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Abstract
The early detection of neurodevelopmental disorders (NDDs) can significantly improve patient outcomes. The differential 
burden of non-synonymous de novo mutation among NDD cases and controls indicates that de novo coding variation can 
be used to identify a subset of samples that will likely display an NDD phenotype. Thus, we have developed an approach for 
the accurate prediction of NDDs with very low false positive rate (FPR) using de novo coding variation for a small subset 
of cases. We use a shallow neural network that integrates de novo likely gene-disruptive and missense variants, measures of 
gene constraint, and conservation information to predict a small subset of NDD cases at very low FPR and prioritizes NDD 
risk genes for future clinical study.

Keywords  De novo mutation · Early prediction · Neural network · Likely gene-disruptive · Missense

Abbreviations
ASD	� Autism spectrum disorder
AUC​	� Area under the curve
CI	� Confidence interval
DD	� Developmental disability
FPR	� False positive rate
ID	� Intellectual disability
LGD	� Likely gene-disruptive
LOEUF	� Loss-of-function observed/expected upper 

bound fraction
NDD	� Neurodevelopmental disorder
pLI	� Probability of loss-of-function intolerance
PR-AUC​	� Precision recall-area under the curve
ROC-AUC​	� Receiver operating characteristic-area under 

the curve
RVIS	� Residual Variation Intolerance
SSC	� Simons Simplex Collection

SNN	� Shallow neural network
SVM	� Support-vector machine
TPR	� True positive rate

Introduction

Neurodevelopmental disorders (NDDs), such as autism spec-
trum disorder (ASD), epilepsy, intellectual disability (ID), 
and developmental disability (DD) are complex disorders 
characterized by impairment in cognition, learning, and 
motor skills. From twin and family studies, it has become 
apparent that NDDs possess a strong genetic component 
(Freitag, 2007; Gejman et al., 2010). Estimates of heritabil-
ity for various NDDs have ranged from 0.3 to 0.9, with herit-
ability estimated to be greater than 0.5 for both ASD and ID 
(Flint, 2001; Kaufman et al., 2010; Tick et al., 2016). The 
evident contribution of genetic factors to NDD diagnoses has 
provided reason for routine prenatal whole exome or genome 
sequencing to identify potentially deleterious genetic varia-
tions (Soden et al., 2014; Tărlungeanu & Novarino, 2018). 
In particular, whole exome sequencing has proved a useful 
tool to identify, at a low cost, coding variants in genes that 
are highly intolerant to mutation and play important roles in 
typical neurodevelopment (Srivastava et al., 2019).

The identification and prioritization of NDD risk genes is 
important for the discovery of underlying biological mecha-
nisms that are perturbed in NDDs (Cardoso et al., 2019). 
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Previous studies have identified many monogenic forms of 
NDDs and revealed the multifactorial and polygenic nature 
of most NDD diagnoses (De Felice et al., 2015; Niemi et al., 
2018; Sztainberg & Zoghbi, 2016). In particular, rare de 
novo mutations that are observed in genes in NDD cases 
at a significantly higher rate than expected relative to unaf-
fected controls have pinpointed many candidate NDD genes, 
with more than one thousand genes estimated to be NDD 
risk genes (De Rubeis et al., 2014; Heyne et al., 2018; Ios-
sifov et al., 2012; Kaplanis et al., 2020; McRae et al., 2017; 
O’Roak et al., 2012a, b; Sanders et al., 2012; Satterstrom 
et al., 2020; Wilfert et al., 2017).

De novo mutations are a class of rare genetic variation in 
which variants, that are not observed in parental genomes, 
exist in offspring due to mutagenesis in germ cells or errors 
in replication or recombination (Acuna-Hidalgo et  al., 
2016). De novo mutations may exist as single nucleotide 
variants, insertions and deletions (indels), and copy num-
ber variants. Because de novo mutations are not inherited, 
highly penetrant mutations can arise in genes that are criti-
cal to neurodevelopment and likely under purifying selec-
tion (Iossifov et al., 2012; Uddin et al., 2014). In fact, indi-
viduals affected by NDDs experience a greater burden of 
non-synonymous de novo mutation compared to unaffected 
controls (Coe et al., 2019; Wilfert et al., 2017). Study of 
ASD simplex families from the Simons Simplex Collection 
(SSC) has found that de novo likely gene disruptive (LGD) 
mutations occur at a nearly twofold increased rate in affected 
cases (0.21) relative to controls (0.12), as well as display-
ing an increased rate of missense mutation (Iossifov et al., 
2014). Furthermore, the study of genetic modules impacted 
by these de novo mutations has pinpointed several biologi-
cal processes relevant to NDD etiology, such as chromatin 
remodeling, the Wnt pathway, synaptic transmission, and the 
long-term potentiation pathway (Chow et al., 2019; Kwan 
et al., 2016; O’Roak et al., 2012a, b; Wilfert et al., 2017).

The benefits associated with successful early predic-
tion of NDDs include the improved ability of parents to 
make informed decisions about potential early application 
of treatments (Boivin et al., 2015; Cioni et al., 2016; Cor-
sello, 2005). It is important to note that most NDDs cases 
cannot be predicted using de novo coding variation alone; 
the exome constitutes 1–2% of the human genome and the 
majority of NDD-associated variants are likely to reside 
in non-coding regions involved in the regulation of gene 
expression (Short et al., 2018; Turner & Eichler, 2019). 
Currently, it is estimated that only ~ 10% of ASD cases 
and ~ 20–30% of ID/DD cases have de novo LGD vari-
ants, and the rate of such variants in the general popula-
tion is significantly lower (Wang et al., 2021). The geneti-
cally and phenotypically heterogeneous nature of NDDs 
indicates that many factors, including common and non-
coding genetic variants and non-genetic factors, account 

for a large fraction of diagnoses, further complicating our 
ability for the early prediction of these disorders. However, 
it is possible to confidently predict a subset of individuals 
who will likely develop NDDs due to de novo coding vari-
ation in the form of non-synonymous de novo mutations. 
Despite the polygenic nature of NDDs and the multitude 
of potential genetic or environmental causes, focusing spe-
cifically on un-inherited, de novo mutations that disrupt 
protein coding sequence permits early prediction for a 
small fraction of cases with very low false positive rates.

The early prediction of NDDs requires a very low false 
positive rate (FPR) due to potential negative consequences, 
such as the costs associated with early intervention treat-
ments, that may result from false positive prediction. The 
minimization of the FPR is clinically most relevant in genetic 
counseling settings for parents with suspected or confirmed 
familial risk for NDDs and to aid in the decision to begin 
early intervention treatments in young children. Early diag-
nosis of NDDs via a combination of behavioral and motor 
assessments, imaging, and genetic testing followed by early 
prediction methods can greatly benefit patient outcomes and 
lead to timely, appropriate treatment (Hadders-Algra, 2021). 
Previously, a method for the early prediction of complex 
disorders, Odin, used de novo LGD variants observed in 
cases and controls and co-expression data to identify cases 
at very low FPR (Huynh & Hormozdiari, 2018). The shal-
low neural net (SNN) with novel objective function intro-
duced here incorporates LGD de novo mutation, constraint, 
and conservation data to achieve a higher (> 0.30129) true 
positive rate (TPR) at very low FPR (< 0.01) in comparison 
to traditional classification models such as random forest 
(RF), support-vector machine (SVM), and logistic regres-
sion (LR). Furthermore, the proposed SNN model achieves 
similar PR-AUC and ROC-AUC to other machine learning 
approaches. An ensemble model that averages predictions 
among the SNN, RF, SVM, and LR models is able to achieve 
a slightly increased TPR at FPR < 0.01 and comparable PR-
AUC. Additionally, the SNN is able to rank genes according 
to their relative importance in NDDs given LGD or missense 
de novo variation, prioritizing candidate NDD genes.

Methods

Objective

The main objective is to investigate the potential of using 
machine learning approaches for early prediction of NDDs 
using de novo coding genetic variants in a subset of cases. 
More formally, we are interested in utilizing de novo coding 
variants in maximizing the fraction of affected NDD cases 
accurately predicted when limiting the FPR to virtually zero.
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Data Collection and Preprocessing

To distinguish NDD cases from unaffected controls using 
de novo coding variation, de novo likely gene-disruptive 
(LGD) and missense variants were retrieved from denovo-
db (version 1.6.1) (Turner et  al., 2017, p.). These data 
consisted of 9962 individuals with primary phenotypes of 
autism spectrum disorder (ASD), intellectual disability, and 
developmental disability and 2245 controls, of which 6509 
cases and 1251 controls possess non-synonymous coding de 
novo mutation (Supplementary Table 1). In total, the 7760 
samples possessed 1974 LGD (cases: 1715; controls: 259) 
and 10,777 (cases: 9073; controls: 1704) missense de novo 
coding mutations. PrimateAI scores were used to quantify 
the pathogenicity of missense variants, in which position-
specific scores were calculated for each missense variant 
while incorporating conservation, solvent accessibility, 
and secondary structure data to yield predictions of delete-
riousness (Sundaram et al., 2018). Probability of loss-of-
function intolerance (pLI) and loss-of-function observed/
expected upper bound fraction (LOEUF) scores from the 
gnomAD browser (v2.1.1), Residual Variation Intolerance 
(RVIS) scores based on ExAC v2 release 2.0 (March 15, 
2017 version), and phastCons element scores were also used 
as features (Karczewski et al., 2020; Petrovski et al., 2013; 
Siepel et al., 2005).

LGD-specific and missense-specific feature matrices were 
generated, in which rows represent individuals with LGD or 
missense variation from denovo-db and columns represent 
genes containing de novo mutations (Fig. 1A, Additional 
File 1).

Model Architecture Development and Hyperparameter 
Tuning

Separate models were trained for de novo LGD variation and 
missense variation, referred to as SNN LGD-specific and 
missense-specific models. Each variation-specific SNN con-
sists of two phases, a hyperparameter optimization phase and 
a prediction phase. After splitting all samples into training 
(75%) and testing (25%) sets, the hyperparameter optimiza-
tion phase is applied to the training set, choosing optimal 
hyperparameters within a selected search space (Fig. 1B, 
Supplementary Table 2, Additional File 1). The purpose of 
the hyperparameter optimization phase for the SNN is to 
select a set of hyperparameters that yield the largest TPR at 
very low FPR on the training set to use during the prediction 
phase. Similarly, RF (sklearn.ensemble.RandomForestClas-
sifier), SVM (sklearn.svm.LinearSVC), and LR (sklearn.lin-
ear_model.LogisticRegression) classifiers, hereon referred 
to as baseline models, are individually subjected to hyperpa-
rameter optimization and prediction phases. To allow direct 
comparison of each model’s performance, identical training/

testing splits are provided to SNN and baseline models. The 
performance of SNN and baseline models are additionally 
compared to the TPR and FPR of the following heuristics, 
in which an individual is classified as a case if the individual 
has an LGD mutation in: (1) any gene with a (i) SFARI score 
of 1 (high confidence ASD gene) or (ii) SFARI score of 
1 or 2 (strong candidate ASD gene) (https://​gene.​sfari.​org/​
datab​ase/​gene-​scori​ng/), (2) any gene identified by SPARK 
as a (i) prioritized or (ii) risk gene, and (3) any gene with i) 
pLI >  = 0.90 or (ii) LOEUF < 0.35 (Additional File 1).

In the hyperparameter optimization and prediction phases 
(Fig. 1C),

is used as a custom loss function (Eq. 1) for the SNNs, in 
which the objective is to minimize the product of the number 
of false positives (FP) and the hyperparameter �

1
 subtracted 

from the true positives (TP). The value of �
1
 is selected dur-

ing the hyperparameter optimization phase. The SNN archi-
tecture consists of an input layer, a hidden layer with ReLU 
activation and an optimized number of neurons, and an out-
put layer with sigmoid activation and L2 regularization with 
an optimized regularization parameter �

2
 . The SNN uses the 

Adam optimization algorithm.
To return a prediction that incorporates both LGD and 

missense variation for individuals who possess both types of 
variants simultaneously (referred to as a ‘combined’ predic-
tion), predictions are retrieved from the separately trained 
LGD- and missense-specific models for SNN and baseline 
models. For a given sample with both LGD and missense 
variation, the maximum predicted probability from the two 
separately trained variation-specific models is returned as 
the predicted probability of being a case primarily due to de 
novo coding variation (Fig. 1D). By using the maximum pre-
dicted probability, the model is trained to learn the class of 
an individual given their de novo mutation that is predicted 
to have the largest deleterious effect.

The average performance of a model over 100 independ-
ent training and testing splits is measured by determining 
the average TPR at FPR < 0.01, ROC-AUC, and PR-AUC 
for LGD-specific, missense-specific, and combined predic-
tions for the SNN approach using the custom loss function, 
three baseline models, an ensemble model, and an ensem-
ble model excluding SNN predictions (Additional File 
1). To demonstrate the importance of gene score features 
and PrimateAI scores to increased TPR at FPR < 0.01, 
SNN and baseline models were trivially trained on one-
hot encoded feature matrices indicating only the presence 
or absence (denoted as 1 or 0, respectively) of de novo 
LGD or missense mutation, and performance metrics were 
returned. To additionally assess the performance of the 
missense-specific model using only deleterious missense 

(1)loss = 1 − (TP − (�
1
∗ FP))

https://gene.sfari.org/database/gene-scoring/
https://gene.sfari.org/database/gene-scoring/
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variation with PrimateAI scores ≥ 0.803 (as described in 
Sundaram et al., 2018), the missense-specific model (i) 
was trained using only samples with deleterious missense 
variation (PrimateAI ≥ 0.803) without discarding any sam-
ples, or (ii) was executed while excluding samples without 
deleterious missense mutation from training and testing 
sets.

NDD Gene Ranking

To rank genes according to their relative importance to 
NDDs using de novo coding variation in the form of de novo 
LGD mutations or missense mutations, two sets of artificial 
samples (LGD- and missense-specific) were created. The 
artificial samples each contain a single LGD (or missense) 

Fig. 1   Methods overview. A De novo LGD and missense variants 
from probands with NDDs and controls were retrieved from denovo-
db and arranged into feature matrices. Constraint and conservation 
information, in the forms of pLI, LOEUF, RVIS, and average phast-
Cons element conservation scores were incorporated as gene score 
features (Karczewski et al., 2020; Petrovski et al., 2013; Siepel et al., 
2005) (Additional File 1). B To perform hyperparameter optimization 
and model training, samples were divided into training (75%) and 
testing (25%) sets. Hyperparameter optimization occurs via threefold 
cross validation on the partitioned training set. For the SNN model 
(C), performance is measured as the TPR at FPR < 0.01, which is 
calculated by determining the number of cases (class: black) with 
predicted probability greater than that of any control (class: white) 
in the validation fold. For baseline models, consisting of the RF, LR, 
and SVM classifiers, respective loss functions are minimized. C The 

SNN consists of a single hidden layer and a loss function that seeks to 
minimize the product of predicted FP and a parameter �

1
 , subtracted 

from the TP. D During the prediction phase, using the model trained 
with optimized hyperparameters, a prediction is made on the withheld 
testing set. For samples that simultaneously have both LGD and mis-
sense variation, two separate probabilities are retrieved from LGD- 
and missense-specific models for a given individual, and the maxi-
mum predicted probability is returned per individual. E For ranking 
genes based on their importance to NDDs, artificial samples are gen-
erated such that each artificial sample has a single de novo variant in 
a unique gene, using either LGD or missense variation, separately. 
Application of the prediction phase (D) on artificial samples yielded a 
ranking of the relative importance of a gene to NDDs determined via 
de novo coding variation
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variant in a unique gene in the human genome (Fig. 1E). 
The probability of being a case is predicted for each of these 
artificial samples using the previously trained SNN LGD- or 
missense-specific models. For every artificial sample and 
its corresponding gene containing a de novo LGD (or mis-
sense) variant, the predicted probability indicates the relative 
importance of the gene to NDD risk from de novo coding 
variation. Enrichment of de novo LGD and missense muta-
tion in NDD cases relative to controls was assessed (Addi-
tional File 1).

Results

To identify, at very low FPRs, a subset of affected NDD 
cases using rare coding variation consisting of de novo LGD 
and missense variation, LGD- and missense-specific fea-
ture matrices indicating the presence of de novo variation 
within genes were constructed (Fig. 1A). Additional features 
incorporating constraint and conservation data were used to 
improve classification of NDD cases using LGD variation. 
The ability of SNNs (Fig. 1C) to classify NDD cases at very 
low FPRs were compared to various classifiers, including 
RF, SVM, and LR (baseline models), in addition to three 
heuristics.

De Novo LGD Mutations Distinguish a Subset of NDD 
Cases from Controls with Low FPR

At very low FPRs (FPR < 0.01), an SNN trained on an LGD-
specific feature matrix captures 30.1% of NDD cases pos-
sessing any de novo LGD coding variation. In comparison 
to baseline models, the SNN trained on an LGD-specific fea-
ture matrix is able to identify 5.29–10.25% [95% confidence 
interval (CI)] more NDD cases at FPR < 0.01 than the RF 
classifier, and more than 5.73–17.26% (95% CI) NDD cases 
than SVM or LR models (Fig. 2, Table 1, Supplementary 
Fig. 1). To measure the extent to which the SNN and other 
models achieve increased TPR at FPR < 0.01 compared to a 
randomized model, a z-score was also calculated (Additional 
File 1, Table 1).

For the SNN, ROC-AUC and PR-AUC values of 0.72785 
(0.7227–0.7326, 95% CI) and 0.9505 (0.9490 to 0.9519, 
95% CI), respectively, were observed (Table 1). Observed 
PR-AUC values were comparable among the SNN and base-
line models in their deviance from the randomized model, 
displaying similar z-scores. Note that due to the large num-
ber of cases in proportion to controls in available datasets, 
PR-AUC values for SNN and baseline models are signifi-
cantly inflated; the random assignment model has an PR-
AUC of over 0.85.

The inclusion of gene score features derived from pLI, 
LOEUF, RVIS, and phastCons element scores improves 

upon an SNN trivially trained only on LGD mutations 
(TPR at FPR < 0.01 = 0.24532, ROC-AUC = 0.66696, PR-
AUC = 0.93597) (Supplementary Table 3, Supplementary 
Fig. 2). In addition, baseline and SNN models yield similar 
performance metrics when trivially trained on only LGD 
mutations, indicating. that the inclusion of gene constraint 
and conservation information is important to accurate clas-
sification of NDD cases using de novo LGD mutations 
(Supplementary Table 3).

Compared to the TPR and FPR of the three previously 
described heuristics, in which a sample was classified as a 
case if the sample possessed an LGD mutation in a set of 
prioritized genes, decreased TPR at low FPR thresholds 
in comparison to the SNN was observed for each heuris-
tic (Supplementary Table 4, Supplementary Fig. 3). No 
heuristic achieved similar TPR values greater than 0.30 at 
FPR less than 0.01.

Integration of Missense and LGD‑Specific Models 
Improves Prediction on Individuals with Both De 
Novo Missense and LGD Variants

To assess the ability of de novo missense mutations to 
distinguish NDD cases from unaffected controls, de novo 
missense variants from individuals with at least one mis-
sense variant were retrieved, consisting of 6947 samples 
possessing a total of 10,777 missense mutations. SNN 
and baseline models trained on missense variation cap-
ture less than 2.6% of NDD cases at FPR < 0.01 (Fig. 2, 
Table 1), indicating that accurate prediction of NDDs 
using only missense de novo variants is an extremely chal-
lenging problem. Slightly increased TPR at FPR < 0.01 
is observed when the missense-specific model is trained 
only on deleterious missense variation without removing 
any samples from training and testing; excluding samples 
without deleterious missense variation from training and 
testing yields 2242 samples (2257 cases; 248 controls) 
with 2,505 deleterious missense variants and increased 
TPR at FPR < 0.01 (Supplementary Table 5).

For samples possessing both de novo missense and LGD 
variants, accurate prediction of NDD cases at low FPR can 
be improved by taking the maximum predicted probabil-
ity from two models trained separately on only missense 
or LGD variation, referred to as a ‘combined’ prediction 
(Fig. 2, Table 1). Combined prediction on samples with both 
missense and LGD variation captures an increased fraction 
of cases. For example, compared to the LGD-specific SNN, 
an SNN using combined prediction is able to detect at most 
4.22% more affected cases at FPR < 0.01 (95% CI). TPR at 
FPR < 0.01—associated z-scores for the SNN are greater by 
1.41- 2.51 than values observed for baseline models using 
combined predictions.
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Ensemble Prediction Yields Increased TPR at Very 
Low FPRs Compared to Separately Trained SNN 
and Baseline Models

An ensemble prediction was generated by returning the 
average predicted probability from the SNN, RF, SVM, and 
LR models for a given sample in the testing set. Compared 
to SNN and baseline models for LGD-specific, missense-
specific, and combined models, the ensemble model con-
sistently yields a larger TPR at low FPR values (Supple-
mentary Fig. 4, Table 1). The predictive contribution of the 
SNN to the ensemble model is more substantial than that of 
the baseline models. For example, the TPR at FPR < 0.01 
is greater for LGD-specific and combined prediction SNNs 
than ensemble models that exclude SNN predictions, 
referred to as ‘Ensemble—SNN’ (Table 1, Supplementary 
Fig. 4). Additionally, for LGD-specific and combined pre-
dictions, there is no overlap of 95% CIs between SNN and 
Ensemble—SNN models. From the ensemble prediction's 
constituent models, the SNN performs most similarly to 
the full ensemble method, differing by 0.586% and 1.582% 
in TPR at FPR < 0.01 given LGD-specific and combined 
predictions, respectively. In addition, the ensemble model 
achieves a slightly higher average PR-AUC, as evidenced by 
an increased z-score, than any individual SNN or baseline 
model for corresponding LGD-specific (0.95176) or com-
bined predictions (0.95215) (Table 1).

Integration of Constraint, Conservation, and De 
Novo Mutation Data Permit NDD Gene Prioritization

Training of SNNs (Fig. 1C) on variation-specific feature 
matrices enables NDD risk gene ranking according to the 
effect of de novo missense and LGD mutations within spe-
cific genes (Fig. 1E). For example, using only LGD variants 

during SNN training reveals genes that are sensitive to LGD 
mutations and play important roles in typical neurodevel-
opment. Gene rankings and associated SFARI Gene scores 
are displayed in Supplementary Table 6 in descending order 
according to their relative importance to NDD risk.

For artificial LGD samples (that each possess a single 
LGD variant in a unique gene), an increased enrichment 
of LGD variants is observed in NDD cases relative to 
unaffected controls at increasing predicted probabilities 
(Fig. 3A), and a slight increased enrichment of missense var-
iants is also observed in NDD cases for genes ranked accord-
ing to a trained LGD-specific SNN (Fig. 3B). The difference 
in enrichment (Ediff ) of LGD or missense mutation in cases 
relative to controls per gene is calculated by Eq. 2 (Addi-
tional File 1). Significant correlation exists between pLI 
(p-value < 2.25e − 79) and LOEUF (p-value < 1.09e − 63) 
values with predicted probability ranks for artificial LGD 
samples (Fig. 3C, D). For gene rankings produced by a 
missense-specific SNN, similar trends in enrichment of de 
novo coding variation in NDD cases relative to controls are 
observed, although the range of probabilities predicted by 
the missense-specific SNN narrows compared to the LGD-
specific SNN, and the strength of correlation amongst pLI 
and LOEUF values with predicted probabilities is reduced 
(Supplementary Fig. 5).

For the LGD-specific SNN model, inclusion of gene score 
features generated from pLI, LOEUF, RVIS, and PhastCons 
produces rankings with greater enrichment of LGD varia-
tion in cases relative to controls at higher probabilities than 
an LGD-specific SNN model trivially trained on one-hot 
encoded mutation information that excludes gene score fea-
tures (Supplementary Fig. 6).

Discussion

To distinguish NDD cases from unaffected controls at 
extremely low FPRs using de novo coding variation and 
measures of gene constraint and conservation, we developed 
a SNN with a customized objective function to maximize 
TP while simultaneously minimizing FP (Fig. 1). Although 
most cases of NDDs arise from a variety of classes of genetic 
variation, particularly common, non-coding, and structural 
variants, focusing specifically on de novo coding variation of 
relatively large effect size is a tradeoff to obtain significantly 
reduced FPR on a small but significant subset of samples. 
Compared to traditional machine learning techniques, such 
as RF, support vector machine (SVM), and LR (referred to 
as ‘baseline’ models), the constructed SNN is able to achieve 
greater TPR at FPR less than 0.01 given LGD-specific vari-
ation (Table 1, Fig. 2). The ability of the SNN to capture 

Fig. 2   Receiver operating characteristic and PR curves for LGD- and 
missense-specific and combined predictions for SNN and baseline 
(RF, SVM, and LR) models. Random classification is displayed as a 
dashed blue line in all PR curves. Models trained on LGD-specific 
variation feature matrices additionally use constraint and conserva-
tion gene score information, whereas models provided with mis-
sense-specific feature matrices do not use gene score information. 
For LGD-specific features, the SNN achieves greater TPR at low 
FPR < 0.01 compared to baseline models, a trend which is evident 
even at FPR < 0.05 (A), and the SNN achieves comparable precision 
at lower recall compared to baseline models (B). Models trained on 
missense-specific variation alone are poor predictors of NDD status; 
SNN and baseline models show similar TPR at FPR < 0.05, with the 
SNN achieving slightly higher rates at low FPR (C). The SNN dis-
plays comparable precision at low recall thresholds when trained on 
missense-specific variation (D). E For combined prediction for sam-
ples with both missense and LGD variation, the proportion of cases 
captured at FPR < 0.01 is largest for the SNN, and similar precision at 
low recall is observed for the SNN compared to baseline models (F)

◂
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more than 30% of cases at FPR < 0.01, corresponding to at 
least 5.29% more cases than any baseline model (Table 1), 
indicates that the use of a SNN with the custom loss function 
(Eq. 1) is beneficial in classifying NDD cases at very low 

FPR. Note that it is estimated that LGD variants have been 
observed in roughly 10% of ASD cases and up to 30% of 
DD cases (Wang et al., 2021). Thus, our results indicate that 
the proposed SNN should be able to identify > 3% of ASD 

Table 1   Average TPR at FPR < 0.01, ROC-AUC, and PR-AUC for LGD-specific, missense-specific, and combined SNN, baseline, ensemble 
models, and randomized predictions

An ensemble model generated only from the predictions of baseline models while excluding SNN predictions is referred to as ‘Ensemble—
SNN’. To generate randomized predictions, probabilities drawn from a uniform distribution were randomly assigned to samples. Average perfor-
mance metrics are measured over 100 independent iterations of randomized training/testing splits on the testing set, in which the same training/
testing partition is provided to all models at each iteration. Confidence intervals (95% CI) are indicated in parentheses, followed by a z-score 
quantifying the deviance from the mean performance metric of a certain model and the randomized model (Additional File 1). The PR-AUC 
values associated with randomized predictions were calculated by dividing the number of cases in a testing set by the total number of samples 
within the testing set. The largest average TPR at FPR < 0.01, ROC-AUC, and PR-AUC values are bolded for LGD-specific, missense-specific, 
and combined models

Input features Model TPR at FPR < 0.01 (95% CI); 
z-score

ROC-AUC (95% CI); z-score PR-AUC (95% CI); z-score

LGD-specific SNN 0.30129 (0.2906, 0.3124); 
4.93244

0.72785 (0.7227, 0.7326); 
4.01329

0.95050 (0.949, 0.9519); 5.86600

Random forest 0.22342 (0.2099, 0.2377); 
2.83170

0.71997 (0.7154, 0.7244); 
3.95991

0.94866 (0.9472, 0.95); 5.81660

SVM 0.16790 (0.1398, 0.1962); 
1.04685

0.73199 (0.7278, 0.7365); 
4.18017

0.94825 (0.9463, 0.9498); 
5.33855

Logistic regression 0.20632 (0.18, 0.2333); 1.34869 0.72695 (0.7222, 0.7317); 
4.06566

0.94877 (0.9471, 0.9504); 
5.58760

Ensemble 0.30715 (0.2965, 0.3174); 
5.08163

0.73037 (0.7261, 0.7347); 
4.14049

0.95176 (0.9504, 0.953); 6.08741

Ensemble—SNN 0.23347 (0.2213, 0.2453); 
3.33032

0.72823 (0.724, 0.7325); 4.10213 0.95023 (0.9488, 0.9515)); 
6.00325

Randomized 0.01660 (0.0135, 0.0202) 0.50627 (0.4963, 0.5164) 0.8698
Missense-specific SNN 0.02334 (0.0199, 0.0267); 

1.09477
0.54378 (0.5391, 0.5483); 
1.23832

0.88139 (0.878, 0.885); 2.40309

Random forest 0.01279 (0.0109, 0.0151); 
0.78867

0.53086 (0.5287, 0.533); 1.17197 0.87220 (0.8705, 0.8738); 
3.97519

SVM 0.02610 (0.022, 0.0301); 1.09631 0.55910 (0.5564, 0.5618); 
2.22556

0.87486 (0.8737, 0.876); 5.88837

Logistic regression 0.01214 (0.0101, 0.0144); 
0.72456

0.55810 (0.5551, 0.5609); 
2.13551

0.87071 (0.8694, 0.872); 4.82097

Ensemble 0.02530 (0.022, 0.0288); 1.18239 0.56006 (0.5571, 0.5631); 
2.18983

0.87374 (0.8726, 0.8749); 
5.71154

Ensemble—SNN 0.02386 (0.0205, 0.0272); 
1.13687

0.55915 (0.5564, 0.5619); 
2.18614

0.87383 (0.8726, 0.8751); 
5.69270

Randomized 0.00406 (0.0033, 0.0048) 0.50304 (0.4991, 0.5071) 0.8350
Combined SNN 0.31985 (0.3038, 0.3348); 

3.55285
0.71422 (0.7071, 0.7215); 
2.93749

0.94685 (0.9445, 0.949); 3.95676

Random forest 0.22892 (0.2129, 0.2456); 
2.39793

0.71830 (0.7121, 0.7246); 
3.15223

0.94740 (0.9453, 0.9494); 
4.02305

SVM 0.23267 (0.2058, 0.2598); 
1.41386

0.72803 (0.7211, 0.7346); 
3.21778

0.94620 (0.9437, 0.9486); 
3.67270

Logistic regression 0.25347 (0.226, 0.2837); 1.48639 0.73280 (0.7269, 0.7389); 
3.34153

0.94874 (0.9466, 0.951); 4.05063

Ensemble 0.33567 (0.3216, 0.3508); 
3.87773

0.74128 (0.7345, 0.7481); 
3.42116

0.95215 (0.9501, 0.9541); 
4.35673

Ensemble—SNN 0.23961 (0.2249, 0.2549); 
2.63914

0.73737 (0.7302, 0.7447); 
3.30974

0.94899 (0.9468, 0.951); 4.09443

Randomized 0.02898 (0.0224, 0.036) 0.53177 (0.5218, 0.5409) 0.8701
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Fig. 3   Increased enrichment of de novo LGD and missense muta-
tion in NDD cases relative to unaffected controls in highly ranked 
NDD genes according to an SNN trained on an LGD-specific feature 
matrix. Applying a trained SNN on artificial samples containing a 
single unique LGD variant allows the SNN to rank genes according 
to their relative importance to NDD risk with respect to LGD cod-
ing variation. The difference in enrichment in NDD cases versus con-
trols per ranked gene is calculated by Eq. 2 (Additional File 1) and 
displayed on the y-axes. Increasing probability (x-axes) indicates 
increasing importance to NDD risk. The average predicted probabil-
ity was determined for each artificial sample over 100 independent 

iterations, and 95% CI are shown. At increasing probabilities for arti-
ficial samples with LGD variants, a steady, increased enrichment of 
LGD in cases (A) is observed, and a slight enrichment of missense 
variation (B) in cases relative to controls is also observed at increas-
ing probabilities. The probability (ranks) assigned to genes is signifi-
cantly correlated with both pLI (C) and LOEUF (D) values retrieved 
from gnomAD (v2.1.1). pLI values range from 0 to 1, where values 
above 0.9 suggest intolerance to LGD mutation, whereas LOEUF val-
ues represent a ratio of observed over expected LGD mutations and 
values less than 0.35 suggest intolerance to LGD mutation
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and > 10% of all DD cases while having an FPR of virtually 
zero simply by considering de novo LGD variants.

To demonstrate that gene scores related to constraint and 
conservation, including pLI, LOEUF, RVIS, and phastCons, 
were useful and necessary for the SNN to yield elevated 
TPR at FPR < 0.01 compared to baseline models given 
LGD-specific variation, the performance of trivially trained 
SNN and baseline models were measured (Supplementary 
Table 3, Supplementary Fig. 2). During trivial training, only 
a feature matrix of one-hot encoded values (1 or 0) denoting 
the presence or absence of a de novo coding variation within 
a gene were provided as input features to models. We note 
that most de novo mutations retrieved from denovo-db were 
identified via simplex studies that facilitate the identification 
of de novo variants, thus potentially introducing biased pre-
diction in favor of variants identified via simplex rather than 
multiplex studies. We would also like to note that multiplex 
NDD cases will have a potentially lower chance of being 
caused by de novo variants and thus reduce the ability of 
our model’s accurate prediction of these cases. Similar TPR 
at FPR < 0.01 values are reported for trivially trained and 
trivially trained baseline models, indicating that the inclu-
sion of gene score features greatly contributes to the SNN's 
improved ability to classify NDD cases at very low FPR.

In addition, a simple ensemble method that uses the aver-
age predicted probability from SNN and baseline model 
predictions is able to identify NDD cases at greater TPR at 
FPR < 0.01 and slightly increased precision at lowered recall 
than any of its constituent models (Table 1, Supplementary 
Fig. 4). Excluding SNN predictions from the ensemble 
model reveals that the SNN, compared to baseline models, 
contributes substantially to the ensemble model’s ability to 
accurately classify NDD cases at low FPR values. In fact, for 
LGD-specific variation, an ensemble method that excludes 
SNN predictions produces decreased TPR at FPR < 0.01 
metrics compared to the SNN alone (Table 1).

The ability of SNN and baseline models to use only mis-
sense variation to identify NDD cases is relatively poor. 
However, the incorporation of both missense and LGD-
specific predictions during ‘combined’ prediction for sam-
ples containing both LGD and missense variation, in which 
the maximum predicted probability from two separately 
trained missense- and LGD-specific models are returned, 
increases average TPR at FPR < 0.01 compared to using only 
probabilities predicted by an LGD-specific model (Table 1, 
Fig. 2). The improved performance of combined predictions 
indicates that certain samples possessing very deleterious 
missense variation (in addition to LGD variation) are cor-
rectly classified as cases when the predicted probability 
associated with the missense-specific model, rather than the 
LGD-specific model, is retrieved.

SNNs trained on LGD- and missense-specific feature 
matrices containing de novo coding variation from NDD 

cases and controls are able to rank genes according to their 
relative importance to NDD risk when applied to artificial 
samples which each contain a single type of de novo vari-
ant in a single gene (Supplementary Table 6). An increased 
enrichment of de novo LGD and missense mutation in 
NDD cases relative to controls is observed in highly ranked 
genes (those with higher predicted probability of being a 
case) using LGD-specific variation (Fig. 3). Significant, 
strong correlation exists between predicted probability for 
artificial samples for both the pLI and LOEUF constraint 
metrics, showing that the ranking via LGD-specific vari-
ation can accurately detect most high risk NDD genes. 
Among the 50 most highly ranked genes using LGD-spe-
cific variation, a total of 47 out of 50 genes are classified as 
high confidence (39 genes with score 1), strong candidate 
(6 genes with score 2), and suggestive evidence (2 genes 
with score 3) autism spectrum disorder (ASD) risk genes, 
including genes relevant to syndromes, according to SFARI 
Gene and OMIM (Supplementary Table 6). Among genes 
with predicted probabilities greater than 0.90 (ranks 1–55), 
four genes (WDR45, CLTC, BRPF1, and GATAD2B) do 
not possess SFARI annotations, but have been associated 
with neurodegeneration and intellectual disability accord-
ing to OMIM annotations. Highly ranked genes lacking 
both SFARI Gene scores and OMIM annotations suggest 
candidate NDD genes susceptible to de novo LGD varia-
tion. Evidence of association with NDDs [ZFHX3 (Fuller 
et al., 2018), CHD5 (Parenti et al., 2021), UBR3 (Murcia 
Pienkowski et al., 2020)) or enrichment of de novo LGD 
mutation in NDD cases (ANP32A, SKIDA1 (Coe et al., 
2019)), neurodegeneration (ANP32A (Podvin et al., 2020), 
HECTD1 (Schmidt et al., 2021)), gliomas (LARP4B (Koso 
et al., 2016)), synapses and neuronal formation (LMTK3 
(Takahashi et al., 2020), DOT1L (Franz et al., 2019)] have 
been studied in model organisms, cell lines, and families 
for these candidate NDD genes.

Weaker correlation is observed for missense-specific 
rankings with pLI and LOEUF values, and enrichment 
of de novo non-synonymous mutation is also present in 
NDD cases relative to controls, although to a lesser extent 
compared to LGD-specific rankings (Supplementary 
Fig. 5). The missense-specific rankings are distinct from 
LGD rankings in their ability to identify genes potentially 
sensitive to missense variation (Supplementary Table 6). 
Among highly ranked genes lacking SFARI Gene scores 
and OMIM annotations, previous studies suggest associa-
tion with NDDs and schizophrenia [OBSCN (Hashimoto 
et al., 2016), PLEC (Dincer et al., 2015), RYR2 (Lieve 
et al., 2019), ZSWIM8 (Tischfield et al., 2017)], cortical 
formation and thickness [LAMA5 (Omar et  al., 2017), 
GOLGA3 (Kim et al., 2017)), and neurodegenerative dis-
eases (PKHD1 (Santos-Laso et al., 2020), DNAH1 (Thon-
berg et al., 2017)].
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Our results indicate that we can accurately predict a 
small, yet significant fraction of NDD cases using de novo 
coding variants. Currently, whole-exome or whole-genome 
sequencing of trios is not common practice. However, to 
make the early prediction of these disorders a reality, such 
sequencing should become common practice. Furthermore, 
our approach only covers a small fraction of affected patients 
and additional methods that use other types of biomolecular 
signatures, such as common variants, rare non-coding vari-
ants, and epigenomic markers, are needed to increase the 
reach of early prediction to a larger fraction of cases.

Conclusions

In summary, the described SNN identifies NDD cases at 
higher TPR while having very low FPR in comparison 
to traditional machine learning methods. Several factors 
contribute to the improved performance of the proposed 
approach, namely: the use of gene constraint and con-
servation features in LGD-specific prediction and a cus-
tom loss function that specifically seeks to maximize the 
TPR while minimizing the FPR. An ensemble method, 
aggregated from SNN and baseline model predictions, 
is able to correctly classify a greater proportion of cases 
at FPR < 0.01 compared to any individual model. The 
SNN itself is a major contributor to increased TPR at 
FPR < 0.01 observed in the ensemble model. Although de 
novo missense mutation alone is a poor predictor of case 
status relative to LGD mutation, missense-specific predic-
tions are useful during combined prediction for identifying 
additional cases that possess highly deleterious missense 
mutation in addition to LGD mutation. Fully trained SNNs 
on LGD- or missense-specific variation are also useful in 
NDD risk gene prioritization, revealing candidate NDD 
genes enriched in de novo non-synonymous mutations in 
NDD cases relative to controls.
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