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ABSTRACT OF THE DISSERTATION

Theory and Modeling of Molecular Motion out of Equilibrium

by

Mudong Feng

Doctor of Philosophy in Chemistry
University of California San Diego, 2022

Professor Michael K. Gilson, Chair

Molecules at temperatures above OK are always in motion, translating, rotating, and
undergoing conformational changes. In systems that are out of equilibrium, these motions
often become more intense and complex, leading to interesting phenomena, including the
existence of life. This dissertation presents theoretical and computational modeling for some
of these phenomena. First, many enzymes appear to diffuse faster in the presence of their
substrates and to drift along concentration gradients of their substrate, phenomena known
respectively as enhanced enzyme diffusion and enzyme chemotaxis. Here, experimental

findings and proposed mechanisms for these observations are critically reviewed, then we



propose a kinematic and thermodynamic analysis to serve as a validity check for any
mechanism that attributes enhanced enzyme diffusion to self-propulsion. Second,
overcrowded alkene-based molecular motors, a class of synthetic small molecules designed
for light-driven rotation of its rotor part relative to its stator part, exhibit fast rotation in the
microsecond timescale. Here, the full rotation process is modeled by quantum surface-
hopping molecular dynamics simulations coupled with classical molecular dynamics
simulations. This study proposes a novel rotation pathway, as well as providing computational
predictions for rotation rate and maximal power output. Encouraging agreement with
experiments are found, after fitting critical forcefield parameters to reference quantum
mechanical energy surfaces. In conclusion, these efforts contribute to better understanding of

molecular motions out of equilibrium and how to conceptualize and model them.



CHAPTER 1: ENHANCED DIFFUSION AND CHEMOTAXIS OF ENZYMES
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Abstract

Many enzymes appear to diffuse faster in the presence of substrate and to
drift either up or down a concentration gradient of their substrate. Obser-
vations of these phenomena, termed enhanced enzyme diffusion (EED) and
enzyme chemotaxis, respectively, lead to a novel view of enzymes as active
matter. Enzyme chemotaxis and EED may be importantin biology and could
have practical applicadons in biotechnology and nanotechnology. They are
also of considerable biophysical interest; indeed, their physical mechanisms
are still quite uncertain. This review provides an analytic summary of exper-
imental studies of these phenomena and of the mechanisms that have been
proposed to explain them and offers a perspective on future directons for
the field.
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Enhanced enzyme
diffusion (EED):

an apparent speedup of
ranslational enzyme
diffusion, usnally
reported as an increase
in the diffusion
coefficient

Enzyme chemotaxis:
apparent drift of an
enzyme up (atractive)
or down (repulsive) a
chemical gradient

Active mechanism:
proposed mechanism
of EED or chemotaxis
is active if it requires
the release of chemieal
energy by enzyme
catalysis
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L. INTRODUCTION

Studies over the past decade suggest that nonmotor enzymes engage in active, translational mo-
tion. Two phenomena have been noted. One, termed enhanced enzyme diffusion (EED), is an in-
crease in the enzymes’ diffusion constant induced, typically, by provision of substrate. The other,
enzyme chemotaxis, is a tendency for enzymes to move up or down a substrare concentraton gra-
dient. These phenomena have been seen for both fast exothermic enzymes like urease and slow en-
dothermic enzymes like aldolase. These results open a new perspective of enzymes as active matter
(27) and have potential practcal and biological implications. For example, enzyme chemotaxis can
be used to separate catalyrically active and inactive enzymes (12) and might contribute to the as-
sembly of intracellular metabolons (69, 75) and to intracellular signaling (65). Several mechanisms
have been proposed for these phenomena, but their physical basis is sill a subject of active research.
In this review, we analyze relationships among the various experimental and theoretical stud-
ies and discuss general theoretical considerations and frameworks for this field. [Related reviews
also summarize recent work on EED and chemotaxis (1, 4, 13, 73).] First for EED and then for
chemotaxis, we review experimental findings and analyze molecular mechanisms that have been
proposed to account for these findings. Central questions include how to explain observations of
EED and chemotaxis in general, whether—or when—EED is an active process, and how to rec-
oncile apparently inconsistent experimental observations. We conclude with a summary of key
points and potential directions for future work to further elucidate these intriguing phenomena.

2. EXPERIMENTAL STUDIES OF ENHANCED ENZYME DIFFUSION

This section summarizes experimental reports of increases in enzyme diffusion coefficients, fo-
cusing on enzymes for which an active mechanism, such as execution of swimming motions by the
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Table 1 Turnover rates, hydrodynamic radii, minimum thrust speeds, and required reaction free energies of enzymes

reported to show enhanced enzyme diffusion

Enzyme Turnover rate(s~1) Radius (nm) Vi (m.5~1) -AGE,, (J.mol~")
T4 DNA polymerase 0500 4609 Tx 102 Ix 107
Aldolase 525 29010 9 % 10-7 8 x 10°
T7 RNA polymerase 109 [ 6 x 107 6% 10°
Hexokinase 300(75) 6.3 (38) 5 x 107 6,000
ATP synthase 1,000 25) 66®) Fx 107 2,000
Alkaline phosphatase 3,000 (46) 7715 3k 1077 400
Catalase 10,000 (46) 53 (1) 7x 107 300
Urease 10,000 (46) 70(18) 3w 107 100
Acetylcholinesterase 20,000 (19) 88 (47) 3w 10 40

"Calculated with HYDROPRO (44) from Protein Data Bank structure 4RNP (58).
For details, sec Reference 17. Citations for individual cclls are in parentheses,

enzyme, has been proposed. We also discuss cases in which EED was expected but not observed
and consider potental experimental artifacts.

2.1. Positive Observations

Apparent EED has been reported for various enzymes, including ATPase (8), T7 RINA polymerase
(71), T4 DNA polymerase (55), hexokinase (75), aldolase (75), alkaline phosphatase (46), aceryl-
cholinesterase (28), jack bean urease (27, 28,43, 46, 54, 70), and catalase (29, 46, 54). The relative
diffusion enhancements, measured in homogeneous solution at the highest tested substrate con-
centrations, range from 15% to 80% (Table 1). Although these increases are similar, the turnover
rates of these enzymes span orders of magnitude (Table 1). This discrepancy argues against an
active mechanism as a general explanadon of EED. Most of these studies used fluorescence cor-
relation spectroscopy (FCS), which measures enzyme diffusion rates in homogeneous solution.
However, one (71) used fluorescence recovery after photobleaching, and another used a reladvely
novel electrochemical method to support its FCS observation of EED (29).

Tawo FCS studies conducted by Jee and coworkers (27, 28) provide FCS data atincreased spatial
and temporal resolution. By combining superresolution microscopy and FCS, these authors were
able to reduce the horizontal diameter of the observation region—the beam waist—to 50 nm, ver-
sus more typical values of approximately 800 nm (43). As the beam waist fell below approximately
100 nm, an initially unimodal distribution of transit times was resolved into two peaks. The peak
corresponding to longer transit times was attributed to conventional diffusion through the waist,
and the peak corresponding to shorter fimes was attributed to fast ballistic motions induced by
catalysis.

Another study measured the diffusion of fluorescently labeled urease by single-molecule track-
ing with total internal reflectance fluorescence microscopy (70). This method detects molecules
only while they are approximately 300 nm from the planar glass coverslip, so the enzyme molecules
were confined in this layer by addidion of methylcellulose to the soludon. This study yielded a re-
markable 300% increase in the diffusion coefficient upon addition of 1 mM urea. Interesdngly,
the enhanced diffusion coefficient observed here, ~3 x 10~!* m?/s, is approximately 200-fold less
than the nonenhanced value measured by FCS for urease in homogeneous solution (54). This
drop in the diffusion coefficient might result from increased viscosity due to the methylcellulose.
It is perhaps relevant that increasing the viscosity reduces the power required to achieve a given
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relative increment in the transladonal diffusion coefficient via self-propulsion (see Section 3.1,
Equation 2) (17). However, such a large change in the baseline diffusion coefficient raises the pos-
sibility that the physics of diffusion in this confined setting is significantly different from that in
bulk solution.

2.2. Evidence For and Against an Active Mechanism of Enhanced Diffusion

The concept that EED results from an active process has gained support from FCS and dy-
namic light scattering (DLS) studies indicating that catalytcally actve urease, catalase, and al-
dolase generate increased motion of passive tracer partcles in solution (28, 74), with a magnitude
and reaction-rate dependence similar to those of the enzymes’ own enhanced diffusion. Similarly,
immobilized DINA polymerase exhibits EED and generates fluid flow proportional to the catalydc
rate (55). The observation of a 20% increase in the diffusion coefficient of passive tracers is par-
ticularly striking for aldolase given that its turnover rate is only approximately 5/s and that it was
present at a concentration of 10 nM.

If EED results from catalysis, then enzyme inhibitors should prevent EED. Accordingly, EED
has not been observed in catalase in the presence of both substrate and the inhibitor cyanide (54)
or azide (46). However, at least three enzymes described as having catalysis-induced EED have
also been reported to show EED in the absence of catalysis. First, Yo and coworkers (71) reported
that RINA polymerase has 25% EED when catalytically active and 15% EED when substrate is
provided but the required cofactor Mg®* is withheld. Second, heat release had been proposed as
a mechanistic requirement for EED (46), however, Illien and coworkers (25) later showed 30%
EED for the enzyme aldolase, although this enzyme catalyzes an endothermic reaction (75). This
led to the idea that catalysis itself might not be required for EED by aldolase, and the same authors
used FCS to show that aldolase’s competitive inhibitor pyrophosphate could generate nearly the
same level of EED as its substrare, fructose-1,6-bisphosphate. Third, urease did not show EED in
the presence of the inhibitor pyrocatechol alone at 1 mM concentration but did show attenuated
EED in the presence of both pyrocatechol and substrate (43). Another study of urease found thar
a 1 mM concentration of the substrate urea sufficed to cause EED, while the urease inhibiror
boric acid began to cause EED only at higher concentrations (approximately 100 mM) (27). It
was therefore proposed that substrate and inhibitor cause EED by two different mechanisms,
to account for inconsistencies among experimental results as to when or whether EED requires
catalysis (27).

2.3. Negative Observations and Possible Experimental Artifacts

Significant inconsistencies have emerged in studies of aldolase across multple techniques. Al-
though an FCS study (25) indicated approximately 30% EED in the presence of either substrate
or 4 competitive inhibitor, Zhang and coworkers (72) studying aldolase using DLS found no EED
in the presence of either substrate or inhibitor. Giinther and coworkers (22) also observed no
EED when studying aldolase using a third technique, diffusion ordered spectroscopy (DOSY)
nuclear magnetc resonance (NMR). It is not yet clear how to reconcile all of these results, but
another study from Giinther and coworkers (21) highlights potential artifacts and complexites of
the widely used FCS technique.

One potendal source of error in FCS is that chere is always some free fluorophore, so if
more protein binds to the glass over time, then the relative contribution of the fast-diffusing
fluorophore to the measured diffusion coefficient increases, leading to an artifactual increase in
the apparent diffusion coefficient (21). However, the resules of Illien and coworkers (25) argue



Annu, Rev, Biophys, 2020.49:87-105, Downloaded from www annualreviews.org
Access provided by University of California - San Diego on 02/11/22. For personal use only.

against this artifact: They found that the elevated diffusion coefficient of aldolase in the presence
of substrate returned to baseline once the substrate was consumed.

Quenching of the fluorophore by substrate or product could also lead to errors, as suggested by
Bai & Wolynes (6). Indeed, Giinther and coworkers (21) showed that this artifact can account for
apparent EED of the enzyme alkaline phosphatase (46) when the quenching substrate nitrophenyl
phosphate is used because the apparent EED disappears when a nonquenching substrare is used.
Given that EED in catalase has been studied by FCS, itis worth noting that its substrate, hydrogen
peroxide, can also act as a quencher (21). In contrast, an FCS study of EED in urease argues against
the quenching artdfact by confirming thar urea does not reduce the fluorescence liferime of the
fluorescent label (27).

Finally, FCS measurements are typically carried out at enzyme concentrations roughly 1,000
times lower than those of DLS and DOSY measurements (21, 72). This makes it more probable
that some of the multimers have dissociated in the FCS studies. Given that binding of substrate
and/or inhibitor molecules sometimes promotes dissociation (8, 68), binding could increase the
measured diffusion coefficient merely by causing enzymes to dissociate into faster-diffusing sub-
units. In any case, because most reports of EED, for all enzymes studied, rely exclusively on FCS,
it would seem important to track down the cause of the discrepancy for aldolase and/or to apply
alternative experimental methods to other enzymes.

3. POTENTIAL MECHANISMS OF ENHANCED ENZYME DIFFUSION

In this section, we analyze proposed mechanistic explanations of EED. These are divided into two
categories, propulsive and nonpropulsive. Before discussing specific mechanisms, we consider the
thermodynamics of active self-propulsion and the possibility of a role for hydrodynamic inter-
actions among enzymes in solution. It is worth emphasizing at the outset that, to be plausible, a
mechanism must meet both qualitative and quantitative criteria. That is, the proposed mechanism
must not only be physically workable but also capable of generating EED at the levels observed
experimentally when realistic values of parameters, such as ke, and hydrodynamic radius, are con-
sidered. For example, in principle, an enzymes diffusion coefficient could rise due to heating of the
solution by the enzyme-catalyzed reaction. However, under normal conditions, the temperature
does not rise nearly enough to account for observed levels of EED (see Section 3.4.2).

3.1. A Thermodynamic Constraint on Enzyme Self-Propulsion

Varied physical mechanisms have been proposed by which chemical energy released via enzyme
catalysis could lead to propulsion, thus increasing an enzyme?’ transladonal diffusion coefficient.
Any propulsion mechanism necessarily leads to dissipation of chemical energy, such as by viscous
drag opposing the propelled moton. Therefore, the entdre class of self-propulsion mechanisms
is plausible only when the catalyzed reaction provides enough power to match the unavoidable
dissipation. We recently analyzed this generally applicable limit, quantitadively connecting theory
with experimental data (17), as summarized in this section.

A fundamental aspect of self-propulsion mechanisms is that the enzyme is an asymmetric par-
ticle, which is considered to be propelled in a given direcdon within its own frame of reference.
As a consequence, the enzymes rotational diffusion causes its lab-frame propulsion direction to
change stochastically, according to the rotational diffusion constant Dy. The overall translational
diffusion of such a self-propelled particle results from normal Brownian motion combined with
this randomly oriented self-propulsion. Using the Stokes-Einstein law, one can write an apparent
diffusion coefficient as the sum of the nonenhanced translational diffusion coefficient D, and a
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contribution from propulsion with speed w:

v
Dapp=Dr+6_Dris

where :% is the mean fraction of the caralytic cycle during which the propulsive force is present.

The minimal power required to achieve a cerrain ratio of diffusion enhancement, R = %EE —1,is
given by the Stokes drag dissipadon rate (37, 48, 49, 59, 62):

t 3 R(kT)?
Beg = Genan® = SRET
g 1 PO -

where 4 is the hydrodynamic radius, and 5 is viscosity. Using the hydrodynamic radii and turnover
numbers of enzymes reported to undergo EED allows one to estimate the free energy per reac-
tion required to generate experimental levels of diffusion enhancement (17). The required free
energies (Table 1) are orders of magnitude larger than those available for the slower enzymes and
considerably larger than those available even for the fastest enzymes, despite the use of conserva-
tive assumptions in the power analysis (17).

The strong inverse dependence of Prq on hydrodynamic radius 4 helps explain how self-
propulsion can still lead to significant enhanced diffusion for larger particles with asymmetri-
cally disposed catalytic sites, such as so-called Janus nanopartcles (36). Intuitively, the orders-of-
magnitude slower rotadonal diffusion of these larger particles makes the self-propulsion trajectory
much less tortuous and more effective at generadng net displacement from an inital locadon.

As partof this analysis, we considered the chemical free energy available to power propulsion. In
principle, the chemical power available to drive propulsion is the product of the reaction rate and
the free energy change of the reaction under the experimental conditions studied. This free energy
change depends on the concentrations of reactants and products. However, global concentrations
do not couple to the local processes of substrate binding, chemical reaction, and produce release, so
the global free energy of reaction may not be what is available to drive propulsion; it may instead
be a local free energy (3) that is relevant. We used a thermodynamic cycle to estimate local free
energy changes of enzyme-catalyzed reactions and found that, formitously, these are generally
close to the standard reaction free energies (17). Experimental measurements of enzyme diffusion
when the reaction is at equilibrium or running in reverse might test these ideas and shed light
more generally on mechanisms of EED.

3.2. The Insignificance of Hydrodynamic Interactions

The thermodynamic analysis in Sectdon 3.1 assumes that the enzyme molecules in solution
move independently. However, EED might be amplified if the motions of each enzyme molecule
could be further driven by the motions of others. Because the enzyme solutions used in FCS
measurements are dilute, typically 10 nM, the average distance between two enzyme molecules is
approximately 550 nm. At this range, any intermolecular forces are extremely weak. For example,
the Coulombic interaction between two enzymes of charge +10, assuming the dielectric constant
of water, is less than 0.1 keal-mol~!, even neglecting ionic screening. However, hydrodynamic
interactions among enzyme molecules might provide a mechanism for longer-ranged enzyme-—
enzyme correlations. Indeed, several studies have indicated that enzyme activity, including thar
of aldolase, can generate fluid flows (55) or enhanced diffusion of passive tracer molecules
(74), possibly via hydrodynamic interactions. In addition, Sengupta and coworkers observed no
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increase in the diffusion coefficient of luorescently labelled, inactivated catalysis in the presence
of unlabeled, active caralase (54).

A theoretical study has shown that hydrodynamic interactions are proportional to the concen-
tration of active enzyme, and it was argued that hydrodynamic interactions among enzymes could
lead to significant increments in diffusion coefficients (40). However, the numerical calculation
in this study assumed an enzyme concentration of 1,000 nM, far higher than those used in FCS
measurements. If the typical concentration of 10 nM is used, then the predicted enhancement in
diffusion coefficient by hydrodynamic interactions comes to only 6 x 10~'* m?/s, much less than
reported values of EED. From another perspective, the low velocity field generated by an enzyme
decays no slower than r~2(14, 40). Thus, in a 10 nM solution, the flow velocity generated near the
surface of one enzyme (radius ~10 nm) will have decayed at least approximately 3,000-fold at
the position of another enzyme (distance ~550 nm). Thus, it seems unlikely that hydrodynamic
interactions contribute significantly to EED. Future measurements examining the magnitude of
EED as a function of enzyme concentration might offer further insight.

3.3. Self-Propulsion Mechanisms

In this section, we consider potential mechanisms of EED that involve self-propulsion powered
by the chemical energy of the enzyme-catalyzed reaction. Note that the theoretical considerations
discussed above apply to all of these possibilities.

3.3.1. Mechanical swimming. By mechanical swimming, we mean the generation of propul-
sion by a repeated cycle of conformational changes. Microorganisms engage in mechanical swim-
ming (14, 35), but swimming by nonmotor enzymes is not well established. The scallop theorem
implies that a simple cycle of forward and reverse conformational changes cannot generate net
propulsion, as any motion induced by the forward step will be undone by the reverse step (34).
However, the chiral characrer of enzymes means thar motions driven by an our-of-equilibrium
chemical reaction will be directional and hysteretic (56) and thus capable of generating net propul-
sion (56). Furthermore, even if the conformational changes were perfectly time reversable, they
could generate an increase in the translational diffusion coefficient because rotational diffusion
of the enzyme during the enzymatic cycle allows the motion generated by the forward step o be
along a different lab-frame axis than the modon generated by the reverse step (33). Nonetheless,
mechanical swimming is an unlikely explanation for EED, based on the thermodynamic argument
provided in Secton 3.1 and on another study indicating that any plausible enzyme motions are
too weak to generate observed levels of EED (6).

3.3.2. Pressure waves. Riedel and coworkers (46) suggested that the rapid release of heat at
the catalytic step of an exothermic, enzyme-catalyzed reactdon could generate a pressure wave
that produces an asymmetric force on the enzyme, leading to self-propulsion. Bai & Wolynes
(6) argued against this mechanism by showing that an extremely large conformational motion,
along the lines of complete unfolding and refolding, would be needed. Our interpretaton of the
original suggestion is that the pressure wave comes not from a fast conformadonal change but from
sudden heating at the caralytc site due to the chemical reacdon. Thisview might avoid the concern
raised by Bai & Wolynes; however, it would still be unclear how passage of a single pressure pulse
through the enzyme at the speed of sound could generate a large net displacement of the enzyme.
(Note that the passage of sound waves through water or air does not lead to net displacement of
the molecules forming the medium.) Golestanian (20) has also provided a theoretical argument
against this proposed mechanism.
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3.3.3. Bubble propulsion. The enzyme catalase has molecular oxygen as a product, and a suf-
ficiently high density of catalase molecules on a surface can generate oxygen bubbles, leading to a
propulsive force (13, 45, 50). However, generation of bubbles was, arguably, ruled out as a mecha-
nism for self-propulsion of catalase by direct observation and by demonstration that active catalase
does not increase the diffusion coefficient of nearby passive tracer molecules (54). In addition, most
of the enzymes for which EED has been reported do not create a potendally gaseous product.

3.3.4. Phoretic self-propulsion. Phoretc mechanisms play an important role in self-propelled
synthetic particles, such as Janus nanomotors (51), and the theory underlying these mechanisms is
well-developed (42). Self-phoretic mechanisms include self-diffusiophoresis, self-electrophoresis,
and self-thermophoresis, which result, respectively, from interactions of a pardcle with self-
induced gradients of concentration, electrical potential, or temperature. These mechanisms are
unlikely to explain EED because the thermodynamic limit on self-propulsion discussed above
applies to phoretic self-propulsion. In addition to frictional dissipaton, phoretic self-propulsion
would require extra power to maintain the self-induced gradient (49), further increasing the gap
between the required power and the power available from the chemical reaction. Nonetheless, it
is informative to consider specific phoretic mechanisms that have been put forward.

Self-electrophoresis has been suggested as a mechanism of EED (43), but it seems unlikely.
First, EED has been reported for enzymes whose substrates and products are electrically neutral,
so they cannot set up an electric field. Second, self-electrophoresis would be influenced by ionic
strength, but ionic strength was reported to have no influence on the apparent EED of RNA
polymerase (71). Third, although self-electrophoresis has been reported for Janus nanomotors,
these have spatially separated ionic flows at their cathodes and anodes and are thus well-suited to
create jonic gradients and resulting electrical fields. In contrast, enzymes usually bind substrate
and expel product at the same site and therefore are not as good ar generating gradients.

Arguing in favor of a self-diffusiophoresis mechanism, Colberg & Kapral (10) presented simu-
latons of enzyme-sized particles undergoing diffusiophoresis at high propulsion speeds of roughly
4 m/s. However, their study assumes a diffusion-controlled reaction with a rate constant of approx-
imately 4 » 10'%/(M.-s), which is much larger than the enzyme turnover rates listed in Table 1. It
also assumes a concentration of substrate much higher than that in enzyme systems—the substrate
was essentially a solvent—so the diffusiophoretic forces could be unrealistically large. Finally, the
magnitudes of the enzyme—substrate and enzyme—product forces are arbitrary, rather than be-
ing chosen to reflect typical enzyme—substrate interactions. Thus, their model does not closely
resemble an enzyme-substrate system and is of limired applicability.

Finally, Golestanian estimated the magnitude of the potendal self-thermophoretic self-
propulsion in catalase and found it to be negligible (20); self-thermophoresis should be even
weaker for other enzymes that release less heat.

3.4. Nonpropulsive Mechanisms

In this section, we consider mechanisms of EED that do not involve self-propulsion and therefore
avoid the concerns raised above regarding the inadequacy of the chemical power available.

3.4.1. Local pH change. Muddana and coworkers (43) considered whether EED could, for
some enzymes at least, result from local changes in pH due to enzymatic activity. For example,
ammonia, one of the products of the urease reaction, is basic and therefore can change the pH.
However, measurement of the pH in the immediate vicinity of urease with a pH-sensitive fluo-
rophore covalently bound to the enzyme revealed pH increases of up to only ~0.8, which were
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judged insufficient to explain EED. Note, too, that many enzymes for which EED has been re-
ported cannot change the pH.

3.4.2. Temperature increase. Another way for catalysis to increase the diffusion constant of
an enzyme would be for the released heat (if any) to increase the temperature of the solution.
However, even for an exothermic enzyme-catalyzed reaction, the increase in the bulk tempera-
ture of the solution is far too small to account for observed EED (20, 46, 60). Golestanian (20) has
proposed a more refined mechanism, collectve heating, which accounts for the nonequilibrium
heat flow in the measuring container and for the increase in enzyme turnover with increasing tem-
perature, and has argued thar these factors can lead to a large enough temperature increase and
viscosity decrease to account for EED. However, Golestanian's study used the thermal conductiv-
ity of air in its numerical analysis, and when the 30-fold higher value of water is used instead, as
would seem appropriate, the predicted temperature increase no longer appears to be sufficient.

3.4.3. Changes in conformation, conformational fluctuations, and quaternary structure.
If binding of substrate generates a new conformational diseribution of the enzyme with a smaller
mean hydrodynamic radius, then this would lead to EED. In addition, the degree of EED would
correlate with the enzyme’s catalytic rate, as is often observed, because increasing substrate con-
centration will increase both the caralyric rate and the fraction of bound enzyme. This explanation
is appealing because it avoids the power requirements of propulsive mechanisms. It could also ac-
count for observatons of EED induced by binding of an inhibitor or by addition of substrate to an
enzyme that lacks an essential cofactor. However, experimental data compiled from the literature
(73) and Brownian dynamics simulations (31) suggest that binding of a substrate or an inhibitor
does not cause a large enough reduction in an enzyme’s mean radius of gyration to account for
observed levels of EED.

Recently, Illien and coworkers showed theoretically that the diffusion coefficient can be in-
creased by a decrease in the thermal fluctuations of the partcle radius (24, 25). They note that
an enzyme may be stiffened by binding of another molecule, so addition of substrate or inhibitor
could lead to concentration-dependent EED, as observed experimentally. However, the Brownian
dynamics study mentioned above (31) suggests that this mechanism would not lead to observed
levels of EED.

Finally, Giinther and coworkers (21} have pointed out that many of the enzymes for which
EED has been reported are multimeric, and that binding of substrate can lead to dissociation
of multimeric enzymes. Because dissociation into smaller components would lead to an increase
in the diffusion coefficient, averaged over the various multdmers in soludon, binding-induced
dissociatdon could provide another nonpropulsive explanation for observations of EED. This
mechanism may be particularly relevane for FCS measurements, which are eypically run ac
low enzyme concentrations that shift the equilibrium toward dissociated states (34). Dimeric
yeast hexokinase, for which EED has been observed via FCS (75), has a dissociation constant
of 0.1-1.0 M, which is well above the 10-nM concentrations typically used in FCS experi-
ments. Furthermore, three enzymes for which EED has been observed, hexokinase, urease, and
acetylcholinesterase, were reported to dissociate as substrate concentrations rose above their
respective kyy values (26). It is thus worth noting that, if different-sized muldmers interconvert
on an appropriate timescale (tens of microseconds), then this would cause an additonal decay
mode in the FCS autocorrelation function and thus could offer an alernative explanation for
the appearance of a bimodal diseribution of transit imes in high-resolution FCS studies (27, 28).
However, dissociation does not seem like a viable explanatdion for at least some observadons of
EED because the tetramer-to-dimer dissociation constant of aldolase is approximately 1 pM (72),
so this enzyme should be quite stable as a multimer in most or all of the relevant experiments;

10



Annu, Rev, Biophys, 2020.49:87-105, Downloaded from www annualreviews.org
Access provided by University of California - San Diego on 02/11/22. For personal use only.

the single-molecule tracking study of urease by Xu and coworkers (70) reported no influence of
the concentrations of urea or enzyme on dissociation or EED. In addition, there is evidence of
EED by urease at substrate concentrarions where little dissociation is evident (26).

4. EXPERIMENTAL OBSERVATIONS OF ENZYME CHEMOTAXIS

Motile bacteria and eukaryotic cells have evolved mechanisms for swimming up or down gradients
of dissolved compounds. This directed movement of cells is called chemotaxis, and movement
up or down a gradient is termed attractive or repulsive chemotaxis, respectively. Bacteria use a
molecular memeory system to determine whether their recent motions have taken them up or down
the gradient and adapr accordingly, while eukaryotic cells use their size to sense the direction of
a gradient across the cell in real ime (52). In recent years, it has been reported that enzymes can
also move preferentally up or down a substrate gradient (28, 54), with apparent drift speeds up to
approximately 1 pm/s for attractive enzyme chemotaxis (54) and 10 pum/s for repulsive chemotaxis
(28).

Enzymes cannot meet the strictest definition of chemotaxis (66, 67) because they lack the mem-
ory and/or size required to mimic either the bacterial or eukaryotic mechanisms. Instead, the ap-
parent directdonal migration of enzymes may arise from factors such as space-dependent enzyme
diffusivity or diffusiophoresis, as discussed in Section 5. In this review, we follow the literature by
applying the term chemotaxis to all observations of enzymes moving preferentally up or down a
concentraton gradient.

4.1. Attractive Chemotaxis

An early report of attractive enzyme chemoraxis used fluorescence to detect preferential displace-
ment of RINA polymerase up a gradient of its nucleotide triphosphate substrate in a millimeter-
scale device (71). Subsequent experiments have measured fluorescence intensity profiles of labeled
enzymes across microfluidic low channels fed by incoming channels containing solutions with dif-
fering compositions (Figure 1). For example, a left feed might conrain either plain buffer or sub-
strate in buffer, and a right feed might contain enzyme in buffer; in this case, attractive chemotaxis
could manifest by a tendency of the enzyme to move to the left more in the presence of substrate
than in its absence (Figure 1#). Because flow in microfluidic devices is laminar, diffusion, rather
than convection, dominates the relaxadon of the initial nonequilibrium concentration, Such de-
vices showed preferental diffusion of catalase and urease toward their respective substrates (12,
54) and of DNA polymerase toward either its substrate or its Mg?* cofactor in the presence of
substrate (55). A technically similar study of mitochondrial malate dehydrogenase and citrate syn-
thase showed chemotaxis toward substrate in both the presence and absence of required enzyme
cofactors (69). Thus, catalysis is not always necessary for enzyme chemoraxis to be observed.

A potential weakness of studies like those above is that enhanced movement of enzyme into
the region of the microfluidic channel with substrate might result only from faster diffusion in
the presence of substrate, rather than from any directional preference (27). Studies by Sen and
coworkers address this (41, 75). Thus, when hexokinase and its substrates D-glucose and ATP were
injected into the center of the channel, with plain buffer on both sides, the spread of the active
enzyme across the channel was slower than when the same experiment was done with inactive
enzyme. In effect, the enzyme was rerained in the central channel. This focusing result implies
a real tendency of the enzyme to remain close to the substrate. In addition, catalysis appears to
be important in this effect because chemotaxis was attenuated when mannose, a substrate with
slower turnover, was used instead of D-glucose (41, 75), and chemotaxis was absent in situations
with D-glucose but no ATF, and in situations with both ATP and L-glucose present, although the

latter is not a snhstrate (41
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Measured concentration profiles

Generic diagram of a microfluidic chemotaxis experiment, with laminar flow from left to right, i.e., in the += direction. Concentration
profiles of enzyme (so/id blue or green) and substrate (dashed gray) across the channel (x axis) are initialized by injection ports and mixers
(initial concentration profiles in the plot) and measured (measured concentration profiles in the plot) after the concentration profiles
have relaxed for some time ¢, corresponding to distance zmegyre from the injection ports. (#) Concentration profiles corresponding to a
transient lurch of enzyme toward substrate, suggestive of attractive chemotaxis (54). (#) Retention, or focusing, of enzyme in the
high-substrate part of the channel, suggestive of attractive chemotaxis (75). (¢) Repulsive chemotaxis in the context of an inidally linear

substrate profile (27).

4.2. Repulsive Chemotaxis

Paradoxically, Jee and coworkers (28), also using a microfluidic device, reported repulsive
chemotaxis for urease and acetylcholinesterase, as an inidally uniform enzyme concentration
increased on the side of the channel with lower substrate concentration. Agudo-Canalejo et al.
(2) have suggested that this difference, relative to prior experiments, might result from the use
of a different range of substrate concentrations, but the observation was later confirmed over a
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wider concentration range (27, 41). It may also be relevant that Jee and coworkers used a different
experimental design, in which the enzyme was initially at uniform concentraton across the
channel (Figure 1). In addition, it appears that Jee and coworkers’ measurements (28) allowed
more interaction time (distance from start of channel » channel area/fluid Aow rate) than did the
studies that observed attractive chemotaxis (41, 54). Thus, the experiments of Jee and coworkers
might reveal something closer to the shape of the ultimate steady-state distribution of the enzyme.

4.3. The Microfluidic Method

Two important features of the microfluidic experiments are worth highlighting. First, they do not
give the steady-state distribution of an enzyme in the context of a time-invariant substrate gradient,
because the concentration profiles of not only the enzyme but also the substrate change as the fluid
progresses along the channel. Instead, they report a transient response to a dme-varying substrate
gradient. Moreover, the diffusion coefficient of the substrate is usually much higher than that of
the enzyme, so the concentration profile of the substrate normally relaxes more quickly than thatof
the enzyme. This is important because some physical mechanisms can explain transient movement
of the enzyme along a substrate gradient but lead to a uniform distribution at steady state under a
time-invariant substrate gradient. The microfluidic experiments may reveal the transient response
but not the steady-state response. It is perhaps worth mentioning that a microfluidic setup can, in
another sense, be said to have reached its steady state after enough wall-clock time has passed for its
flows and concentration profiles to have stabilized. This is different from the question of whether
one has taken a measurement far enough down the channel—i.e., long enough after mixing has
begun—for the concentration profiles to have stabilized as a function of the mixing tme. Second,
when interpreting the concentration distribution of enzyme across the channel, it should be borne
in mind that laminar flow has a parabolic profile, so detailed interpreation requires accounting
for the details of fluid flow by simulations, as has previously been done (41).

5. POTENTIAL MECHANISMS OF ENZYME CHEMOTAXIS

Potental mechanisms of enzyme chemotaxis may be grouped into two categories. On one hand, it
is posited that a force directed parallel to the substrate (or inhibitor) concentration gradient drives
either attractive or repulsive chemotaxis. The other potential mechanism is based on the idea that
the enzyme’s diffusion coefficient depends on the substrate concentration, leading to a position-
dependent diffusion coefficient when there is a substrate concentration gradient. Importantly, as
emphasized by Agudo-Canalejo and coworkers (2), both categories of mechanisms can be at work
in the same system. Before considering specific mechanisms, however, we present a theoretical
framework for defining and analyzing proposed mechanisms of enzyme chemotaxis.

5.1. A Theoretical Framework for Mechanisms of Enzyme Chemotaxis

Enzymes translate through solvent in a Brownian manner and can thus be modeled by the Folder-
Planck (FP) equation (76). This equation describes how an initial probability distribudon (i.e.,
concentraton) in space, pix, t = 0), evolves over dme, and we simplify it by considering a one-
dimensional system. For example, if x represents the distance of a point from one edge of a mi-
crofluidic channel (Figure 1), an inital step-function concentradon profile across the inlet end
of the channel decays over time to a sigmoid-like distribution and approaches uniformity as the
flow progresses further down the channel. The FP equation obeys conservation of probability,
which requires that %f =— %J, where J = Kz, £) is the probability flux. If the diffusion coefficient,

13



Annu, Rev, Biophys, 2020.49:87-105, Downloaded from www annualreviews.org
Access provided by University of California - San Diego on 02/11/22. For personal use only.

D, is constant, then the flux can be written as J = pFp — D where the first term represents di-
rectional drift induced by a force F, and j« is the enzyme’s mobility (the reciprocal of the friction
coefficient).

If an enzyme diffuses at a different rate in the presence of substrate, such as by EED, then
the enzyme diffusion coefficient will depend on position, so D = D(x). [The diffusion coefficient
could also be a function of ime, D = D{x, #), because the substrate gradient in a microfluidic device
decays with dime (Section 4.3). However, the mathematical consequences of this complication are
not considered in current literature on enzyme chemotaxis and thus are not considered in this
review.] Perhaps surprisingly, merely specitying D{x) does not fully determine the correct form
of FP equation. This is because the flux expression depends on the character of the microscopic
process that causes D{x)} to vary with x—an issue known as the Iro-Stratonovich dilemma, which
arises in systems with multiplicative noise (16, 32, 57, 61). A range of scenarios is captured by the
following expression: J = puFp — a0y — D{x}j—ﬁ, where 0 < « < 1. This leads to the following
relatively general form of the FP equation:

ap_
at

3 a [ aD@)] @ ap
—a{,qu)—f—aE[p - }JFE[D“)%} 3.

In this case, « ai’)p is an additional term that could contribute to chemotaxis. In partdcular, if
a = 1, then the steady-state distribution of enzyme will be greater where the diffusion coefhicient
is lower (2, 27). In contrast, if « = 0, then the steady-state distribution will be uniform in the
absence of a force F (27, 61). The FP equation with @ = 1 is often termed the Ito form, while the
FP equation with & = 0 is termed the isothermal form (16, 57), and we use these names below.

A fundamental conclusion of this analysis is that enzyme chemotaxis cannot be mechanistically
explained by merely positing a position-dependent diffusion coefficient induced by a substrate
gradient. This is because the drift of the enzyme depends on «, which depends on the microscopic
origin of the position dependence of D{x). Nonetheless, the FP equation is a valuable framework
for understanding diffusive motion, and the following section uses it to consider various possible
mechanisms of enzyme chemomaxis.

5.2. Mechanisms Based on Force-Induced Drift

Ifa substrate gradient leads to a net force, F, on enzyme molecules in solution, then this will induce
drift either up (attractive) or down (repulsive) the gradient, which could account for experimental
observations of enzyme chemotaxis. This class of mechanism could explain the enzyme focusing
result of Sen and coworkers (41, 75) and the evolution of an inidally uniform enzyme profile into
a nonuniform one in the presence of a substrate gradient (27). Force-induced drift mechanisms
do not require a space-dependent diffusion coefficient, so multiplicative noise is not an issue. In
this section, we consider two specific proposals for mechanisms in this class.

5.2.1. Thermodynamic force. One mechanism derives an expression for a ime-averaged force
on macromolecules arising from the thermodynamics of macromolecule-cosolute binding in the
presence of a concentradon gradient of the cosolute. Schurr and coworkers (53} included this
concept in their analysis of chemotaxis of nonenzyme molecules, and good correlation with ex-
periment was obtained for a case of enzyme chemoraxis (75). Mohajerani and coworkers (41) mod-
ified this theory for enzymes, arguing that caralysis-associated EED could magnify the effect by
increasing the baseline diffusion coefficient of the enzyme and thus the speed of chemotaxis, and
they reported agreement with experimental data. The fundamental picture of this model is that

14



Annu, Rev, Biophys, 2020.49:87-105, Downloaded from www annualreviews.org
Access provided by University of California - San Diego on 02/11/22. For personal use only.

a free enzyme molecule tends to move in the direction of higher substrate concentration when it
binds, whereas an enzyme—substrate complex does not have any directional preference.

A concern with this proposed mechanism is that it equates the position-averaged force on the
enzyme, which is computed from the thermodynamic gradient, with the tme-averaged force on
the enzyme, which is the quantity relevant for chemotaxis. It is the ime-averaged force that is
relevant because the instantaneous velocity of an overdamped enzyme molecule is proportional
to the instantanecus force, and we are interested in the mean of this velocity over time. If the
free energy fell linearly with posidon, then the time-averaged and space-averaged forces would be
equal. However, the free energy falls only at moments when the enzyme is transidoning from the
unbound state to the substrate-bound state. These transitions are short lived because the binding
forces are short ranged, and these brief transitions are separated by long time intervals during
which the enzyme feels no directing force. The lengths of these intervals are governed by the
association and dissociation rate constants. Thus, an enzyme diffusing in solution feels the binding
force for only a small fraction of the time, and the ime-averaged force on the enzyme is expected to
be far smaller than the position-averaged force, so it is not clear how well this proposed mechanism
can account for enzyme chemotaxis. This reasoning appears analogous to that in a prior study
showing that the Stokes efhciency of a molecular motor is less than one and may be very low indeed
when the driving potential is not linear in the spadal variable along which the motor moves (64).

Agudo-Canalejo and coworkers (1) have offered additional points of concern regarding the
thermodynamic model, such as the fact that it cannot account for observations of repulsive chemo-
taxis (Section 4.2). The possibility of further complexites with a mechanism based on the thermo-
dynamics of enzyme-substrate binding is suggested by a prior observation that thermodynamics
alone does not determine the phoretic speeds, or even the directions, of colloid particles (3, p. 94).
More broadly, determining molecular motions requires knowing more than a thermodynamic
tendency, i.e., an energy gradient; one must also know how chemical coordinates and mechanical
coordinates are coupled to transduce this energy (5, 63).

5.2.2. Diffusiophoresis. Diffusiophoresis causes directional drift of colloid particles up or
down the concentration gradient of a cosolute (3, 30). It results from net attractive or repulsive
forces between the particles and the cosolutes, leading to attractive or repulsive chemotaxis. Diffu-
siophoresis is similar to self-diffusiophoresis (Secton 3.3.4) except that the gradient is exrernally
imposed, instead of being self-generated by catalysis.

The pardcle—cosolute interactions that cause diffusiophoresis are typically nonspecific, often
involve long-ranged electrostatics, and may be averaged across the surface of a relatively large col-
loid partcle (42, 53). We are not aware of studies deriving diffusiophoretic velocites for binding
of an enzyme to its substrate, but Agudo-Canalejo and coworkers (2) have argued thar diffusio-
phoresis driven by nonspecific enzyme-substrate interactions can play a key mechanistic role in
enzyme chemotaxis. However, further work is needed to assess whether the nonspecific interac-
tions between an enzyme and its substrate are in fact capable of driving enzyme chemotaxis at
observed rates via a diffusiophoretic mechanism. It is also worth noting that the magnitude and
direction of nonspecific interactions may depend significantly on whether the enzyme has a bound
substrate, particularly if the substrate has a nonzero net electrical charge.

5.3. Mechanisms Based on a Position-Dependent Diffusion Coefficient

If an enzyme has a higher diffusion coefficient in the presence of its substrate, then the diffusion
coefficient of the enzyme will be positon dependent in the presence of a substrate concentra-
tion gradient. The consequences of a position-dependent diffusion coefficient for experimental
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observations of chemotaxis are complex and case dependent (Section 5.1). For one thing, the
transient effect of a position-dependent diffusion coefficient may be different from its steady-state
effect. Transiently, enhanced diffusion in the presence of substrate may cause enzyme molecules
introduced into the center of a microfluidic channel to diffuse preferentially to a side of the chan-
nel that has substrate, relatve to a side that contains only buffer (Figure 1), as has previously been
noted (27). This inidal lurch in the direction of increasing diffusion coefficient has been termed
pseudochemoraxis because it does not resule from a directional preference of the diffusing pardcle
(52), only from the fact that a nonuniform concentration distributdon will relax faster where the
diffusion coefficient is larger. By contras, at steady state in the presence of a stable substrate gradi-
ent, the distribution of enzyme will depend on the value of «. If @ = 0 (isothermal form), then the
steady-state concentration profile of the enzyme will be uniform, suggesting no chemotaxis. How-
ever,if & = 1 (Ito form), then the steady-state concentration of the enzyme will be lower where
the substrate is at a higher concentradon (Section 5.1), matching experimental observations of
repulsive chemotaxis (27, 28). In principle, the Ito form would also yield attractive chemoraxis at
steady state, if the enzyme diffused more slowly in the presence of substrate, but this scenario has
not been reported. Two microscopic mechanisms for a posidon-dependent diffusion coefficient
and an Ito-form FP equation have been put forward.

One involves catalysis-driven self-propulsion of enzymes (28, 65); in effect, an enzyme gets ex-
tra propulsive kicks in the presence of substrate, leading to an increasing diffusion coefficient along
a substrate gradient. This mechanism resembles that of a temperature gradient, where a pardcle
gets more kinede kicks in regions of higher temperature. Given thar diffusion in a temperature
gradient can lead to an Tto-form FP equadon (32), it is likely that the self-propulsion mechanism
does as well. However, the power available from enzyme-catalyzed reactions does not appear to
be enough to account for the self-propulsion required by this proposed chemotaxis mechanism
(Section 3.1).

The other mechanism does not involve self-propulsion, but instead involves a local equilibrium
between substrate-bound and free forms of the enzyme having different diffusion coefficients. A
novel derivation from Agudo-Canalejo and coworkers (2) shows that this scenario leads to the Tto-
form FP equation with a position-dependent mean diffusion coefficient for the enzyme. Because
this mechanism does not rely on chemical energy to power diffusive motion, it is not subject to
the thermodynamic restriction of the self-propulsion mechanism.

It would be valuable to carry out more demiled and quantitative calculations that would test the
ability of these mechanisms to account for the magnitudes of the effects seen experimentally. Spe-
cific questions include whether binding of substrate changes the hydrodynamic radius of urease
enough to fit experiment, and whether the timescales of experiments showing repulsive chemo-
taxis (27) are long enough for enzyme molecules ro drastically redistribute across the microfluidic
channel due merely to space-dependent diffusion.

6. CONCLUSIONS

Enhanced diffusion and chemotaxis of enzymes have emerged in recent years as novel phenomena
with potential implications in biology and biotechnology. They also pose intriguing puzzles whose
resolution could yield new insights into molecular processes and experimental methods. Eluci-
dation of the underlying mechanisms will require analysis of potentially subtle linkages among
nonequilibrium processes spanning a range of scales. Ultimately, understanding the mechanisms
should make it possible to design enzymes or other molecules to maximize these effects and put
them to use. Continued work in this field promises new insights into the intricacies of molecular
motions in out-of-equilibrium systems.
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1.

"UTURE ISSUES
What characteristics of enzymes—e.g., structural or catalytic—correlate with EED
and/or chemotaxis?

2. Are there design principles to discover and even utlize?

3. Are different mechanisms at work in different enzymes?

4. What role, if any, does the catalytic release of chemical energy play in EED and enzyme

chemotaxis?

5. Why do DOSY and DLS yield diffusion results that are so different from those of FCS

for aldolase?

6. Is enzyme chemortaxis purely a transient phenomenon, or can it also be observed when

the enzyme concentration profile is at steady state in a stable substrate gradient

7. What determines whether a chemotactic enzyme will undergo attractive versus repulsive

enzyme chemotaxis?
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ABSTRACT Anumber of enzymes reportedly exhibit enhanced diffusion in the presence of their substrates, with a Michaelis-
Menten-like concentration dependence. Although no definite explanation of this phenomenon has emerged, a physical picture of
enzyme self-propulsion using energy from the catalyzed reaction has been widely considered. Hare, we present a kinematic and
thermodynamic analysis of enzyme self-propulsion that is indepandent of any specific propulsion mechanism. Using thistheory,
along with biophysical data compiled for all enzymes so far shown to undergo enhanced diffusion, we show that the propulsion
speed required to generate exparimental levels of enhanced diffusion exceeds the speeds of well-known active biomolecules,
such as myosin, by several orders of magnitude. Furthermore, the minimal power dissipation required to acoount for anzyme
enhanced diffusion by self-propulsion markedly excesds the chemical power available from enzyme-catalyzed reactions. Alter-
native explanations for the observation of enhanced enzyme diffusion therefore merit stronger consideration.

INTRODUCTION

The apparent diffusion coefficients of various enzymes, as
measured typically by fluorescence comelation spectros-
copy, have been observed to increase in the presence of sub-
strate by as much as 15-80%, depending on the enzyme, at
maximal substrate concentration. Examples include FOF1-
ATP synthase (1), T7 RNA polymerase (2), T4 DNA poly-
merase (3), bovine catalase (4.5), jack bean urease (4-6),
hexokinase (7), fructose biophosphatase aldolase (7.8),
alkaline phosphatase (5), and acetylcholinesterase (%), How-
ever, the mechanisms underlying these observations remain
largely unexplained. For some enzymes, further experimen-
tation has ruled owt certain potential mechanisms for
this phenomenon of enhanced enzyme diffusion (EED),
including one mediated by local pH changes (6) and propul-
sion by bubble formation (4). In a number of cases, the in-
crease in diffusion coefficient relative to baseline has been
found to be approximately proportional to the catalytic
rate of the enzyme, with a Michaelis-Menten relationship
to substrate concentration (5). This proportionality has natu-
rally led to the suggestion that the chemical reaction cata-
lyzed by the enzyme is a driver of the diffusion
enhancement. Indeed, larger, synthetic Janus particles are
propelled by the catalysis of reactions at one face of the par-
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ticle and mot the other (10). Accordingly, a number of
possible mechanisms for catalysis-driven self-propulsion
of enzymes—i.e., for the transduction of the reaction free
energy into mechanical propulsion—have been proposed.
These inclide mechanical swimming (4.1 1), pressure waves
generated by exothermic reactions (5), and self-diffusiopho-
resis (12). However, these specific mechanisms of EED have
been debated (5,13), and none have been proven. Here, we
step back from specific propulsion mechanisms and instead
analyze the kinematics and thermodynamics of enzyme self-
propulsion generically.

METHODS

The degree @ which translational diffusion is enhanced may be
expressed as

Dyp =D, + 4D

= D(1+R) M

wheme AD = D, — D is the difference between the observed, or apparent,
diffusion constant, D)., and the baseline diffusion ¢ in the ab

of ephaecement, D, Thus, R is the relative diffusion enhancement, We
consider an enzyme that, within each catalytic cycle, self-propels for a
time &, < i, where i, is the enzymologic tumover time and reciprocal of
tumover rate The magnitude of the propulsive force, F, is considered
to be constant during .. (The consequences of 2 more complex time
dependence are considered in the Appendix} For an enzyme in liquid
water, the Reynold’s number is very low. Therefore, the dynamics of
the enzyme are overdamped, and the propulsion welocity has 3 constant




magnitude v = Fwhile the propulsion is active. The vector of the propul-
sive force and velocity is considered fived within the enzyme's intemal
frame of reference, but it reorients continuously in the lab frame becmse
of the mtational Brownian motion of the enzyme. The enzyme is modeled
as a hard sphere with radius a, moving in liquid water with viscosity 4, so
that the Stokes-Einstein equations may be used to estimate I}, and the rota-
tional diffusion coefficient D:

D, - Gi

wa

e 2)
D, =

Analytical solutions of the overdamped Langevin equation for self-pmo-
pelled particles have been developed by ten Hagen et al. {14} under the
assumption that the Stokes-Einstein equations hold and that rotational
and diffusional translation are not coupled to each other. In EED experi-
ments, the diffusion coefficient is measured over times much greater than
the enzyme's turnover time, which & in turn usually much greater than
the rotational relaxation time of the enzyme, r = (2D,"' e [10-% s,
107 &] {15). In this setting, ten Hagen et al.'s Eq. 34 applies and yields
the mean-square displacement as a function of time:

2
I/
(f) D,

where the first term gives the mean-square displacement in the absence of
propulsion and the second term captures the effect of propulsion. We: have
inserted the term £/, to account forthe fact that self-propulsion acts to raise
the diffusion constant only during this fraction of the time {see Appendix).
Recognizing that Do, = (Ar%)/(6r), using Eg. 2, and employing Stokes'
law, F = Gmrnav, to replace force with velocity, one may rewriie Eq. 3 as

Vot
6D, 1.’

2
{4r®) = 6Dyt + (4 z

I )

D

D+ “)

&P

The: first term is the contribution of normal Brownian motion, and the
second term is the contribution from self-propulsion. The enhancement
ratio, R, then i

v
R= oD, 1.

5)
Thus, the propulsion speed required o achieve a given level of diffusion

enhancement R is given by
1
R r\2
85/

To determine the power required for a self-propelled particle to achieve
observed levels of enhanced diffusion, it is necessary to address the ener-
getic efficiency of the self-propulsion mechanism. Rather than make any
mechanistic assumptions here, we make the most conservative assump-
tion—i.e., the one requiring least power—by using the minimal energy
dissipation theorem. This says that, at low Reynolds num ber, no propulsion
mechanism is more efficient than drag ging the particle by external force ina
Stokes flow (16-20) Accordingly, we consider the power to drag an
enzyme molecule in a Stokes flow at the propulsion speed required to
generate enhanced diffusion with a specific value of R. Inserting v from
Eq. 6 inte Stokes' law, F = Grgay, we obtain the required power averaged
over the full catalytic cycle:

kr
=ﬂ":‘}ﬂ2

©)
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RESULTS

We first apply Eg. 6 to estimate the propulsion speeds
needed to account for experimentally observed diffusion en-
hancements. The minimal thrust speed, v, that would
explain the diffusion enhancement is obtained by setting
tp = I. because larger speeds are required when f, < .
Given T = 298 K, the viscosity of liquid water, and a typical
enzyme diffusion enhancement of R = 02 (5), one
obtains v(m/s) = 0.21a2 (g in nm). This quantity de-
pends only on the radius of the enzyme. For catalase,
a = 5.3 nm (21), so the minimal propulsion speed v, =
7 % 107 m/s. Similar values of v, are obtained for the
other enzymes that showed EED in experiments because
their radii are similar to that of catalase (Tahle 1). These
speeds, which amount to ~10° enzyme radii per second,
are strikingly high. Furthermore, we anticipate that any
thrust generated by enzymatic catalysis will persist only
for a small fraction of the enzymologic tumover time; i.e.,
in all likelihood, & < f. As a comsequence, based on
Eq. 6, even higher propulsion speeds would be needed dur-
ing the short r, intervals to explain observed values of R.
Although implausibly high propulsion speeds would be
needed to account for EED by self-propulsion, this analysis
remains consistent with the observation that larger particles,
e.g., Janus particles, can achieve substantial enhancements
of diffusion via self-propulsion (10). This is because, for
larger particles, a given propulsion velocity leads to higher

TABLE 1 Turnover Rates, Experimental Hydrodynamic Radii,
Minimal Thrust Speeds, and Required Reaction Free Energies
of Enzymes Reported to Show EED

Turmover  Radius! v — M
Enzyme rateds ! nm m-s ™ K omol "
T4 DNA polymerase  0.5(47F 46048 1= 107 1= 107
Aldolase 5 (0" 49(21) 9= W gx W0
T7 RNA polymerase 40497 BA(Y 3= 107 2x 10°
Hexokinase W00Mt 635D 5= w0 G000
ATP synthase 000 (52F  66(1) 5= 10t 2000
Alkaline phosphatase 3000 (5)' 7753 3 = W 400
Catalase 10,000(5F 530210 7x107? 00
Urease 10,000 (5° 70029 4 =107 100
Acetylcholinesterase 20,000 (547 8832 3 x W0~ a0
For multimeric enzymes, turnover rate is of the whole multimer. Citations

are parenthesized.

*For R = 20% diffusion enhancement, using Eq. & with#, =1,

*For R = 20% diffusion enhamcement, using Eq. 7 divided by turnover rate.
“Turnover rates of these enzymes were not reported in the publications of
their EED measurements, 50 we instead use the tumover mate when subsiraie
concentration equals Kn, i.e, monomer k. times number of catalytic sies
times (.5,

“Tumover rate at R = 20%, read from the comesponding publication of
EED measurements.
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values of R, mainly through the dependence of D, on size.
Intuitively, the longer the rotational correlation time, the
greater the effect of propulsion on the root mean-square
displacement. Thus, self-propulsion is much more effective
at enhancing the diffusion of large particles than that of
small particles, such as enzymes.

We now tum to the power required to explain EED and its
relation to the chemical energy available from catalysis,
which is approximated by the standard free energy of
reaction, as explained in the third part of the Appendix.
For catalase, with @ = 5.3 nm, the result is Py = 3 x
10%kT - 57 - mol~!. The tumover rate of catalase is about
10* 57! under conditions that yield an R = 20% (5), so
this power requirement corresponds to a minimal required
reaction free energy of 4G%, = — 300 kI-mol~". This is
well above the standard free energy of reaction, 4G° =
—05 kJ - mol ™!, computed from the standard free energies
of formation of the reactant and products (22). For enzymes
with lower tumover rates, the required reaction free
energies range up to § x 10° KJ - mol ' (Table 1). These
required reaction free energies are far larger than what is
available from the free energy of the chemical reactions
catalyzed by the enzymes. For example, for alkaline
phosphatase, AG° = —8.5kJ - mnl_]; for urease, AG® =
—20 K - mol''; and for acetylcholinesterase, AG° =
—17 kJ - mol™! (23). The magnitudes of the reaction free
energies in Table | may be put into perspective by consid-
ering that the standard free energy of hydrolysis of ATP,
the cell’s energy currency, is only about —32 kJ - mol ™’
(24). Furthermore, as detailed in the Discussion, the power
requirements derived here are conservative, and the actual
power requirements probably exceed what is available by
an even larger margin. Thus, it is unlikely that experimental
observations of EED can be accounted for by catalysis-
driven self-propulsion.

DISCUSSION

We now critically examine the approximations and assump-
tions used in this theory and consider the results in light of
recent relevant experimental studies.

Three key assumptions in this analysis are conservative,
in the sense of lowering the estimate of the power required
to achieve a certain level of enhanced diffusion. First, we
used the minimal energy dissipation theorem, based on the
assumption of a Stokes flow around the enzyme, to estimate
the minimal power required for a given propulsion velocity.
Amny real propulsion likely generates a non-Stokes flow field
around the enzyme, resulting in higher viscous dissipation
integrated over whole space than in the ideal Stokes flow
and hence lower efficiency than assumed here. (Intuitively,
if one replaces the enzyme by a bacterium, we computed
the dissipation associated with pulling it through the water
with an optical trap, rather than the greater dissipation asso-
ciated with its using flagellae to swim at the same speed.)
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Indeed, a bacterial propulsion mechanism, which, unlike a
nonmotor enzyme, has been optimized during evolution,
was found to have only ~1% of the maximal propulsion ef-
ficiency associated with pure Stokes drag (18). Additionally,
a propulsion mechanism might rely on local chemical gradi-
ents, imposing an additional entropy production term as the
chemical gradients spontaneously dissipate. Thus, although
we have used the maximal efficiency assumption, the true
efficiency of any enzyme propulsion mechanism is probably
orders of magnitude lower. This makes it even less probable
that the required power could be provided by the available
chemical energy.

Second, we assumed that the propulsion mechanism in-
creases the apparent translational diffusion coefficient
without increasing the enzyme’s rotational diffusion coeffi-
cient, D, We are not aware of any experiments that report on
the rotational diffusion rates of enzymes undergoing transla-
tional EED, but any translational propulsion mechanism
would probably also increase the rate of rotational diffusion.
This is because there is no reason to expect that a propulsive
force will not also exert a torque and thus drive rotation. In
fact, the rotational diffusion coefficient of 30 nm Pt-Au
Janus particles increases by up to 70% when they are cata-
Iytically active and undergoing enhanced translational diffu-
sion { 10). This is relevant here because, as is evident from
Eq. 4, increasing D, would further increase the velocity v
needed to achieve a given level of Dy, Therefore, even
more power would be required, again making EED harder
to explain on the basis of catalysis-driven self-propulsion.
In addition, any chemical energy expended in driving rota-
tional motion would become unavailable to drive transla-
tional motion.

Third, we assumed that the thrust speed v is constant dur-
ing the interval i,. Using Fourier analysis, we show in the
Appendix that allowing v to be time-varying during f, could
only increase the thrust speed and power required to achieve
a given degree of diffusion enhancement. The Appendix
furthermore proves a more implicit but intuitive assumption
we have used, that diffusion enhancement and power re-
quirements scale linearly with the duty ratio r/t.. This is
found to hold as long as any significant high-frequency
components in the thrust velocity are slow relative to the
rotational diffusion time of the enzyme. Intuitively, if a
high-frequency component of the thrust speed reverses di-
rection before the enzyme has had time to reorient, the mo-
tion due to this component can be canceled in the lab frame,
leading to a minimal contribution to the net translational
displacement. In contrast, if the enzyme has time to rotate
before the thrst component reverses, the reversed compo-
nent will act in adifferent direction in the lab frame, leading
to less cancellation and more net displacement.

Several other assumptions also deserve comment. Qur use
of the Stokes-Einstein equations with stick boundary condi-
tions is justified by several considerations. First, changing to
slip boundary conditions would merely replace the factor of



1/6in the Stokes-Einstein equation by a factor of 1/4, which
would not change our conclusions. Additionally, simula-
tions of spherical macromolecule-sized particles in solution
yield translational diffusion coefficients that are bracketed
by the results of the Stokes-Einstein equation computed
with stick-and-slip boundary conditions, using the geomet-
ric radii of gyration of the solutes (25). And if one assumes
stick boundary conditions in mapping from measured trans-
lational diffusion coefficients of proteins in water to effec-
tive radii and then from radii to the predicted rotational
diffusion coefficient, the results agree with experiments to
within ~50% (21). Interestingly, the actual rotational diffu-
sion constants tend to be higher, rather than lower, than
those predicted by Eq. 2 (26). Correcting in this direction
would only strengthen our conclusions because increasing
D, means that even more power is required for a given value
of R. Finally, treating the enzymes for which enhanced
diffusion has been observed as spherical is reasonable for
these globular proteins; highly nonspherical, (e.g., rod-
like) proteins may deserve further analysis.

Additionally, we have treated each enzyme molecule’s
motion as independent of the motions of the other enzymes
in solution. We tested this assumption by applying the hy-
drodynamic interaction model of Mikhailov and Kapral
(27) to the case of enzymes at the very low concentrations,
~10 nM, used in typical EED measurements. The resulting
hydrodynamic interactions are found to be negligibly
small.

It is worth considering this analysis in the context of
recent, high-resolution experimental studies of EED. In
two elegant studies, Jee et al. combined stimulated emission
depletion microscopy with fluorescence comrelation spec-
troscopy to study enzyme diffusion at very high spatial res-
olution (9,28). Intriguingly, when urease in the presence of
urea was studied with a small beam waist (50-250 nm), a
fast component of translational motion was revealed. The
authors interpreted the fast component as being the result
of propulsive motion powered by the urease reaction and
argued that this self-propulsion could explain enhanced
diffusion of urease. Perhaps the chief reason for the differ-
ence in their conclusion relative to ours is that their rota-
ticnal diffusion time of 2.9-56 us comesponds to a
hydrodynamic radius a = 10-12 nm, which is considerably
larger than the value of 7.0 nm reported in a prior experi-
mental study (29) and used here. The smaller hydrodynamic
radius used here is further supported by our analysis of the
hexameric biclogical unit of urease (30) with the program
HYDROPR.O (31), which yields translational and rotational
diffusion coefficients corresponding to hydrodynamic radii
of 6.6 and 6.7 nm, respectively. In addition, one may infer
the hydrodynamic radius of urease from the baseline trans-
lational diffusion coefficient of 29 um®/s reparted by Jee
et al; the result is 7.5 nm, which is close to the value we
used. Based on Eq. 7, going from a radius of 10-12 nm
to the more plausible value of 7 nm used here leads to a
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three- to fivefold increase in the power requirement for a
given degree of diffusion enhancement R. Given that Jee
and co-workers” estimated value of the free energy required
for each cataytic cycle, 25 kJ - mol™! (28), is already
slightly higher than the reaction free energy of this enzyme,
20K - mol™! (23), an upward adjustment based on this
consideration makes it difficult to support the hypothesis
that catalytic self-propulsion explains EED in urease. Inter-
estingly, their reported rotational diffusion time of 44-46 us
for the enzyme acetylcholinesterase corresponds to a hydro-
dynamic radius of ~25 nm, which is about three times the
experimentally determined hydrodynamic radius of the
largest globular form of this enzyme (32,33). One may spec-
ulate that the abnormally low rotational reorientation rates
inferred by Jee et al. could reflect extrinsic perturbations
of the enzymes, such as fluid flows, varying on a timescale
of about 10 us.

CONCLUSIONS

Qur analysis shows that the propulsion speeds required to
explain experimentally observed levels of EED by the
mechanism of catalytic self-propulsion are implausibly
large. More fundamentally, the power levels needed to ac-
count for observed levels of diffusion enhancement by cat-
alytic self-propulsion are greater than those available from
enzyme-catalyzed chemical reactions. For most enzymes,
the power requirement is orders of magnitude too great,
and even for the faster enzymes, the power required is still
considerably larger than that afforded by the reaction. More-
over, the power actually required to generate observed levels
of diffusion enhancement is probably greater than our esti-
mates because we have used conservative approximations
that lead to lower estimates of the required power. However,
because the power required for a given level of diffusion
enhancement decreases sharply with increasing particle
size, our results remain consistent with experimental obser-
vations that self-propulsion of micron-scale particles with
surfaces coated with a metallic catalyst ( 10) or with immo-
bilized enzymes (34) leads to significantly enhanced trans-
lational diffusion. The propulsion direction of larger
particles randomizes more slowly, so the contribution of
propulsion to translational diffusion is increased. We
conclude that enhanced diffusion of enzymes cannot easily
be explained by self-propulsion powered by the chemical
energy of the catalyzed reactions.

It is of interest to consider other explanations for EED.
Omne possibility is an increase in normal, thermally driven
translational diffusion. This could result from a decrease
of the mean hydrodynamic radius of the enzyme in the
course of the catalytic cycle, as recently noted (8.35). Alter-
natively, it has been proposed (36) that the catalytic cycle
might raise the temperature of nearby solvent enough to in-
crease the enzyme's diffusion constant, through 1 and T in
Eq. 2. However, the viability of this explanation appears
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to rely on use of the thermal conductivity of air rather than
water (30) becanse the effect becomes negligible when the
thermal conductivity of water is used. Global heating of
the solution due to release of chemical energy is also insuf-
ficient to explain observed diffusion enhancement (5,37). It
is worth noting, too, that exothermicity, and even chemical
catalysis itself, is not required for at least some reported in-
stances of EED (2.8).

Thus, the mechanisms of EED remain obscure. Further
experimental studies may help solve this puzzle. It has
been suggested (13.38) that fluorescence correlation spec-
troscopy measurements may be subject to experimental
artifacts, such as subumit dissociation and fluorophore
quenching, so that further controls, such as those employed
by Jee and co-workers (9.28), are of high value. Because the
turnover rate is needed to convert the power requirement
(Eq. 7) to 4G and compare with standard thermodynamic
data, it would also be helpful if the umover rate of the en-
zymes being studied could be measured under the precise
conditions of each diffusion study to avoid uncertainties
that may result from literature data measured under different
conditions and from reliance on an assumption of Michae-
lis-Menten kinetics. Altemative technologies for measuring
diffusion enhancement may also provide different perspec-
tives. For example, although fluorescence comrelation spec-
troscopy  studies of aldolase demonstrated EED (7.8),
aldolase did not show enhanced diffusion when studied by
dynamic light scattering (39) or by NMR (40). On the other
hand, an electrochemical experiment has provided support-
ing evidence of catalase EED (41). Intriguingly, a study in
which enzyme molecules were confined to an ~2D region
to enable single-molecule tracking showed strong enhanced
diffusion, though we note that interpretation of these data is
complicated by the fact that the baseline diffusion coeffi-
cients were markedly reduced relative to their 3D values
(42). Further direct tracking studies (43) could be useful
both to confirm the phenomenon of EED and to provide de-
tails that might bear on mechanism.

APPENDIX: FOURIER ANALYSIS OF TIME-
VARYING THRUST—GENERAL ANALYSIS

The derivation in the main text ireats the self-propulsion thrust as constant
during an interval t, within each catalytic cycle of duration 1, = 1, Here,
we examine the consequences of a more general tme-varying thrust
‘We make the reasonable assumption that the time over which the transla-
tional diffusion constant is measured, 1., is much larger than the duration
of the catalytic cycle, ¢, (milliseconds to seconds), which in turn s much
larger than the rotational relaxation ime r=(2D,)™" of the enzyme (nano-
seconds to microseconds). We address the effect of time-varying propul-
sion on translational diffusion by expanding the propulsion speed in a
Fourier series, as previously done by Lauga in the context of reciproca
swimming (41}, and extend the analysis o determine how time-varation
affects the efficiency with which propulsive power generates enhanced
diffusion.

Comnsider an enzyme with a time-dependent, self-propulzion speed Wi,
whose translational diffusion is evaluated from time ¢ = 0 until the end
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of some experimental time, f- As in the main text, the direction ofthe pro-
pulsion is fixed in the enzyme's frame of reference and therefore recrients
in the lab frame of reference because of rotational diffusion of the enzyme.
After periodic extension, Wi} can be expanded into a Fourier series:

i: CoCOs i: d,5in

2nw 2nw
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W) = v [;—n - !}. @)

This time-varying propulsion speed generates an increment in the trans-
lational diffusion coefficient given by Lauga's Eq. 7 (44},
[ - =
4D = 5‘-]]_]1;”(}; wiv(r)e = tﬂ"') 9)

)
i

where we have inserted missing angle brackets, indicating an ensemble
averge over reference time ¢ in the iniegral. This expression yields a well-
defined result because §, = 7. Substitwtion of the Fourier series into this
expression yields
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This equation decomposes the diffusion enhancement inio contributions
from each Fourier component. The mean power consumption, (F) =
ﬁrw{v(.r]z) may similarly be decomposed into contributions from each

frequency component,
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Here, we have used the orthogonaity of the Fourier components to

eliminate cross terms and have made the substitutions (oo s?(2mr (T)) =
{sin? (2n /4, )0) = 1/2.

Comparing Eqs. 10 and 11 reveals that, given a set of amplitudes g,
Cps oon Cy ty, dy, .., d, higher-frequency components (ie., ones with larger
subscripts) generate smaller contributions to the diffusion coefficient but
equal contributions to the power consumption. The efficiency of diffusion
enhancement, normalized o that for constant siom, is given by Egs.
10 and 11 as £=(18mma/r)(4D/(P)). It is apparent from our malysis
that the efficiency is greatest when only the constant thrust component,
<p, is nonzero; ie., when the thrust speed is constant during the enzyme's
catalytic cycle, as assumed when considering the minimal thrust speed in
the main text. Any varistion in trust over time can only reduce £ to
below one. Thus, “scheduling” the hirest cannot decrease the power needed



for a given level of diffusion enhancement o below the power needed for
constant thrust.

FOURIER ANALYSIS OF TIME-VARYING
THRUST—SQUARE-WAVE CASE

In the main text, we assumed a square-wave thmst schedule, with constant
nonzero thrust during t, < f.and zero thrust during the rest of 1. We argued
that the diffusion enhancement and the minimal power dissipation both
scale linearly with the duty ratio 1./r.. For diffusion enhancement, it should
e apparent that this holds becanse the ensemble average in Eq. 9 is propor-
tional to the portion of time when W) is nonzem. Nonetheless, it is of in-
terest to confirm these arguments numerically within the Fourier analysis.
To do this, we consider the speed to be Wi} = w when e — (1 /2),
(t:/2)), and wir) = 0 elsewhere in 1 ( — (12}, (1 /2)). The corresponding

Fourier series is

vit) = w [%+ .E.| t.ms'z:r.'] . (12)
I
[ 2_,2: (13)
2 % 2 2
= —f v(t)cos ﬂr.'dr = —s:'n(nn'rl). (14)
LJg 1 nw 1.

Inserting these expressions into Eq. 10, with r/r, = 0.01, which comre-
sponds to the case of urease, yields the expected linear variation of AD
with 1., & shown in Fig. 1.
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FIGURE 1 Numerical evaluation of the diffusion enhancement given by

Eg. 10 confirms the linear relationship between the ratio /'t and the diffu-
sion enhancement for a square-wave thrust schedule. The enhancement is
plotted relative to the case § =1 The value of 1 and 1 comespond to urease
from Table 1. To see this figure in color, go online.
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We next examine the efficiency, £, for this square-wave thrust schedule:
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For constant speed with 1, =1, thiz yields £ = 1. The loss in efficiency
when f, < 1, then is given by

(15)
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where we have used Parseval’s theorem to evaluate the denominator and
then inserted Eg. 14. For given values of r and 7, the meximal drop in ef-
ficiency is expected to happen when r, is much smaller than 1, because this
increases the weight of the high-frequency components of the thrust veloc-
ity. Focusing, then, on this low-efficiency limit, we can approximate the
summation with an integral and then evaluate the integral using the residual
theorem:
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FIGURE 2 Relationship between efficiency £, and the mtio 7z, plotted
for three values of rér. To see this figure in color, go online.

Consequently, because £ 3 7 is expected for most enzymes, the effi-
ciency will remain near unity, even under the extreme assumption that
fp & fe. This result supports our approximation in the main text that the
diffusion enhancement caused by a square-wave thrust schedule is propor-
tional o 1. It also shows that our assump ions are conservative because not
invoking this approximation would decrease the efficiency and further in-
crease the power requirement The analytical result in Eq. 16 analysis of
the time-varying thrust square-wave case is elaborated by numerical calou-
lations of the efficiency £, as drawn in Fig. 2. Here, 17 spans the range of
this ratio found for the enzymes in Table 1, from 100 for wrease to 3 = 10
for DNA polymemse. Three values ﬂorrpfr are used, subject to the require-
ment that 1, < 1.

The near proportionality of both AD and (F) to £, may be understond
maore intuitively by reference to Eqs. 10 and 1 1. Because the denominatior
in Eq. 10, 14 (eraf2.)", is near unity except for very large n, low-fre-
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| —

quency components deviate only very slightly from the zemth component
in efficiency. On the other hand, high-frequency components with large n
have negligible amplitudes because ¢, <(2 /mr), so they do not ater effi-
ciency either. Therefiore, the diffusion enhancement and the power require-
ment both scale near-lineardy with duty ratio £/t leading to near-uniform
efficiency. It is of interest to note, however, that efficiency would fall if
there were significant cscillations in W) on the timescale of r or smaller.
In this regime, the nonzero velocity components reverse direction before
the enzyme has had time to rotate, so there is little net displacement due
to the trust. In contrast, when the nonzero velocity components do not
reverse until the enzyme has had time to motate, the net effect of the
time-varying thrust is to generate randomly directed displacements, which
coniribute to the apparent diffusion constant.

FREE ENERGY FOR SELF-PROPULSION
AVAILABLE FROM AN ENZYME-CATALYZED
CHEMICAL REACTION

In the main text, we took the standard free energy of the reaction, 4G%, tobe
the free energy from an enzyme-catalyzed chemical reaction that is avail-
able to power the enzyme's self-propulsion. A concern with this approach
may be that, when the two sides of the chemical reaction have different
numbers of solute molecules, 4G depends on the arbitrary standard con-
centration, C°, and the available free energy ought not depend on an arbi-
trary quantity, Here, we show that the standard reaction free energy is, in
fact, a good ap prox imation to the free energy available from the combined
processes of substrate-enzyme binding, chemical reaction, and product
release, 5o long as the standand concentration is set to its customary value
of 1 mol/L. This section thus justifies the use of the standard concentration
in the main text while also offering insight into how more refined estimates
of the available free energy might be made.

First, itis instructive to consider whether it would be appropriate to take
the free energy available for propulsion to be the free energy of reaction un-
der the experimental conditions at which enzyme diffusion was smdied; iz,
AG = AG" + RTInQ, where ( is the experimental concentration quotient,
assuming activity coefficients near unity. This approach is problematic
because it would require a physical mechanism that could couple the
macmscopic concentrations of substrate and product to the local events at
a single enzyme molecule. Instead, if one considers the entire catalytic pro-
cess, from enzyme-substrate encounter through release of product to the
bulk, the only steps that could contribute free energy toenzyme propulsion

Py at Cpy
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Ea. Pa Py Vioce1
‘: i Vioc,p2

E, Py, Py with their full
interaction turned an

E, Py, Py, noninteracting bt
contained in lkecal volumas

N~ &

FIGURE 3 Definition of 40, via a schematized thermodynamic cyce. See text for details.



are those in which the enzyme interacts significantly with the substrate or
product. Such interactions occur only when the subsirate or product mole-
cules are near the enzyme, so the free energy available for propulsion may
be termed the local free energy, A

The local free energy may be estimated with the thermodynamic cycle
shown in Fig. 3, which illustrates a case in which one substrate molecule,
5, present at concentration Cy, is converted to two product molecules,
Pl and P2, present at concentrations Cpy and Cpy respectively, with a
free energy of reaction under experimental conditions of AG = AG*+
RT In(CpCe2/CsC ), assuming ideal solutions. The lower route of the cy-
cle breaks the process into five steps. In the first, step, the subsirate mole-
cule iz, in effect, compressed into the region near the enzyme where
enzyme-subsirate interactions are non-negligible, under the artificial
assumption that only steric interactions exist between the two molecules.
The volume of this region is termed V.. g, and the free-energy change asso-
ciated with this step is 4G, = —RTIn{V. G5} The subsequent three steps
are those for which the free-energy change, A, could contribute free en-
ergy to propulsion. Here, the nonseric enzyme-substrate interactions are
tumed on, the substrate iz converted to product, and then all nonsteric inter-
actions between the enzyme and products are artificially tumed off while
the products are constrained to remain in the region where these interactions
were non-negligible. For products Pl and P2, the volumes of these local re-
gions are, respectively, Vi, py nd V.. pa Finally, the constrained products
are released to their solute concentrations with free-energy change AG, =
RN Vi, pViee p2Cp1 Cpa). Closing the thermod ynamic cycle now allows
one to show that 4G, = AG* — BT In{({Vie p1 Vioe p20* )/ Wi ). Noite that
if Vi & given in units of nm?, then the 1 mol/L standard concentration
should be written as 0.6 moleculesinm®. The steps corresponding to the
local free energy have the chamcter of 2 unimolecular process, and thiz
quantity is, accordingly, independent of the standard concentration, %,
because my change in C° causes equal and opposite changes in AG* and
the second term of 4. If the enzyme interacts with subsirate and product
malecules over similar ranges, we may write al three local wolumes as the
same quantity Viee, and the local free energy takes the simpler form 4Ge =
AGF — ENVieeT™). A straightforward generlization to other stoichiom-
etries yields AGe = AG — (Np — NpRTIN Ve C°), where N and Ny are
the numbers of product and substrate soluies, respectively. Again, although
A depends on the standand concentration, this dependency is canceled by
the factors of C* in the added term.

The quantity V.. is the volume covered by the interaction mnge of sub-
straie and product molecules with the enzyme. We estimate this quantity by
considering the interaction region to be a hemisphere around the enzyme
active site with a 1 nm radius typical of protein-ligand interaction ranges,
asdetermined from molecular dynamics simulations {45, 46). With these as-
sumptions, RTINVyoC%) = 0.6 kI - mol~". Note that this quantity is mther
insensitive to the precise choice of V.. because of the logarithm. For ure-
ase, where one molecule of urea is decomposed into one carbon dicxide and
two ammeniamolecules, Np — Ny =2, 80 4G, = AG° — 2RTI V) =
—20%J - mol™" — 1.2k - mol™" = —21.2 kT - mol ™", For acetylcholin-
esterase, where one molecule of acetylcholine is decomposed into one ace-
tic acid and one choline, Np — Ng =1, 50 4Gy, = 4G° — RTIn{V.C%) =
=17k - mol™" — 06 kI - mol~" = =176 kI - mol~". Thus, the local
free energies available to drive propulsion remain close to the standard
hinding free energies appropriate to C* = 1 molL, as was to be demon-
straied. We note that this result is serendipitous because changing to
a different standard concentration would not change A, but would
change AG".
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Mechanistic analysis of light-driven overcrowded
alkene-based molecular motors by multiscale
molecular simulationst

Mudong Feng (2 *® and Michael K. Gilson{2°

We analyze light-driven overcrowded alkene-based molecular motors, an intriguing class of small molecules
that have the potential to generate MHz-scale rotation rates. The full rotation process is simulated at
multiple scales by combining quantum surface-hopping molecular dynamics (MD) simulations for the
photoisomerization step with classical MD simulations for the thermal helix inversion step. A Markov state
analysis resolves conformational substates, their interconversion kinetics, and their roles in the motor's
rotation process. Furthermore, motor performance metrics, including rotation rate and maximal power
output, are computed to validate computations against experimental measurements and to inform future
designs. Lastly, we find that to correctly model these motors, the force field must be optimized by fitting
selected parameters to reference quantum mechanical energy surfaces. Overall, our simulations yield
encouraging agreement with experimental observables such as rotation rates, and provide mechanistic
insights that may help future designs.

1 Introduction

Molecular motors are molecules that transduce optical or
chemical energy into mechanical motions, such as translation
and rotation, through cyclic conformational changes.' Naturally
occurring molecular motors, such as ATP synthase and myosin,
have evolved to support many essential biological functions.” It
has also been argued that even enzymes not usually thought of
as molecular motors, such as adenosine kinase, must exhibit at
least weak motor-like properties, as a direct consequence of their
being thrown back and forth between multiple chiral free energy
surfaces corresponding to their apo and substrate-bound states.?
The same fundamental principles also apply to non-biological
molecules, and indeed, exciting progress has also been made in
the design and synthesis of artificial molecular motors that may
mimic or even surpass their biological counterparts.***

In particular, the overcrowded alkene-based motors®’
(abbreviated here as alkene motors) generate robust unidirec-
tional rotation, which has been harnessed in several demonstra-
tion applications.® ™" The alkene motors have a central double
bond between two carbons (Fig. 1), which divides the molecule
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into a lower part, referred to as the stator, and an upper part,
referred to as the rotor. If one views the motor, in the stereo-
chemistry shown in Fig. 1, along the central bond, from the rotor
to the stator, the rotor turns clockwise relative to the stator. In
the first step, the central double bond undergoes Z-E photo-
isomerization, converting the stable form (A) to the metastable
form (B). In the second step, thermal helix inversion (THI)
converts B to another stable form (C). Here, the change in stator
pucker from B to C resembles a flap of butterfly wings, putting
the stator benzene rings from the back to the front. Another,
similar, 180° rotation then converts C to A via D. Because the
motors shown here have symmetric stators, A and C have
identical energy, as do B and D. In contrast, A and D always
have different stabilities, as do B and C, due to difference in ring
pucker. Thus, the pucker of the rotor 5-member ring puts the
methyl group in either axial (A, C) or equatorial (B, D) position,
the latter giving larger repulsion with the stator, and hence
higher energy.’®> As previously reported,>™® the metastable
forms, B and D, are actually mixtures of metastable substates
with distinet conformations, and hence are more complex than
shown in Fig. 1.

An intuitive explanation of this process in terms of motions
on the ground and excited state potential energy surfaces (PES)
is provided in Fig. 2."® The motor starts in stable form (A) and is
excited by light, undergoing a vertical transition (i.e., one that
does not involve a change in nuclear coordinates) to a Franck-
Condon point on the excited state energy surface. It then
rotates down the gradient of the excited state PES. During this
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Fig. 1 Chemical structures and rotation processes of the molecular motors studied in this paper. The rate constants for their THI steps (vertical arrows)

all are on the microsecond timescale (8 x 10957 2 x 10°s%, 3 x 10° s

for Motors S, N, O respectivelylz'm). Although the metastable forms have

multiple substates, only the lowest energy metastable substate is drawn here. The corresponding 3D structures provide atom numberings used

throughout this study.
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Fig. 2 Motor rotation dynamics on the ground state (lower) and excited
state (upper) potential energy surfaces. FC: Frank—Condon point. Cl: conical
intersection. THI: thermal helix inversion. Stable and metastable forms are
described in Fig. 1).

critical step, it “flies over’” a large ground state energy barrier
that would be very difficult to pass on the ground state PES.
When it is near the conical intersection between the excited
state and ground state surfaces, the molecule hops back to its
ground state and continues down the energy gradient to the
metastable form (B). Because there is now a high ground state
energy barrier blocking a reverse motion back to A, the motor
remains in B until thermal fluctuations kick it over the lower
THI barrier to stable form (C). From C, the same process
repeats, moving the motor through metastable form (D) and
back to stable form (A).
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These motors can be viewed as examples of flashing
ratchets,™'’ where switching between two different energy
surfaces - here the ground state and the excited state — drives
directional motion. In the absence of light, the motor would go
to equilibrium on the ground state PES, and its conformational
probabilities would follow the Boltzmann distribution. Con-
sequently, the stable form would be at much higher concen-
tration than the metastable form, and the principle of detailed
balance'” would mean that no net rotation occurs. In the
presence of a constant light source, photo-excitations break
detailed balance and create a non-Boltzmann steady-state dis-
tribution, the so-called photostationary state. Unlike in equili-
brium, the steady state concentration of the metastable form
can match or surpass the stable form.'®*® Thus, the motor
molecules can transduce light energy by letting photoisomeri-
zations pump them to the metastable form, and releasing their
stored energies during THI.

Given the ultimate goal of using molecular motors for
practical applications, it is of interest to consider performance
metrics to be optimized when designing them. One obvious
metric is the rotation speed. There have been considerable
efforts to make faster alkene motors, as reviewed from both
experimental®’ and theoretical perspectives.® These have
focused on accelerating THI, which is the rate-determining
step of the rotational cycle, without sacrificing unidirectionality.
The THI rate constant can be measured experimentally by
monitoring the relaxation of the absorption spectrum after pulse
excitation.® It can also be obtained from molecular simulations
by determining the mean first passage time for the transition
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from the metastable form to the stable form. Thus, comparing to
experiments provide a way to gauge simulation accuracy.
Another performance metric, the power output, equals the
rotation speed times the average work the motor does in each
rotation cycle. However, the power output depends on factors
extrinsic to the motor, notably the magnitude of load and how
the load is coupled to the motor. A more general and intrinsic
property is the thermodynamic maximum of the work per cycle,
which is related to the free energy released when the motor
undergoes THIL

Important prior studies have developed quantitative models
of these molecular motors at varying levels of molecular detail.
Geertsema et al. constructed a Markov state model (MSM) with
rate constants fitted to NMR measurements,'® and evaluated
serveral performance metrics such as the average rotation
speed and the degree of rotation unidirectionality. Their model
provides a valuable perspective of concentration fluxes in the
system at a macroscopic level, but does not offer microscopic
details beyond the simple dichotomy of stable vs. metastable
form. Other studies have considered the microscopic level, as
follows. Computational studies have used static quantum
mechanical (QM) methods, such as DFT geometric optimiza-
tions of energy minima and transition states, that can provide
accurate energies,"**° but these are not fully informative about
the statistical mechanics of the rotational process. Short mole-
cular dynamics (MD) simulations at the picosecond timescale
have also been used to examine the photoisomerization step
but not the slower THI step.”’** However, classical MD can
now routinely reach the microsecond timescale for such small
systems, and thus is directly applicable to the subset of motors
with THI rate constants on the microsecond time scale.'>%%*
These motors are more challenging to characterize experimentally,
because of their high rates, but they are easier to characterize with
classical MD.

Here, we propose a multiscale modeling framework that
couples QM surface-hopping MD, used to model the photo-
isomerization step, with classical MD, used to model the THI
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step (Fig. 3). This combination of methods allows modeling of
the entire photoisomerization process, as the surface-hopping
method includes a description of the electronic degrees of
freedom in the ground and excited states and thus allows
simulation of initial motions on the excited state energy surface
and the stochastic hop back to the ground state, while the
classical MD allows longer timescale simulations on the
ground-state surface, which are required to model the slower
THI process, and also allows use of a more detailed treatment
of the solvent. The accuracy of our classical MD simulations is
supported by optimization of selected force field parameters to
fit QM energies and gradients for these specific compounds.
The rotation mechanism is elucidated by full rotation trajec-
tories (orange arrows in Fig. 3) and Markov state models that
provide conformations and interconversion kinetics of the
metastable substates. We also assess motor performance by
using weighted ensemble simulations to compute the THI rate
constant, and umbrella sampling to compute the free energy
drop going from the metastable form to the stable form.
Encouragingly, the THI rate constants computed agree well
with experimental measurements. The results thus may benefit
future design of similar molecular motors.

2 Methods

The computational framework in this study, illustrated in
Fig. 3, has three main components. First, the photoisomeriza-
tion process is modeled with QM surface-hopping MD; second,
classical MD at the microsecond timescale is used to study the
THI mechanism and obtain quantities related to performance,
such as rate constants and free energies. Finally, to achieve
realistic classical MD results, we adjust force field parameters
against conformational energies from reference QM calcula-
tions. The three components are described in the following
subsections. Additional details are provided in the ESI;} scripts
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and input files to reproduce this study can be downloaded from
a Github repository (github.com/fengmudong/motor-paper).

2.1 Surface-hopping MD simulation

We used QM surface-hopping MD, run in replicates with slightly
different starting structures, as detailed below, to model the
photoisomerization step of the motors in Fig. 1. These simula-
tion replicates provide a diverse and physically relevant sample
of post-photoisomerization structures that serve as initial struc-
tures of our classical MD simulations.

Surface-hopping simulations were carried out at the OM2/
MRCI level, which is a semi-empirical QM method designed for
fast excited state -calculations®® that gives competitive
aceuracy.”” The software package MNDO®® was used for these
calculations. We first ran 10 ps of sampling in the ground state,
starting from the optimized structure of the stable form (3D
structure C in Fig. 1). Then, samples drawn at random from this
initial ground state trajectory were set to the first excited state
without any change in nuclear coordinates, if they met standard
MNDO criteria such as successful mapping of the active space
orbitals, and if they passed a stochastic selection based on the
computed excitation probability.*® About 70% of the initial
samples passed and were excited. These excited samples represent
an ensemble of Franck-Condon points, and from each we started
a simulation replicate. Tully’s fewest switches algorithm® was
used to determine hopping to the ground state. Energies and
gradients were evaluated on the fly at the OM2/MRCI level until
the fixed simulation length of 4.5 ps was reached. A replicate was
kept for further use if it had hopped to the ground state and
ended the 4.5 ps run in the metastable form. The final coordinates
of such replicates were used as initial coordinates of classical MD
simulations. The other replicates, representing the side processes
in Fig. 3, were not used to constitute the full rotation trajectory,
but offer additional insights, as discussed in the Results and
discussion section.

These surface-hopping simulations used a Langevin ther-
mostat® targetting 90 K, the temperature used in the relevant photo-
isomerization experiments,'® with a collision frequency of 0.2 ps~*.
The Langevin thermostat provides a random “kick” to each atom at
every time-step, to model solvent impacts, and a drag on each atom,
proportional to its velocity, to model the effect of solvent viscosity.
The balance of these energy-adding and damping forces effectively
sets the target simulation temperature. We also tried the Nose-
Hoover thermostat,® an alternative to the Langevin thermostat,
but this led to non-physical low-frequency kinetic energy oscilla-
tions not present in Langevin or constant energy simulations,
even when a long Nose-Hoover chain was used, so we chose not
to use this method.

2.2 Classical MD simulation

First, classical MD simulations were appended to the QM
surface-hopping MD trajectories (Section 2.1) to construct full
rotation trajectories of Motor S and Motor N. This was not done
for Motor O, for reasons detailed in Section 2.3) The initial
structure of each classical simulation was set as the final
structure of one of the QM surface-hopping trajectories in the
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metastable form (Section 2.1). One motor molecule was sol-
vated with 600 molecules of dichloromethane in a 40 A cubic
periodic box, using the software Packmol.*! After energy mini-
mization, the solute was restrained in position while the system
at constant volume was heated to 300 K with the Berendsen
thermostat. It was then equilibrated, with restraints still on, at
300 K and a pressure of 1 bar with the Langevin thermostat and
the Monte Carlo barostat, mimicking the experimental condi-
tions for microsecond THL'® Finally, restraints were removed
for 1 ps production runs at the same temperature and pressure.
In classical MD, the Langevin collision frequency we mainly use
was 1 ps~", but different values were also used to evaluate the
effect of this parameter on the Kkinetics (discussed later in Section
3.3.4). The trajectories that completed THI were concatenated
with their corresponding surface-hopping MD trajectories to give
continuous trajectories of the full 180° motor rotation.

Then, these production MD trajectories (whether they had
completed THI or not) were used to construct a reversible
Markov state model (MSM) of each motor. The trajectory
segments in the stable form after THI were excluded when
building the MSM, because the reverse THI process was not
sampled. The high dimensional trajectories of atomic positions
were first condensed to time series of all the dihedrals present
in the topology file of the motor; each dihedral is associated
with a force field term. After further dimension-reduction using
time-lagged independent component analysis (TICA), the time
series in continuous conformational space was discretized to
conformational clusters using k-means clustering. Then the
clusters were classified by Perron cluster analysis (PCCA)*? into
4 metastable substates. We chose 4 substates because partitioning
the metastable form into a larger number of substates led to some
substates being overly similar to each other. The time series of
substate classification were then analyzed to produce the MSM, as
a 4 x 4 transition matrix.

Although plain MD yielded a few trajectories that completed
THI, many more such runs would be needed to obtain better
precision for THI rate constants.*® Therefore, we instead used
an enhanced sampling technique, the weighted ensemble
method implemented in WESTPA,* to compute the THI rate
constant. In WESTPA, a collection of MD replicates initiated
from metastable form is managed by cloning new ones in
regions of the conformational space with fewer replicates,
and merging existing ones in regions with more replicates, to
generate a more even distribution of replicates along desired
progress coordinates. This allows an artificial increase in the
number of replicates that sample higher energy transitional
regions. Correct statistics is maintained by adjusting replicate
weights when replicates are cloned or merged. Note that this
method does not involve modifying the Hamiltonian. As
detailed in Results and discussion, THI progress coordinates
were defined for each motor in terms of key structural features,
such as dihedrals describing rotation around the central double
bond and rotor/stator puckering coordinates. Then the confor-
mational space was divided into bins of different progress
coordinate values, and WESTPA was used to monitor the number
of MD replicates in each bin to decide when to clone or merge
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replicates. When a replicate reached the bin defining the stable
form of the motor, the replicate was restarted at one of the initial
metastable conformations. As the probability distribution across
bins converge to steady state distribution, the THI rate constant is
calculated using the steady state flux from the metastable form to
the stable form.

We calculated the free energy difference between the stable
and metastable forms from potentials of mean force (PMF)
obtained with umbrella sampling.* To do this, we used harmonic
potentials of spring constant spring constant 200 k] mol " to
restrain the central double bond torsion angle in a series of 1 ps
MD simulation windows. The torsion value at each window
center ranges from —1.9 to 2.1 radian, with 0.1 radian spacing.
For reasons given in Appendix B, the central torsion angle is
defined here as 43-15-14-29, where 43 and 29 are hydrogens
attached to C18 and C2 in Fig. 1, respectively. This range spans
the metastable form, the stable form, and the barrier between
them. Umbrella sampling simulations were set up using the
open-source library PLUMED,*®*” and the PMF along the torsion
was obtained by Weighted Histogram Analysis Method
(WHAM).***° From the PMF G(x), which is essentially the con-
ditional probability distribution expressed as a free energy
profile, the free energy difference between the metastable form
and the stable form was calculated by integrating across the
corresponding ranges of the torsion values: G, — G, = RT
In [ ,eP®™¥dx — RTIn | e #*)dx. Here the s and m subscripts
indicate the sampling windows that span the stable and
metastable forms, respectively.

2.3 Force field optimization

As detailed in Results and discussion, we found that an initial
“off the shelf” force field did not yield realistic results in
classical MD simulations of these molecules. We therefore
optimize selected force field parameters by fitting them to
reference QM energy surfaces.

2.3.1 Generation of QM potential energy surfaces. Because
the classical MD simulations address only ground state
dynamics, ground state QM suffices to generate reliable fitting
targets, including energies and energy gradients with respect to
atomic positions. We chose DFTD3/DZVP level of theory, as it
has been shown to strike a favorable balance between accuracy
and computational cost in calculating conformational energies
for molecules of this size.”” The motor rotation process of interest
involves conformations where the central carbon-carbon bond is
twisted, so that atoms 16-15-14-13 are not coplanar. In such
conformations, m orbital overlap is compromised, resulting in
open shell character of the electronic structure; this motivated us
to use unrestricted DFT orbitals.

We computed two dimensional PES by running constrained
geometry optimizations at a grid of points along two predefined
scan coordinates. Based on prior analyses of these motors™>**
and our own trial results, we chose two combinations of scan
coordinates: central torsion angle 18-15-14-10 combined with
pyramidalization 14-1-13-15, and central torsion angle 18-15-14-10
combined with rotor pucker 27-15-16-25. In this pucker definition,
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positive/negative value of rotor pucker dihedral means equatorial/
axial, respectively. The rationale for choosing these coordinates
is provided in Appendix B.

We used the wavefront propagation algorithm implemented
in TorsionDrive,” an open source package, to generated QM
surfaces of motors S, N and O (Fig. 1). TorsionDrive runs geometry
optimizations constrained at each grid point multiple times, from
different propagating directions, to find the lowest energy struc-
ture at that point. TorsionDrive also benefits from using multiple
starting structures to seed the propagation; the seed structures we
used were the final metastable form structures from QM surface-
hopping MD, plus the structures shown in Fig. 1. Relative to less
exhaustive scanning methods in the literature, such strategy is
less sensitive to convergence failures at some grid points, to
hysteresis (i.e. different results when the same point is scanned
from different direction), and to optimizations being trapped in
local minima rather than the lowest energy structure at the grid
point. As shown previously,*! these problems can be particularly
severe for alkene motors, likely due to nontrivial size (48 atoms
for Motor S) and high rotation barriers, but problems are largely
alleviated by the TorsionDrive method. Energies and gradients
were computed by the Psi4 package®” for use in TorsionDrive.

2.3.2 Parameter optimization. We used a Newton-Raphson
algorithm implemented in the open-source package Force-
Balance® to systematically optimize force field parameters, so
that the force field replicates as much as possible the QM energy
surfaces (Section 2.3.1). During optimization, force field energies
and gradients of the unsolvated motor molecule were compared
with the corresponding QM energies and gradients. The objective
function is the sum of squared energy and gradient differences
between the force field and QM across the grid of conformations.
For Motor O, it proved necessary to employ additional regular-
ization terms, ie. penalty terms to discourage unphysically
large changes of certain parameters, as described in Results and
discussion.

As detailed in Results and discussion, we tested various
choices of what parameters to optimize, and we found that
optimizing dihedral (proper and improper) amplitudes alone
sufficed for Motor S and N, whereas Motor O needed more
changes. Our procedures ensure that these parameters remain
non-negative during optimization. No changes were considered
to the functional form of the force field, the multiplicities and
phases of torsional terms, and the partial atomic charges. Initial
force field parameters were taken from general Amber force field
(GAFF) version 2.1***% implemented in AmberTools18," with
AM1/BCC partial charges.*” A subtlety of atom type selection for
the motors is discussed in the Appendix C. For the dichloro-
methane solvent at room temperature and pressure, the GAFF2
parameters gave a density of 1.25 g cm 2, in good agreement
with the experimental value of 1.33 g ecm >,"® so the GAFF2
parameters were used as is for the solvent.

2.4 Selection of reaction coordinates

It is often necessary to map chemically meaningful conforma-
tional differences to a few coordinates, which may be followed
over time and through transitions. Here, we call these reaction
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coordinates, but other synonyms are often used; e.g., progress
coordinates or collective variables. In general, intuition based
on one coordinate alone, such as the central torsion angle, can
be unreliable; it is preferable to account for all degrees of
freedom in the system using methods like MD simulations,
and then verify hypotheses about key coordinates through
analysis of the resulting trajectories. For the motors in this
study, the key conformational features are the rotation of the
rotor relative to the stator, the pucker of the stator, the pucker
of the rotor, and the pyramidalization of the two central
carbons. We found that one well-chosen reaction coordinate
suffices to differentiate between the metastable form and the
stable form, as in the umbrella sampling calculations; however,
at least two coordinates are needed to differentiate all the
conformationally distinct and kinetically separated metastable
substates. The approach used to define reaction coordinates in
this study is detailed in the Appendix B.

3 Results and discussion

3.1 Modeling photoisomerization with QM surface-hopping
MD

3.1.1 Analysis and fate of the simulation trajectories. For
each of the three motors in Fig. 1, the photoisomerization step
was simulated in multiple replicates that represent an ensemble
of Franck-Condon points (Section 2.1). As summarized in
Table 1, about 10% of the simulation replicates of Motor S and
Motor O progressed to the ground state metastable form. Each of
these simulations offers a chemically reasonable realization of
photoisomerization. The trajectories are similar to those of other
alkene motors in prior works,>>** in the sense that the con-
formations at which the excited to ground state hops occur are
similar, as are the rotational processes. A video of a representa-
tive trajectory of Motor S is provided in the ESI{ (mndo-
amber.mp4). Final ground state metastable form conformations
of Motor S and Motor O were used as starting conformations for
the classical MD simulations detailed in Section 3.3. The starting
conformations excluded a few that had not yet relaxed to a

Table 1 Outcomes of surface-hopping molecular dynamics simulation
replicates. Columns, from left to right, provide the motor name, the
duration of each individual replicate simulation for this motor, the number
of simulation replicates, the total number of replicates that failed to
isomerize away from the initial stable form, the number of replicates
remaining in the excited state, the number that completed photoisome-
rization and terminated in the metastable form, and the number that
completed both photoisomerization and THI and thus terminated in the
stable form (all replicates that completed photoisomerization also hopped
from the excited state to the ground state)

. Not isomerized  Isomerized
Time per
replicate Still in Metastable THI
Motor (ps) Replicates Total excited state Form Completed
S 4.5 194 170 120 21 3
o 4.5 71 64 55 6 1
N 5.0 71 71 71 0 0
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sufficiently low-energy conformation and thus were not suitable
starting points for the classical simulations. This left 13 and 4
initial conformations for Motors S and O, respectively. For Motor
N, the QM simulations did not yield any hops from the excited
state to the ground state, despite running for similar durations
and numbers of replicates.

In an interesting side-process, a few replicates of Motors S
and O actually completed THI (Table 1), progressing through
the metastable form to the stable form. In all three of these
simulations for Motor S, the transition to the stable form is
immediately preceded by flipping of the stator pucker to that of
the target stable form, as seen in the representative trajectory
(video mndo-whole.mp4 in the ESI}). The role of the stator
pucker in THI is discussed further in Section 3.3. These rapid
THI events appear to occur too quickly relative to experimental
observations that THI occurs on the microsecond time-
scale.’®'® On one hand, these rapid THI events may be artifacts
of the simulation methodology. On the other hand, the com-
putational result could be reconciled with experiment if the
kinetics of THI is bimodal, with a fast mode that happens on
the picosecond timescale and a slow mode that happens on the
microsecond or millisecond timescale. In the fast mode, photo-
isomerization and THI would happen in quick succession, and
the motor would not have time to dissipate much of the kinetic
energy from the excited to ground state hop before crossing the
THI energy barrier. In the slow mode, however, the motor has
time to fully equilibrate, with the kinetic energy from photo-
isomerization dissipated into many solute and solvent degrees
of freedom before THI. If most trajectories dissipate their
energy before completing THI, thus following the slow mode,
then the fast mode would be a side process which does not
contribute much to the overall kinetics observed in experiment.
The experimental data available for these motors'*'® does not
seem to allow one to determine whether THI in fact follows
such bimodal kinetics.

As listed in Table 1, most replicates of all motors studied
had not progressed to successful photoisomerization by the
end of the simulations. Many of these replicates were still in
the excited state, but there were also many that hopped to the
ground state and fell back to the initial stable form, rather than
progressing to the metastable form. These are unproductive
replicates, in the sense that they would not lead to rotation of
the motor. Quantum yields estimated from the fraction of
productive replicates are on the same order of magnitude as
reported experimentally for non-MHz alkene motors."?

3.1.2 Effects of thermostat and solvent properties. The
present simulations use the Langevin thermostat to regulate
temperature (Section 2.1). With this method, a given tempera-
ture can be modeled by larger random forces (“kicks”) and a
larger drag coefficient, or by smaller kicks and a smaller drag
coefficient. This scaling is controlled by the collision frequency
parameter, which is connected with the viscosity. In the simula-
tions described above, we used a collision frequency of 0.2 ps—,
so that the kinetic energy released during photoisomerization
dissipates into the bulk solvent on a several picosecond time-
scale, in agreement with experimental observations for a related
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photoexcited system.*> For completeness, however, we also
explored larger and smaller values of this parameter.

With a lower collision frequency of 0.02 ps™*, corresponding
to weaker kicks and lower viscous drag, the thermostat has less
influence on the dynamics, so the kinetic energy added to the
system by downhill motion on the excited state PES and by the
subsequent hop to the ground state led to larger and longer-
lasting rises in the effective temperature (kinetic energy) of the
motors. Presumably because of the more extreme temperature
rises, we observed more replicates that completed both photo-
isomerization and THI during the QM simulations. Interestingly,
setting the collision frequency to zero, which decouples the
motor from any heat bath and leads to a constant energy simula-
tion, caused the photoisomerization success rate to drop, and a
number of replicates ended in numerical failure, presumably
due to motions too fast for the selected time-step. With a higher
collision frequency of 2 ps!, the fraction of replicates that
successfully hopped from the excited to the ground state within
the simulation time was markedly reduced. Presumably, the
increased viscosity slows rotation of the rotor toward the conical
intersection, delaying return to the ground state.

Finally, the present simulations have neglected the dielectric
properties of the solvent. The potential consequences of this
are worth considering, as the commonly used solvent dichlor-
omethane has a dielectric constant of about 9.%® A prior QM
study®® reported that the excited state of a motor in this class
has a dipole moment of about 1.1 Debye in the ground state
and 6.8 Debye in the excited state. Therefore, the reaction field
of a polar solvent should tend to stabilize the excited state
preferentially and thus, presumably, reduce the amount of
potential energy released as kinetic energy during photoisome-
rization. This might reduce the tendency of the motor to rapidly
go through THI. However, the magnitude of any such effect is
uncertain, and might be elucidated by more detailed calculations.

3.2 Optimization of force field parameters for overcrowded
alkene motors

The accuracy of classical MD depends on the accuracy of the
force field used. To our knowledge, no specialized force field
exists for alkene motors, except one reparametrized from OPLS
for classical MD simulation of photoisomerization, rather than
THIL>*?? In addition, our initial tests of GAFF2 force field
yielded problematic results for these molecules, as detailed
below. We therefore parameterized a specialized force field for
each motor molecule by fitting to its unique QM potential
energy surfaces and gradients, as detailed below.

3.2.1 Motor S and Motor N. The QM energy surfaces of
Motor S provided by TorsionDrive are smooth and well-converged,
as evident in Fig. 4A and B. The two deep minima in each energy
surface correspond to the stable forms in Fig. 1, and the shallower
minima correspond to the metastable form. This clean separation
of stable form and metastable form was not achieved by other
plausible choices of reaction coordinate, such as when the central
torsion angle was defined by atoms 16-15-14-13 or when using the
stator pucker as a scan coordinate. The lack of perfect 180°
periodicity along the central torsion results from the geometric
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Fig. 4 Potential energy surfaces of Motor S. (A and B) Quantum mechan-
ical (QM) energy. (C and D) Energy from force field after fitting to QM.
(E and F) Energy from GAFF2 force field before fitting to QM. The scanned
coordinates are the central torsion angle, 18-15-14-10; the pyramidaliza-
tion improper dihedral, 14-1-13-15; and the rotor pucker dihedral, 27-15-
16-25, with atom numberings from Fig. 1. The force field energy for each
grid point was evaluated at the corresponding QM conformation without
further relaxation.

properties of the torsion and the nonplanarity of the rotor and
stator. The motors rotate from right to left in these graphs
(negative direction of the central torsion) because the metastable
to stable transition along negative x direction has a moderate
barrier height, whereas the metastable to stable transition along
the positive x direction has an extremely large barrier.

The GAFF2 force field yields energy surfaces (Fig. 4E and F)
that deviate significantly from QM (Fig. 4A and B). The energy
barriers between minima are higher and wider than QM, and
the metastable local minimum at around (40, 0) in QM (Fig. 4B)
is missed by GAFF2. Furthermore, we found that the unopti-
mized force field gave fundamentally incorrect conformations
in MD simulations. For example, the stator heterocycle adopted a
chair conformation, whereas experiments'>'® and QM suggest a
boat conformation. GAFF1 yielded similar problems, and we
expect other general force fields, if not tuned for alkene motors,
to be inadequate in quantitative studies, if not qualitatively wrong.

Following optimization, the force field energy surfaces
(Fig. 4C and D) correctly represent all local minima and yield
energy barriers similar to the QM results. It is notable that the
optimization reduces the amplitudes of torsional energy terms
associated with the central double bond and thus addresses the
issue that the initial force field overestimated the barrier heights.
In addition, optimization causes the various improper dihedral
terms to have more varied amplitudes, ranging from essentially
zero to 10.0 keal mol ™", whereas all the GAFF2 amplitudes are
1.1 keal mol . These changes presumably enable the optimized
parameters to provide correct ring conformations. Note that only
proper and improper dihedral terms were adjusted; other force
field terms, such as bond-stretches and bond-angles, were left
unchanged. For Motor N, the initial GAFF2 parameters again
yield potential energy surfaces significantly different from the
QM surfaces, and optimization of dihedral terms again yielded
potential energy surfaces much closer to QM (Fig. S1 in the ESI¥).

3.2.2 Motor O. Optimization of force field parameters for
Motor O posed additional challenges. Although optimization of
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Fig. 5 Potential energy surfaces of Motor O. (A and B) Quantum mechan-
ical (QM) energy. (E and F) Energy from force field after fitting only dihedral
terms to QM. (C and D) Energy from force field after fitting dihedral terms,
bond and angle terms, and terms of Buckingham potentials. (G and H)
Energy from GAFF2 force field before fitting to QM. See Fig. 4 for definitions
of the scan coordinates.

force field dihedral parameters improves agreement with QM
energy surfaces (Fig. 5E and F), classical MD simulations with
the resulting fitted parameters give no THI transitions at all for
Motor O following optimization, implying an underestimation
of the rate constant.

We therefore tried optimizing not only dihedral terms for
Motor O, but also the ¢ and ¢ values of each Lennard-Jones (L]J)
term, as well as the force constants and equilibrium lengths of
bond-stretch and angle-bend terms. These terms strongly affect
the steric interactions between the stator and rotor during THI.
To avoid nonphysically large changes in L] terms, flat bottomed
restraints were applied, to allowed maximal changes of 0.1 A in
¢ and 0.015 k] mol ! in &. The resulting force field is softened,
with ¢ and ¢ smaller in most cases, and also reduced bond-
stretch and angle-bend force constants. As expected, using the
softened LJ terms in classical MD simulations allowed a greater
THI rate that matches experiments. However, in this case the
optimization algorithm made bond and angle force constants
unphysically small, causing the molecule to be overly flexible
during simulation. For example, the force constant of the
central double bond, which is conjugated and thus should
have a bond order between one and two, fell from the GAFF2
value of 855 to 312 k] mol™* A2, Note that even the GAFF2
value is probably on the low side, because the force constant for
a benzene C-C bond, which also is of order between one and
two, has been reported as 1124 kJ mol ' A=

We propose that the reason Motor O simulations face the
dilemma of either underestimating the THI rate constant or
using unrealistically soft bonds and angles is that the 12th
power repulsion of the LJ functional form is unrealistically
steep®® and therefore overestimates the van der Waals repul-
sion between the rotor and the stator during THI. For Motor O,
among the scanned QM conformations, the closest distance
between the rotor methyl H and the stator H on C12 is as close
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as 2.0 A, well below the minimal-energy distance of 3.0 A for
this interaction in the force field, and well into the range of
distances where the 12th power repulsion becomes proble-
matic. Motors S and N, in contrast, have a puckered and more
flexible stator, and thus can alleviate this repulsion during THI,
making the LJ repulsion acceptable for simulation of these
motors.

We tested this explanation by replacing the L] potential with
the Buckingham potential,”* which has a less steep and hence
more realistic exponential repulsion term. The initial Buckingham
parameters were taken from Table 3 of Engler of coworkers®® and
the B cofficients were optimized without restraint. Bond-stretch
and angle-bends were allowed to vary, subject to flat bottom
restraints that prevented relative changes greater than 10%.
Optimization with the Buckingham potential led to improved
agreement with QM, as shown in Fig. 5C and D, without abnor-
mally small force constants. Thus, the Buckingham potential may
replace 1J potential for simulations of more congested molecules
like Motor O. Unfortunately, support for the Buckingham
potential in simulation software is currently limited. For example,
it is not implemented in AMBER and, although it is implemented
in GROMACS, it is not available in the GPU version. This made it
impractical for use in simulations of Motor O at the timescale
needed for the present study, so no further results are presented
for this molecule. Future progress in software infrastructure is
needed to enable Buckingham potential simulations at longer
timescales.

3.3 Classical MD simulation

3.3.1 Characterization of plain MD trajectories. Thirteen
classical MD simulations of Motor S were initiated from metastable
form ground state conformations available at the end of the QM
surface-hopping simulations (Section 3.1), and each was run for a
total of 1 ps. Because the surface-hopping simulations of Motor N
did not yield any metastable conformations we could use to initiate
classical MD (Section 3.1), for this motor we instead initiated four
1 us classical MD simulations, one from each of the four meta-
stable substates identified by the MSM (Section 3.3.2). No obvious
pathologies were observed in the course of these simulations for
either motor, and several interesting trends were observed.

First, 10 of the 13 simulations of Motor S and one of the four
simulations of Motor N completed THI during their 1 ps duration.
The full rotation process, consisting of excited state dynamics,
decay to the ground state, ground state dynamics within the
metastable form, and THI, is captured by the concatenation of a
QM surface-hopping trajectory and its subsequent classical MD
trajectory for Motor S in video mndo-amber.mp4 in the ESL}

Intriguingly, just as seen for THI transitions during the QM
surface-hopping MD simulations (Section 3.1), every THI tran-
sition in the classical simulations was immediately preceded by
flipping of the stator pucker to that of the target stable form.
This is not visible in video mndo-amber.mp4 (ESI{) because of
the long time interval between frames, which was chosen to
allow viewing of the full rotation process. Therefore, in videos
amber-SnearTHIL.mp4 and amber-NnearTHL.mp4 of the ESL T
we zoom in to animate the details near the THI transition.
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Fig. 6 Time series of the central torsion angle and puckers before, during,
and after a THI transition simulated by classical MD. Forward rotation of the
rotor relative to the stator corresponds to a decrease in the central torsion
angle. The puckers are defined so that positive/negative rotor pucker
mean equatorial/axial, respectively, and positive/negative stator pucker
mean the same/opposite pucker as final stable form, respectively. Labels
indicate which conformational state (Section 3.3.2) is occupied at each
step.

Fig. 6 shows the time series of the key coordinates, ie. the
central torsion angle and puckers, to illustrate the transitions
in amber-SnearTHL.mp4 (ESIT). The first event is a sharp
change in the pucker of the stator to that of the final stable
form, along with a transient backward rotation of the rotor
relative to the stator. This is followed by a sharp forward
rotation of the rotor to reach the stable form. Meanwhile, the
rotor pucker fluctuates rapidly between axial and equatorial
until the stator pucker changes, at which point the rotor pucker
becomes locked in the equatorial conformation until the rotor
rotates to the stable form, at which point the rotor pucker
becomes locked in the axial form. Sections 3.3.2 and 3.3.4
provide further details regarding the THI mechanism and
kinetics.

3.3.2 Substate analysis of the metastable form via Markov
state modeling. The conformational substates of the metastable
form of Motor S and their transition network were obtained in
the form of a Markov state model (MSM), through analysis of the
thirteen classical MD trajectories. Representative conformations
of the four resulting substates are depicted in Fig. 7, along with
circles indicating their steady state probabilities estimated from
the MSM transition matrix. The ESIf furthermore provides
Cartesian coordinates of ten sample conformations for each
Markov state. The transition time constants, i.e. inverse rate
constants, are shown with black arrows representing the asso-
ciated transitions between substates. Orange arrows represent
photoisomerization. As noted in Sections 3.1 and 3.3, the
transition to the stable form is always preceded by a flip of the
stator pucker to that of the target stable form. The MSM groups
the conformations with this pucker into a single substate, called
metastable substate 1 (MS1), and an additional red arrow goes
from MS1 to the stable form in Fig. 7. The 10ns time constant
for this transition is estimated from the simulation time spent
in MS1 for all 13 trajectories, divided by the number of THI
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Fig. 7 Kinetic model of Motor S rotation at 300 K. Each metastable
substate is represented as a circle of area proportional to steady state
probability, along with a representative 3D structure. Black arrows are
drawn for each nonzero transition matrix element of the MSM. Numbers
on the arrows are corresponding transition time constants calculated with
the MSM. A red arrow represents THI transitions that appear to always go
through MS1 in classical MD; the associated time constant is calculated as
the mean wait time in MS1 before transition to stable form. The gray arrow
indicates the overall THI process and gives the overall THI rate constant
estimated with WESTPA (Section 3.3.4). Additional orange arrows are
drawn to represent photoisomerization to metastable substates seen at
the end of the QM surface-hopping MD runs.

transitions observed. The large arrow from the metastable form
as a whole to the stable form is labeled with rate constant
computed by WESTPA simulation (Section 3.3.4). The states
and labelled arrows in Fig. 7 define a complete kinetic model
of the whole motor rotation process, which is analyzed quantita-
tively in Section 3.3.3.

Our kinetic model in Fig. 7 indicates that MS1, despite its
low population, is a necessary stop on the path from the
metastable to the stable form. Thus, THI can be viewed as
taking place in two consecutive steps: change of the stator
pucker to that of the final stable form, followed by rotation of
rotor, relative to the stator, to complete THI. Metastable sub-
states 3 and 4 (MS3, MS4), which hold the majority of the
population, are similar in conformation, as they only differ by
their rotor pucker, and they interconvert quickly. Metastable
substate 2 (MS2) is the closest to the stable form in terms of its
central torsion angle (defined as e.g. 18-15-14-10 or 17-18-2-1),
but the model implies that MS2 is actually the furthest kinetically
from the stable form. This finding highlights the potential draw-
back of choosing a single geometric feature as the reaction
coordinate: using only the central torsion angle as the reaction
coordinate risks giving the incorrect impression that a motor in
MS1, MS3, or MS4, needs to go to MS2 as the obligatory last
step before reaching the stable form. Exploring mechanisms by
unconstrained MD simulations, instead of exploring along
predefined reaction coordinates, helps avoid such problems.
These high dimensional MD trajectories are free of bias or
information loss from inexact assumptions based on low
dimensional intuitions, yet the trajectories can be projected
to informative lower dimensional pictures based on analysis of
structure and kinetics.
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Fig. 8 Kinetic model of motor N rotation at 300K. Each metastable
substate is represented as a circle of area proportional to steady state
probability, along with a representative 3D structure. Black arrows are
drawn for each nonzero transition matrix element of the MSM. Numbers
on the arrows are corresponding transition time constants calculated with
the MSM. A red arrow represents THI transitions that appear to always go
through MS1 in classical MD; the associated time constant is calculated as
the mean wait time in MS1 before transition to stable form. The gray arrow
indicates the overall THI process and gives the overall THI rate constant
estimated with WESTPA (Section 3.3.4), and the orange arrow indicates
photoisomerization.

We also generated a MSM for Motor N from four 1 ps classical
MD trajectories, each started from a conformation similar to one
of the metastable substates of Motor S. The MSM was again
constructed from the time series of all the dihedrals with
associated force field terms, except those involving at least one
atom of the -COOtBu group. The resulting model (Fig. 8) is very
similar to that of Motor S.

Prior studies using static QM methods also delineated
metastable substates of a motor very similar to the present
Motor 8.*** Although the conformations of those substates are
similar to the ones reported here, the prior studies proposed a
different pathway to the stable form. Rather than going through
the relatively high energy MS1 as found here, their pathway
goes to the stable form through the lower energy MS2. Potential
explanations for the difference between the prior results and
those presented here include the fact that the motor molecule
studied previously had an extra methoxy group, relative to
Motor S; the prior studies’ use of high-level QM calculations
throughout; the challenge of finding all relevant transition
states by QM geometric optimization in the prior approach;
and our use of a dynamical, rather than a static, method.

3.3.3 Steady state kinetics of Motor S. The diagram in
Fig. 7 offers a kinetic model of Motor S and includes estimated
rate constants for many of the interstate conversions. Although
we do not have estimated rate constants for photoisomerization
of the stable form into the various metastable substates (orange
arrows), the properties of the motor may be explored by assuming
a range of values for these missing quantities and solving for the
steady state probabilities and rates, as detailed in the Appendix A.
(The Appendix also considers the consequences of backward
photoisomerization from the metastable to the stable form, which
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Fig. 9 Steady state kinetics of Motor S at 300 K. (A) Dependence of the
steady state probabilities on the total photoisomerization rate. (B) Dependence
of steady state rotation rate of the motor on the total photoisomerization rate,
where the three curves correspond to three different distributions of meta-
stable substates generated by photoisomerization: the distribution that leads
to the fastest rotation (MS1:MS2:MS3:MS4 = 1:0:0:0), the distribution that
leads to the slowest rotation (MS1:MS2:MS3:MS4 = 0:1:0:0), and the
distribution inferred from our surface-hopping MD trajectories (MS1:MS2:
MS3:MS4 = 7:2:4:0). In A, the distribution from MD is used.

is omitted here.) The present results correspond to experiments
where the motor is continuously illuminated while at a temperature
that allows THI,'®** so that the motor may rotate continuously.
We first assume that the photoisomerization process deposits
the system into each of the four metastable substates in the
same proportions as observed in the QM surface-hopping MD
calculations (Section 3.1), i.e., MS1:MS2:MS3:MS4 = 7:2:4:0.
Thus, with an overall photoisomerization rate constant of kpnoto

L L7
the rate constant for arriving in MS1 is Ekphmo, and so on. The

steady state probabilities of the system’s states are plotted as a
function of kpnoto In Fig. 9A. At low kpnoto, the stable form has a
probability near unity and the metastable substates have prob-
abilities near zero. As kypoto rises above ~10° s, the probability
begins to shift from the stable form to the various metastable
substates; and a plateau is approached at kyhoto = 10% s™*, where
the stable form probability nears zero.

The motor’s rotation rate (Fig. 9B, orange curve) has a similarly
sigmoid dependence on kphoto- The asymptotic maximal rotation
rate, 1.5 MHz, is approached as the stable form spends a
negligible amount of time waiting for photoisomerization, so that
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THI is rate-limiting. The kppowe at which the rate is 50% of its
asymptotic maximum, i kphoto,50 = 1 X 10° s L

Interestingly, the maximal rotation rate (Fig. 9B) does not
depend dramatically on the ratio of metastable substates
immediately following photoisomerization. Assuming that photo-
isomerization generates only MS1 (MS1:MS2:MS3:MS4 =
1:0:0:0) increases maximal rotation rate by about 10% (Fig. 9B,
blue), because MS1 is close to completing THI (Fig. 7). Conversely,
assuming that photoisomerization generates only MS2 (MS1:
MS2:MS3:MS4 = 0:1:0:0) reduces maximal rotation rate by
about 15%, because MS2 must go through a relatively slow
conversion to MS3 before going to MS1 and then to stable form
(Fig. 7). The insensitivity of the rotation rate to the details of
photoisomerization supports the approach taken in this study,
which focuses on THI process with less comprehensive modeling
of photoisomerization. However, the rotation rates of other light-
driven motors may not be so insensitive to the distribution of
metastable substates generated by photoisomerization. For
example, if a motor had the same transition network and time
constants as in Fig. 7 except for a much longer time constant to
go from MS1 to MS3, its rotation rate would be more sensitive to
the distribution of metastable substates generated by photo-
isomerization, as shown in Fig. 16 of Appendix A.

It is worth clarifying that, although the photoisomerization
process starting from the Franck-Condon point is very fast (on
the picosecond timescale), the photoisomerization rate con-
stant is determined by a longer timescale, i.e., the wait time for
photoexcitation. This wait time is determined not just by the
intrinsic properties of the motor, but also by experimental
settings, such as the intensity and spectrum of the light.
Indeed, approaching the maximum rotation rate in this figure
may require light intensities too high to be readily generated in
experiments, as previously emphasized.*® The need for such
high intensities traces to the low molar absorptivities of these
compounds, about 10 000 molar * cm~*.¢

3.3.4 THI rate constant from weighted ensemble MD
simulations. THI is often the rate-limiting rotation step of the
alkene motors, so its rate constant is a critical performance
metric. Although some of the classical MD simulations discussed
above led to THI transitions, more would be needed for a precise
estimate of the THI rate constant. We therefore used weighted
ensemble simulations in the software package WESTPA to sample
THI transitions.

For WESTPA to facilitate the key conformational transitions,
progress coordinates must be defined that clearly distinguish
the slowly interconverting states. We chose two-dimensional
progress coordinates - a rotor-stator rotation angle (17-18-2-1)
and the stator pucker - that clearly distinguish among the
slowly interconverting metastable substates MS1, MS2, and
MS3/MS4, as well as the stable form, as shown in Fig. 10.
WESTPA calculations were run for both Motor S and Motor N,
using the same starting points as their respective plain classical
MD simulations (Section 3.3.1). As shown in Fig. 11 and Fig. 12,
the final computed THI rate constants are within an order of
magnitude of the corresponding experimental results, as well
as the modeling results in Section 3.3.3.
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Fig. 10 Projection of one of the 13 plain MD simulations onto the two
progress coordinates used in weighted ensemble simulation of Motor S.
Clusters are labelled according to their conformational states (Fig. 7).

In experimental studies, increasing the solvent viscosity
significantly decreased the THI rate constant.”” Our simula-
tions reproduced this trend (Fig. 13) by comparing THI rate
constants from simulations using different Langevin collision
frequencies, as the largest collision frequency, 10 ps~’, which
simulates the largest effective viscosity, resulted in a smaller THI
rate constant than 1 ps~* and 0.1 ps~*. The smallest collision
frequency, 0.01 ps™ ', also appears to decrease the THI rate, in
agreement with a prior study about how collision frequency
influences conformational sampling of a peptide.”® Overall,
however, the computed THI rate constant is not very sensitive
to the somewhat arbitrary choice of collision frequency.

3.3.5 Free energy available from THI. The results presented
above focus on the mechanisms and kinetics of the motor
rotation. Here, we present results for the free energy difference
between the metastable form and the stable form, and discuss
the implications of this quantity as a performance metric. We

THI rate constant (/s)

T
100n

T
0 50n

simulation time per replicate (s)

Fig. 11 THI rate constant of Motor S computed with WESTPA, as a
function of simulation time per replicate, with shading to indicate 95%
bootstrapping confidence interval. Results are shown for two runs with
identical settings except different random number seeds. Dashed red line
indicates experimental rate constant at 300 K, 7.9 x 10° s™%, read from
Arrhenius plots of Klok et all
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THI rate constant (/s)

T U
0 5n 10n 15n

simulation time per replicate (s)

Fig. 12 THI rate constant of Motor N computed with WESTPA, as a
function of simulation time per replicate, with shading to indicate 95%
bootstrapping confidence intervals. Results are shown for two runs with
identical settings except different random number seeds. Dashed red
line indicates experimental rate constant at 300 K, 1.7 x 10”7 s™*, from
ref. 12.

used umbrella sampling to obtain the PMF for rotation around
the central double bond, defined here by torsion 43-15-14-29.
As shown in Fig. 14 for Motor S, the metastable form is
separated from the stable form by a free energy barrier.
Integration along the PMF (Section 2.2) gives a favorable free
energy release of 7.8 kecal mol ™! on going from the metastable
to the stable form (right to left in the figure). Note that the
height and width of the barrier makes this free energy differ-
ence insensitive to the precise choice of boundary between the
stable form’s free energy well on the left and the metastable
form’s free energy well on the right. The corresponding PMF for
Motor N is similar in shape (Fig. 15), and the free energy
difference is slightly greater, at 8.8 kcal mol™"'. Thus, the
available free energy from THI is similar to the standard free
energy released by hydrolysis of ATP, the cell’s energy currency,
~ 8 keal mol™*%".

— — Experiment
— 10/ps
= 1jps
0.1/ps
" 0.01/ps

THI rate constant (/s)

T T
[ 5n 10n 15n

simulation time per replicate (s)

Fig. 13 THI rate constants of Motor S computed with WESTPA, as a function
of simulation time per replicate, for four different collision frequences.
Shaded areas indicate 95% bootstrapping confidence intervals. Dashed
red line indicates experimental rate constant. '
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Fig. 14 Computed Gibbs free energy as a function of rotation dihedral
(43-15-14-29) for Motor S.

The torque available from THI, averaged over the 180° rotation
cycle of the motor, can be estimated as the free energy change,
7.8 kecal mol™’, divided by = radians, which gives a torque of
about 18 pN nm. This may be compared with 40 pN nm for the
highly evolved F1-ATPase motor.>® Note that this analysis omits
any contribution from the photoisomerization step, which also
runs in the forward direction and could in principle contribute
more to the average torque.

We tested the numerical reliability of the free energy evalua-
tions by rerunning all the simulations with different random
number seeds, and obtained free energy differences within
0.3 keal mol™* of the original results. In addition, rerunning with
umbrella sampling spring constant of 100 instead of 200 kj mol *
affected the result by less than 0.3 kecal mol !, whereas varying
WHAM parameters and the integral bounds within reason gave
even smaller changes. Thus, the numerical uncertainties in these
results appear to be well below 1 kecal mol *, and we expect that
the force field is a larger source of error than the numerical
uncertainty. Furthermore, these force field-based free energy
differences are close to those previously obtained by purely
QM methods for a similar motor.*

The maximal power available to drive an external load is less
than the product of the maximal rotational rate and the free
energy change, because loading the motor decreases its

154

10
metastable form

G (kcal/mol)

T T T T
=50 0 50 100
Rotation dihedral (degree)

Fig. 15 Computed Gibbs free energy as a function of rotation dihedral
(43-15-14-29) for motor N.
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rotation rate. To get a sense for the power available from
Motor S, we used WESTPA to recalculate the THI rate constant
in the presence of a constant external torque along torsion
angle 43-15-14-29. The external torque opposes forward rota-
tion, with an energy difference (load) of 3.4 keal mol™* between
the metastable form and the stable form. Adding this load
dropped the THI rate constant to 1 x 10° s~ * (Fig. S2 in the
ESIT), about an order of magnitude below the unloaded motor
(Fig. 11). This loaded THI rate constant yields a power output of
about 4 x 10° keal mol " 57", when not bottlenecked by photo-
isomerization.”* This potential power output is higher than
typical biochemical reactions, because even fast enzymes, such
as ATP synthase® (1 x 10° s7') and catalase® (1 x 10* s77),
cycle much more slowly.

It is worth emphasizing that the ~8 kcal mol™* of free
energy available from THI is only a fraction of the 80 kcal mol™*
energy provided by a photon from the 355 nm laser used in the
experiments.’® As a consequence, it is of interest to consider
how to improve the energy efficiency. One possibility may be to
modify the structure in a manner that makes the metastable
form less stable, without degrading other key parameters. This
would probably bring the additional benefit of lowering the THI
barrier and thus increasing the rotation rate. It might also be
possible to collect power not only from THI but also from the
photoisomerization step, as noted above.

A previous study® obtained a far lower estimate of the work
available from THI of Motor S. Using structures from QM
calculations, the authors found that the stable form has a
solvent-excluded volume 7 A® larger than that of the metastable
form, and they computed the pressure-volume (PV) expan-
sion work associated with this expansion, which comes to only
0.006 kecal mol . We obtained a similar volume change, 5 A,
for this step, by examining the time-series of system volumes in
our explicit solvent simulations run at room pressure. However,
it is the rotary work available from these motors, not the PV
work that should be of interest. This may be understood by
considering that capturing work done by the motor involves
coupling an external load to the angle between the stator and
rotor, not to a change in volume. More broadly, it is also worth
noting that the Gibbs free energy change is the maximal non-PV
work in a constant-temperature, constant-pressure, closed
system.

4 Conclusions

We have studied a class of fast, light-driven overcrowded
alkene-based molecular motors with a novel multiscale compu-
tational framework that combines quantum mechanical (QM)
surface-hopping molecular dynamics (MD) simulations with
classical MD simulations. The main conclusions are as follows.
(1) Trajectories of the rotation process (Videos in the ESIT)
give a rich picture of the full rotation dynamices of these motors.
(2) Kinetic models derived from simulation trajectories
provides a detailed rotation mechanism (Fig. 7); notably,
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o A flip of the stator pucker, generating metastable substate
1 (MS1), immediately precedes and appears to enable THI transi-
tion to the stable form.

o The maximal rotation speed can be calculated from the
model and depends on the substate interconversion rates, as
well as the distribution of metastable substates generated by
the photoisomerization process.

(3) Experimentally measured THI rate constants are repli-
cated to within an order of magnitude using weighted ensemble
MD simulations with optimized force field parameters. Thus,
this technology may be useful in designing new molecular
motors with desired rotation rates.

(4) The maximal available work from THI is estimated as
~8 keal mol ', which corresponds to an average torque of
~18 pN nm. Simulated under half load, the motor still has a
high THI rate constant 1 x 10> s~ and the maximal power
output is about 4 x 10° kcal mol~* s™*. These magnitudes are
similar to and sometimes higher than biological motors, such
as the F1-ATPase.

(5) Classical MD simulations with a widely used general
force field gave incorrect conformations and dynamics. Far
better results were obtained after fitting selected force field
parameters to QM potential energy surfaces.

(6) For Motor O, with its planar stator, the Lennard-Jones
term appeared inadequate to model van der Waals interactions
during THI, probably due to its unrealistically steep repulsion
potential. The less steep and hence more realistic Buckingham
potential provided better results.

The computational and theoretical framework used here is
modular, so future studies could use refined forms of each
component method. For example, photoisomerization could be
modeled with higher level QM techniques, such as ab initio
Multiple Spawning methods,** and the classical simulations
could use improved functional forms of the force field, such as
a more realistic van der Waals potential or a more detailed
description of torsional energy profiles. The present framework
can also be extended to other classes of fast light-driven
molecular motors, especially those that share the same over-
crowded alkene core.?*%*
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Appendix A: derivation of steady state
rotation rate under continuous
excitation

When the motor molecules are simultaneously excited by light
and heated, they will rotate cycle after cycle. A steady state can
be reached under constant conditions, and here we derive the
steady state probabilities of all the conformational states drawn
in Fig. 7, and the corresponding probability flux, i.e., the steady
state rotation rate. These results were used to produce Fig. 9.



Published on 19 March 2021. Downloaded by University of California - San Diego on 2/12/2022 6:45:52 AM.

Paper

The MSM transition matrix associated with Fig. 7 can be
viewed as a discretization of continuous-time differential equa-
tions of chemical kinetics, written below.**

% = kipr — (ka + ko + ka)ps 1)
‘:ldi;:kslps+k3|p3 —kisp — kisps ()
dditz = kaps + kaps — kapa )

% = ks3ps + k3pa +kispr — kaaps — kaips (4)
pa= pz% )

The last equation posits rapid equilibrium between MS3 and
MS4, based on the much faster interconversion time between
them. Here, p indicates a probability, an s subscript indicates
the stable form and an integer subscript indicates the corres-
ponding metastable substate, and the rate constant from state a
to b is denoted k,p,. Setting the derivatives to zero and solving
these equations with the constraint p; + p, + p3 + ps + ps =1
gives steady state probabilities m,, m,, ns3, T4, g as functions of
the rate constants. Then the steady state rotation rate (flux)
equals k;sm;. With good MSM discretization, each rate constant
in the MSM should match the corresponding rate constant in
these differential equations, so we borrow the rate constants
from Fig. 7 to use here. Scanning over a range of photoisome-
rization rate constants and considering different distributions
of metastable substates generated by photoisomerization pro-
duce Fig. 9, as detailed in Section 3.3.3.

We anticipated that the motor rotation rate would become
more sensitive to the distribution of metastable substates
generated by photoisomerization if k;; was smaller. To test
this, we reduced k,; by a factor of 10000, while leaving other
rate constants unchanged. As shown in Fig. 16, the rotation rate
now is, in fact, highly sensitive to the distribution of metastable
substates generated by photoisomerization. Intuitively, the
drop in k;; means that virtually all trajectories initiated in
MS1 will quickly undergo THI, rather than being delayed by
going to MS3. A Jupyter notebook in our Github repository
contains the source code for this calculation and plotting.

In the above analysis, we have omitted backward photo-
isomerization, i.e., photoisomerization from B to A or from D to
C (Fig. 1), because including this would have required making
additional arbitrary assumptions about the rate constants for
backward photoisomerization from each of the metastable
substates. This omission should not be problematic when the
illumination is weak enough and/or the temperature is high
enough, so that the backward photoisomerization rate is small
compared to the forward THI rate. However, in settings where
backward photoisomerization is substantial relative to forward
THI, we expect the model given by the above equations to
underestimate the steady state probabilities of the stable form,
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Fig. 16 Dependence of the motor rotation rate in steady state on the total
photoisomerization rate, assuming 10 000 times smaller ky3 than its value
obtained from MSM and used in Fig. 9. The three curves correspond to
three different distributions of metastable substates generated by photo-
isomerization: the distribution that leads to the fastest rotation (MS1: MS2:
MS3:MS4 = 1:0:0:0), the distribution that leads to the slowest rotation
(MS1:MS2:MS3:MS4 = 0:1:0:0), and the distribution inferred from our
surface-hopping MD trajectories (MS1: MS2:MS3:MS4 = 7:2:4:0).

and overestimate the rotation rate. This is because backward
photoisomerization provides a nonproductive channel by which
probability can drain away from the metastable form instead of
going through forward THI. Although the quantitative details
will depend on the backward photoisomerization rate constants
from each of the metastable substates, the maximal rotation rate
approached asymptotically with increasing levels of illumination
should be approximately the maximal rotation rate from the
present model multiplied by the probability of the metastable
form in the photostationary state, which is usually on the order
of 20% for the similar Motor 0.>® A prior study™ provides
valuable detail on how backward photoisomerization affects the
steady state rotation rate, but without resolving the metastable
form into substates.

Appendix B: selection of reaction
coordinates

The rotation of the rotor relative to the stator is the defining
feature of these motors. The most common way to describe this
rotation is a torsion angle defined with 4 consecutive atoms
around the central double bond, such as 16-15-14-13. However,
we found that such dihedrals are insensitive to the ground state
conformational changes, as they remain rather close to either 0°
or 180°. Instead, non-sequential dihedrals involving two rotor
and two stator atoms, such as 18-15-14-10 and especially 43-15-
14-29 or 17-18-2-1, show larger and more definitive changes as
the rotor naphthalene atoms snap past the stator benzene atoms
to complete THI. The Cremer-Pople definition of the stator
pucker® provides a valuable second reaction coordinate.

Upon excitation, the central double bond becomes more single
bond-like, leading to carbon pyramidalization; in contrast, during
ground state simulations we found the degree of pyramidalization
to be small. Consequently, pyramidalization coordinate is only
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useful for characterizing photoisomerization or the whole rotation
cycle including photoisomerization. Although the rotor pucker
was a useful reaction coordinate for the QM potential energy
surfaces (Fig. 4), it was a less informative coordinate than the
stator pucker when focusing on THI, except for Motor O, whose
stator is planar. One reason is evident in Fig. 7, which shows that
interconversion between different rotor puckers (MS3 and MS4)
is much faster than interconversion between different stator
puckers.

It is worth noting that a reaction coordinate based on an
atom that is more rigidly linked to the rest of the molecule,
such as an sp” carbon, is generally better than one based on a
more mobile atom, such as an sp® carbon, at a similar location.
This is because rigidly linked atoms tend to give smaller intra-
state fluctuations of the reaction coordinate values, making the
inter-state differences in reaction coordinate values more pro-
minent. Similarly, uninteresting fluctuations in a reaction coor-
dinate may be suppresed by defining it based on the center of
mass of several atoms, instead of on one atom.

Appendix C: atom typing the central
double bond

According to the atom typing rules of GAFF,** carbon 14 could
logically be assigned atom type ce, an “inner sp2 carbon in
conjugated ring systems”, or atom type ce, an ‘“inner sp2
carbon in conjugated chain systems”. The parameter assign-
ment program used in this study, Antechamber, would assign
cc to all motors considered here. This may be appropriate for
Motor O, with its planar stator, but the ring to which carbon 14
belongs is not conjugated for motors S and N, so type ce seems
more appropriate for these two molecules. Indeed, for Motor S
and Motor N, using type ce yielded a slightly better value of the
objective function in the force field optimization procedures
discussed above. In addition, the THI rate constants we com-
puted using ce were generally better than those computed with
type cc. Therefore we used ce for motors S and N, with their
non-planar stators, and cc for Motor O, with its planar stator.
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