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People balance joint reward, fairness and complexity to develop social norms in a
two-player game

Dhara Yu, Bill D. Thompson
University of California, Berkeley
{dharakyu, wdt}@berkeley.edu

Abstract

Social norms are a hallmark of human social intelligence, yet
the reasoning processes involved in norm formation have been
difficult to capture with traditional modeling frameworks. We
developed a computational model of norm formation as joint
planning via theory-of-mind. The model is designed to capture
the distinctively human ability to flexibly develop more com-
plex norms in more complex situations, via simulation of joint
decision-making with other agents over an extended time hori-
zon. We evaluated the predictions of the model against partic-
ipant interactions in a 2-player iterated decision-making task.
Across 3 conditions our model captured the way participants
balanced joint reward, fairness, and complexity when forming
norms.
Keywords: social norms; theory of mind; joint planning

Introduction
Human cooperation relies on the ability to develop and reason
about social norms (Tomasello, 2019). Norms are group-wide
expectations about how individuals in a group should act in a
particular context, such that individuals are expected to both
conform to a norm and to enforce norm compliance among
others (Bicchieri, 2005).

One function of norms is to help people solve simple coor-
dination problems, such as choosing which side of the road
to drive on. But the power of norms goes beyond simple
choices, offering solutions to complex situations that extend
over time and involve conflicting incentives for individuals
and groups (Hawkins, Goodman, & Goldstone, 2019). For
example, consider two housemates who each own a car but
share a single parking spot. This is a more complex co-
ordination problem, because what is optimal for one per-
son—parking in the shared spot every single time—is bad for
the other. Yet the housemates could quickly and intuitively
develop a better solution, such as a norm of alternating weeks
when each person can use the garage.

The flexibility with which people form structured norms is
difficult to capture with existing modeling frameworks. For
example, classical game theoretic models of interdependent
choice based on utility maximization struggle to account for
norms of alternation (Helbing, Schönhof, Stark, & Hołyst,
2005). Evolutionary game theory models have shown that
agents pre-programmed to play with the contingently co-
operative “tit-for-tat” strategy can outcompete other agents
(Axelrod, 1984), but such models build strategies into the
model directly, offering limited insight into the cognitive and

interpersonal mechanisms through which complex strategic
norms arise (Gavrilets, Tverskoi, & Sánchez, 2024). The
adaptive nature of norm formation suggests that norms are
rooted in general cognitive principles, and in particular, infer-
ential social reasoning about what is good for the agents in-
volved, what is fair, as well as the simplicity of a solution: an
agreement to swap parking spots every 3 days for one month,
and then swap every 11 days for three months is intuitively
less appealing than alternating weekly.

One way to capture these key cognitive principles is to
view normative reasoning as an extension of theory of mind -
the ability to make inferences about the mental states of oth-
ers. This theoretical framework is useful because it describes
how people make predictions about how others will behave
in future interactions, an essential component of norm for-
mation. Within this perspective, the capacity to make good
predictions is rooted in a person’s ability to simulate joint
decision-making with other agents, which in turn requires
reasoning about the latent beliefs and desires that give rise
to action (Ho, Saxe, & Cushman, 2022). By reasoning about
the mental states of other interacting agents, people can ap-
proximate the sequence of decisions most likely to be con-
ceived by others as mutually beneficial (Misyak & Chater,
2014; Levine, Chater, Tenenbaum, & Cushman, 2023), en-
abling convergence to a systematic pattern of behavior and
the emergence of a norm.

We developed a formal model of normative reasoning as
joint planning via theory-of-mind inference. Our model com-
bines classical formalisms in planning and decision-making
with cognitive models of theory of mind and joint intention-
ality (Kleiman-Weiner, Ho, Austerweil, Littman, & Tenen-
baum, 2016), and integrates a notion of action sequence com-
plexity as a regularizer over the combinatorial space of joint
plans. The model captures the hypothesis that people trade off
the joint reward, fairness and simplicity of a candidate joint
plan to generate a strategic plan over an extended time hori-
zon in iterated social decision-making settings. Our model
predicts that people prefer simpler norms, but can flexibly
develop more complex strategies when necessary to prevent
unfair or suboptimal allocations of reward.

To test the predictions of this theory, we conducted a be-
havioral experiment in which participants performed an it-
erated cooperative decision-making task in pairs. The task
involved making simultaneous decisions with a partner about
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who chooses which option from an array of differentially re-
warding choices (parking spots with different prices in a vir-
tual parking lot). To perform well at this task without commu-
nicating, participants needed to make inferences about the in-
tentions and desires of their partners to develop a norm, in the
form of a shared, systematic strategy for making choices. We
manipulated the reward structure to induce conflicts between
joint reward, fairness and complexity, enabling us to study the
contingencies that influence how people develop norms. We
evaluated the predictions of our model against the behavioral
data, finding that our theory-of-mind model better predicted
the distribution of participant norms than did simpler models
that lack mechanisms to reason about fairness or complexity.

Computational framework
In this section we formalize how people generate a proba-
bility distribution over joint plans of action by trading off
the reward associated with a joint plan against its complex-
ity. We define our problem setting using the stochastic game
formulation, a generalization of a Markov decision process
(Littman, 1994). A 2-player stochastic game is defined as
{S,A1,A2,U1,U2,T,γ}, where S is the joint state space for the
2 agents, and A1×A2 is the joint action space. Ui(s,a1,a2)
for s ∈ S,a1 ∈ A1,a2 ∈ A2 represents the reward earned for
agent i in state s with agent 1 taking action a1 and agent 2
taking action a2. T (s′|s,a1,a2) represents the probability of
entering state s′ from state s, with agents taking actions a1,a2.
γ represents the discount factor.

This formulation can also account for iterated decisions.
Past work has typically modeled how agents determine opti-
mal policies within a single interaction, making it difficult to
capture strategies realized over multiple interactions. To ad-
dress this we formulated the action space as one of decisions
over multiple time steps, i.e. over classes of joint plans, af-
fording the flexibility to model more complex strategies. A
joint plan τ over t interactions is represented as a state in S:
τ = [(a1

1,a
1
2), ...,(a

t
1,a

t
2)], where (ak

1,a
k
2) represents the joint

action taken by agents 1 and 2 on the kth interaction.
We define the probability of a joint plan P(τ) as follows:

U(τ) = w j ·R j(τ)+w f ·R f (τ)︸ ︷︷ ︸
reward

−wc ·C(τ)︸ ︷︷ ︸
complexity

P(τ) ∝ exp(β ·U(τ))

The utility function U is comprised of two components, a
reward term and a complexity term. These two terms capture
how individuals, for a candidate joint plan, weight the extent
to which the plan results in optimal allocation of reward—for
the overall group and between individuals—and the extent to
which it is simple and cognitively efficient.

Within the reward term, R j(τ) represents the joint optimal-
ity: the joint reward for all agents should they execute the
given joint plan. This follows past work on modeling coop-
erative planning in individuals as simulating the actions of a
group “we-agent” (Kleiman-Weiner et al., 2016; S. A. Wu
et al., 2021). The we-agent plans over the shared state and

action space of all interacting agents, representing an individ-
ual’s capacity to plan with shared intentionality (Tomasello,
Carpenter, Call, Behne, & Moll, 2005). We assume that
both agents’ utilities are equally weighted in computing the
joint reward: R j(τ) = 0.5 ·R j,1(τ)+0.5 ·R j,2(τ). To compute
R j,i(τ), that is, the joint optimality of plan τ for agent i, we use
policy iteration, which computes the optimal value function
that can then be used to assign a reward to a plan.

R f (τ) represents the fairness of the given joint plan: the
difference in the individual rewards between agents if that
plan were to be executed. Note that this is distinct from joint
optimality, because a plan that is jointly optimal for multiple
agents (i.e. maximizes the sum of rewards) may nonetheless
result in a gap between the reward earned by each agent.

Planning over an extended time horizon surfaces a combi-
natorial space of candidate plans that result in equal or near-
equal utility. We introduce a complexity penalty C(τ) to cap-
ture the intuition that people prefer simpler joint plans. A
complexity penalty is motivated by at least two non-mutually
exclusive interpretations: it can be thought of as the cognitive
cost required to conceive a particular joint plan, and/or as the
difficulty of coordinating the joint plan with another player.
We quantified complexity using a program induction model
that constructs a program that generates an observed sequence
of joint actions, represented in terms of compositional op-
erators. This model is formulated as Bayesian inference
over a probabilistic context-free grammar (Goodman, Tenen-
baum, Feldman, & Griffiths, 2008; Piantadosi, Tenenbaum, &
Goodman, 2012), where the unit of primitive is a joint action
taken by two agents. Following past work (Kleiman-Weiner
et al., 2020), our model includes two compositional oper-
ators: concat(a, b) and repeat(a, n). concat(a, b)
combines joint actions a and b, and repeat(a, n) replicates
the joint action a n times. As concrete examples, the sequence
of joint actions [a,a,a,a] is most concisely represented as
the program repeat(a, 4), and the sequence [a,b,a,b] is
most concisely represented as repeat(concat(a, b), 2).
The complexity penalty of a joint plan is proportional to the
length, in number of operations, of the simplest program π

constructed to generate it: C(τ) ∝ |π(τ)|.

Experimental Methods
Task overview
We developed a 2-player iterated cooperative decision-
making task (Figure 1). This task builds on a large literature
on mixed-incentive games (Thielmann, Böhm, Ott, & Hilbig,
2021; Le Pargneux, Chater, & Zeitoun, 2023) and is designed
with intuitive reward contingencies to elicit meaningful rea-
soning about other participants’ beliefs and intentions.

Participants are informed that they must select a parking
spot in a virtual parking lot over the course of several days.
Different spots cost different amounts of a virtual currency
(Monetary Units; price remained fixed over days). Partici-
pants were incentivized to minimize cost paid.1 There were

1To follow the notation of the model, we construe the price of
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Figure 1: Task interface, showing the different reward assign-
ments across the 3 conditions (the cost of the orange spots
remains constant across the conditions). In each spot, the top
number indicates the regular price and the bottom number in-
dicates the discount price.

two zones in the lot: an orange zone and a purple zone, and
two parking spots per zone. Participants were informed that
if they both select a spot in the same color zone, they would
receive a “group discount” and pay the discount price (visible
during decision-making). Participants selected a parking spot
without seeing the other person’s selection, and knew that
collisions incur a high price. After making their decisions,
participants were shown the actions that each other took and
the price each participant paid.

Experimental manipulation
We designed 3 different price configurations of the parking
lot to examine whether emergent strategies reflected trade-
offs between reward, fairness, and complexity as predicted
by our model (Figure 1). 2

Condition 1: No Conflict In Condition 1, the orange spots
were equal in price, while the purple spots were unequal
prices. The cost of the orange spots was lower than the mean
cost of the purple spots. This condition facilitates a clear
strategic equilibrium: one player picking the left orange and
the other player picking the right orange (we will refer to this
strategy as stable selection on orange). This strategy max-
imizes joint reward and fairness, and minimizes the coordi-
nation cost (picking the same spot every time is the simplest
possible process). This condition serves as a control to es-
tablish that people were capable of developing cooperative,
systematic norms when a simple optimal solution is available.

Condition 2: Unavoidable Compromise Condition 2
maintains the same cost structure as in Condition 1, with one
difference: the first purple spot had a regular price of 11 and
a discount price of 1. This manipulation introduces a conflict
between the utility terms in our model: no one strategy is op-
timal with respect to all terms, because the the purple spots

parking spots in terms of reward; picking the lowest-priced spot is
equivalent to picking the highest reward option.

2Study designs, exclusion criteria and analyses were pre-
registered at https://osf.io/39fsd.

compromise fairness and the orange spots sacrifice reward.
Under these conditions, our model predicts a more diffuse
set of strategies compared to Condition 1: pairs may develop
a norm of stable selection on orange (maximally fair, mini-
mally complex, but not jointly optimal), stable selection on
purple (jointly optimal, minimally complex, but not fair), or
alternating selection of the cheaper and costlier spots on pur-
ple (jointly optimal, maximally fair, but more complex). In
contrast, a model without a complexity penalty would be un-
able to account for people’s preferences for systematic strate-
gies, and a model without a reward objective would be unable
to capture the preference for higher-reward strategies.

Condition 3: Fairness vs. Complexity In Condition 3,
the second purple spot has a regular price of 11 and a dis-
count price of 1. This condition is similar to Condition 2
but with one key difference: the price gap between the two
purple spots is relatively smaller. Therefore, our model pre-
dicts that people are more likely in this condition, compared
to Conditions 1 and 2, to develop a norm of stable assign-
ments on purple, because the joint reward associated with the
stable purple norm is greater (compared to Conditions 1 and
2) and doing so would result in a more fair allocation of re-
ward (compared to Condition 2). In contrast, a model without
a complexity penalty would predict higher rates of complex
norms or a failure to form any norm at all.

Participants and procedure

We pre-registered a target sample size of 300 participants (50
pairs per condition). Participants were recruited over mul-
tiple sessions using an algorithm that had a budget for re-
recruitment to replace participants that did not complete the
task (e.g. due to technical errors or waiting time limits). We
excluded from analysis participants who failed to select a
parking spot in the allotted time and did not finish the game,
as well as participants who wrote fewer than 10 characters
in a pre-game writing task. After exclusions there were 102
players (51 games) in Condition 1, 102 players (51 games) in
Condition 2, and 84 players (42 games) in Condition 3.

Participants were assigned at random to one of the treat-
ments via a block random assignment algorithm. Participants
viewed instructions and had to pass a short comprehension
test to advance. They were shown the parking lot of their as-
signed treatment and were asked to write a strategic plan de-
scribing how they would ideally play the game. After writing,
participants progressed to a treatment-specific waiting room
and were paired with the first available partner. They played
12 trials of the game; after each trial, participants were shown
their partner’s move and cost paid on the previous trial, and
needed to indicate the cost they themselves paid as an at-
tention check. The task took a median time of 12 minutes.
Participants were paid a base rate of $12.50/hr; they were in-
centivized to minimize their overall cost in the game through
a performance-based compensation bonus. Participants were
informed they would play multiple trials but not told precisely
how many, to induce uncertainty in the time horizon.
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Figure 2: Left, top: mean cost paid per trial, across conditions. Error bars show standard error. Left, bottom: mean overall
game cost plotted against the cost difference, for each pair. Darker squares represent the mean for all pairs in the condition.
Dashed lines represented the expected mean cost for a random selection strategy. Right: example game traces, corresponding
to the numbered games on the scatter plot. Each light or dark gray dot represents a participant’s choice on a given trial.

Results
Behavioral results

Participants established norms Participants developed
norms over the course of their interactions across all 3 condi-
tions. The task is designed in such a way that better perfor-
mance, in the form of a lower cost incurred, requires a coher-
ent strategy on the part of the two players; thus, the cost paid
by participants in a pair is a key behavioral indicator of effec-
tive norm formation. Figure 2 (left, top) shows the cost paid
per trial. A Bayesian mixed-effect linear regression analysis
revealed an effect of trial number on the individual cost paid,
including a random effect for the group. Trial number pre-
dicted price paid (β = −0.81,95% credible interval (CrI) =
[−0.92,−0.69]); there was also an interaction effect be-
tween the trial number and the treatment in Condition 2
(β = 0.28,CrI = [0.11,0.43]), indicating reduced decreases
in cost over trials in Condition 2. These results show that
participants paid less over the course of a game, indicating
convergence to systematic norms.

Different reward contingencies led to different behaviors
Participants’ first decisions differed across conditions. Par-
ticipants in Conditions 2 and 3 were more likely to select
a purple spot initially, compared to Condition 1 (Condition
2: β = 0.19,CrI = [0.06,0.32]; Condition 3: β = 0.51,CrI =
[0.38,0.64]). Over the course of the game, participants in
Conditions 2 and 3 crashed more frequently compared to
Condition 1 (Condition 2: β = 1.00,CrI = [0.29,1.70]; Con-
dition 3: β = 1.25,CrI = [0.54,2.01]). Overall outcomes also
differed between conditions (Figure 2, left, bottom). Com-
pared to Condition 1, there was no evidence of a significant
difference in the aggregate mean costs paid by participants in
Condition 2 (β = 10.58,CrI = [−6.73,28.56]) and Condition
3 (β = −16.82,CrI = [−35.55,2.06]), even though it is in
theory possible to earn a lower mean reward in those 2 condi-
tions compared to Condition 1. However, pairs in Condition 2
and Condition 3 paid more unequal cost distributions relative
to Condition 1 (Condition 2: β = 36.45,CrI = [23.59,49.64];

Condition 3: β = 35.58,CrI = [21.82,49.56]).
Figure 2 (right) shows examples of the types of norms that

players developed over the course of a game. The five cat-
egories illustrated are 1) stable selection on orange, 2) sta-
ble selection on purple, 3) alternating selection on purple, 4)
some other systematic norm, i.e. a stable or alternating on a
color combination not encompassed by the first 3 categories,
and 5) no apparent norm.

Strategy classification
Having established that people successfully developed norms,
we analyzed the norms that formed and examined how they
differed between conditions. We defined a norm as present
if participant decisions were consistent with that norm for at
least 2 consecutive interactions. To identify types of norms
and their frequency of appearance, we developed a simple al-
gorithm (Algorithm 1) for classifying the norms developed
within pairs over the course of a game. The algorithm detects
the longest consecutive sequence of pair decisions consistent
with a particular strategy, and computes the proportion of the
game during which the pair exhibited each norm type. Mo-
tivated by our results showing that participants converged on
coherent strategies toward the end of the experiment (see Fig-
ure 2, left, top), we classified norms based on pair interactions
for the final 4 trials of each game, although the conclusions
are the same if analyzing the whole game.

Figure 3 shows how the types of norms that pairs devel-
oped differed across conditions. In Condition 1 (No Conflict),
participants overwhelmingly converged on a norm of stable
selection on orange, consistent with our hypothesis that par-
ticipants would conceptualize that as the best strategy.

In Condition 2 (Unavoidable Compromise), the norms
were more varied; compared to the Condition 1 control group,
participants were less likely to exhibit stable selection on or-
ange (β = −0.46,CrI = [−0,61,−0.31]), and more likely
to fail to develop any norm (β = 0.24,CrI = [0.11,0.37]).
There was no evidence for significant differences in the fre-
quencies of the stable selection on purple (β = 0.13,CrI =

1421



Algorithm 1 Strategy classification
Input: pair decisions p

1: n← length of p
2: m← strategy for n trials; init. to null for each element
3: for i in [n,n−1, ...,2] do
4: S← all subsequences of p of length i
5: for each s in S do
6: if there is a marked move in s then
7: continue
8: end if
9: t← type of strategy in s

10: if t ̸= null then
11: mark in m that subseq. s is strategy type t
12: end if
13: end for
14: end for
15: return m

[−0.02,0.28]) and alternating on purple (β = 0.06,CrI =
[−0.03,0.15]) norms. Though the frequency of stable on or-
ange in this condition was reduced relative to the control, the
plurality of participants converged on this strategy, suggesting
that its optimality with respect to fairness and coordination
cost outweighted the downside of a non-optimal joint reward
and the complexity of alternating on purple.

In Condition 3 (Fairness vs. Complexity), participants de-
veloped a norm of stable selection on purple more often,
compared to the control (β = 0.48,CrI = [0.32,0.64]) and to
Condition 2 (β = 0.35,CrI = [0.17,0.53]). They also devel-
oped an alternating norm more frequently than in the control
(β = 0.10,CrI = [0.01,0.20]). Correspondingly, they were
less likely to converge on stable selection on orange com-
pared to the control (β = −0.75,CrI = [−0.92,−0.59]) and
to Condition 2 (β =−0.29,CrI = [−0.46,−0.13]), and failed
to form any norm more frequently compared to the control
(β = 0.18,CrI = [0.04,0.31]). The increased prevalence of
the stable on purple norm in Condition 3 compared to Condi-
tion 2 suggests that participants’ aversion to unfair outcomes
was graded: they converged more frequently on an unfair
norm when the price discrepancy was lesser. In both Con-
ditions 2 and 3, alternation occurred relatively infrequently,
suggesting that this more complex strategy was 1) more diffi-
cult for participants to initially conceive, or 2) more difficult
to successfully implement.

Model results
Alternative models We compared our model against 2 ab-
lated models which used just one of the reward or complexity
terms in the utility calculation. The first alternative model is
the reward-only model, which is equivalent to setting wc to
0 in the full model. The second alternative is the cost-only
model, which is equivalent to setting w j,w f both to 0.

Parameter estimation We adapted the general formulation
of this family of models to our specific task and fit the param-

eters of the model to the experimental data. The model rep-
resents candidate joint plan as states in the joint state space.
For example, the state [(o1,o2),(o1,o2),(o1,o2),(o1,o2)] rep-
resents the norm of player 1 selecting the 1st orange spot and
player 2 selecting the second orange spot. We assumed a fi-
nite horizon of t = 4 trials, which made finding the optimal
value function via policy iteration computationally tractable,
but there is no distinction between a t of 4 or 100: all states in
which one player selects the 1st orange and the other selects
the 2nd orange at each timestep represent the same joint plan.

For every candidate joint plan, we computed the joint re-
ward, fairness and coordination cost. Each of those 3 terms
has an associated free parameter which represents the rela-
tive weighting of that component within the overall utility.
To make weight parameters more straightforward to interpret,
we normalized each of the joint reward, fairness and cost val-
ues to a value between 0 and 1. For joint reward and fairness,
this is done by linearly rescaling the optimal outcome for the
given parking lot (i.e., the smallest possible joint payment and
the smallest possible gap in cumulative amount paid between
the two players) to a value of 1, and the least optimal outcome
to 0. We set wc =

1
3 for the complexity penalty.3

After fixing wc, the model includes 3 free parameters: two
weight parameters w j,w f , and the softmax optimality pa-
rameter β. To approximately fit model parameters to our
data, we performed a grid search over the following ranges:
β ∈ [1,2,3, ...,15];w j,w f ∈ [0,0.11,0.22, ...,1.98]. To quan-
tify model fit to the data we computed the Jensen-Shannon
divergence (JSD) between the predicted and the empirical
distribution of norm types for the 3 conditions. To account
for potential overfitting, we split the data into train and test
sets with a 70-30 split and selected the best parameter values
based on minimum mean JSD across the 3 conditions, using
data from pairs in the train set only. The metrics reported here
reflect the mean JSD values on the unseen test set.

Model predictions For each of the 3 models, we com-
puted the probability of selecting each type of norm under
all combination of parameters.4 The best-fitting full model
(parameter values β = 13,w j = 1.43,w f = 0.22) closely fit
the human data (mean JSD=0.14), far outperforming the best-
fitting reward-only model (mean JSD=0.63) and the best-
fitting cost-only model (mean JSD=0.57). Figure 3 shows
the predicted distribution of norm categories under the best-
fitting parameterization of the full model, plotted against the
empirical distribution for all 3 conditions.

The inferred value of w j = 1.43 for the best-fitting model
was substantially higher than w f = 0.22 and (fixed) wc =
0.33, providing quantitative evidence that people weigh
jointly-optimal reward more heavily than a fair outcome or
reducing complexity when generating norms, consistent with

3This is because the longest possible program generating a joint
plan of length 4 is 3 operations, so the most complex joint plan
would have an associated cost of wc ·C(τ) = 1

3 ·3 = 1.
4The cost-only model has fewer free parameters, so for this

model we only searched over the value of β.
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Figure 3: Full model predictions and empirical distributions of norms across the 3 conditions. Parking lot reward structure for
the condition is shown in inset. Empirical distribution is based on data from all pairs.

the qualitative patterns observed in Conditions 2 and 3.
Though our model overall fit the data well, it was least

aligned with participant behavior in Condition 2. The higher
rate of failure to form any norm in this condition suggests
there was something particularly difficult about this reward
configuration. One possible explanation is that because peo-
ple’s preferences for different norms were less concentrated,
there was a lower probability that both people in a pair were
aligned on the same joint plan, resulting in a higher probabil-
ity of coordination failure.

To assess the whether the fit of our model to the behavioral
data reflects an overly expressive model class rather than a
well-aligned theory, we analyzed the model’s capacity to fit
randomly-generated datasets with the same structure (triplets
of 5-category probability distributions). If the model bet-
ter fits our behavioral data compared to randomly-generated
datasets, this provides evidence that the model is capturing
something meaningful about the process generating the data;
in contrast, if the model can fit any distribution as well as
the experimental data, its potential to offer insight is more
limited. We generated 1000 null datasets and computed the
mean JSD between each null dataset and the predictions of
the model under the parameter values that led to the best fit on
that null dataset. The JSD distribution from the null datasets
has a mean of 0.32 and standard deviation of 0.05. In con-
trast, the best full model fit to the experimental data achieves
a mean JSD of 0.14 (falling in the first percentile of the null
dataset distribution). This result provides evidence against
an overly-expressive model class and indicates alignment be-
tween this model’s dynamics and participant behavior.

Exploratory analysis of written plans
Before starting the game, participants wrote strategic plans.
We conducted an exploratory analysis of the plans to better
understand the relationship between participants’ individual
intentions and the norms that emerged over the course of in-
teracting with their partners. Following past work (Gilardi,
Alizadeh, & Kubli, 2023; Rathje et al., 2024), we used a large
language model (GPT-4) to classify written plans across con-
ditions according to the category of norm expressed, using the
same 5-category classification scheme as previous analyses.

We evaluated the extent to which 0, 1 or 2 participants
in a pair writing a plan that described a particular strategy

predicted implementation of that strategy during the game.
The number of players expressing a plan was predictive of
plan implementation for the three major types of norms: sta-
ble on orange (β = 0.28,CrI = [0.15,0.40]), stable on pur-
ple (β = 0.27,CrI = [0.08,0.45]) and alternating on pur-
ple (β = 0.28,CrI = [0.19,0.38]). These results suggest that
the initial plans that people conceptualized did influence the
types of norms that developed through interaction.

Discussion

The ability to form complex norms is underpinned by com-
plex social reasoning. Accordingly, the core cognitive princi-
ples involved in norm formation have been difficult to capture
with traditional models. We developed an account of norm
formation that views this process as a form of joint planning
in which participants trade off joint optimality, fairness and
complexity. We formalized this theory using an integrative
computational model designed to capture aspects of the pro-
cess by which people simulate joint plans. The model was de-
signed to express an overall preference for simpler joint plans,
but to be flexible enough to account for adaptive formation of
more complex strategies such as alternating in situations that
demand additional structure. The model’s predictions closely
aligned with the distribution of norms participants formed in
an iterated decision-making task.

Our model is limited in important ways. One key limita-
tion is that it does not account for individual learning over the
course of an interaction and does not make predictions about
how an individual behaves conditioned on a history of inter-
actions. Moving forward we hope to investigate how partici-
pants adapt their strategies based on their partners’ actions via
inverse planning (Baker, Jara-Ettinger, Saxe, & Tenenbaum,
2017; Jara-Ettinger, Schulz, & Tenenbaum, 2020): observing
a sequence of actions and inferring the other player’s inten-
tions that could have given rise to that behavior.

Here we focused on characterizing the cognitive principles
that enable norm formation by studying behavior in dyads,
as opposed to in larger groups or communities. Understand-
ing how strategies learned in one-on-one interactions ulti-
mately give rise to societal-scale norms (C. M. Wu, Dale, &
Hawkins, 2023) is an important avenue for future work.
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