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ABSTRACT

Being embedded in the physical world, sensor networks present a
wide range of bugs and misbehavior qualitatively differentfrom
those in most distributed systems. Unfortunately, due to resource
constraints, programmers must investigate these bugs withonly
limited visibility into the application. This paper presents the de-
sign and evaluation of Sympathy, a tool for detecting and debug-
ging failures in sensor networks. Sympathy has selected metrics
that enable efficient failure detection, and includes an algorithm
that root-causes failures and localizes their sources in order to re-
duce overall failure notifications and point the user to a small num-
ber of probable causes. We describe Sympathy and evaluate its per-
formance through fault injection and by debugging an activeap-
plication, ESS, in simulation and deployment. We show that for a
broad class of data gathering applications, it is possible to detect
and diagnose failures by collecting and analyzing a minimalset of
metrics at a centralized sink. We have found that there is a trade-
off between notification latency and detection accuracy; that addi-
tional metrics traffic does not always improve notification latency;
and that Sympathy’s process of failure localization reduces primary
failure notifications by at least 50% in most cases.

Categories and Subject Descriptors: D.2.5 [Software Engi-
neering]: Testing and Debugging—Distributed debugging; C.2.4
[Computer Communication Networks]: Distributed Systems

General Terms: Design, Reliability

Keywords: sensor networks, debugging, failure detection, fail-
ure localization, root causes

1 INTRODUCTION

Developing and debugging sensor network applications in a dy-
namic, distributed, and resource-constrained embedded environ-
ment is an iterative and sometimes laborious process. Initial appli-
cation development can use a protected and interactive simulation.
Once an application is physically deployed, however, interactivity
and visibility are greatly reduced, and it becomes difficultto de-
tect and pinpoint problems when they occur. For example, a gap
in returned sample data may be caused by a critical node failure,
a transient change in link connectivity, or some other unexpected
combination of inputs. Responding to a failure can require physical
access to a node; depending on the deployment scenario, evenob-
taining access can be expensive and difficult—or, worse, a cause of
additional failures [17]. A sensor network system should therefore
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help narrow down failures and diagnose their causes, as muchas
possible, with minimal physical access and interactivity.

This problem is not new, of course. Many network software and
hardware tools help IP network administrators diagnose various
issues. Unfortunately, these tools often require network and node
resources not available to embedded network sensors, or assume
networks that are more stable than sensor networks, whose nodes
frequently become inaccessible and have poor connectivity, limited
power, and memory resources. Such tools may also ignore the cost
of transmitting debugging information, another significant concern.

This paper presentsSympathy, a prototype tool for detecting and
debugging failures in pre- and post-deployment sensor networks.
More specifically, Sympathy is designed for data collectionappli-
cations, which gather distributed data at a centralized sink location
for analysis. (Most of today’s deployed sensor networks fit this de-
scription, as will many networks deployed in future.) Nodesperi-
odically send metrics back to a sink, which combines this infor-
mation with passively-gathered metrics to detect failuresand deter-
mine their causes.

Given sensor hardware and network limitations, these transmit-
ted metrics must be minimized. Thus, Sympathy must find the de-
bugging information that provides the maximum leverage: the in-
formation that allows the most precise and meaningful failure de-
tection and localization for the lowest overhead. We chose metrics
using a simple insight: in a data-collection network, thereis a direct
relationship between the amount of data collected at the sink and
the existence of failures in the system. Insufficient data atthe sink
implies failure; sufficient data at the sink implies acceptable net-
work behavior. Thus, Sympathy can limit its metrics collection to
information about connectivity and data flow. Furthermore,when
a failure occurs, the user’s goal is to restore data collection. Sym-
pathy’s algorithms for localizing failures thus have the more spe-
cific and limited goal of telling the user which node or path isre-
sponsible for missing data. Of course, this excludes some kinds
of network misbehavior, such as overenthusiastic transmission and
resulting reduced battery lifetime. However, our experience with
Sympathy—both when deployed alone and when deployed in con-
cert with a real application [8]—indicates that many failures en-
countered in today’s networksdofit our model, making Sympathy’s
debugging support largely sufficient as well as useful.

Sympathy gathers and analyzes general system metrics such as
nodes’ next hops and neighbors. Based on these metrics, it detects
which nodes or components have not delivered sufficient datato the
sink and infers the causes of these failures. Experimentation and
actual deployments show that Sympathy can help detect internal
failures whose causes in most cases would not be readily apparent.

Our deployment experience centers on the Extensible Sensing
System (ESS), which gathers environmental data for user analy-
sis [8]. ESS-Sympathy deployments are intended for 10 to 100dis-
tributed sensor nodes routing data through a multihop tree back
to a sink. During one deployment, Sympathy discovered data dis-
ruption due to excessive flux in the routing table. Intuitively, this
is most likely due to poor link quality, due either to a bad radio
or an ill-defined beacon period; Sympathy’s analysis determined



that transmissions from most nodes to a shared next-hop neighbor
were resulting in many CRC errors, and thus pinpointed congestion
as the cause of data disruption. Since errors happened on multiple
nodes, a bad radio was unlikely. We thus added jitter to queryre-
sponse transmissions, which, as expected, solved the problem.

In the rest of this paper, we discuss related work (Section 2),
then describe Sympathy’s definitions of failures and failure sources
(Section 3). Section 4 then describes the Sympathy architecture and
implementation, including the network metrics it collectsand its
algorithms for pinpointing failures. Section 5 evaluates Sympathy,
based on repeated fault injection tests and anecdotes from actual
deployments. Finally, we discuss future work and conclude.

2 RELATED WORK

The current state of the art in sensor network debugging usesa com-
bination of simulation, visualization tools, log files, passive mon-
itoring, and tracing programs. Sympathy combines aspects of all
these techniques. Simulation [13, 18] is critical for reducing the
length of the development cycle and for repeatable experiments
(which we make use of in our evaluation), but clearly doesn’tre-
place debugging on the actual hardware; it is impossible to simu-
late real-time network dynamics, dynamic environments, and nu-
merous timing, MAC, and hardware-related details. While log files
can capture historical perspective and context, they contain exces-
sive and unfiltered data that can obfuscate important events. Visu-
alization tools can aid real-time debugging but often don’thigh-
light events that may indicate a failure or capture historical context.
For example, the Emstar visualizer [5, 6] showseither link qual-
ity or neighbor-level connectivity; conflicts in these properties—a
node that has no neighbors despite relatively high-qualitylinks, for
example—are difficult to see. Sympathy runs and produces useful
results in both simulation and deployment.

The Nucleus network management system (NMS) infrastructure
helps sensor network applications export debugging and monitor-
ing information [20]. Nucleus’s support for exporting counters and
statistics and recording application metrics is both easy to use and
lightweight. With minimal modification, we could replace Sym-
pathy’s homegrown logging mechanism and application interface
with Nucleus. NMS also exports specific metrics but does not pro-
vide infrastructure to analyze these metrics. Furthermore, these
metrics consume more than double the RAM required for the rest
of the stack [20]. Our contributions lie in determining the minimal
metrics to export, consuming on the order of 50 bytes of RAM for
all Sympathy mote code, and in defining algorithms that flag user-
relevant failures based on these metrics.

Previous work on debugging in sensor networks [14, 15] pro-
poses a pre-deployment architecture to monitor networks insimu-
lation and potentially emulation. In this architecture, a processing
node is directly connected with all other nodes over a simulated
or Ethernet back channel to continually collect information from
nodes. This architecture focuses on event detection and correlation,
so the information collected also focuses on these events. We have
found that event detection does not necessarily facilitatefailure de-
tection, while it does impose high overhead as events are frequent.

Periodic transmission of metrics from nodes to the sink is not a
new idea. MintRoute [22] includes periodic transmission ofneigh-
bor tables to aid in debugging at the sink. However, it neither in-
cludes other metrics nor performs failure analysis at the sink.

Zhao et al. proposed an algorithm to continually compute ag-
gregates (sum, average, and count) of loss rates, energy levels, and
packet counts to aid in debugging and an energy-efficient wayto
calculate those aggregates with in-network processing [23, 24].

In terms of failure detection methods, Szewczyk et al. identify
nodes that report sensor data exceeding a static threshold as being
close to failure [19]. This work utilizes a simple model to spec-
ify expected values and infer imminent failure when returned data
does not match the model. Others treat deviation from a calibration
model as a failure indication [3], or observe that low battery power
is correlated with wildly implausible data readings [21]. Sympathy
detects failure based on dataquantity, rather than data quality; this
is sufficient to catch many important failures in practice. However,
Sympathy’s infrastructure could easily include data quality mea-
surements.

Many Internet network management systems have insights we
can apply. The Simple Network Management Protocol (SNMP)
manages the exchange of network statistics between a central-
ized server andagentnodes, which respond to queries and asyn-
chronously signal events; our architecture (like that of Nucleus) is
similar. Management by Delegation moves some network manage-
ment responsibility off the centralized server and onto distributed
nodes, using mobile code [7]; this technique may become important
in sensor networks as tiny virtual machines become more widely
deployed [12].

Kiciman et al. collect low-level network metrics and use statisti-
cal analysis to identify application-level anomalous behavior; once
an anomaly is detected, the faulty node is rebooted [11]. Foxet
al. extend this idea to suggest using statistical learning techniques
based on pre-existing models and “well-understood external indi-
cators” to identify anomalous behavior [4].

Ruan and Pai’s DeBox system [16] motivated Sympathy’s ini-
tial design. DeBox suggests that exposing minimal internalstate to
applications in real time affords better performance analysis and
tuning than passive profilers that provide information postfacto.
While Sympathy is not as concerned with performance and focuses
on fault detection and debugging, this approach of enhancing sys-
tem visibility and transparency by exposing minimal internal state
forms the basis of our work.

3 FAILURES AND FAILURE SOURCES

Sympathy aims to detect a large class of sensor network failures
and localize each failure to simple, actionable information about
its likely source. Code running on a non-resource-constrained net-
work node called asink—often a data sink, such as a Stargate-
class system—continuously monitors normal network trafficand
Sympathy-generated traffic for failure conditions. When a failure
is detected, Sympathy triggers failure localization and reporting so
users can take appropriate action.

Before describing the algorithms used to detect and localize fail-
ures, we discuss what detected and localized failures are.

Failures Sympathy expects all live network nodes to generate
traffic of some kind, whether routing updates, time synchroniza-
tion beacons, or data periodically transmitted to the sink.We call
this trafficmonitored trafficto distinguish it from Sympathy’s own
metrics traffic(statistics packets generated by nodes and transmit-
ted to the sink). Sympathy detects a failure and triggers localization
when a node generates less monitored traffic than expected.

For example, in a network running the Surge application, every
node normally generates a packet containing a sensor reading every
n seconds. Sympathy might detect a failure, and trigger further lo-
calization, if a node in the network generated no reading for3n sec-
onds. The extra factor of three reduces false positives in the event
of packet loss but delays failure notification as well. Our evaluation
measures the consequences of this tradeoff.



Surge and ESS, the two systems we evaluate, resemble many
currently deployed sensor networks in that they periodically trans-
mit sensor data to the sink. For these systems, Sympathy moni-
tors the sensed data, as well as routing beacons and other expected
communication. This has the advantage of making failure detection
almost end-to-end. Any failure in the sensor data path will trigger
Sympathy, including failures in sensor boards that don’t affect rout-
ing or other node software. However, it is not a requirement;for
example, Sympathy could track only routing beacons from nodes
in its broadcast domain in a system with no regularly-transmitted
data. Future work will address entirely event-driven systems with
no regular communication of any kind; however, we expect that
most networks will feature some regular communication, however
infrequent, if only to verify connectivity.

Sympathy itself generates additionalmetrics trafficfrom each
node; this in-depth information helps localize failures. The absence
of metrics traffic can indicate a problem, but Sympathy considers
the absence of monitored traffic more significant.

Localized Sources Sympathy’s algorithms assign each detected
failure a localized source, an actionable description of the most
likely cause of the failure. We aim to choose the simplest localized
source that explains the failure. After experimenting withlarger
sets of more specific sources, we decided that a small set of gen-
eral sources is better: users must take the same actions for general
and specific sources, such as going out into the field and moving a
node, yet more specific sources are more likely to be wrong. The
more specific source identification, and any information used to cal-
culate it, is still available as part of Sympathy’s output, if desired.
There are three localized sources for a node’s failure to transmit
enough monitored traffic:

• Self. The node’s failure has been localized to the node itself.
The node may have crashed or rebooted, there may be another
local bug preventing data transmission, or there may be a con-
nectivity issue (the node does not have a route to the sink).
Remedial action will probably involve moving or interacting
with the node itself (e.g. changing its batteries).

• Path.The node’s failure is due to a failure along the path from
the node to the sink, such as a different node’s failure or ex-
cessive collisions along the path. Sympathy identifies a node
along the path and the problem potentially causing the packet
loss in order to focus the user’s search. Remedial action will
probably involve moving or fixing a node or the network in
its vicinity.

• Sink. Often when the whole network appears to be failing,
the simplest explanation is a failure at the sink, such as bad
sink placement or changes in the environment since deploy-
ment. Clues such as no node being able to hear the sink but
hearing other nodes point Sympathy to issues localized at the
sink. Remedial action will probably involve changing the sink
placement or examining sink metrics for bugs or other con-
nectivity issues.

4 ARCHITECTURE

Sympathy detects and localizes failures using informationfrom all
network nodes, including both resource-constrained TinyOS-based
motes and resource-rich Linux-based sinks. Sympathy code on
motes simply transmits metrics and responds to occasional queries;
all failure detection and localization runs on sinks. The actual local-
ization process has four stages. In the first, ongoing stage,the sink
collects metricsfrom other nodes in the system. Metrics include

Figure 1: Sympathy system, including code running at the nodes and
sink, high-level versions of interfaces between components, and an
overview of Sympathy’s failure localization algorithm.

information transmitted as part of normal communication, such as
sampled data, and information transmitted actively by Sympathy
code running on motes. Upon any packet reception Sympathy looks
for failures by analyzing this metric stream, looking forinsufficient
data received from any node. When a failure is detected, Sympa-
thy root-causesthe failure by analyzing metrics and running tests
as necessary to determine the cause. Common root causes include
a node crash or reboot, no node has a route to the sink because the
sink has no active neighbors, or the sink is not receiving data be-
cause the node is not receiving requests. Finally, after determining
the root causes for all existing failures in the system at that time,
Sympathy assigns each failure alocalized source, which is one of
the three sources (Self, Path, and Sink) identified above. These
sources are reported to the user with supporting documentation.
The goal is to produce a minimal list of failures that the usermust
definitely fix. Thus, if one failure potentially explains another—for
example, an upstream node’s (node closer to the sink) crash might
explain why a node downstream of it seemingly disappeared—we
mark the latter failure assecondary, and report it with less urgency.

The metrics Sympathy collects and the root causes to which it
assigns failures are both based on a simple insight: that in the ab-
sence of failure, network flows are conserved [9]. Thus, whendata
is lost, it must be getting lost somewhere in the network, andfind-
ing the location of loss is a good approximation to finding thetrue
cause of the failure. For example, perhaps a sink request fordata
got lost; or, following the data path forward, the node’s response
got lost due to collisions. Sympathy’sflow modelsystematizes this
data path. It specifies that nodes need: neighbors in order tohave
routes; routes in order to send data; to receive requests in order to
send responses (sometimes); and to send data in order for thesink
to receive the data. Metrics and root causes are chosen so that, in
the event of insufficient data, Sympathy is able to trace the data
flow through the network to narrow down the cause and locationof
data loss.

Figure 1 shows a component overview of the Sympathy system.

4.1 Metrics
The Sympathy sink collects a variety of metrics to aid in bothfail-
ure detection and localization. We added metrics as needed to dis-
tinguish different logical locations in our flow model, suchas fail-
ures local to a node vs. due to collisions along a path, and have
arrived at a simple stable set. Metrics are collected in three ways:
Sympathy code running on every network nodeactively transmits
packets containing metrics back to the sink; the sink snoopsnearby
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Figure 2: Sympathy code on a resource-constrained TinyOS node.
Sympathy contains interfaces to collect statistics from all layers in the
stack, including the routing layer and individual application compo-
nents.

application and transport traffic to discover metricspassively; and
Sympathy code running on the sink extracts sink metrics fromthe
sink application itself.

Sympathy’s current metrics fall into three main categories, con-
nectivity, flow, and node metrics. The set is extensible, however;
applications can create and use arbitrary metric types.

Connectivity Metrics Network connectivity information, col-
lected from every node in the network, helps Sympathy detectand
localize routing failures. Thus, Sympathy collects every node’s cur-
rent ROUTING TABLE —its sink, associated next hop, and path
quality—and NEIGHBOR LIST , which lists all of its neighbors,
whether involved in routing or not. It also collects the sink’s
NEIGHBOR LIST. This information is collected both passively and
actively. In the passive implementation, a plug-in on the sink
snoops nodes’ broadcast routing control packets, parses them and
passes their metrics such as neighbor and routing advertisements to
Sympathy. Our plug-in for MintRoute [22] is 85 lines of nesC,and
for ESS [8] 120 lines. Passive collection cannot, however, obtain
connectivity information for distant nodes whose broadcasts aren’t
heard by the sink. Thus, active collection code runs on each node
in the network. A Sympathy TinyOS module periodically collects
metrics from various layers of the networking stack using existing
interfaces, packages them into packets, and transmits themvia the
application’s routing layer; Figure 2 shows this architecture. A sim-
ilar module on the sink collects its connectivity information as well,
using Emstar [5] IPC mechanisms.

Flow Metrics Sympathy monitors the network’s traffic load as
well as its connectivity. Traffic is measured independentlyfor an
extensible set ofcomponents, which are entities with somewhat in-
dependent flow. For example, different applications will have dif-
ferent components, and within a single application, queries, re-
sponses, and routing advertisements might have one component
each. Our ESS and Surge evaluations use one component each, in
each case measuring application data packets. For each component,
Sympathy collectsPACKETS TRANSMITTED and PACKETS RE-
CEIVED from each node. Existing routing layers do not transmit
this information, so it must be collected actively. In addition, for
each component, Sympathy maintains per-node counters ofSINK

PACKETS TRANSMITTED (i.e., packets transmitted from the sink
to the node, including broadcasts) andSINK PACKETS RECEIVED

(packets received by the sink from the node), and aSINK LAST

TIMESTAMP (the most recent time that the sink received a packet
from the node). Sympathy uses these counters to track data flow
from the sink to the node.

Node Metrics Each node actively transmits itsUPTIME to the
sink, allowing Sympathy to detect reboots. In addition, each node
transmitsBAD PACKETS RECEIVED and GOOD PACKETS RE-
CEIVED counters, for packets received with and without CRC er-
rors. The sink maintains its ownBAD PACKETS RECEIVEDand
GOOD PACKETS RECEIVED. These counters are used to detect con-
gestion.

Active metrics collection is triggered by a TinyOS timer that
goes off once permetric period. Larger metric periods minimize
overhead relative to other application traffic (and do not necessar-
ily impact failure detection latencies, as we discuss in Section 5).
When the timer goes off, Sympathy code on the node collects all
relevant metrics and transmits them back to the sink, using the ap-
plication’s routing layer (rather than an independent routing layer
or a back channel). Using the existing routing layer can makeit
more difficult to debug routing-related failures, but in ourexperi-
ence we have always accumulated sufficient data from the regular
transmission of Sympathy metrics before a routing layer failure to
root-cause that failure. In addition, if the routing layer provides sup-
port for flooding (which is generally simpler than tree routing, and
thus might work even when tree routing is broken), nodes can flood
metrics in response to requests from the sink.

Passively collected metrics are preferable to actively collected
metrics, since they add no resource cost to operating the network.
Some simple localization is possible in a one-hop Sympathy net-
work using passive metrics and sink metrics alone. However,fail-
ure localization generally depends on information, such asthe num-
ber of packets each component tried to transmit (whether or not it
was received), currently available only through active collection.
Once active collection is available, passive metrics are somewhat
redundant (although they can provide useful supplementaryinfor-
mation between metrics periods, or when active metrics packets are
dropped). Thus, Sympathy can work without passive metrics or the
routing plug-in that provides them.

Nodes store and transmit metric counters using units of pack-
ets since node boot, modulo the counter size. This is robust to
metrics packet loss; the sink can calculate the number of packets
sent or received between any two metrics packets by subtracting
their counter values. Rollover must be accounted for, of course: if
a counter value is lower than the previous counter value, Sympathy
checks the node’sUPTIME to see if the node has rebooted; if not,
it assumes the counter has rolled over and calculates differences
accordingly. This implicitly assumes that counters will roll over at
most once between successfully received metrics packets. When a
metrics packet is lost, Sympathy linearly interpolates counter val-
ues. For instance, if a single metrics packet at timet is not received,
then counter increases in the metrics packet at timet + 1 are at-
tributed half to timet and half to timet + 1.

All metrics time out after a period called anepoch. For instance,
if Sympathy does not receive a node’s neighbor list for an epoch
or more, then it invalidates any cached neighbor list. The epoch is
used as a common timeout to determine if something is wrong with
a node or its delivery path. Longer epochs delay failure detection,
but also make detection more robust to short-term packet loss. The
smallest sensible epoch is one metric period, and we set the epoch
to a multiple of the metric period. The best setting would be small
enough for Sympathy to quickly notify the user of failures inthe
network, yet large enough to allow the sink time to collect pack-
ets from nodes and time to differentiate transient packet loss from
failure. Section 5 explores the consequences of different epochs.

Nodes that intentionally or unintentionally report incorrect met-
rics can utterly confuse Sympathy. We leave this for future work.
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Figure 3: Decision tree Sympathy uses to root-cause node failures once they have been detected.

4.2 Failure Detection
Sympathy triggers failure detection every time it receivesa packet
from a node, and once a metric period at the very minimum. Fail-
ures are detected using flow metrics. Specifically, Sympathyde-
termines whether the sink has received sufficient data from every
component on every node over the past epoch. Insufficient data in-
dicates a failure. Thresholds for sufficient data are specified per
component and per node, in units of packets per epoch, and maybe
modified by the application (using an update interface) or the user
(using a command-line interface). In the simple periodic-collection
applications we measure, these thresholds are the same for all
nodes; per-node thresholds allow Sympathy to monitor otherappli-
cations, regardless of differential transmission rates orin-network
aggregation, as long as the sink knows the quantity and/or quality
of data it should expect.

Thus, the sink has received sufficient packets from a node com-
ponent if itsSINK PACKETS RECEIVEDcounter at least equals the
corresponding threshold.

Sympathy detects a failure if and only if some sink component
does not receive sufficient packets.

Sympathy also maintains analogous thresholds that detect when
a node’s component doesn’t receive sufficient data from the sink
(using thePACKETS RECEIVEDcounter), and when a node’s com-
ponent doesn’t transmit sufficient data, regardless of how much
data is received (using thePACKETS TRANSMITTED counter).
These thresholds are used during the root-causing process;viola-
tions do not signal failure in and of themselves.

In our code, some of these thresholds are specified as fractions of
other metrics; the node-receive threshold, for example, isa fraction
of the correspondingSINK PACKETS TRANSMITTEDcounter.1

4.3 Root Causes
Once Sympathy has detected a failure, it uses an empirically-
developed decision tree to determine the most likely cause of
packet loss in the network. The decision tree uses metrics totrack
through Sympathy’s flow model and determine where data is lost.
Sympathy root-causes a failed nodeN by performing the following
tests in order, and reporting the first root cause that fits:

1This choice assumes that the component’sPACKETS RECEIVED
counter only counts packets from the sink. Other threshold setting
methodologies are possible, of course.

1. If N’s SINK LAST TIMESTAMP metric is at least one epoch old,
and no other node hasN listed in itsNEIGHBOR LIST, then the
node has crashed or otherwise completely fallen off the network.
The root cause isNode Crash. Crashes are the hardest failure
to distinguish, since their signature—the lack of traffic—is com-
mon to other failure modes, such as high congestion; thus, the
relatively long timetable for reporting a Node Crash root cause.

2. Otherwise, ifN’s UPTIME metric has unexpectedly rolled over,
then the node has rebooted. The root cause isNode Reboot,
and Sympathy resets all of the node’s counter metrics (sincethe
node’s versions of the counters have been reset to zero). To dis-
tinguish reboot from regular counter rollover, Sympathy checks
whether the counter could feasibly have rolled over from the
previous metrics packet.

3. If N’s NEIGHBOR LIST is empty or expired (more than one
epoch old), the node cannot hear from its neighbors, and the
root cause isNo Neighbors.

4. If N’s ROUTING TABLE is empty or expired, the node cannot
route to the sink, and the root cause isNo Route.

5. At this point,N is alive, has not rebooted, and has what appears
to be a good route back to the sink. The failure is either en-
tirely node-local, or concerns the path back to the sink. IfN’s
PACKETS RECEIVEDmetric is below the corresponding thresh-
old, then the node isn’t receiving the packets it should fromthe
sink; the root causeBad Path To Node.

6. If N’s PACKETS TRANSMITTEDmetric is below the correspond-
ing threshold, then the node’s software isn’t correctly transmit-
ting data; the root cause isBad Node Transmit.

7. Otherwise,N is both receiving and transmitting sufficient data.
The data must be getting lost on its way to the sink; the root
cause isBad Path To Sink.

This decision process proceeds from general to specific causes:
from basic health (steps 1–2) through connectivity (steps 3–4) to
communication (steps 5–7). Within the last three steps, theorder is
determined by network flow: for the sink to receive sufficientdata,
the node must receive sufficient requests (step 5) and transmit re-
sponses (step 6) that aren’t dropped en route (step 7). Sympathy de-
termines independent root causes for each failed node–component
pair, although in many cases multiple failing components will have
the same root cause.
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Figure 4: Root causes with associated metrics and localized sources.

Simultaneously, Sympathy checks for other root causes thatmay
explain the failure. These include congestion-related causes and
causes involving the sink.

• If the sink’sNEIGHBOR LIST is empty, then the sink is isolated.
A No Neighborsroot cause is recorded for the sink.

• If no node has a validROUTING TABLE with a route to the sink,
then no one can route to the sink. ANo Sink Routeroot cause
is recorded.

• Sympathy checks each node in the network (failed or not) for
excessive collisions. If a node’sBAD PACKETS RECEIVEDmet-
ric is more than 75% of itsGOOD PACKETS RECEIVEDmetric
(an experimentally derived threshold), aCongestionroot cause
is recorded for that node.

The decision tree is summarized in Figure 3; tests are in cir-
cles, and the resulting root causes are the terminating boxes. Root
causes, associated metrics, and potential localized sources are sum-
marized in Table 4.

4.4 Source Localization
Sympathy then analyzes the resulting root causes and assigns each
failure a localized source: either Self (the node itself is broken),
Path (the path is broken), or Sink (the sink is broken). Failures
localized to Self are calledprimary failures, since they cannot be
traced to any other cause in the network; all other failures are sec-
ondary. Sympathy logs all failures, but highlights primary failures
as potential causes for all other failures, encouraging theuser to
prioritize fixing those failures.

The algorithm is relatively simple. If Sympathy recorded a No
Neighbors or No Sink Route failure for the sink, the sink is broken;
this trumps all other failure conditions. The sink failure is assigned
a localized source of Self, and every other failure is assigned a lo-
calized source of Sink. Otherwise, for communication root causes
(Bad Path To Node, Bad Node Transmit, and Bad Path To Sink:
steps 5–7 in Section 4.3’s decision tests), Sympathy looks along
the path to the sink for another failure that might take precedence.
Specifically, given a failure at nodeN with such a root cause, Sym-
pathy tracks the path fromN to the sink viaROUTING TABLE met-
rics. If a nodeO on this path—but closer to the sink—has any root
cause recorded, including Congestion, thenN’s failure is assigned
a localized source of Path withO as the primary cause. This search

applies to the sink as well: If the sink has Congestion recorded,
thenN’s failure is assigned a localized source of Path with the sink
as the primary cause. (While we experimented with allowing up-
stream failures to explain No Neighbors and other basic-health and
connectivity root causes, this mischaracterized too many failures as
secondary.) If neither of these exceptions applies, then the failure
is primary, and its localized source is Self.

Thus, if a nodeN is experiencing a failure with root cause Bad
Node Transmit, but a node upstream has Crashed, thenN’s failure
will be reported as secondary; but ifN actually Rebooted, its failure
is primary, despite the upstream Node Crash.

This source localization procedure may mischaracterize some
failures as secondary; for example, a Bad Node Transmit failure is
unlikely to be caused by an upstream Bad Path To Node failure.
Our goal, however, is to report the smallest number of failures that
mustbe fixed to return the network to health. It would be conve-
nient to create a more precise model of flow through the network
based on collected topology information, and thus determine ex-
actly where data is lost in the network. This might also allowus
to limit failure notifications in case of network partition;currently
Sympathy would report this with one primary Node Crash failure
per partitioned node, instead of a primary failure at the partition’s
border with secondary failures beyond that border. We leavethis as
future work; the difficulty, of course, is that Sympathy never knows
how accurate its view of the network is.

4.5 Failure Notification
Once a failure is localized, Sympathy notifies the user through a
log file containing the detected failure (and whether it is primary or
secondary), its root cause(s), its localization, relevantmetrics, and
calculated statistics and events. TheROUTING TABLE andNEIGH-
BOR LIST metrics are annotated with statistics such as neighbor
age and number of times a route has been changed. Sympathy also
checks basic invariants, such as that the selected next-hopis also in
the neighbor table; it identified a bug in ESS with this simplerule.
Nodes are allowed to transmit specific statistics that Sympathy does
not understand; if the sink can translate them into ASCII, Sympa-
thy will include these statistics in its reports as well. Finally, if the
user sent a ping request about a node (see below), all the resulting
responses will also be included in the log file.

Due to a quirk of our current implementation, the user is only
immediately notified of failures resulting in zero packets received
from a node to the sink in the past epoch: that is, Node Crash and
Node Reboot. Other failures are reported up to one metric period
after they happen.

4.6 Command Interface
Sympathy provides several command line and Web-accessible
mechanisms for users to query and control the system. In order
to minimize the impact on system lifetime, Sympathy provides a
knob at the Sympathy sink for user control of the metric period af-
ter deployment. This knob is useful during deployment when users
may initially require frequent transmission of metrics in order to
obtain immediate feedback on configuration and topology changes,
but want to scale back the metrics to save network resources once
the deployment is complete. The user can also set the metric trans-
mission period to 0 which disables metric transmission fromnodes,
and moves Sympathy to only collecting metrics passively andupon
user request. Users can set thresholds and read logs.

In addition, Sympathy provides aping-about command that
floods the network with a query for information about a specific
node. If the node receives the flood, it responds by transmitting its



standard metrics packets. Additionally, any other node that has spe-
cific information about the queried node, such as number of packets
received from it or the time of last communication, transmits this
data back. Our Web-based user interface graphically displays the
network of nodes, allows users to retrieve all information gathered
about the node, and highlights any failures; we have also integrated
Sympathy with a graphical interface for visualizing metrics and en-
vironmental data [2].

5 EVALUATION

We evaluate Sympathy in simulation by varying system parameters,
traffic conditions, failure injection, and instrumenting two differ-
ent network stacks (Surge running on MintRoute [22], and ESS[8]
with multihop), and anecdotally in several deployed systems in-
strumented with Sympathy. Through simulation and deployment
we validate all of Sympathy’s possible source localizations and ex-
ercise its failure detection. We validate the Self source localization
by injecting node crashes and evaluating Sympathy’s detection of
the correct failure and source, and the Path source localization by
showing that Sympathy localizes data loss to congestion without
sacrificing detection accuracy.

Our performance hypothesis is that Sympathy accurately detects
injected failures with relatively low network overhead andlow la-
tency. To evaluate this hypothesis, we inject failures intoa 20-node
simulated network and measure latency and accuracy of failure
detection. We find that Sympathy detects every failure we inject.
There is a tradeoff between detection latency (time from when the
failure is injected to when Sympathy notifies the user of the fail-
ure) and accuracy (number of primary failure notifications). As the
epoch increases, detection latency gets worse (Figures 6 and 13)
while accuracy gets better (Figures 10 and 11). Although thepacket
overhead is reduced by a factor of three by tripling the metric pe-
riod from 3 to 9 minutes, Sympathy’s failure detection latency is
not significantly impacted for Node Crash failures. By performing
path analysis to determine if a node’s failure is caused by a failure
upstream, Sympathy is able to reduce excessive failure notifications
by at least 50% for most cases; and using collision detectionin the
network as an indication for congestion and a source of packet loss,
Sympathy can reduce failure notifications even further.

5.1 Methodology
We evaluate Sympathy by injecting node crashes into the network
in simulation using Emstar [5]. Since node crashes are detected
conservatively, they are the hardest failure to detect accurately and
quickly. Most other root causes have been observed and validated
in deployment and simulation.

Using Emstar’s contention-based channel model to simulatecol-
lisions, we vary traffic conditions in order to increase packet loss
and congestion. The traffic conditions are: (1) no application traffic,
just routing traffic (no-app); (2) one 10-byte application packet sent
every 60 seconds (traffic60); and (3) one 10-byte application packet
sent every 30 seconds (traffic30); and (4) one 10-byte application
packet sent every 10 seconds (traffic10). In each case, thresholds
were set accordingly; in the no-app case, Sympathy tracked Sym-
pathy metrics instead of application data.

Unless otherwise specified, each set of experiments consists of
injecting single node crashes into a 20-node network with a 7-hop
diameter. Different trials within an experiment fail each node in the
network to check for topology effects, and each experiment is re-
peated twice. The epoch setting defaults to 540 seconds, themetric
period to 3 minutes, and the traffic scenario to traffic30. Tests run
for about an hour, and end once Sympathy detects that the nodehas
crashed with a source localization of Self.
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Figure 5: Sympathy can detect nodeN’s crash within one epoch of its
injection when all other nodes send updated information removing N
from their neighbor lists. Otherwise, Sympathy must wait for all neigh-
bor list metrics that mentionN to expire. This takes at most an ad-
ditional neighbor list timeout, unless a node incorrectly continues to
mentionN.

We use empirical cumulative distribution functions or ECDFs to
present the distribution of our data for several graphs.

5.2 Failure Detection Latency
Sympathy is quite conservative before reporting a node crash, since
the only symptom of a crash—that is, the absence of any data—can
indicate so many other kinds of failure (such as persistent conges-
tion or a path failure between the node and the sink). Specifically,
Sympathy will not report a node crash for nodeN until (1) it has not
received any data fromN for an epoch, and (2) no other node lists
N as a neighbor in itsNEIGHBOR LIST metric (which can either
occur if the node explicitly sends aNEIGHBOR LIST update with-
out N, or if the sink flushes its cached copy of theNEIGHBOR LIST

because the node has not sent an update during the epoch). Thus,
the failure notification latency will depend on the order of events. A
notification latency of one epoch is possible if, during thatepoch,
Sympathy hears updatedNEIGHBOR LISTs fromN’s former neigh-
bors, or, alternatively, if allN’s neighbors’NEIGHBOR LISTs ex-
pire. (If the epoch duration is less than the time it takes fora node
to time out from a neighbor list, then this “good case” can only
occur if the relevantNEIGHBOR LISTs expire.) Latencies of less
than one epoch are possible whenN was quiet before it crashed, or
its pre-crash packets were dropped; this can fool Sympathy into de-
tecting a crash early. Greater notification latencies are possible, too,
if another node sends an updated neighbor list thatincludes N, as
might occur if its metric period ends immediately beforeN expires
from its neighbor list. Assuming nodes transmit correct metrics,
the latency will be extended by at most one neighbor list timeout.
Figure 5 demonstrates the cases.

As the epoch increases relative to the metric period, the probabil-
ity of observing a latency longer than an epoch willdecrease. This
is because the “bad case” in Figure 5 requires that all ofO’s metrics
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Figure 6: Failure detection latency for different epoch sizes. As the
epoch increases, the sink is more likely to detect the failure within one
epoch.

are dropped for a period of one epoch; as the epoch increases,more
metrics are transmitted per epoch and this becomes less likely.

We plot the failure detection time as an ECDF over an entire set
of experiments in Figure 6. In our system, the neighbor list time-
out is 320 seconds, so the upper bound on detecting a failure given
correct node operation is 320 seconds plus an epoch. The failure
was detected as a primary failure in every case. The observations
made above for failure detection latency are consistent with this
graph: failure detection latency increases with epoch, butas epoch
increases the sink is increasingly likely to detect the failure within
one epoch. This explains why the latencies for an epoch of 180sec-
onds are pretty evenly distributed between 180 seconds (thelower
bound) and 460 seconds (close to the upper bound of 500 seconds),
while the latencies for an epoch of 720 seconds are predominantly
between 710 and 720 seconds.

We then measured Sympathy in a variety of different scenarios
and traffic conditions; Figure 7 contains a line for each scenario.
To demonstrate Sympathy’s ability to detect multiple simultaneous
failures, we inject two failures within one metric period, choosing
every possible combination of two nodes in the network; detec-
tion latency was measured from when the first failure is injected
into the network. To demonstrate Sympathy’s modularity with re-
spect to routing protocols and applications, we instrumented the
routing protocol MintRoute [22] and the data delivery application
Surge, and re-ran our experiments. Finally, to demonstrateSympa-
thy’s relative indifference to background traffic, we ran with 3 dif-
ferent traffic scenarios, no-app, traffic30, and traffic10. The latency
ECDFs are largely similar in all cases. In most scenarios, Sym-
pathy detects the failure within one epoch, but in many instances
of the no-application-traffic scenario, Sympathy detects the failure
before a complete epoch has elapsed. This is because the Sympa-
thy traffic on which no-app relies is sent much less frequently than
application traffic; thus, failures are more likely to be injected in
the middle of a long quiet period. Sympathy mistakenly assumes
that the failure occurred at the beginning of the quiet period, before
the failure was even injected. We conclude that Sympathy’s failure
detection latency is not notably impacted by running with a differ-
ent routing protocol (MintRoute), by varying traffic, or by multiple
simultaneous failures.

In Figure 8 we compare a system that performs failure detec-
tion exactly once per metric period (timer-triggered) witha system
that performs failure detection whenever a packet arrives at the sink
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Figure 7: Failure detection latency for varied scenarios, including dif-
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out; all results are similar.
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triggered failure detection has a lower average latency, asthe latency
upper bound for timer-triggered is one metric period greater.

(Sympathy’s default mode). We would expect timer-triggered sys-
tems to have higher latency, as failure detection may be delayed
by up to one metric period. This is exactly what we see: timer-
triggered failure detection latencies for 180-second epochs are up
to one metric period (180 seconds) greater. Sympathy-styleevent-
triggered failure detection reduces the time to detect a failure, and is
more likely to detect a failure within an epoch. The advantage of an
event-triggered system is more pronounced with an epoch size of
180 seconds because, as mentioned before, any system’s detection
latency will approach the minimum as the epoch increases.

5.3 Failure Detection Accuracy
To evaluate Sympathy’s failure detection accuracy, we measure the
number of primary failure notifications (failures that are localized
to Self as opposed to failures that are localized elsewhere in the
network) produced in various scenarios. Sympathy aims to reduce
primary failure notifications caused by temporary network condi-
tions, such as transient congestion, thereby focusing the user’s time
on the most important problems in the network. Since our experi-
ments inject one failure each, the theoretically optimal number of
primary failures per experiment is one, although in realitythe in-
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Figure 10: Number of collision detections vs. epoch. Congestion root
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cator for congestion detection.

jected failure can cause other real network problems that Sympa-
thy will currently report. Thus, we evaluate failure detection accu-
racy by testing how few primary failure notifications are produced.
Again, every experiment reported the injected failure as primary.

First, we consider the epoch setting. Figure 9 shows the number
of primary failure notifications for varying epoch lengths;ignore
the distinction between collision detection and no collision detec-
tion for now. In this graph the top and bottom of the box repre-
sent the 25th and 75th quartiles, a horizontal line is placedat the
median, and the whiskers represent the minimum and maximum
values. We report notifications per minute to compensate fordif-
ferent test lengths, and notifications are aggregated over all nodes
in the network. Repeated failure notifications are included(Sym-
pathy continues to notify the user of a failure every metric period
until it is fixed). In this figure we see that the accuracy improves—
the number of primary notifications decreases—as the epoch in-
creases. This occurs for two reasons. The probability that Sympa-
thy will have a valid route for a node (i.e. has heard a route update
from the node in the past epoch) increases as the epoch increases,
as there is simply more time to receive a packet from the node.
So, for shorter epochs, Sympathy is more likely not to have a valid
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route for a node, which is by necessity a primary failure. Second, as
we explained above, the probability of Sympathy detecting failures
caused by short-term packet loss decreases as the epoch increases.

We also evaluate the efficacy of using distributed collisionde-
tection to localize the source of a node’s failure to networkconges-
tion. Collision detection, and the associated Congestion root cause,
reduces primary failure notifications by localizing some transient
failures to a Path source when there is downstream congestion. Fig-
ure 9 also shows a drop in the number of primary failure notifica-
tions when collision detection is on (as compared to the casewhen
collision detection is off) of up to 50% for larger epochs. Weveri-
fied that this is because some of the remaining congestion-induced
failures are correctly identified as secondary. Congestiondetection
is irrelevant for shorter epochs because the sink is less likely to
have a valid route for a node, as previously explained. Figure 10 di-
rectly shows the number of Congestion root causes reported under
different traffic scenarios; as traffic increases, so does the number
of congestion notifications.

Finally, the scatterplot in Figure 11 shows that failure localiza-
tion in general, which includes both congestion-related failure sup-
pression and non-congestion-related failure suppression(i.e., a Bad
Path To Sink failure marked secondary because of a downstream
Node Crash failure), is quite effective. The total number offailures
detected by Sympathy is shown on thex axis, and the number of
primary failure notifications on they axis. The experiment is run
for epoch periods of 180, 360, and 540 seconds; lower points are
better. For a majority of tests, Sympathy is able to categorize more
than 50% of failures as secondary, thus minimizing the number of
failures the user must attend to.

5.4 Overhead
Deploying Sympathy with ESS creates overhead both in terms of
extra network load and binary code size.

The network load added by Sympathy primarily depends on the
metric period. Figure 12 shows that using a smaller metric period
also puts much more load on the network. This graph shows ECDFs
of the fraction of network traffic taken by Sympathy; smallerra-
tios represent less overhead, so lines towards the left are better. We
consider both a conservative case, in which there is only Sympa-
thy and routing-layer traffic, and a more realistic scenario, in which
we add application traffic. This application traffic consists of one



 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7

E
C

D
F

Sympathy/Total Byes Transmitted

ECDF of Sympathy Overhead

3 min metric pd, no-app
6 min metric pd, no-app
9 min metric pd, no-app

3 min metric pd, traffic60
6 min metric pd, traffic60
9 min metric pd, traffic60

Figure 12: Sympathy overhead correlates with how often nodes send
metrics. Each line is run under a specific scenario; each point represents
the ratio of Sympathy bytes transmitted over total bytes transmitted,
from one particular node.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  200  400  600  800  1000  1200  1400

E
C

D
F

Failure Detection Latency (secs)

ECDF of Failure Detection Latency vs Metric Period

Epoch=540 secs Epoch=1080 secs

3 min metric pd
9 min metric pd

Figure 13: Failure detection latency for two different metric periods (3
and 9 minutes), each at epochs of 540 and 1080 seconds. As the met-
ric period increases (reducing Sympathy traffic overhead),node crash
failure detection latency is not significantly impacted.

10-byte data packet sent every minute; this is conservativeas most
data collection applications would send more data. Data points on
top represent nodes that are 1 to 2 hops to the sink, and thus must
forward a lot of traffic. As expected, the 9-minute period hasless
overhead than the 3-minute period; but in all cases with application
traffic, the overhead is less than or equal to 31% of data traffic.

Figure 13 shows the time to detect a node crash given metric pe-
riods of 3 and 9 minutes, and an epoch period of 540 and 1080 sec-
onds. Although the packet overhead is reduced by a factor of three
by tripling the metric period from 3 to 9 minutes, Sympathy’sfail-
ure detection latency is not significantly impacted. This isbecause
notification latency for this particular failure is primarily impacted
by epoch, not redundant metric updates from nodes; other types of
failures would show somewhat different results. Experiments with
more frequent metric transmission are more likely to have detection
latencies of exactly an epoch, as the sink is more likely to receive at
least one metrics packet from a live node during any given epoch.

Sympathy consumes minimal RAM and code space on the
TinyOS platform. Table 14 contains the increase when instrument-
ing an application with Sympathy. Using the default mode of Sym-
pathy results in a 47-byte increase in RAM; if theping-aboutfunc-

Binary RAM ROM

Sympathy 47 bytes 1558 bytes

Sympathy withping-about 97 bytes 1900 bytes

Figure 14: Sympathy memory footprint for TinyOS on mica2.
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Figure 15: Failures detected during a deployment. The initial deploy-
ment fails with excessive failure notifications; the problem is com-
pletely fixed after the 49th hour.

tionality is added the RAM consumption increases to 97 bytes(in
order to store 5 bytes of additional information for each of 10
neighbors—the neighbor table size is configurable).

5.5 Anecdotal Experience
Sympathy has been used to deploy and monitor two ongoing de-
ployments at James Reserve [10] and several short-term local de-
ployments. We briefly discuss our debugging experiences.

To verify our system, we physically deployed and tested in Mal-
ibu, California. We ran for 100 hours with 15 nodes randomly
spread around a backyard. The deployment was relatively smooth.
The graph of the number of failures reported by Sympathy is shown
in Figure 15 (initial failures are due to network setup and initializa-
tion). However, one hour after leaving the site we stopped getting
data from nodes. Sympathy had reported that all of the nodes had
failed and root-caused the failure as the sink did not have any neigh-
bors, localizing the source to the sink. This had resulted from a last
minute move of the sink, which prevented the rest of the network
from hearing it. Moving the sink back at the 22nd hour immediately
fixed the system. At that time however we also updated the sink
software to record more data. The new sink software had a bug,and
so the sink stopped advertising routes to the network; within a short
period of time the nodes routes timed out and they again stopped
routing data to the sink. After the 49th hour we finally fixed the
problem and Sympathy no longer detected faults.

In another sensor network deployment of 25 nodes at James Re-
serve, gradually over a short period of time the sink stoppedre-
ceiving data from all nodes. Sympathy notified us that starting at
9AM that morning no node had a route to the correct sink, which
explained why the sink had stopped receiving data. On examining
the metrics we saw that nodesdid have a route to another node ID,
which happened to correspond with a node in the network, thatwas
not a sink. After some time, nodes lost even that “route”, andre-
mained in a state without a route. Given the data, we hypothesized
that the network was exposed temporarily to an extraneous node
with an ID that matched that of a node already in the network. That



node advertised itself as a sink, confusing the network. We were
able to validate this hypothesis and determine that, due to abug in
the routing code, the network never recovered.

6 GENERALIZABILITY

Sympathy is designed for a specific but very broad class of applica-
tions that gather data over a single or multihop tree-based routing
structure from many nodes at a sink. However, Sympathy can be
modified to apply to different applications and routing layers. For
example, an application that does not require regular data exchange
between nodes, but has a notion of the amount of data it expects at
a sink, would work with Sympathy’s current implementation.For
an event-based application with no regular data exchange, the user
has two options: use Sympathy in its current implementationand
rely on the transport of Sympathy metrics to ensure the continual
health of the system (requiring pre-emptive as opposed to the more
ideal on-demand routing), or turn off regular metric transmissions
and only receive metrics when the user triggers metric collection.

Sympathy is not intimately tied to any specific routing layerand
can use any routing protocol that provides a route from a node
to the sink. Its path analysis and some root causes, such as Node
Crash, are based on the assumption that neighbor and routingta-
bles are maintained by each node. However, many non-tree based
routing algorithms such as rumor routing [1] still maintainrouting
and neighbor tables, which is all that Sympathy requires in order to
detect and root-cause failures and analyze paths for sourcelocal-
ization.

Adding an additional metric requires approximately 10 extra
lines of code at the node and another 10 at the sink. Any additional
RAM consumption depends solely on the size of the metric.

7 FUTURE WORK

One of the interesting challenges that has arisen through the design
of Sympathy is handling unknown network state. In other words,
how much can Sympathy infer based on the information it does
have?

For example, during path analysis, if a node’s route has timed
out at Sympathy (because Sympathy has not gotten any informa-
tion on the node’s route in the last epoch), then can Sympathyuse
an outdated route in determining failure dependencies? Onepossi-
ble scenario could be that Sympathy is not receiving updatedroute
information from the node due to a failure along the path; in this
case, Sympathy should use the outdated route information totrace
the path to the root cause. However, perhaps the route reallyis out-
dated and in the meantime the node has switched routes: another
failure on a different path is actually preventing the data delivery.
Similarly, Sympathy determines a node has failed if it has fallen off
of all nodes’ neighbor lists, but it is simply guessing that if no node
has heard from a node, that node must dead. It may just be that
the node has dropped off of neighbor lists but is still periodically
transmitting packets.

In such instances, it would be helpful to have some mechanism
to specify confidence in the root cause analysis provided by Sym-
pathy (i.e. using a Bayes network). In the case above, Sympathy
could then provide two scenarios, each with a confidence estimate
(possibly depending on the duration of time elapsed since Sympa-
thy had last heard from the node; as time passed, the confidence in
the first diagnosis would decrease).

Another approach we plan to explore is placing more emphasis
on decentralized processing ofsomeof the metrics, so that the sink
does not always have to have the most updated state of the network.
Decentralized processing would also allow nodes to pro-actively

send event notifications or updated metrics back to the sink,allow-
ing for less frequent transmission of metrics packets. Future work
will include examining which events should trigger a metricdeliv-
ery to the sink in order to trigger failure detection.

Finally, giving the sink a more proactive role in the debugging
process would also aid in handling insufficient or outdated informa-
tion. For example, if the sink is unsure of the current state of a node,
and needs to know what the node’s route is, the sink should be able
to request this information from the node in order to complete its
path analysis.

8 CONCLUSION

Debugging sensor networks can be a long and laborious process.
We have therefore developed Sympathy, a tool for automatically
diagnosing and aiding in the debugging of sensor network systems.
Even with a small code footprint that sends out minimal metric
data, we can still deduce the status of the system and in many
cases narrow down or even pinpoint the exact cause of a system
failure. Our prototype uses straightforward data collection nodes
to send and analyze simple metrics, and is capable of helpingde-
buggers find failures more quickly and easily compared to current
approaches.

Documentation and download links for this software are freely
available at http://lecs.cs.ucla.edu/˜nithya/sympathy.
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