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Abstract 

Grape quality and yield are goals in viticultural management that are affected by 

numerous abiotic and biotic factors. Field heterogeneity complicates vineyard management by 

producing grapes with variable stress responses and ripening patterns. Manipulation of vine 

water stress via irrigation is a powerful management tool influencing canopy growth and berry 

development. To optimize water use in a changing climate, novel techniques in precision 

viticulture are being developed. Increasingly, growers use satellite remote sensing tools to 

evaluate the heterogeneity of vineyards and to help achieve viticultural targets. Hyperspectral 

Vegetation Indices (HVIs) facilitate comparisons of plant stress responses at the leaf, canopy, or 

vineyard level. We leveraged leaf-level data collected through the Grape Remote sensing 

Atmospheric Profile and Evapotranspiration eXperiment (GRAPEX) to evaluate linkages 

between grapevine water stress and spectral indices. This study takes place in an experimental 

vineyard near Madera, in the Central Valley of California, an area of large seasonal inputs of 

irrigation. The dataset includes a three-week period during which water stress was imposed. 

HVIs measured pre-, during, and post-water stress were collected in parallel with conventional 

plant stress measurements, including leaf water potential. The purpose of this experiment is to 

evaluate the practical use of leaf spectroscopy to monitor water status. 88 HVIs were evaluated 

and among these, we found that HVIs exhibited two patterns in sensitivity to water-stressed plant 

responses: (1) 12 HVIs detected stress earlier at 930 or 1130, while (2) 29 detected stress at 

1600. This suggests that timing of satellite or other aerial overpasses, which typically occur 

around solar noon, and HVI(s) chosen to evaluate plant water status may be consequential in 

detection of plant stress. 
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Introduction 

The changing climate has resulted in unpredictable and extreme weather in California, 

including drought, heat waves, heat dome, and wildfires, which have severe consequences for 

agricultural industries in the state. California is particularly vulnerable to the impacts of climate 

change, since 7.9 million acres of harvested crops are irrigated and will be affected by decreased 

water availability (Johnson and Cody, 2015). According to a recent report, California has been 

experiencing severe drought conditions and water scarcity due to increasing global temperatures, 

which are projected to continue in the coming decades (IPCC, 2021). Current irrigation practices, 

especially in the San Joaquin and Central Valley, rely on unsustainable pumping of groundwater 

to meet irrigation demands (Mount et al., 2022).  

Grape growing is one of the most significant agricultural industries in California, 

generating over $6.5 billion annually (USDA-ERS, 2022). Unlike other crops, grapes are 

commonly grown under regulated deficit irrigation (RDI), in which vineyards receive a fraction 

of water lost as evapotranspiration (ET) to maintain plants at a mildly stressed status during key 

growing stages (Williams, 2017). This practice has been shown to improve berry quality and 

stimulate formation of positive sensory compounds (Bravado et al., 1985). While RDI may 

regulate vegetative growth, excessive stress may result in decreased yields. Stress in grapevines 

is conventionally monitored using measurements of stomatal conductance, soil moisture, and leaf 

water potential, among others (Williams et al., 2012). These tools are used widely due to 

simplicity of results and established thresholds for stress, especially for water potential (Ojeda, 

2007; Miras-Avalos and Araujo, 2021). 

A critical time in berry development is veraison, where growth accelerates, berries soften 

and change color, and formation of organic acids increases (Coombe, 1992). RDI prior this point 
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may result in smaller berries which have higher concentrations of color and flavor compounds, 

namely phenols and anthocyanins, largely localized in the skins (Williams and Heymann, 2017). 

Excessive levels of water stress may degrade anthocyanins (Afifi et al., 2021). Overall, timing 

and level of water stress can have a profound influence on quality and yield. Monitoring plants 

for stress responses is critical to inform intervention when water stress becomes too severe. 

However, field heterogeneity complicates the representation of plant stress at field level taken 

with on-the-ground measurements (e.g., leaf water potential), especially in large vineyards.  

Changes in leaf reflectance result from changes in leaf chemical composition and cell 

structure and can be linked to plant physiological status (Tucker, 1979), structure (Hunt and 

Rock, 1989; Gitelson, 2003), and stress (Carter, 1994; Gitelson et al. 2001b; Zhou et al., 2021). 

The visible region of the electromagnetic spectrum (400-700nm), for instance, contains 

characteristic absorption maxima by photosynthetic pigments (Gitelson et al., 2001a, 2003). 

Healthy leaves reflect light differently than stressed leaves at these wavebands, which can be 

connected to photosynthetic efficiency (Zhou et al., 2021), alternative quenching pathways 

(Wong et al., 2022), or fluorescence to dissipate excess energy (Gamon et al., 1997). Other 

biochemistry, including lignin, nitrogen (Serrano et al. 2022), and water content (Malthus et al., 

1993; Gao et al., 1996) have known wavebands at which they absorb strongly. 

Plant stress responses include changes in biochemical content, which can be detected 

using leaf reflectance. Leaf reflectance has been well studied for several decades (Gates et al., 

1965; Hunt et al., 1987; Carter, 1993; Peñuelas et al., 1993a), but recent developments in 

technology (e.g., artificial neural networks) have made this tool more feasible for use in 

observing stress in plants (Poblete et al., 2017). Leaf-level hyperspectral data gives a full 

understanding of leaf reflectance and may allow for a more detailed analysis of leaf composition. 
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However, this data collection is significantly limited spatially and temporally since 

measurements are manual. On the other hand, satellite or airborne images can provide data over 

larger areas, but the spectral resolution is usually lower (Al-Wassai and Kalyankar, 2013; Pádua 

et al., 2020; Tang et al., 2022). Other satellites collect data at higher spectral resolution but lower 

frequency. Currently, readily available satellite imagery (e.g., LANDSAT) provides low spectral 

and temporal resolution (Sivanpillai, 2021). In isolation, this tool is not practical for irrigation 

decision making, especially with unexpected weather patterns predicted over future decades. 

Other satellites may provide higher spectral resolution (e.g., Hyspiri; 10 nm contiguous bands 

from 380-2500 nm) and may soon become readily available to the public (HyspIRI Mission 

Concept Team , 2018). 

These remote methods (e.g., satellites) as well as on-the-ground hyperspectral tools 

provide data which can be used to calculate hyperspectral vegetation indices (HVIs). HVIs are 

mathematical combinations of the reflectance values of different portions of the spectrum and 

have been used to monitor plant status in agricultural settings for decades (Rouse and Haas, 

1974). HVIs can be formulated to be sensitive to variations in vegetation biochemistry, structure 

(Daughtry, 2001), pigments (Peñuelas et al., 1993a; Merzlyak et al., 1999), and water content 

(Malthus et al., 1993; Penuelas et al., 1997) and are widely used to measure and monitor plant 

growth, productivity, and stress. 

Here, we evaluate a large number of HVIs leveraging the leaf-level seasonal and diurnal 

data acquired through the GRAPEX project. Vines were subjected to varying levels of stress, and 

comparisons were made between physiological measurements and hyperspectral data to 

determine optimal HVIs and timing for stress detection. Results are intended to inform future 

remote sensing applications of HVIs in plant monitoring and vineyard mapping.  



 6 

Materials and Methods 

Study site 

The study area (RIP720) is located 25 km west of Fresno in the Central Valley of 

California (Figure 1). The vineyard is approximately 16 hectares, mostly sandy loam, and the 

climate is Mediterranean with abundant sunshine, large day-to-night temperature differences, and 

an average temperature between May and October of 22 °C with 12 mm of rainfall. The vineyard 

was planted in 2010 with Merlot (Vitis vinifera L.) vines trained to quadrilateral cordons on a 

horizontally split trellis with row spacing of 3.35 m and an inter-row distance between vines of 

1.5 m in east-west row orientation. The Ripperdan vineyard is divided into four treatment blocks, 

each approximately 3.2 hectares in size. The period of investigation considered here is June to 

early August 2018. 

Thermal-based ETa estimation 

High spatiotemporal resolution ET time series maps were generated using the 

Atmospheric-Land Exchange Inverse (ALEXI) surface balance model and disaggregation model 

(DisALEXI) with the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) as 

previously described by Knipper et al. (2019). The result of this data fusion is daily 30-m 

resolution ET maps with a two-day latency. Weekly actual ET (ETa) estimates were delivered on 

Friday and represented a summation of daily ETa from the prior Friday to Thursday. The last two 

days of the weekly ET period (Wednesday and Thursday) were estimated using the last available 

day model and local reference ET. A local Fresno State CIMIS Station provided grass reference 

ET (ETref) values.  

 

 



 7 

Irrigation schedule 

Irrigation at the experimental site was managed with the objective of inducing a range of 

stress levels within different vineyard blocks. The vineyard was divided into four blocks 

(treatments) as shown in Figure 1. The objective was to implement severe water stress on 

stressed blocks (S1 and S2) by mid-July, and then reintroduce irrigation across all blocks in order 

to observe recovery of stressed blocks. Irrigation decisions were made using the remote sensing 

model described in the previous section (Knipper et al. 2019; 2020). The first irrigation of the 

season was implemented the week of May 14th, with soils still at capacity from winter/spring 

rains. From that point, the well-watered (WW) block was irrigated according to the standard 

commercial practices at the site, based on a percentage of crop ET. The irrigation amounts for 

the other three treatments were calculated as fractions of the actual ET estimated at block level 

(see Thermal-based ETa estimation). The objective was to induce mild water stress in the M 

block, and severe stress in blocks S1 and S2. Initially, the deficit over the estimated ETa was 

planned as 45% in blocks S1 and S2, and 60% in the M block. However, every week, the deficits 

were adjusted based on observations of soil moisture and water fluxes at the site to ensure that 

the soils for the stressed treatments would be completely depleted close to the date when the 

maximum stress was planned. A hard pan at about 2 m depth exists under sections of the 

southern half of the vineyard (blocks M and WW), which prevented the M block from reaching 

the desired level of stress by the time of the field campaign (i.e., Intensive Observational Period, 

IOP). Even though the irrigation inputs close to the sampling were minimal (~5-10% ETref), it 

took longer than expected to dry the profile. During the week of July 6-July 12, immediately 

preceding the “During Stress” data collection occurring on July 13th, the northern two blocks (S1 

and S2) received no irrigation (0% ETref), while the southern blocks (3 and 4) received 27% and 
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5.56% ETref, respectively (Figure 2). After the collection period during the water stress event, all 

blocks were irrigated 30-60% ETref in order to facilitate a “recovery” phase. This irrigation 

schedule continued during data collection on August 6th. Cumulative irrigation data for each of 

the blocks is shown in Figure 2. 

Leaf-level data 

Ground measurements were collected during three days of IOPs on June 19th (“Before 

Stress”), July 13th (“During Stress”), and August 6th (“After Recovery”) as a part of GRAPEX. 

These IOP campaigns began before dawn and measurements were taken to align with overhead 

satellite and unmanned aerial vehicle (UAV) passes. After the first collection time, diurnal data 

was collected with a 1- to 2-hour window between measurements. Collection locations are 

shown in Figure 1 and collection dates appear in Figure 2. 

In order to capture measurements within a narrow temporal window, at least two teams 

were dispatched, each with the following instruments: ASD FieldSpec Hi-Res Spectroradiometer 

(Malvern Panalytical, Malvern, UK) with 2-nm spectral resolution and 350-2500nm spectral 

range, LI-6400/XT Portable Photosynthesis System (LI-COR, Lincoln, NE), Scholander-type 

Pressure Bomb (PMS Instruments), a hand-held infrared radiometer (IRT – Apogee Instruments 

Inc), a portable nitrogen tank, and foil-laminate bags. The equipment was stored on 4-wheeled 

“mules” to ease transport between collection points. First, the FieldSpec operator selected a fully 

mature leaf that was not sharing a position with a grape cluster to collect its reflectance signature 

using the ASD. Another person measured gas exchange parameters on the same leaf using the 

LI-6800. One leaf per vine was bagged using foil-laminate bags 45 minutes prior to 

measurement of stem water potential. Finally, the leaf was excised, and then leaf and stem water 

potentials were measured using the pressure bomb. Each treatment block contained three data 
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collection points distributed along a diagonal in the direction of predominant wind (NW). Field 

measurements were collected quickly, but unavoidable variability in collection times may have 

contributed to variation in data within and between treatment blocks.  

Vegetation Indices (VIs) 

Leaf reflectance measurements were used to calculate Hyperspectral Vegetation Indices 

(HVIs) which utilize reflectance values at key wavelengths or regions of the leaf spectrum to 

make inferences about leaf and plant status. One common calculation is the Simple Ratio (SR), 

represented as the following equation: 

𝑆𝑅 = 	
𝑅!"
𝑅!#

 

Equation 1. Simple Ratio (SR) calculation, where 𝑅!" and 𝑅!#  are reflectance values at selected 
wavelengths. 

 

Typically,  𝜆" is a wavelength that is sensitive to changes leaf physiology, whereas 𝜆# is 

often a reference wavelength. In order to restrict the range of HVI values, another common 

calculation is the Normalized Difference (ND), which also utilizes reflectance at two 

wavelengths: 

𝑁𝐷 =	
𝑅!" − 𝑅!#
𝑅!" + 𝑅!#

 

Equation 2. Normalized Difference (ND) calculation, where 𝑅!" and 𝑅!#  are reflectance values 
at selected wavelengths. 

 

Other calculations include waveband shifts, where selected wavelengths of published 

indices are shifted to nearby values based on stronger correlations to other measurements of 

stress. In this study, waveband shift HVIs are represented by the same name as the published 
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HVI followed by a number (e.g., Normalized Difference Water Index, NDWI1-6). These names 

were assigned based on the lowest value of the first wavelength appearing in the formula. 

The HVIs that were evaluated in this study were collected from a variety of sources, 

including The IDB Project (Henrich et al. 2012) and reviews of HVIs (Rodríguez-Pérez et al. 

2007, Roberts et al. 2011). 88 HVIs included in this evaluation are listed in Supplementary Table 

1, along with their formulae. Indices were selected based on their frequency of use in scientific 

literature and industry (e.g., NDVI, EVI, WI) and/or to represent a diversity in wavelengths of 

interest in order to take advantage of the high spectral resolution data. For each of the three data 

collection dates, values for each HVI were calculated independently at each time of day. 

Statistics 

HVI values for each treatment block were averaged. Significant differences between 

mean treatment block values at each time of day were calculated using pairwise Mann-Whitney 

U mean separation tests (𝛼=0.05). The Mann-Whitney U tests were performed using the 

scipy.stats module (version 1.10.1) in Python (version 3.10.11) to calculate the test statistic and 

p-value. Gas exchange, leaf temperature, and leaf water potential parameters were evaluated 

using the same program and tests. 

We used Birch (Balanced Iterative Reducing and Clustering using Hierarchies) clustering 

algorithm from the Scikit-learn (sklearn.clusters) library (version 1.2.2) in Python to perform 

unsupervised clustering of comparisons between evaluated HVIs and physiological parameters. 

This clustering model creates a clustering feature tree, which inputs data points individually and 

assigns values to a cluster based on their distance to the first point assessed. Specifically, we 

employed Birch clustering to identify groups or clusters (threshold=0.01, n=2) of similar 

observations in our data. Values that were grouped into clusters were assigned a binary code. To 
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interpret the accuracy of the model, clusters were evaluated using the Fowlkes-Mallows Index 

(FMI) score from the Scikit-learn (sklearn.metrics.cluster) library, calculated as follows: 

𝐹𝑀𝐼 = 	
𝑇𝑃

0(𝑇𝑃 + 𝐹𝑃) ∗ (𝑇𝑃 + 𝐹𝑁)
 

Equation 3. Fowlkes-Mallows Index (FMI) score, calculating using True Positive (TP), False 
Positive (FP), and False Negative (FN). 

 

FMI can be used when ground-truth labels (e.g., identity of water stress treatments) are 

known. FMI score measures the accuracy of cluster assignment by the Birch model based on 

assigned labels and actual labels of samples. The binary classification of FMI score ranges from 

0 to 1, where 0 corresponds to a misclassification of all elements and 1 corresponds to a perfect 

classification. In this study, FMI scores closer to 1 indicate clusters are more distinct. 

 

Results 

ETa and ETa/ETref were nearly identical before stress was imposed (Figure 2). Data 

collected during the stress event on July 13th observed similarities in ETa and ETa/ETref between 

well-watered (WW and M) blocks and between stressed (S1 and S2) blocks. At this collection 

time, the S1 block had a slightly higher ETa/ETref value than the S2 block. During the “After 

Recovery” collection period, some differences in vineyard water use and ETa/ETref were still 

observed between well-watered and stressed conditions. 

Conventional stress measures 

Several leaf physiological measurements were collected before, during, and after the 

water stress event that was imposed in mid-July (see seasonal trends in Figure 3). Before the 

stress period (measurements taken in mid-June), vines exhibited similar responses and minimal 

differences between blocks. In fact, blocks that were to receive stress exhibited the highest leaf 
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water potential (Ψleaf) and gas exchange rates (e.g., S1 had the highest mean A and gsw in the 

early afternoon). During the stress period, Ψleaf only became significantly different beginning at 

1430 between S2 and the other blocks. At 1600 and 1700, “stressed” blocks (S1 and S2) versus 

“well-watered” (WW) and mildly stressed (M) blocks were significantly different. This pattern 

contrasts with the other three measurements (leaf temperature, Tleaf; net assimilation, A; and 

stomatal conductance, gsw), which were sensitive to differences between stressed and well-

watered blocks earlier in the day at 800 or 930. A and gsw for stressed blocks were consistently 

lower than that of well-watered blocks. For both of these measures, at 1300, differences between 

blocks became smaller and by 1600 the M block was not significantly different from stressed 

blocks. At 1430, however, well-watered blocks were both significantly different than stressed 

blocks.  

These measurements were also collected near a recovery phase in early August, in which 

all blocks were irrigated according to local commercial practices. Despite aiming for similar 

recovery in all blocks, at the time of data collection there were still differences in ETa and 

ETa/ETref. The previously imposed stress event showed clear carryover effects into the recovery 

period. Tleaf values for all blocks were the same until 1300. After this point, previously stressed 

blocks had higher Tleaf throughout the rest of the day in well-watered blocks. Stomatal 

conductance values were significantly different between stressed and well-watered at all time 

points, except 800, where the M block was similar to other treatments. 

All Hyperspectral Vegetation Indices (HVIs) 

Hyperspectral measurements taken on June 19th, July 13th, and August 6th, 2018. 

Differences between treatments were observed for the “Before Stress” (June 19th) and “After 

Recovery” periods (August 6th), which are discussed below. During the water stress period (on 
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July 13th), hyperspectral measurements were used to calculate HVIs (Supplementary Table 1). Of 

the 88 indices evaluated, 11 detected significant differences between stressed (S1 and S2) and 

well-watered (WW and M) blocks at 930, 12 HVIs at 1130, and 29 HVIs at 1600 “During 

Stress” (Supplementary Table 2). These values represent some HVIs with only slight waveband 

shifts of other indices. For example, NDII1 and NDII2 both utilize reflectance at 819nm, while 

NDII1 utilizes reflectance at 1640nm and NDII2 at 1649mn (Supplementary Figure 1). When 

excluding duplicate HVIs with these waveband shifts, at the collection times of 930, 1130, and 

1600, there were 9, 9, and 15 unique indices, respectively. Seasonal HVI values for all 88 indices 

appear in Supplementary Figure 1. 

HVIs demonstrated interesting sensitivity patterns, including time of day when block 

differences could be detected. Of the HVIs that detected significant differences between stressed 

versus well-watered blocks, 10 were sensitive at both 930 and 1130 (e.g., mSR1 in 

Supplementary Figure 2). Three HVIs detected differences between stressed versus well-watered 

at all three collection times (see Crt2, Crt5, and RBI in Supplementary Table 2). This contrasts 

with the vast majority of HVIs that were sensitive to block differences only in the morning or 

only afternoon collection times. A subset of these HVIs was selected to demonstrate patterns in 

timing of sensitivity to stress. 

Early separation HVIs 

Six HVIs were selected from those that were sensitive to differences between stressed 

versus well-watered during the morning collection times (Figure 4). These were chosen to 

represent indices that appear more commonly in the literature as well as to capture a diversity of 

waveband regions of the leaf spectrum. Prior to the imposition of water stress, selected HVIs 

detected some differences between blocks on June 19th (left column of Figure 4). At 1430, the S1 
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block had higher CAI1 values than WW block (see top left panel in Figure 4). At 1600, other 

selected indices detected differences between blocks (see Crt2, PSRI, and RBI panels in Figure 

4). The trends observed for CAI1, Crt2, and RBI prior to imposition of stress are reversed from 

trends that appear during stress imposition, which corresponds with observations of conventional 

stress measures at this time (Figure 3).   

During the water stress event, most indices that detected significant differences between 

stressed versus well-watered blocks at 930 also did so 1130, except CAI, which only detected 

these differences at 930 (Figure 4). Blocks mostly reported similar HVI values during the “after 

recovery” phase (right column of Figure 4). The S2 block exhibited the largest differences from 

the other blocks at 800 (see Crt2 and NPCI panels of Figure 4). At 1600, the M block had higher 

values than other blocks (see PSRI and SIPI1 of Figure 4). These responses were similarly 

reflected in the conventional stress measures (Figure 3). 

In the afternoon, this trend is reversed, where differences between clusters is mostly due 

to differences in Ψleaf and not index (see right column of Supplementary Figure 2). The strongest 

clustering results appear in comparisons against gsw (see FMI score in Supplementary Table 3). 

FMI scores generally decreased with time of day (see CAI1, Crt2, NPCI, and PSRI panels in 

Figure 5). However, FMI score for SIPI1 increased with time of day and FMI score for RBI had 

no relationship with time of day. Cluster comparisons between these HVIs and other remaining 

measures of stress (Tleaf, and A) appear in Supplementary Figures 4 and 5 to assure that the focal 

HVIs were consistently compared against conventional methods. Cluster analysis between 

selected HVIs and conventional measures of stress were evaluated at 930, 1130, and 1600 during 

the water stress period (Figure 5 and Supplementary Figures 2, 3, and 4). Birch clustering 

predicted groups (n=2) that were evaluated using the Fowlkes-Mallows Index (FMI) score. FMI 
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assesses the accuracy and precision of the model by comparing predicted groups (from Birch 

model) and actual group labels (i.e., stress treatment). Comparisons between the selected HVIs 

and gsw are included because these HVIs utilize wavelengths in the VIS and NIR regions that 

correspond with leaf pigments (see Table 1). Cluster analysis between early separation HVIs and 

Ψleaf performed poorly in the morning, where differences between clusters are mostly attributed 

to index values (see left and center columns of Supplementary Figure 2). 

Late separation HVIs 

As was the case for early separation HVIs, six HVIs were selected that demonstrated 

sensitivity to differences between well-watered versus stressed blocks late in the day (Figure 6). 

Values for the six HVIs in Figure 6 were not uniform across blocks before the water stress 

period. All selected HVIs detected block differences at 1430 (see left column of Figure 6). WW 

and S1 were different at this time in five of these HVIs. Differences between WW and S2 blocks 

were greatest for NDWI1. At 1600, the indices ranges are much smaller than those at earlier 

times of day. The M block was distinct from the other blocks for several HVIs (see MSI1, 

NDII1, and NDWI1 panels in Figure 6). In the CUR index, well-watered blocks had higher 

values than stressed blocks before the stress event. 

During the imposition of water stress, four of the indices in Figure 6 also detected some 

block differences earlier in the day, either at 930 (see MSI1, NDII1) or 1130 (see NDWI1) or at 

both of these times (see WI2). MSI1, NDII1, and NDWI1 had significantly different values for 

WW block versus both stressed treatments in the morning, but the M block could not be 

separated from stressed blocks. HVI values were similar throughout the day during the “After 

Recovery” period (see right column of Figure 6).   
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Cluster analysis between selected HVIs and conventional measures of stress were 

evaluated at 930, 1130, and 1600 during the water stress period (Figure 7). Comparisons between 

the six selected HVIs and Ψleaf because these indices utilize reflectance bands in the IR and other 

spectral ranges where water strongly absorbs (see Table 2). FMI score was evaluated for these 

correlations (Supplementary Table 4). For all selected indices, FMI increased with time of day. 

WI2 had the highest FMI score at all times of day and at 1600, which was 1. At 930 and 1130, 

cluster analysis of gsw and selected HVIs performed almost as well as comparisons with Ψleaf (see 

Supplementary Figure 5). Cluster comparisons between these HVIs and three other measures of 

stress (Tleaf and A) appear in Supplementary Figures 6 and 7. 

 

Discussion 

Our work presented here demonstrates dynamic diurnal changes in HVIs in a commercial 

vineyard system. Previous studies have used continuous spectral data to evaluate drought stress 

in sunflowers, olive orchards, and barley at two or three diurnal collection times throughout the 

day (Gamon et al., 1992; Suárez et al., 2008; Rischbeck et al., 2014). Pinter et al. (1983) 

evaluated wheat crops at 13 measurement times throughout the day and utilized LANDSAT 

bands (100 nm spectral resolution) to calculate vegetation indices. The present study collected 

on-the-ground hyperspectral measurements (2 nm spectral resolution) at up to five diurnal 

collection times and compared these with conventional measures of stress (Ψleaf, Tleaf, A, and gsw) 

at up to 7 times during several key points in the season. At each of these time points, 12 

collection locations were evaluated and compiled across field scale (Figure 1).  

Hyperspectral Vegetation Indices (HVIs) are a powerful tool to monitor plant status, and 

leaf-level measurements can help to inform similar approaches with remote sensing. In this 
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study, we evaluated leaf-level hyperspectral leaf reflectance data using 88 HVIs and found that 

12 demonstrated sensitivity between well-watered and stressed conditions earlier (at 930 or 

1130) in the day, while 29 were sensitive later (at 1600) in the afternoon (see Supplementary 

Figure 1). Interestingly, most indices exhibited a diurnal patten of detection and only 3 HVIs 

detected significant differences at all collection times (see Crt2, Crt5, and RBI). This is striking 

because satellite overpasses that measure spectral signatures usually collect data around solar 

noon (e.g., HyspIRI passes at 1030 ± 30 min) to minimize shadowing effects, which may miss 

the time of day when plants are most responsive to water stress. As hyperspectral satellite 

imaging becomes more readily available, including the use of hyperspectral cameras mounted on 

unmanned aerial vehicles (UAVs), flight time and HVI selection may influence quality of 

information about plant status. 

HVIs related to chlorophyll and pigmentation (e.g., NPCI from Peñuelas et al., 1993; 

SRPI from Peñuelas et al., 1995) detected the largest differences between stressed and well-

watered plants earlier in the day, while HVIs primarily related to water stress (e.g., NDII1 from 

Hardinsky and Klemas, 1983; NDWI1 from Gao, 1996; and WI1 from Malthus et al., 1993) had 

larger differences later in the day (Tables 1 and 2). A handful of HVIs not related to water stress 

(e.g., mCARI2 from Daughtry et al., 2000; PRI1 from Gamon et al., 1997; and RGRI from 

Gamon and Surfus, 1999) and with wavelengths in the VIS spectrum (420-700 nm) also found 

significant differences between stressed and well-watered plants later in the day (Table 2). These 

HVIs may prove useful for widespread use in viticultural irrigation management to achieve 

targeted vine stress thresholds using deficit irrigation.  

HVIs that were sensitive to differences between block treatments earlier in the day were, 

in general, designed to detect changes in chlorophyll content (Table 1). Crt2, Crt5, and RBI 
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detected differences between stressed versus well-watered blocks at all diurnal collection times, 

and these HVIs utilized bands that were sensitive to chlorophyll a and carotenoid absorbance at 

420-445 and 695-700 nm (Carter, 1994; Rodríguez-Pérez et al., 2007). The red absorbance band 

of chlorophyll around 680 nm is near the red-edge region of the leaf spectrum, which is the 

transition between low reflectance of visible light and high reflectance of infrared light. Several 

indices with wavelengths near this region (680-700 nm) detected significant differences between 

well-watered and stressed blocks (e.g., RGRI, PSRI, SIPI1), while others with wavelengths 

inside or slightly outside this range (e.g., CARI at 670 and 700 nm) did not detect the same 

trends (Supplementary Table 2). The success of Crt2, Crt5, and RBI may owe to the inclusion of 

wavebands in the 420-445 nm region, which spans absorbance maxima of several photosynthetic 

pigments (Table 1). Alternatively, a reduction in nitrogen content of stressed plants may 

consequently reduce pigment content that is observed by these HVIs. Utilizing wavebands in this 

region alone led to detection of significant differences earlier in the day (e.g., 430 nm in NPCI; 

435 nm in NPQI), however, inclusion of wavelengths in both pigment absorbance regions (420-

445 and 695-700 nm) allowed detection of stressed plants at all diurnal collection times. One 

complication in these wavebands is the absorbance of several pigments in this region, including 

the xanthophyll cycle, which is associated with dissipation of excess energy in Photosystem II 

(Demmig-Adams et al., 1995). 

Changes in the xanthophyll cycle may be detected through PRI (Gamon et al., 1992; 

Wong et al., 2022). Previous studies have observed decreases in gsw as PRI increases (Suárez et 

al., 2008), which was observed in this study with some waveband shifts of PRI (see PRI4 in 

Supplementary Figure 1). Interestingly, these authors observed the strongest correlations 
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between these parameters at 930 and weaker correlations at 1230. This supports our findings that 

gsw is more sensitive to differences between water stress conditions earlier in the day (Figure 3).  

In this experiment, irrigation inputs based in part on ETa/ETref values generally created 

two water stress conditions: well-watered (WW and M) and stressed (S1 and S2), which appear 

in Figure 2. ETa/ETref is a good proxy for soil moisture, especially in vines strongly dependent on 

irrigation such as in the Central Valley during summer (Wilson et al., 2020). Conventional 

measurements collected before stress was imposed were similar across all blocks, which matches 

observations of ETa/ETref values which were similar at this collection time (Figure 3). During the 

water stress period, these conventional measures were again collected during an IOP on July 

13th, approximately three weeks after irrigation treatments were implemented. All conventional 

measures observed a gradient that corresponded to ETa/ETref (e.g., gsw: S2 < S1 < M < WW at 

nearly all times of day during stress). While S1 and S2 soil moisture content was similar for most 

of the drying period, there was a slight peak in S1 during this IOP. We attribute this short-term 

increase in soil moisture to lower stress responses in this block when compared to S2. All plots 

were irrigated in order to initiate a “recovery” phase. This brought soil moisture levels closer to 

one another at the end of July. In fact, ETa/ETref converged for all plots on July 30th. However, 

during the final IOP on August 6th, there was a dramatic decline in ETa/ETref for stressed blocks, 

which was not expected for this data collection period. Performing the IOP on July 30th or later 

in the season when ETa/ETref values were closer may have better informed a “recovery” response 

in these plants. Alternatively, the water stress conditions imposed in June and July may have 

inflicted permanent damage to the plants (e.g., down-regulation of Photosystem II) that 

prevented a true “recovery” of stressed plants (Osmond and Grace, 1995). Flexas et al. (1998) 

concluded that permanent photoinhibition is not extensive in grapevines, even under severe 
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water stress conditions that greatly reduce photosynthesis, which occurred in this experiment. 

Thus, we expect that differences during the “after recovery” IOP are due to the separation of soil 

moisture during data collection. 

The stress response occurred as expected based on conventional parameters (Figure 3). 

During the water stress event measured on July 13th, plants from stressed blocks were under 

“severe” water stress (i.e., gsw < 0.50 mmol m-2 s-1), while well-watered blocks experienced 

controlled conditions that became more stressed (i.e., gsw < 1.50 mmol m-2 s-1) throughout the 

day (Flexas and Medrano, 2002). Both gsw and A were significantly lower in stressed plants 

during nearly all data collection points when compared to well-watered plants (Figure 3). We 

expected that Tleaf would become higher in stressed plants with decreased A and stomatal closure 

since excess energy cannot be effectively shuttled through photosynthetic pathways and 

dissipated via latent heat exchange (Gates, 1964). This physiological cascade has informed 

remote thermal-based technologies to successfully model grapevine water status (Nieto et al., 

2022). However, in the present study, differences in Tleaf between stressed and well-watered 

plants were less dramatic than A and gsw during the water stress event and were somewhat more 

apparent near solar noon (Figure 3). Still, land surface temperatures (e.g., measured from 

LANDSAT satellites) for modeling crop water use and stress from space have demonstrated 

promising results for representing grapevine water status (Kustas et al., 2019; 2022). 

As the day progressed, Ψleaf dropped steadily (see Figure 3), driven by decreases in 

relative humidity and increased temperature which increase the vapor pressure deficit and rate of 

water lost through stomata (Williams and Baeza, 2007). Around 1600, the well-watered plants 

began to increase water potential, while stress plants continued to respond with lower Ψleaf 

values. At this time, the majority of HVIs that detected significant differences between treatment 
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conditions were designed as proxies for water content (Table 2). Water absorbs strongly 

throughout several wavelength regions of the leaf spectrum, including the NIR (819-1450 nm) 

and MIR (1599-1680) regions. MSI, NDII, and SRWI all utilize wavelengths within these 

regions to detect water content (Figure 6). Most HVIs with waveband shifts performed similarly 

to one another (e.g., NDWI1-6 in Supplementary Figure 2). These trends suggest that well-

watered plants had greater leaf water content and stronger water absorbance around the NIR and 

MIR regions (Hunt and Rock, 1989; Alsina et al., 2013).  Selection of two bands within the NIR 

region that were associated with water absorbance also yielded significant sensitivity to water 

stress, seen in WBI. HVIs that were sensitive to water stress conditions were not exclusive to 

water content proxy indices (e.g., CUR, mCARI2, RGRI in Table 2). This may be attributed to 

higher ambient temperature, which was reflected in changes in Ψleaf and Tleaf. Optimum 

temperature for photosynthesis in grapevines is 25 to 35C (Zhang et al., 2018). Above this point, 

Photosystem II is significantly inhibited. In this study, A was reduced around 1600, which may 

reflect this photodamage (Figure 3). 

This study evaluated dozens of HVIs using high spectral resolution leaf-level data that 

required resources that are not practical for vineyard management operations. Grape growers 

often intervene with irrigation when plants surpass thresholds of stress that are detected using 

simple, inexpensive technologies. Ideally, these tools give a representation of field heterogeneity, 

so that growers can target yield and quality goals while optimizing water usage. Remote sensing 

tools demonstrate a promising option for tracking crop water use (Kustas et al., 2019; 2022) and 

stress. One strategy may include a combination of conventional measures of stress (Ψleaf, Tleaf, A, 

and gsw) and HVIs collected during a key time of day when stressed plants are most easily 

detected. A cluster analysis of conventional parameters and selected HVIs demonstrate the 
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importance of data collection when these differences are largest (Figures 5 and 7). When 

considering gsw and  HVIs related to pigment content (e.g., CAI1), differences between well-

watered and stressed plants were largest earlier in the day (especially at 930) and these 

differences gradually decreased as the day progressed (Supplementary Table 3). This was 

quantified using FMI score, which rates higher scores when clusters are more distinct from one 

another. In a practical sense, this could be used to determine stress thresholds for growers to use 

in deciding whether to irrigate. Later in the day (at 1600), indices sensitive to water content and 

Ψleaf demonstrated more distinct clusters of well-watered and stressed plants (e.g. WI2 exhibited 

perfect separation of treatments in Supplementary Table 4). A grower may decide to measure 

WI2 and Ψleaf at 1600 in order to make an informed decision on vineyard management. We hope 

that this research adds to the growing understanding of spectral wavebands with specific 

applications in viticulture (i.e., leaf pigments, stress responses, structure) and to inform both 

remote sensing and on-the-ground tools (e.g., PRI ground-based sensor; Wong et al., 2022). 

While some HVIs were highlighted in this discussion, many others appear in Supplementary 

Tables and Figures that appear at the end.  
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Tables 

Table 1. Hyperspectral vegetation indices (HVIs) that detected differences between stressed 
versus well-watered and mildly stressed blocks earlier in the day. HVI values are calculated 

using reflectance measured at wavelengths which appear along the bottom. Wavelength ranges 
are grouped based on leaf properties described in source material for HVI determination.  

Leaf property 
Chlr a, Chlr b, 

Car, Xan 
Chlr a only NIR Source 

Index 

Crt2 Crt2  
Carter 1994 

Crt5 Crt5  

mSR1  mSR1 
Sims and Gamon 

2002 

NPCI NPCI  Peñuelas et al. 1993a 

NPQI   
Barnes et al. 1992, 

Josep et al. 1995 

PSRI PSRI PSRI Merzlyak et al. 1999 

RBI RBI  
Rodríguez-Perez et 

al. 2007 

SIPI1 SIPI1 SIPI1 

Peñuelas et al. 1995 SIPI2  SIPI2 

SRPI SRPI  

Wavelength (nm) 415‒500 680‒700 750‒800  

*Chlr = chlorophyll,    Car = carotenoids, NIR = near infrared, Xan = xanthophylls 
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Supplementary Table 2. Mann-Whitney U mean separation test of Hyperspectral vegetation 
indices (HVIs) with significant differences during water stress imposed on July 13th, 2018. 

Differences were detected between stressed (S1 and S2), moderately stressed (M), and well-
watered (WW) blocks. Significant p-values are represented as <.001, <.01, and <.05. 

TOD Vegetation Index Treatment Comparison p-value 

930 ARI1 S2 WW < .01 

 ARI2 S2 WW < .01 

 CAI1 S1 WW <.001 

  S1 M < .01 

  S2 WW <.001 

  S2 M < .01 

 CAI2 S1 WW <.001 

  S2 WW <.001 

  S2 M < .01 

  WW M <.05 

 Crt2 S1 WW <.001 

  S1 M < .01 

  S2 WW <.001 

  S2 M <.001 

 Crt5 S1 WW <.001 

  S1 M < .01 

  S2 WW <.001 

  S2 M <.001 

 CRI2 S2 WW <.05 

  S2 M <.05 

 DVI S1 WW < .01 

  S2 WW < .01 

 mCARI2 S1 WW <.001 

  S1 M <.05 
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  S2 WW < .01 

 MSI1 S1 WW <.05 

  S2 WW < .01 

 MSI2 S1 WW <.05 

  S2 WW < .01 

 mSR1 S1 WW <.05 

  S1 M <.05 

  S2 WW < .01 

  S2 M < .01 

 mTVI2 S1 WW <.05 

  S2 WW < .01 

 NDII1 S1 WW <.05 

  S2 WW < .01 

 NDII2 S1 WW <.05 

  S2 WW < .01 

 NDII3 S1 WW <.05 

  S2 WW < .01 

 NDLI S1 WW <.05 

  S2 WW <.05 

 NDWI2 S1 WW <.05 

  S2 WW <.01 

 NDWI3 S1 WW <.01 

  S2 WW <.001 

 NDWI5 S1 WW <.05 

  S2 WW <.05 

 NDWI6 S1 WW <.05 

  S2 WW <.05 

  WW M <.05 
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 NPCI S1 WW <.001 

  S1 M <.001 

  S2 WW <.001 

  S2 M <.001 

 NPQI S1 WW <.001 

  S1 M <.001 

  S2 WW <.001 

  S2 M <.001 

 PRI1 S2 WW <.05 

 PRI2 S2 WW <.05 

 PRI3 S2 WW <.05 

 PRI4 S2 WW <.05 

 PSRI S1 WW <.001 

  S1 M <.001 

  S2 WW <.001 

  S2 M <.001 

 PSSRc S2 WW <.05 

  S2 M <.05 

 RBI S1 WW <.001 

  S1 M <.05 

  S2 WW <.001 

  S2 M <.01 

 SIPI1 S1 WW <.001 

  S1 M <.001 

  S2 WW <.001 

  S2 M <.001 

 SIPI2 S1 WW <.05 

  S1 M <.05 
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  S2 WW <.01 

  S2 M <.01 

 SR4 S2 WW <.05 

 SRPI S1 WW <.001 

  S1 M <.01 

  S2 WW <.001 

  S2 M <.001 

 SRWI2 S2 WW <.05 

 WBI S2 WW <.05 

 WI1 S1 WW <.001 

  S2 WW <.001 

  S2 M <.05 

  WW M <.01 

 WI2 S1 WW <.05 

  S2 WW <.05 

 WI3 S1 WW <.05 

  S2 WW <.05 

1130 ACI S1 S2 <.05 

  S1 WW <.01 

  S1 M <.05 

 ARI1 S1 WW <.001 

  S1 M <.001 

  S2 WW <.01 

  S2 M <.05 

 ARI2 S1 WW <.001 

  S1 M <.001 

  S2 WW <.01 

  S2 M <.01 
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 CAI1 S2 WW <.05 

 CARI S1 WW <.05 

  S1 M <.05 

 CIgreen S1 S2 <.01 

  S1 WW <.01 

  S1 M <.01 

 CIred_edge S1 WW <.05 

  WW M <.05 

 Crt1 S1 S2 <.05 

  S1 WW <.01 

  S1 M <.01 

 Crt2 S1 WW <.001 

  S1 M <.001 

  S2 WW <.001 

  S2 M <.001 

 Crt3 S1 WW <.05 

  S1 M <.05 

 Crt4 S1 S2 <.05 

  S1 WW <.01 

  S1 M <.01 

 Crt5 S1 WW <.001 

  S1 M <.001 

  S2 WW <.001 

  S2 M <.001 

 Crt6 S1 WW <.01 

  S1 M <.05 

 CRI1 S2 M <.05 

 CRI2 S1 M <.05 
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  S2 WW <.01 

  S2 M <.01 

 CUR S1 M <.05 

 DattsCI S1 WW <.05 

  S1 M <.05 

 DVI S1 S2 <.01 

  S1 M <.05 

 EVI S1 S2 <.05 

  S1 WW <.05 

 GMI1 S1 S2 <.05 

  S1 WW <.01 

  S1 M <.01 

 GMI2 S1 S2 <.05 

  S1 WW <.01 

  S1 M <.01 

 mARI S1 S2 <.05 

  S2 M <.01 

 mCARI1 S1 WW <.05 

  S1 M <.05 

 mCARI2 S1 M <.05 

 mNDVI S1 WW <.01 

  S1 M <.01 

 mSR1 S1 S2 <.05 

  S1 M <.05 

  S2 WW <.01 

  S2 M <.001 

 mSR2 S1 S2 <.05 

  S1 WW <.01 
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  S1 M <.05 

 MTCI S1 WW <.01 

  S1 M <.05 

 mTVI1 S1 S2 <.05 

  S1 M <.01 

 mTVI2 S1 S2 <.01 

  S1 M <.01 

 NDVI1 S1 S2 <.05 

  S1 WW <.01 

 NDVI2 S1 S2 <.05 

  S1 WW <.01 

  S1 M <.05 

 NDVI3 S1 S2 <.05 

  S1 WW <.01 

  S1 M <.05 

 NDVI4 S1 S2 <.05 

  S1 WW <.01 

 NDVI5 S1 S2 <.05 

  S1 WW <.01 

 NDVI6 S1 S2 <.05 

  S1 WW <.01 

 NDWI1 S1 M <.01 

 NDWI4 S1 M <.01 

 NDWI5 S2 M <.01 

 NDWI6 S1 M <.05 

  S2 M <.01 

 NPCI S1 S2 <.01 

  S1 WW <.001 
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  S1 M <.001 

  S2 WW <.001 

  S2 M <.001 

 NPQI S1 WW <.001 

  S1 M <.001 

  S2 WW <.001 

  S2 M <.001 

 PRI1 S1 WW <.05 

  S1 M <.01 

 PRI2 S1 WW <.05 

  S1 M <.05 

 PRI3 S1 WW <.01 

  S1 M <.01 

 PRI4 S1 WW <.01 

  S1 M <.01 

 PSNDa S1 S2 <.05 

  S1 WW <.01 

  S1 M <.05 

 PSNDb S1 S2 <.05 

  S1 WW <.01 

  S1 M <.05 

 PSNDc S1 S2 <.05 

  S2 M <.05 

 PSRI S1 S2 <.05 

  S1 WW <.001 

  S1 M <.001 

  S2 WW <.001 

  S2 M <.001 
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 PSSRa S1 S2 <.05 

  S1 WW <.01 

  S1 M <.05 

 PSSRb S1 S2 <.05 

  S1 WW <.01 

  S1 M <.05 

 PSSRc S1 S2 <.05 

  S2 WW <.05 

  S2 M <.01 

 RARSb S1 WW <.01 

 RARSc S1 S2 <.05 

  S2 M <.05 

 RBI S1 WW <.001 

  S1 M <.001 

  S2 WW <.001 

  S2 M <.001 

 rDVI S1 S2 <.05 

  S1 WW <.01 

 rNDVI S1 WW <.01 

  S1 M <.01 

 SIPI1 S1 S2 <.01 

  S1 WW <.001 

  S1 M <.001 

  S2 WW <.001 

  S2 M <.001 

 SIPI2 S1 S2 <.05 

  S1 M <.05 

  S2 WW <.01 
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  S2 M <.001 

 SR1 S1 S2 <.05 

  S1 WW <.01 

 SR2 S1 S2 <.05 

  S1 WW <.01 

 SR3 S1 WW <.01 

  S1 M <.01 

 SR4 S2 M <.05 

 SRPI S1 S2 <.01 

  S1 WW <.001 

  S1 M <.001 

  S2 WW <.001 

  S2 M <.001 

 SRWI1 S1 M <.01 

 SRWI3 S1 M <.01 

 tCARI S1 WW <.05 

  S1 M <.05 

 Vog1 S1 WW <.01 

  S1 M <.05 

 Vog2 S1 WW <.01 

  S1 M <.05 

 Vog3 S1 WW <.01 

  S1 M <.05 

 WI1 S1 M <.05 

  S2 M <.05 

 WI2 S2 M <.01 

 WI3 S2 M <.01 

1600 CAI1 WW M <.01 
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 CAI2 WW M <.05 

 CARI S1 WW <.01 

  S1 M <.01 

 Crt2 S1 WW <.001 

  S1 M <.001 

  S2 WW <.05 

  S2 M <.05 

 Crt3 S1 WW <.01 

  S1 M <.01 

  S2 M <.05 

 Crt5 S1 WW <.001 

  S1 M <.001 

  S2 WW <.01 

  S2 M <.01 

 CRI1 S1 WW <.05 

  S1 M <.05 

 CRI2 S1 M <.05 

 CUR S1 WW <.01 

  S1 M <.01 

  S2 WW <.05 

  S2 M <.05 

 DVI S1 WW <.05 

  S1 M <.001 

  S2 M <.01 

 mCARI1 S1 WW <.01 

  S1 M <.01 

 mCARI2 S1 WW <.01 

  S1 M <.001 
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  S2 WW <.05 

  S2 M <.001 

 MSI1 S1 WW <.001 

  S1 M <.001 

  S2 WW <.001 

  S2 M <.001 

  WW M <.05 

 MSI2 S1 WW <.001 

  S1 M <.001 

  S2 WW <.001 

  S2 M <.001 

  WW M <.05 

 mSR1 S1 WW <.01 

  S1 M <.01 

 mTVI1 S1 WW <.05 

  S1 M <.05 

 mTVI2 S1 WW <.01 

  S1 M <.001 

  S2 M <.01 

 NDII1 S1 WW <.001 

  S1 M <.001 

  S2 WW <.001 

  S2 M <.001 

  WW M <.05 

 NDII2 S1 WW <.001 

  S1 M <.001 

  S2 WW <.001 

  S2 M <.001 
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  WW M <.05 

 NDII3 S1 WW <.001 

  S1 M <.001 

  S2 WW <.001 

  S2 M <.001 

  WW M <.05 

 NDLI S1 WW <.001 

  S1 M <.001 

  S2 WW <.001 

  S2 M <.001 

 NDNI S1 S2 <.05 

  S1 WW <.001 

  S1 M <.001 

  S2 WW <.001 

  S2 M <.001 

 NDVI1 S1 WW <.05 

 NDVI2 S1 WW <.05 

 NDVI5 S1 WW <.05 

 NDVI6 S1 WW <.05 

 NDWI1 S1 WW <.001 

  S1 M <.001 

  S2 WW <.001 

  S2 M <.001 

 NDWI2 S1 WW <.001 

  S1 M <.001 

  S2 WW <.001 

  S2 M <.001 

  WW M <.05 
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 NDWI3 S1 WW <.01 

  S1 M <.001 

  S2 M <.001 

  WW M <.05 

 NDWI4 S1 WW <.001 

  S1 M <.001 

  S2 WW <.001 

  S2 M <.001 

 NDWI5 S1 S2 <.05 

  S1 WW <.001 

  S1 M <.001 

  S2 WW <.001 

  S2 M <.001 

  WW M <.05 

 NDWI6 S1 S2 <.05 

  S1 WW <.001 

  S1 M <.001 

  S2 WW <.001 

  S2 M <.001 

  WW M <.05 

 NPCI S1 WW <.01 

  S1 M <.05 

 NPQI S1 WW <.01 

  S2 WW <.05 

 PRI1 S1 WW <.001 

  S1 M <.01 

  S2 WW <.05 

  S2 M <.05 
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 PRI2 S1 WW <.001 

  S1 M <.01 

  S2 WW <.01 

  S2 M <.05 

 PRI3 S1 WW <.001 

  S1 M <.05 

  S2 WW <.05 

 PRI4 S1 WW <.01 

  S2 WW <.05 

 PSNDa S1 WW <.05 

 PSNDc S1 WW <.05 

 PSSRa S1 WW <.05 

 PSSRc S1 WW <.05 

  S1 M <.05 

 RARSa S1 S2 <.05 

  S1 WW <.01 

  S1 M <.001 

  S2 M <.05 

 RARSb S1 WW <.05 

 RARSc S1 WW <.05 

 RBI S1 WW <.001 

  S1 M <.001 

  S2 WW <.05 

  S2 M <.05 

 RGRI S1 S2 <.05 

  S1 WW <.01 

  S1 M <.001 

  S2 M <.05 
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 SIPI2 S1 WW <.01 

  S1 M <.05 

 SR1 S1 WW <.05 

 SR4 S1 S2 <.05 

  S1 WW <.001 

  S1 M <.001 

  S2 WW <.001 

  S2 M <.001 

  WW M <.001 

 SRPI S1 WW <.01 

  S1 M <.05 

 SRWI1 S1 WW <.001 

  S1 M <.001 

  S2 WW <.001 

  S2 M <.001 

 SRWI2 S1 S2 <.05 

  S1 WW <.001 

  S1 M <.001 

  S2 WW <.001 

  S2 M <.001 

 SRWI3 S1 WW <.001 

  S1 M <.001 

  S2 WW <.001 

  S2 M <.001 

 tCARI S1 WW <.01 

  S1 M <.01 

 WBI S1 S2 <.05 

  S1 WW <.001 
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  S1 M <.001 

  S2 WW <.05 

  S2 M <.001 

  WW M <.05 

 WI1 S1 S2 <.05 

  S1 WW <.001 

  S1 M <.001 

  S2 WW <.001 

  S2 M <.001 

 WI2 S1 S2 <.05 

  S1 WW <.001 

  S1 M <.001 

  S2 WW <.001 

  S2 M <.001 

  WW M <.05 

 WI3 S1 S2 <.05 

  S1 WW <.001 

  S1 M <.001 

  S2 WW <.001 

  S2 M <.001 

  WW M <.05 
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Supplementary Table 3. Fowlkes-Mallows Index (FMI) scores for results of Birch clustering 
algorithm (threshold=0.01, n=2) of correlations between selected HVIs and stomatal 

conductance (gsw). Selected HVIs are sensitive to these block differences at 930 and/or 1130. 
Scores range from 0 to 1. Values closer to 1 indicate better separation between clusters. 

Conventional stress 

measure 
Index 

Time of Day 

930 1130 1600 

gsw 
 

CAI1 0.876 0.551 0.487 

Crt2 0.821 0.765 0.734 

NPCI 0.876 0.844 0.676 

PSRI 0.697 0.653 0.660 

RBI 0.688 0.844 0.734 

SIPI1 0.531 0.570 0.750 

 
Supplementary Table 4. Fowlkes-Mallows Index (FMI) scores for results of Birch clustering 

algorithm (threshold=0.01, n=2) of correlations between selected HVIs and stomatal 
conductance (gsw). Selected HVIs are sensitive to these block differences at 1600. 
Conventional stress 

measure 
Index 

Time of Day 

930 1130 1600 

Ψleaf 

CUR 0.491 0.570 0.750 

MSI1 0.531 0.570 0.750 

NDII1 0.491 0.570 0.750 

SRWI1 0.531 0.570 0.750 

WBI 0.531 0.570 0.750 

WI2 0.491 0.602 1.000 
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Figures 

 

Figure 1. Ripperdan 720 (RIP720) experimental vineyard in Madera, CA, 25 km west of Fresno, 
CA. The vineyard is 16 hectares, divided evenly into four blocks. Blocks are named based on 

irrigation treatment. Blocks are well-watered (purple), mildly stressed (blue), and stressed 
(yellow and orange). The northwestern block (yellow) is referred to as S1 and the northeastern 

block (orange) is referred to as S2. Three data collection locations (★) were located in each 
block and a flux tower was located in the southeastern corner of each block. Collections took 

place on June 19th, July 13th, and August 6th, 2018. 
 

 

Figure 2. ETa/ETref and cumulative irrigation inputs to Ripperdan 720 vineyard in Madera, CA 
from 17-May to 27-September, 2018. Irrigation was applied to blocks well-watered (purple), 
mildly stressed (blue), and stressed (yellow and orange). Data collection times are shown as 
vertical lines. Data were collected on June 19th (✦), July 13th (✦✦), and August 6th (✦✦✦). 
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Figure 3. Conventional measures of stress detection collected on June 19th (“Before Stress”), 
July 13th (“During Stress”), and August 6th (“After Recovery”) in Ripperdan 720 vineyard in 

2018. Measures include leaf water potential (Ψleaf), leaf temperature (Tleaf), net assimilation (A), 
and stomatal conductance (gsw). Block treatments are well-watered (WW), mildly stressed (M), 
and stressed (S1, S2). Measurements were collected throughout the day during each collection 

day. On July 13th and August 6th, intensive observational periods (IOP) maximized the number of 
collection time points to capture differences due to the water stress and recovery phase. 

Significant differences based on Mann-Whitney U mean separation test between blocks at each 
time point are presented using different lowercase letters above the block treatment. Lowercase 

letters do not express differences between collection time points. 
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Figure 4. Selected hyperspectral vegetation indices (HVIs), and their formulas, showing 
differences between stressed (S1 and S2), well-watered (WW), and mildly stressed (M) blocks 
earlier in the day. HVIs were calculated for hyperspectral measurements collected on June 19th 
(“Before Stress”), July 13th (“During Stress”), and August 6th (“After Recovery”) in Ripperdan 
720 vineyard in 2018. Significant differences based on Mann-Whitney U mean separation test 

between blocks at each time point are presented using different lowercase letters above the block 
treatment. Lowercase letters do not express differences between collection time points. 
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Figure 5. Cluster results between selected hyperspectral vegetation indices (HVIs) and stomatal 
conductance (gsw). Data collected from mildly and well-watered blocks were combined as “well-

watered” (WW; blue). Data frm the two “stressed” (S; orange) blocks were combined. Cluster 
results were evaluated using Birch (Balanced Iterative Reducing and Clustering using 

Hierarchies) clustering algorithm (threshold=0.01, n=2). Resulting groups (●, x ) are assigned 
based on the clustering algorithm and have no relationship to treatment conditions. 
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Figure 6. Selected hyperspectral vegetation indices (HVIs), and their formulas, showing 

differences between stressed (S1 and S2), well-watered (WW), and mildly stressed (M) blocks 
later in the day. HVIs were calculated for hyperspectral measurements collected on June 19th 

(“Before Stress”), July 13th (“During Stress”), and August 6th (“After Recovery”) in Ripperdan 
720 vineyard in 2018. Significant differences based on Mann-Whitney U mean separation test 

between blocks at each time point are presented using different lowercase letters above the block 
treatment. Lowercase letters do not express differences between collection time points. 
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Figure 7. Cluster results between selected hyperspectral vegetation indices (HVIs) and leaf 

water potential (Ψleaf). Data collected from mildly and well-watered blocks were combined as 
“well-watered” (WW) blocks and “stressed” (S) block data were combined. Cluster results were 
evaluated using Birch (Balanced Iterative Reducing and Clustering using Hierarchies) clustering 

algorithm (threshold=0.01, n=2). Resulting groups (●, x ) are assigned based on the clustering 
algorithm and have no relationship to treatment conditions. 
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Supplementary Figure 1. 88 hyperspectral vegetation indices (HVIs) of stressed (S1 and S2) 
versus well-watered (WW) and mildly stressed (M) blocks. HVIs were calculated for 

hyperspectral measurements collected on June 19th (“Before Stress”), July 13th (“During Stress”), 
and August 6th (“After Recovery”) in Ripperdan 720 vineyard in 2018. Significant differences 

based on Mann-Whitney U mean separation test between blocks at each time point are presented 
using different lowercase letters above the block treatment. Lowercase letters do not express 

differences between collection time points. 
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Supplementary Figure 1 (cont’d). 
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Supplementary Figure 1 (cont’d). 
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Supplementary Figure 1 (cont’d). 
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Supplementary Figure 1 (cont’d). 
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Supplementary Figure 1 (cont’d). 
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Supplementary Figure 1 (cont’d). 
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Supplementary Figure 1 (cont’d). 
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Supplementary Figure 1 (cont’d). 
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Supplementary Figure 1 (cont’d). 
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Supplementary Figure 1 (cont’d). 
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Supplementary Figure 2. Cluster results between selected hyperspectral vegetation indices 

(HVIs) and leaf water potential (Ψleaf). Data collected from mildly and well-watered blocks were 
combined as well-watered (WW) blocks and stressed (S) block data were combined. Cluster 

results were evaluated using Birch (Balanced Iterative Reducing and Clustering using 
Hierarchies) clustering algorithm (threshold=0.01, n=2). Resulting groups (●, x ) are assigned 

based on the clustering algorithm and have no relationship to treatment conditions. 
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Supplementary Figure 3. Cluster results between selected hyperspectral vegetation indices 

(HVIs) and leaf temperature (Tleaf). Data collected from mildly and well-watered blocks were 
combined as well-watered (WW) blocks and stressed (S) block data were combined. Cluster 
results ions were evaluated using Birch (Balanced Iterative Reducing and Clustering using 

Hierarchies) clustering algorithm (threshold=0.01, n=2). Resulting groups (●, x ) are assigned 
based on the clustering algorithm and have no relationship to treatment conditions. 
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Supplementary Figure 4. Cluster results between selected hyperspectral vegetation indices 
(HVIs) and net assimilation (A). Data collected from mildly and well-watered blocks were 

combined as well-watered (WW) blocks and stressed (S) block data were combined. Cluster 
results were evaluated using Birch (Balanced Iterative Reducing and Clustering using 

Hierarchies) clustering algorithm (threshold=0.01, n=2). Resulting groups (●, x ) are assigned 
based on the clustering algorithm and have no relationship to treatment conditions. 
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Supplementary Figure 5. Cluster results between selected hyperspectral vegetation indices 
(HVIs) and stomatal conductance (gsw). Data collected from mildly and well-watered blocks 
were combined as well-watered (WW) blocks and stressed (S) block data were combined. 

Cluster results were evaluated using Birch (Balanced Iterative Reducing and Clustering using 
Hierarchies) clustering algorithm (threshold=0.01, n=2). Resulting groups (●, x ) are assigned 

based on the clustering algorithm and have no relationship to treatment conditions. 
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Supplementary Figure 6. Cluster results between selected hyperspectral vegetation indices 

(HVIs) and leaf temperature (Tleaf). Data collected from mildly and well-watered blocks were 
combined as well-watered (WW) blocks and stressed (S) block data were combined. Cluster 

results were evaluated using Birch (Balanced Iterative Reducing and Clustering using 
Hierarchies) clustering algorithm (threshold=0.01, n=2). Resulting groups (●, x ) are assigned 

based on the clustering algorithm and have no relationship to treatment conditions. 
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Supplementary Figure 7. Cluster results between selected hyperspectral vegetation indices 
(HVIs) and net assimilation (A). Data collected from mildly and well-watered blocks were 

combined as well-watered (WW) blocks and stressed (S) block data were combined. Cluster 
results were evaluated using Birch (Balanced Iterative Reducing and Clustering using 

Hierarchies) clustering algorithm (threshold=0.01, n=2). Resulting groups (●, x ) are assigned 
based on the clustering algorithm and have no relationship to treatment conditions. 
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