that flag-us
relevant failures based on these metrics.

Previous work on debugging in sensor networks [14, 15] pro-
poses a pre-deployment architecture to monitor networlssnini-
lation and potentially emulation. In this architecture,ragessing
node is directly connected with all other nodes over a sitedla
or Ethernet back channel to continually collect informatfoom
nodes. This architecture focuses on event detection anelaton,
so the information collected also focuses on these everehave
found that event detection does not necessarily facilftahere de-
tection, while it does impose high overhead as events agedrg.

Periodic transmission of metrics from nodes to the sink tsano
new idea. MintRoute [22] includes periodic transmissiomeigh-
bor tables to aid in debugging at the sink. However, it neithe
cludes other metrics nor performs failure analysis at thk. si

Zhao et al. proposed an algorithm to continually compute ag-
gregates (sum, average, and count) of loss rates, eneggyg,lend
packet counts to aid in debugging and an energy-efficient tway
calculate those aggregates with in-network processingZ23

In terms of failure detection methods, Szewczyk et al. idgnt
nodes that report sensor data exceeding a static threshleirrg
close to failure [19]. This work utilizes a simple model tcesp
ify expected values and infer imminent failure when retdrdata
does not match the model. Others treat deviation from areidn
model as a failure indication [3], or observe that low batigower
is correlated with wildly implausible data readings [21yn$athy
detects failure based on dajaantity, rather than data quality; this
is sufficient to catch many important failures in practicewéver,
Sympathy’s infrastructure could easily include data duatiea-
surements.

Many Internet network management systems have insights we
can apply. The Simple Network Management Protocol (SNMP)
manages the exchange of network statistics between a kentra
ized server andgentnodes, which respond to queries and asyn-
chronously signal events; our architecture (like that oElus) is
similar. Management by Delegation moves some network nmenag
ment responsibility off the centralized server and ontdritisted
nodes, using mobile code [7]; this technique may becomeiitapb
in sensor networks as tiny virtual machines become morelyide
deployed [12].

Kiciman et al. collect low-level network metrics and usdista
cal analysis to identify application-level anomalous haétwa once
an anomaly is detected, the faulty node is rebooted [11]. &tox
al. extend this idea to suggest using statistical learresrtiques
based on pre-existing models and “well-understood exténdé
cators” to identify anomalous behavior [4].

Ruan and Pai's DeBox system [16] motivated Sympathy’s ini-
tial design. DeBox suggests that exposing minimal intestetk to
applications in real time affords better performance aialand
tuning than passive profilers that provide information dasto.
While Sympathy is not as concerned with performance andstegu
on fault detection and debugging, this approach of enhgrgys-
tem visibility and transparency by exposing minimal ingdrstate
forms the basis of our work.

3 FAILURES AND FAILURE SOURCES

Sympathy aims to detect a large class of sensor networkrdailu
and localize each failure to simple, actionable information about
its likely source. Code running on a non-resource-congthnet-
work node called asink—often a data sink, such as a Stargate-
class system—continuously monitors normal network tradfic
Sympathy-generated traffic for failure conditions. Wheraitufe
is detected, Sympathy triggers failure localization ammbréng so
users can take appropriate action.

Before describing the algorithms used to detect and loe&iit-
ures, we discuss what detected and localized failures are.

Failures Sympathy expects all live network nodes to generate
traffic of some kind, whether routing updates, time syncizan
tion beacons, or data periodically transmitted to the sili&.call
this trafficmonitored trafficto distinguish it from Sympathy’s own
metrics traffic(statistics packets generated by nodes and transmit-
ted to the sink). Sympathy detects a failure and triggeralipation
when a node generates less monitored traffic than expected

For example, in a network running the Surge applicationryeve
node normally generates a packet containing a sensor geawtny
n seconds. Sympathy might detect a failure, and trigger éurib+
calization, if a node in the network generated no readin@ricrec-
onds. The extra factor of three reduces false positivesdretient
of packet loss but delays failure notification as well. Owlaation
measures the consequences of this tradeoff.



Surge and ESS, the two systems we evaluate, resemble many

currently deployed sensor networks in that they periotjidedins-

mit sensor data to the sink. For these systems, Sympathy- moni
tors the sensed data, as well as routing beacons and ottemtedp
communication. This has the advantage of making failureadien
almost end-to-end. Any failure in the sensor data path wgber
Sympathy, including failures in sensor boards that dofécfrout-

ing or other node software. However, it is not a requireméont;
example, Sympathy could track only routing beacons fromesod
in its broadcast domain in a system with no regularly-tratisch
data. Future work will address entirely event-driven systavith

no regular communication of any kind; however, we expect tha
most networks will feature some regular communication, én@w
infrequent, if only to verify connectivity.

Sympathy itself generates additiormaktrics trafficfrom each
node; this in-depth information helps localize failureee®bsence
of metrics traffic can indicate a problem, but Sympathy cders
the absence of monitored traffic more significant.

Localized Sources Sympathy’s algorithms assign each detected
failure alocalized sourcean actionable description of the most
likely cause of the failure. We aim to choose the simplestliaed
source that explains the failure. After experimenting walger
sets of more specific sources, we decided that a small setnef ge
eral sources is better: users must take the same actionsrieraj
and specific sources, such as going out into the field and mavin
node, yet more specific sources are more likely to be wrong. Th
more specific source identification, and any informatiordusesal-
culate it, is still available as part of Sympathy’s outpéifesired.
There are three localized sources for a node’s failure tostrat
enough monitored traffic:

e Self The node’s failure has been localized to the node itself.
The node may have crashed or rebooted, there may be anothe
local bug preventing data transmission, or there may bea con
nectivity issue (the node does not have a route to the sink).
Remedial action will probably involve moving or interagin
with the node itself (e.g. changing its batteries).

Path. The node’s failure is due to a failure along the path from
the node to the sink, such as a different node’s failure or ex-
cessive collisions along the path. Sympathy identifies @nod
along the path and the problem potentially causing the packe
loss in order to focus the user’s search. Remedial actidn wil
probably involve moving or fixing a node or the network in
its vicinity.

Sink. Often when the whole network appears to be failing,
the simplest explanation is a failure at the sink, such as bad
sink placement or changes in the environment since deploy-
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Figure 1: Sympathy system, including code running at the nodes and
sink, high-level versions of interfaces between comp)eand an
overview of Sympathy’s failure localization algorithm.

information transmitted as part of normal communicatiarghsas
sampled data, and information transmitted actively by Sgtimp
code running on motes. Upon any packet reception Sympatiig lo
for failures by analyzing this metric stream, looking fiosufficient
datareceived from any node. When a failure is detected, Sympa-
thy root-causeshe failure by analyzing metrics and running tests
as necessary to determine the cause. Common root causgdeincl
a node crash or reboot, no node has a route to the sink bed¢muse t
sink has no active neighbors, or the sink is not receiving tat
cause the node is not receiving requests. Finally, afterahéning
the root causes for all existing failures in the system at tinae,
Sympathy assigns each failurdazalized sourcewhich is one of
the three sources (Self, Path, and Sink) identified aboves@h
sources are reported to the user with supporting docunemtat
The goal is to produce a minimal list of failures that the useist
definitely fix. Thus, if one failure potentially explains aher—for
example, an upstream node’s (node closer to the sink) cragit m
explain why a node downstream of it seemingly disappeared—w
mark the latter failure asecondaryand report it with less urgency.
The metrics Sympathy collects and the root causes to which it
assigns failures are both based on a simple insight: thaueimmb-
sence of failure, network flows are conserved [9]. Thus, wdea
is lost, it must be getting lost somewhere in the network, fard}
ing the location of loss is a good approximation to finding tiive
cause of the failure. For example, perhaps a sink requestatar
got lost; or, following the data path forward, the node’'spasse
got lost due to collisions. Sympathyflew modelsystematizes this
data path. It specifies that nodes need: neighbors in ordeave
routes; routes in order to send data; to receive requestsier to
send responses (sometimes); and to send data in order fsinthe

ment. Clues such as no node being able to hear the sink butto receive the data. Metrics and root causes are chosen tsantha

hearing other nodes point Sympathy to issues localizedeat th
sink. Remedial action will probably involve changing theksi
placement or examining sink metrics for bugs or other con-
nectivity issues.

4 ARCHITECTURE

Sympathy detects and localizes failures using informdiiom all
network nodes, including both resource-constrained TBysased
motes and resource-rich Linux-based sinks. Sympathy code o
motes simply transmits metrics and responds to occasioeaies;

all failure detection and localization runs on sinks. Thizaldocal-
ization process has four stages. In the first, ongoing sthgesink
collects metricfrom other nodes in the system. Metrics include

the event of insufficient data, Sympathy is able to trace tia d
flow through the network to narrow down the cause and locatfon
data loss.

Figure 1 shows a component overview of the Sympathy system.

4.1 Metrics

The Sympathy sink collects a variety of metrics to aid in bfaik

ure detection and localization. We added metrics as needeid-t
tinguish different logical locations in our flow model, suas fail-
ures local to a node vs. due to collisions along a path, and hav
arrived at a simple stable set. Metrics are collected inethvays:
Sympathy code running on every network naaivelytransmits
packets containing metrics back to the sink; the sink snoepsby
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Node Metrics Each node actively transmits iteeTIME to the
sink, allowing Sympathy to detect reboots. In addition,heacde
transmitsBAD PACKETS RECEIVED and GOOD PACKETS RE-
CEIVED counters, for packets received with and without CRC er-
rors. The sink maintains its oOWBAD PACKETS RECEIVEDand
GOOD PACKETS RECEIVEDThese counters are used to detect con-
gestion.

Active metrics collection is triggered by a TinyOS timer tha
goes off once pemetric period. Larger metric periods minimize
overhead relative to other application traffic (and do natessar-
ily impact failure detection latencies, as we discuss intise®).

Figure 2: Sympathy code on a resource-constrained TinyOS node. When the timer goes off, Sympathy code on the node colletts al

Sympathy contains interfaces to collect statistics frohtegtkrs in the
stack, including the routing layer and individual applioatcompo-
nents.

application and transport traffic to discover metgessively and
Sympathy code running on the sink extracts sink metrics fitoen
sink application itself

Sympathy’s current metrics fall into three main categories-
nectivity, flow, and node metrics. The set is extensible, @,
applications can create and use arbitrary metric types.

Connectivity Metrics Network connectivity information, col-
lected from every node in the network, helps Sympathy detedt
localize routing failures. Thus, Sympathy collects evesgleis cur-
rent ROUTING TABLE —its sink, associated next hop, and path
quality—andNEIGHBOR LIST , which lists all of its neighbors,
whether involved in routing or not. It also collects the sink
NEIGHBOR LIST. This information is collected both passively and
actively. In the passive implementation, a plug-in on theksi
snoops nodes’ broadcast routing control packets, parses imd
passes their metrics such as neighbor and routing advesdigs to
Sympathy. Our plug-in for MintRoute [22] is 85 lines of nesbd
for ESS [8] 120 lines. Passive collection cannot, howevktaia
connectivity information for distant nodes whose broatcasen'’t
heard by the sink. Thus, active collection code runs on eade n
in the network. A Sympathy TinyOS module periodically cotke
metrics from various layers of the networking stack usingteg
interfaces, packages them into packets, and transmits tfethe
application’s routing layer; Figure 2 shows this architeet A sim-
ilar module on the sink collects its connectivity infornaatias well,
using Emstar [5] IPC mechanisms.

Flow Metrics Sympathy monitors the network’s traffic load as
well as its connectivity. Traffic is measured independefilyan
extensible set ofomponentswhich are entities with somewhat in-
dependent flow. For example, different applications wilénalif-
ferent components, and within a single application, qgere-

relevant metrics and transmits them back to the sink, usia@p-
plication’s routing layer (rather than an independentirgutayer
or a back channel). Using the existing routing layer can niake
more difficult to debug routing-related failures, but in @xperi-
ence we have always accumulated sufficient data from théaregu
transmission of Sympathy metrics before a routing laydurfaito
root-cause that failure. In addition, if the routing layeoyides sup-
port for flooding (which is generally simpler than tree rogtiand
thus might work even when tree routing is broken), nodes cedlfl
metrics in response to requests from the sink.

Passively collected metrics are preferable to activelyectéd
metrics, since they add no resource cost to operating tlveoret
Some simple localization is possible in a one-hop Sympatty n
work using passive metrics and sink metrics alone. Howdag,
ure localization generally depends on information, such@sum-
ber of packets each component tried to transmit (whetheobitn
was received), currently available only through activeeation.
Once active collection is available, passive metrics areeschat
redundant (although they can provide useful supplemerinéoy-
mation between metrics periods, or when active metricsgiace
dropped). Thus, Sympathy can work without passive metritiseo
routing plug-in that provides them.

Nodes store and transmit metric counters using units of-pack
ets since node boot, modulo the counter size. This is rolaust t
metrics packet loss; the sink can calculate the number dégtsic
sent or received between any two metrics packets by suintgact
their counter values. Rollover must be accounted for, of smiuf
a counter value is lower than the previous counter value, gy
checks the node’sPTIME to see if the node has rebooted; if not,
it assumes the counter has rolled over and calculates efiites
accordingly. This implicitly assumes that counters will aver at
most once between successfully received metrics packeéten\&
metrics packet is lost, Sympathy linearly interpolatesnteuval-
ues. For instance, if a single metrics packet at tinsenot received,
then counter increases in the metrics packet at timiel are at-
tributed half to timet and half to timet + 1.

All metrics time out after a period called apoch For instance,

sponses, and routing advertisements might have one comipone if Sympathy does not receive a node’s neighbor list for anckpo

each. Our ESS and Surge evaluations use one component each,

each case measuring application data packets. For eaclonentp
Sympathy collect®ACKETS TRANSMITTED and PACKETS RE-
CEIVED from each node. Existing routing layers do not transmit
this information, so it must be collected actively. In adit for
each component, Sympathy maintains per-node countessnef
PACKETS TRANSMITTED (i.e., packets transmitted from the sink
to the node, including broadcasts) a#itik PACKETS RECEIVED
(packets received by the sink from the node), argiNK LAST

jor more, then it invalidates any cached neighbor list. Treckps
used as a common timeout to determine if something is wrotty wi
a node or its delivery path. Longer epochs delay failurediete,
but also make detection more robust to short-term packst o
smallest sensible epoch is one metric period, and we septighe
to a multiple of the metric period. The best setting would vk
enough for Sympathy to quickly notify the user of failurestie
network, yet large enough to allow the sink time to colleatkpa
ets from nodes and time to differentiate transient packsest foom

TIMESTAMP (the most recent time that the sink received a packet failure. Section 5 explores the consequences of differentles.

from the node). Sympathy uses these counters to track data flo
from the sink to the node.

Nodes that intentionally or unintentionally report inaet met-
rics can utterly confuse Sympathy. We leave this for futuogku
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Figure 3: Decision tree Sympathy uses to root-cause node failures trey have been detected.

4.2 Failure Detection
Sympathy triggers failure detection every time it receimgmcket

from a node, and once a metric period at the very minimum- Fail

ures are detected using flow metrics. Specifically, Sympetty
termines whether the sink has received sufficient data freenye
component on every node over the past epoch. Insufficieatidat
dicates a failure. Thresholds for sufficient data are spetifier

1. If N's SINK LAST TIMESTAMP metric is at least one epoch old,
and no other node ha¢ listed in itSNEIGHBOR LIST, then the
node has crashed or otherwise completely fallen off the ortw
The root cause idlode Crash Crashes are the hardest failure
to distinguish, since their signature—the lack of traffis-edom-
mon to other failure modes, such as high congestion; thes, th
relatively long timetable for reporting a Node Crash roaisa

component and per node, in units of packets per epoch, anthenay 2. Otherwise, ifN's UPTIME metric has unexpectedly rolled over,

modified by the application (using an update interface) enitser
(using a command-line interface). In the simple periodittection

applications we measure, these thresholds are the samdl for a

nodes; per-node thresholds allow Sympathy to monitor athpli-

cations, regardless of differential transmission ratef-aretwork

aggregation, as long as the sink knows the quantity and/alitgu
of data it should expect.

Thus, the sink has received sufficient packets from a node com

ponent if itSSINK PACKETS RECEIVEDcounter at least equals the
corresponding threshold.

Sympathy detects a failure if and only if some sink component

does not receive sufficient packets.

Sympathy also maintains analogous thresholds that detest w
a node’s component doesn't receive sufficient data from itile s
(using thePACKETS RECEIVEDcounter), and when a node’s com-
ponent doesn't transmit sufficient data, regardless of havehm
data is received (using theACKETS TRANSMITTED counter).
These thresholds are used during the root-causing prociets;
tions do not signal failure in and of themselves.

In our code, some of these thresholds are specified as fnaaifo
other metrics; the node-receive threshold, for exampkefiiaction
of the correspondingINK PACKETS TRANSMITTEDcounNter

4.3 Root Causes

Once Sympathy has detected a failure, it uses an empircally
developed decision tree to determine the most likely cadse o

packet loss in the network. The decision tree uses metritat&

through Sympathy’s flow model and determine where data ts los

Sympathy root-causes a failed ndddoy performing the following
tests in order, and reporting the first root cause that fits:

1This choice assumes that the componeREEKETS RECEIVED
counter only counts packets from the sink. Other threshelting
methodologies are possible, of course.

then the node has rebooted. The root causdade Reboot
and Sympathy resets all of the node’s counter metrics (shece
node’s versions of the counters have been reset to zero)sTo d
tinguish reboot from regular counter rollover, Sympathgaits
whether the counter could feasibly have rolled over from the
previous metrics packet.

3. If N's NEIGHBOR LIST is empty or expired (more than one
epoch old), the node cannot hear from its neighbors, and the
root cause idNo Neighbors

4. If N's ROUTING TABLE is empty or expired, the node cannot
route to the sink, and the root causéNis Route.

5. Atthis point,N is alive, has not rebooted, and has what appears
to be a good route back to the sink. The failure is either en-
tirely node-local, or concerns the path back to the sink'#
PACKETS RECEIVEDMmetric is below the corresponding thresh-
old, then the node isn’t receiving the packets it should fthen
sink; the root causBad Path To Node

6. If N's PACKETS TRANSMITTEDMEetric is below the correspond-
ing threshold, then the node’s software isn't correctiynsrait-
ting data; the root cause Bad Node Transmit

7. OtherwiseN is both receiving and transmitting sufficient data.
The data must be getting lost on its way to the sink; the root
cause iBad Path To Sink

This decision process proceeds from general to specificesaus
from basic health (steps 1-2) through connectivity (step$) 3o
communication (steps 5-7). Within the last three stepspttier is
determined by network flow: for the sink to receive sufficidata,
the node must receive sufficient requests (step 5) and tiansm
sponses (step 6) that aren’t dropped en route (step 7). Skynge-
termines independent root causes for each failed node-aenp
pair, although in many cases multiple failing componentshaive
the same root cause.



Localized

Root Cause Metrics Source

Node Crash SINK LAST TIMESTAMP, Self
NEIGHBOR LIST

Node Reboot UPTIME Self

No Neighbors NEIGHBOR LIST Self

No Route ROUTING TABLE Self

Bad Path To Node PACKETS RECEIVED Path/Self

Bad Node Transmit PACKETS TRANSMITTED Self

Bad Path To Sink  SINK PACKETS RECEIVED Path/Self

No Sink Route ROUTING TABLE Sink

No Neighbors NEIGHBOR LIST Sink

(at sink)

Congestion GOOD PACKETS RECEIVED  N/A

BAD PACKETS RECEIVED

Figure 4: Root causes with associated metrics and localized saurces

Simultaneously, Sympathy checks for other root causesrbgt
explain the failure. These include congestion-relatedsesuand
causes involving the sink.

e If the sink’'sNEIGHBOR LISTis empty, then the sink is isolated.
A No Neighborsroot cause is recorded for the sink.

e If no node has a vali@oUTING TABLE with a route to the sink,
then no one can route to the sink.Mo Sink Routeroot cause
is recorded.

e Sympathy checks each node in the network (failed or not) for
excessive collisions. If a nodefsAD PACKETS RECEIVEDMet-
ric is more than 75% of it&00OD PACKETS RECEIVEDMetric
(an experimentally derived threshold)Cangestionroot cause
is recorded for that node.

The decision tree is summarized in Figure 3; tests are in cir-
cles, and the resulting root causes are the terminatingsb&@ot
causes, associated metrics, and potential localizede®are sum-
marized in Table 4.

4.4 Source Localization

Sympathy then analyzes the resulting root causes and assigh
failure a localized source: either Self (the node itself rigkien),
Path (the path is broken), or Sink (the sink is broken). Fadu
localized to Self are calledrimary failures, since they cannot be
traced to any other cause in the network; all other failuresec-
ondary Sympathy logs all failures, but highlights primary fagsr
as potential causes for all other failures, encouragingude to
prioritize fixing those failures.

The algorithm is relatively simple. If Sympathy recorded a N
Neighbors or No Sink Route failure for the sink, the sink iskam;
this trumps all other failure conditions. The sink failusesissigned
a localized source of Self, and every other failure is assigmlo-
calized source of Sink. Otherwise, for communication ranises
(Bad Path To Node, Bad Node Transmit, and Bad Path To Sink:
steps 5-7 in Section 4.3's decision tests), Sympathy lotksga
the path to the sink for another failure that might take pecee.
Specifically, given a failure at nodé with such a root cause, Sym-
pathy tracks the path frofd to the sink viaROUTING TABLE met-
rics. If a nodeO on this path—but closer to the sink—has any root
cause recorded, including Congestion, thés failure is assigned
a localized source of Path with as the primary cause. This search

applies to the sink as well: If the sink has Congestion resird
thenN's failure is assigned a localized source of Path with thk sin
as the primary cause. (While we experimented with allowipg u
stream failures to explain No Neighbors and other basittihead
connectivity root causes, this mischaracterized too maihyrés as
secondary.) If neither of these exceptions applies, therfditure

is primary, and its localized source is Self.

Thus, if a nodeN is experiencing a failure with root cause Bad
Node Transmit, but a node upstream has Crashed,Nrefailure
will be reported as secondary; bulNfactually Rebooted, its failure
is primary, despite the upstream Node Crash.

This source localization procedure may mischaracterizeeso
failures as secondary; for example, a Bad Node Transmitréaik
unlikely to be caused by an upstream Bad Path To Node failure.
Our goal, however, is to report the smallest number of faguthat
mustbe fixed to return the network to health. It would be conve-
nient to create a more precise model of flow through the nétwor
based on collected topology information, and thus detezneix
actly where data is lost in the network. This might also allosv
to limit failure notifications in case of network partitioayrrently
Sympathy would report this with one primary Node Crash failu
per partitioned node, instead of a primary failure at theifian’s
border with secondary failures beyond that border. We |tzigeas
future work; the difficulty, of course, is that Sympathy nekmows
how accurate its view of the network is.

4.5 Failure Notification

Once a failure is localized, Sympathy notifies the user tiinoa

log file containing the detected failure (and whether it isyary or
secondary), its root cause(s), its localization, relevaetrics, and
calculated statistics and events. TR@UTING TABLE andNEIGH-

BOR LIST metrics are annotated with statistics such as neighbor
age and number of times a route has been changed. Sympathy als
checks basic invariants, such as that the selected nexslatgp in

the neighbor table; it identified a bug in ESS with this simpike.
Nodes are allowed to transmit specific statistics that Syhypdoes

not understand; if the sink can translate them into ASCImBg-

thy will include these statistics in its reports as well. &y, if the
user sent a ping request about a node (see below), all thimgsu
responses will also be included in the log file.

Due to a quirk of our current implementation, the user is only
immediately notified of failures resulting in zero packetseaived
from a node to the sink in the past epoch: that is, Node Cragdh an
Node Reboot. Other failures are reported up to one metrioger
after they happen.

4.6 Command Interface

Sympathy provides several command line and Web-accessible
mechanisms for users to query and control the system. Irr orde
to minimize the impact on system lifetime, Sympathy proside
knob at the Sympathy sink for user control of the metric a6
ter deployment. This knob is useful during deployment wheersi
may initially require frequent transmission of metrics irder to
obtain immediate feedback on configuration and topologygbs,
but want to scale back the metrics to save network resournes o
the deployment is complete. The user can also set the metnis-t
mission period to 0 which disables metric transmission frmdes,
and moves Sympathy to only collecting metrics passivelywgrah
user request. Users can set thresholds and read logs.

In addition, Sympathy provides ping-aboutcommand that
floods the network with a query for information about a specifi
node. If the node receives the flood, it responds by transmiits



standard metrics packets. Additionally, any other nodettha spe-
cific information about the queried node, such as numberckgta
received from it or the time of last communication, transntftis
data back. Our Web-based user interface graphically displze
network of nodes, allows users to retrieve all informatiathgred
about the node, and highlights any failures; we have alsgiated
Sympathy with a graphical interface for visualizing medrand en-
vironmental data [2].

5 EVALUATION

We evaluate Sympathy in simulation by varying system paterag
traffic conditions, failure injection, and instrumentinga differ-
ent network stacks (Surge running on MintRoute [22], and B$S
with multihop), and anecdotally in several deployed system
strumented with Sympathy. Through simulation and deplayme
we validate all of Sympathy’s possible source localizatiand ex-
ercise its failure detection. We validate the Self sourcaliaation
by injecting node crashes and evaluating Sympathy’'s detecf
the correct failure and source, and the Path source lotializhy
showing that Sympathy localizes data loss to congestiohouwit
sacrificing detection accuracy.

Our performance hypothesis is that Sympathy accurategctiet
injected failures with relatively low network overhead dod la-
tency. To evaluate this hypothesis, we inject failures mf®-node
simulated network and measure latency and accuracy ofrdailu
detection. We find that Sympathy detects every failure wecinj
There is a tradeoff between detection latency (time frommithe
failure is injected to when Sympathy notifies the user of die f
ure) and accuracy (number of primary failure notificatiods the
epoch increases, detection latency gets worse (Figuresl @2
while accuracy gets better (Figures 10 and 11). Althougip#uiet
overhead is reduced by a factor of three by tripling the rogte-
riod from 3 to 9 minutes, Sympathy’s failure detection |aieis
not significantly impacted for Node Crash failures. By parfing
path analysis to determine if a node’s failure is caused tajlaré
upstream, Sympathy is able to reduce excessive failurBaaiions
by at least 50% for most cases; and using collision dete@titine
network as an indication for congestion and a source of pdoge,
Sympathy can reduce failure naotifications even further.

5.1 Methodology

We evaluate Sympathy by injecting node crashes into thearktw
in simulation using Emstar [5]. Since node crashes are tigtec
conservatively, they are the hardest failure to detectrately and
quickly. Most other root causes have been observed andavetid
in deployment and simulation.

Using Emstar’s contention-based channel model to simatzte
lisions, we vary traffic conditions in order to increase mdiss
and congestion. The traffic conditions are: (1) no applicatiaffic,
just routing traffic fo-app; (2) one 10-byte application packet sent
every 60 secondsraffic60); and (3) one 10-byte application packet
sent every 30 secondi#dffic30); and (4) one 10-byte application
packet sent every 10 secondgaffic10). In each case, thresholds
were set accordingly; in the no-app case, Sympathy tracked S
pathy metrics instead of application data.

Unless otherwise specified, each set of experiments certfist
injecting single node crashes into a 20-node network witkhay
diameter. Different trials within an experiment fail eaayde in the
network to check for topology effects, and each experimeme
peated twice. The epoch setting defaults to 540 secondméehéc
period to 3 minutes, and the traffic scenario to traffic30iSesn
for about an hour, and end once Sympathy detects that thehasde
crashed with a source localization of Self.

N expires from all Sympathy expiredl’s metrics
neighbor lists and detectd's crash
Sympathy receives metric packet
includingNEIGHBOR LISTS
from all nodes that hatl on
thelr nelghbor lists

\ g

NodeN
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Figure 5: Sympathy can detect nodis crash within one epoch of its
injection when all other nodes send updated informationokeng N
from their neighbor lists. Otherwise, Sympathy must waitibneigh-
bor list metrics that mentioiN to expire. This takes at most an ad-
ditional neighbor list timeout, unless a node incorrecthntinues to
mentionN.

We use empirical cumulative distribution functions or EGR&
present the distribution of our data for several graphs.

5.2 Failure Detection Latency

Sympathy is quite conservative before reporting a nodéhcsiisce
the only symptom of a crash—that is, the absence of any dada—c
indicate so many other kinds of failure (such as persistenges-
tion or a path failure between the node and the sink). Spatific
Sympathy will not report a node crash for nddeintil (1) it has not
received any data fromN for an epoch, and (2) no other node lists
N as a neighbor in it8lIEIGHBOR LIST metric (which can either
occur if the node explicitly sendsNEIGHBOR LIST update with-
outN, or if the sink flushes its cached copy of thelGHBOR LIST
because the node has not sent an update during the epocks). Thu
the failure notification latency will depend on the order e ts. A
notification latency of one epoch is possible if, during tepoch,
Sympathy hears update&IGHBOR LISTS fromN’s former neigh-
bors, or, alternatively, if alN's neighbors’NEIGHBOR LISTS ex-
pire. (If the epoch duration is less than the time it takesafande
to time out from a neighbor list, then this “good case” canyonl
occur if the relevanNEIGHBOR LISTs expire.) Latencies of less
than one epoch are possible whemvas quiet before it crashed, or
its pre-crash packets were dropped; this can fool Sympatbydie-
tecting a crash early. Greater notification latencies assipte, too,
if another node sends an updated neighbor listitheides N as
might occur if its metric period ends immediately befdiexpires
from its neighbor list. Assuming nodes transmit correct rinst
the latency will be extended by at most one neighbor list tinte
Figure 5 demonstrates the cases.

As the epoch increases relative to the metric period, thiggtit-
ity of observing a latency longer than an epoch wdékreaseThis
is because the “bad case” in Figure 5 requires that @f'efmetrics
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Figure 6: Failure detection latency for different epoch sizes. As th
epoch increases, the sink is more likely to detect the fiuithin one
epoch.

are dropped for a period of one epoch; as the epoch increases,
metrics are transmitted per epoch and this becomes le$g like

We plot the failure detection time as an ECDF over an entire se
of experiments in Figure 6. In our system, the neighbor iieet
out is 320 seconds, so the upper bound on detecting a faikea g
correct node operation is 320 seconds plus an epoch. Theefail
was detected as a primary failure in every case. The obgmmgat
made above for failure detection latency are consistertt thiis
graph: failure detection latency increases with epochabigpoch
increases the sink is increasingly likely to detect theufailwithin
one epoch. This explains why the latencies for an epoch o580
onds are pretty evenly distributed between 180 secondsaitrer
bound) and 460 seconds (close to the upper bound of 500 s8¢ond
while the latencies for an epoch of 720 seconds are predothina
between 710 and 720 seconds.

We then measured Sympathy in a variety of different scesario
and traffic conditions; Figure 7 contains a line for each aden
To demonstrate Sympathy’s ability to detect multiple sitakous
failures, we inject two failures within one metric periodhoosing
every possible combination of two nodes in the network; cete
tion latency was measured from when the first failure is itgec
into the network. To demonstrate Sympathy’s modularityhvé-
spect to routing protocols and applications, we instruerihe
routing protocol MintRoute [22] and the data delivery apation
Surge, and re-ran our experiments. Finally, to demons8wtaepa-
thy’s relative indifference to background traffic, we rarttw8 dif-
ferent traffic scenarios, no-app, traffic30, and trafficllte Tatency
ECDFs are largely similar in all cases. In most scenariosn-Sy
pathy detects the failure within one epoch, but in many insa
of the no-application-traffic scenario, Sympathy deteltsfailure
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Figure 7: Failure detection latency for varied scenarios, inclgdiif-
ferent levels of background traffic, multiple simultanedaitures, and
a different routing protocol and application. Epoch is 546 through-
out; all results are similar.
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Figure 8: Failure detection latency for Sympathy-style eventgeiged
failure detection and for timer-triggered failure detenti Event-
triggered failure detection has a lower average latencthesatency
upper bound for timer-triggered is one metric period gneate

(Sympathy’s default mode). We would expect timer-triggesgs-
tems to have higher latency, as failure detection may beydédla
by up to one metric period. This is exactly what we see: timer-
triggered failure detection latencies for 180-second bpare up

to one metric period (180 seconds) greater. Sympathy-stydat-
triggered failure detection reduces the time to detectarigiand is
more likely to detect a failure within an epoch. The advaetafgn
event-triggered system is more pronounced with an epoehdfiz
180 seconds because, as mentioned before, any systenttatete

before a complete epoch has elapsed. This is because theaSymp latency will approach the minimum as the epoch increases.

thy traffic on which no-app relies is sent much less frequyethtin
application traffic; thus, failures are more likely to beeictied in
the middle of a long quiet period. Sympathy mistakenly assim
that the failure occurred at the beginning of the quiet merbefore
the failure was even injected. We conclude that Sympatltayfsre
detection latency is not notably impacted by running withfeed
ent routing protocol (MintRoute), by varying traffic, or byuitiple
simultaneous failures.

5.3 Failure Detection Accuracy

To evaluate Sympathy’s failure detection accuracy, we oreahe
number of primary failure natifications (failures that aoedlized
to Self as opposed to failures that are localized elsewhethe
network) produced in various scenarios. Sympathy aimsdoae
primary failure notifications caused by temporary netwookdi-
tions, such as transient congestion, thereby focusinggéestime

In Figure 8 we compare a system that performs failure detec- on the most important problems in the network. Since our expe

tion exactly once per metric period (timer-triggered) vathystem
that performs failure detection whenever a packet arrivdsessink

ments inject one failure each, the theoretically optimahbar of
primary failures per experiment is one, although in reatlity in-
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collision detection further reduces primary failures, gsgathy is able
to more accurately identify congestion-induced failuresecondary.
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Figure 10: Number of collision detections vs. epoch. Congestion root
causes increase with traffic, making collision notificati@good indi-
cator for congestion detection.

jected failure can cause other real network problems thatpay
thy will currently report. Thus, we evaluate failure detentaccu-
racy by testing how few primary failure notifications aregwoed.
Again, every experiment reported the injected failure anary.

First, we consider the epoch setting. Figure 9 shows the sBumb
of primary failure notifications for varying epoch lengtlighore
the distinction between collision detection and no cailisdetec-
tion for now. In this graph the top and bottom of the box repre-
sent the 25th and 75th quartiles, a horizontal line is plaateithe

median, and the whiskers represent the minimum and maximum

values. We report notifications per minute to compensatelifer
ferent test lengths, and naotifications are aggregated dveodes
in the network. Repeated failure notifications are inclu¢®gm-
pathy continues to notify the user of a failure every meteciqd
until it is fixed). In this figure we see that the accuracy inye®—
the number of primary notifications decreases—as the epoch i
creases. This occurs for two reasons. The probability thatga-
thy will have a valid route for a node (i.e. has heard a routtatg
from the node in the past epoch) increases as the epoch sestea

as there is simply more time to receive a packet from the node.

So, for shorter epochs, Sympathy is more likely not to havalid v
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Figure 11: Number of primary compared to total failure notifications
for epochs of 180, 360, and 540 seconds; suppression ofdgailis

a result of failure localization. Points below the line icalie greater
than 50% suppression of failures; lower points on the graplbatter.
Failure notifications are aggregated for a 20-node network.

route for a node, which is by necessity a primary failure ddecas
we explained above, the probability of Sympathy detectailyifes
caused by short-term packet loss decreases as the epoeasesr

We also evaluate the efficacy of using distributed collisien
tection to localize the source of a node’s failure to netwakges-
tion. Collision detection, and the associated Congestiohcause,
reduces primary failure notifications by localizing somensient
failures to a Path source when there is downstream congebiigp-
ure 9 also shows a drop in the number of primary failure natific
tions when collision detection is on (as compared to the vdmsmn
collision detection is off) of up to 50% for larger epochs. Vgi-
fied that this is because some of the remaining congestiuread
failures are correctly identified as secondary. Congestaiaction
is irrelevant for shorter epochs because the sink is lesdylito
have a valid route for a node, as previously explained. Eid0rdi-
rectly shows the number of Congestion root causes reporteeru
different traffic scenarios; as traffic increases, so doesittmber
of congestion notifications.

Finally, the scatterplot in Figure 11 shows that failurealota-
tion in general, which includes both congestion-relatédifa sup-
pression and non-congestion-related failure suppre¢sena Bad
Path To Sink failure marked secondary because of a downstrea
Node Crash failure), is quite effective. The total numbefadtires
detected by Sympathy is shown on thexis, and the number of
primary failure notifications on thg axis. The experiment is run
for epoch periods of 180, 360, and 540 seconds; lower poiets a
better. For a majority of tests, Sympathy is able to categamore
than 50% of failures as secondary, thus minimizing the nurobe
failures the user must attend to.

5.4 Overhead

Deploying Sympathy with ESS creates overhead both in tefms o
extra network load and binary code size.

The network load added by Sympathy primarily depends on the
metric period. Figure 12 shows that using a smaller metriode
also puts much more load on the network. This graph shows ECDF
of the fraction of network traffic taken by Sympathy; smaler
tios represent less overhead, so lines towards the lefteterbWe
consider both a conservative case, in which there is onlyf@ym
thy and routing-layer traffic, and a more realistic scenaniavhich
we add application traffic. This application traffic consisf one
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: i ployments at James Reserve [10] and several short-terrhdeea
0 o 200 200 500 300 1000 1200 1400 ponmen'Fs. We briefly discuss our debugging experiences. .
To verify our system, we physically deployed and tested it-Ma
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ibu, California. We ran for 100 hours with 15 nodes randomly

spread around a backyard. The deployment was relativelpgmo
The graph of the number of failures reported by Sympathydsish
in Figure 15 (initial failures are due to network setup aritiafiza-
tion). However, one hour after leaving the site we stoppetirge
data from nodes. Sympathy had reported that all of the nodés h
10-byte data packet sent every minute; this is conservasv@ost failed and root-caused the failure as the sink did not hayeaigh-
data collection applications would send more data. Datatpan bors, localizing the source to the sink. This had resultethfa last
top represent nodes that are 1 to 2 hops to the sink, and thsis mu minute move of the sink, which prevented the rest of the ngtwo
forward a lot of traffic. As expected, the 9-minute period tess from hearing it. Moving the sink back at the 22nd hour immésia
overhead than the 3-minute period; but in all cases withiegtbn fixed the system. At that time however we also updated the sink
traffic, the overhead is less than or equal to 31% of datadraffi software to record more data. The new sink software had asmaty,
Figure 13 shows the time to detect a node crash given metric pe so the sink stopped advertising routes to the network; wirshort
riods of 3 and 9 minutes, and an epoch period of 540 and 1080 sec period of time the nodes routes timed out and they again stbpp
onds. Although the packet overhead is reduced by a factdreét routing data to the sink. After the 49th hour we finally fixee th
by tripling the metric period from 3 to 9 minutes, Sympathigg- problem and Sympathy no longer detected faults.
ure detection latency is not significantly impacted. Thisésause In another sensor network deployment of 25 nodes at James Re-
notification latency for this particular failure is primgrimpacted serve, gradually over a short period of time the sink stoped
by epoch, not redundant metric updates from nodes; othestgp ceiving data from all nodes. Sympathy notified us that stgrtit
failures would show somewhat different results. Experitaavith 9AM that morning no node had a route to the correct sink, which
more frequent metric transmission are more likely to haveai®n explained why the sink had stopped receiving data. On examin
latencies of exactly an epoch, as the sink is more likely ¢eike at the metrics we saw that noddil have a route to another node ID,
least one metrics packet from a live node during any giverciepo which happened to correspond with a node in the networkythat
Sympathy consumes minimal RAM and code space on the not a sink. After some time, nodes lost even that “route”, ssd
TinyOS platform. Table 14 contains the increase when instnt- mained in a state without a route. Given the data, we hypiztbeés
ing an application with Sympathy. Using the default modeyhS that the network was exposed temporarily to an extraneods no
pathy results in a 47-byte increase in RAM; if thieg-aboutfunc- with an ID that matched that of a node already in the netwohlatT

Figure 13: Failure detection latency for two different metric pesd@
and 9 minutes), each at epochs of 540 and 1080 seconds. Asthe m
ric period increases (reducing Sympathy traffic overheaddle crash
failure detection latency is not significantly impacted.



node advertised itself as a sink, confusing the network. \Weew  send event naotifications or updated metrics back to the alfduy-

able to validate this hypothesis and determine that, duebtayan ing for less frequent transmission of metrics packets. feuteork

the routing code, the network never recovered. will include examining which events should trigger a mettéiv-
ery to the sink in order to trigger failure detection.

6 GENERALIZABILITY Finally, giving the sink a more proactive role in the debunggi

process would also aid in handling insufficient or outdatédrima-
tion. For example, if the sink is unsure of the current statermde,
and needs to know what the node’s route is, the sink shoultllee a
to request this information from the node in order to comgplet
path analysis.

Sympathy is designed for a specific but very broad class dicpp
tions that gather data over a single or multihop tree-basating
structure from many nodes at a sink. However, Sympathy can be
modified to apply to different applications and routing lesyd=or
example, an application that does not require regular datsamge
between nodes, but has a notion of the amount of data it expéct

a sink, would work with Sympathy’s current implementatiéior 8 CONCLUSION

an event-based application with no regular data exchahgeayser Debugging sensor networks can be a long and laborious mroces

has two options: use Sympathy in its current implementagioth We have therefore developed Sympathy, a tool for autonitica
rely on the transport of Sympathy metrics to ensure the ooati diagnosing and aiding in the debugging of sensor networterys
health of the system (requiring pre-emptive as opposecetaibre Even with a small code footprint that sends out minimal ngetri
ideal on-demand routing), or turn off regular metric traissions data, we can still deduce the status of the system and in many
and only receive metrics when the user triggers metric ctidie. cases narrow down or even pinpoint the exact cause of a system
Sympathy is not intimately tied to any specific routing lagiad failure. Our prototype uses straightforward data coltecthodes

can use any routing protocol that provides a route from a node to send and analyze simple metrics, and is capable of hetigng
to the sink. Its path analysis and some root causes, such@s No buggers find failures more quickly and easily compared toecur
Crash, are based on the assumption that neighbor and rdating approaches.
bles are maintained by each node. However, many non-tresl bas Documentation and download links for this software arel§ree
routing algorithms such as rumor routing [1] still maintaguting available at http://lecs.cs.ucla.edu/"nithya/sympathy
and neighbor tables, which is all that Sympathy requiresdieicto
detect and root-cause failures and analyze paths for sterae ACKNOWLEDGMENTS
ization.

Adding an additional metric requires approximately 10 &xtr
lines of code at the node and another 10 at the sink. Any additi
RAM consumption depends solely on the size of the metric.
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