Title
Optimization of Geometric Multigrid for Emerging Multi-and Manycore Processors

Permalink
https://escholarship.org/uc/item/1300d7g7

ISBN
9781467308069

Authors
Williams, Samuel
Kalamkar, Dhiraj D
Amik, Singh
et al.

Publication Date
2012-11-01

DOI
10.1109/sc.2012.85

Peer reviewed
Optimization of Geometric Multigrid for Emerging Multi- and Manycore Processors

Samuel Williams1, Dhiraj D. Kalamkar2, Amik Singh3, Anand M. Deshpande2, Brian Van Straalen1, Mikhail Smelyanskiy2, Ann Almgren1, Pradeep Dubey2, John Shalf1, Leonid Oliker1

1Lawrence Berkeley National Laboratory, 2Intel Corporation, 3University of California Berkeley

Abstract—Multigrid methods are widely used to accelerate the convergence of iterative solvers for linear systems used in a number of different application areas. In this paper, we explore optimization techniques for geometric multigrid on existing and emerging multicore systems including the Opteron-based Cray XE6, Intel\textregistered Xeon\textregistered E5-2670 and X5550 processor-based Infiniband clusters, as well as the new Intel\textregistered Xeon PhiTM coprocessor (Knights Corner). Our work examines a variety of novel techniques including communication-aggregation, threaded wavefront-based DRAM communication-avoiding, dynamic threading decisions, SIMDization, and fusion of operators. We quantify performance through each phase of the V-cycle for both single-node and distributed-memory experiments and provide detailed analysis for each class of optimization. Results show our optimizations yield significant speedups across a variety of subdomain sizes while simultaneously demonstrating the potential of multi- and manycore processors to dramatically accelerate single-node performance. However, our analysis also indicates that improvements in networks and communication will be essential to reap the potential of manycore processors in large-scale multigrid calculations.

Index Terms—Geometric Multigrid, communication-avoiding, multicore, Xeon Phi, Knights Corner, OpenMP, auto-tuning

I. INTRODUCTION

In the past decades, continued increases in clock frequencies have delivered exponential improvements in computer system performance. However, this trend came to an abrupt end a few years ago as power consumption became the principal rate limiting factor. As a result, power constraints are driving architectural designs towards ever-increasing numbers of cores, wide data parallelism, potential heterogenous acceleration, and a decreasing trend in per-core memory bandwidth. Understanding how to leverage these technologies in the context of demanding numerical algorithms is likely the most urgent challenge in high-end computing.

In this work, we explore the optimization of geometric multigrid (MG) — one of the most important algorithms for computational scientists — on a variety of leading multi- and manycore architectural designs. Our primary contributions are:

- We examine a broad variety of leading multicore platforms, including the Cray XE6, Intel\textregistered Xeon\textregistered E5-2670 and X5550 processor-based Infiniband clusters, as well as the new Intel\textregistered Xeon PhiTM coprocessor (Knights Corner). This is the first study to examine the performance characteristics of the recently announced Knights Corner (KNC) production architecture. We introduce preliminary work on porting this multigrid solver to an ECC-enabled NVIDIA M2090 GPU.
- We optimize and analyze all the required components within an entire multigrid V-cycle using a variable-coefficient, Red-Black, Gauss-Seidel (GSRB) relaxation on these advanced platforms. This is a significantly more complex calculation than exploring just the stencil operation on a large grid.
- We implement a number of effective optimizations geared toward bandwidth-constrained, wide-SIMD, manycore architectures including the application of wavefront to variable-coefficient, Gauss-Seidel, Red-Black (GSRB), SIMDization within the GSRB relaxation, and intelligent communication-avoiding techniques that reduce DRAM traffic. We also explore message aggregation, residual-restriction fusion, nested parallelism, as well as CPU- and KNC-specific tuning strategies.
- Additionally, we proxy the demanding characteristics of real simulations, where relatively small subdomains (323 or 643) are dictated by the larger application. This results in a broader set of performance challenges on manycore architectures compared to using larger subdomains.

Overall results show a significant performance improvement of up to 3.8× on KNC compared with the parallel reference implementation (highlighted in Figure 7), while demonstrating scalability on up to 24K cores on the XE6. Additionally, our performance analysis with respect to the underlying hardware features provides critical insight into the approaches and challenges of effective numerical code optimization for highly-parallel, next-generation platforms.

II. MULTIGRID OVERVIEW

Multigrid (MG) methods provide a powerful technique to accelerate the convergence of iterative solvers for linear systems and are therefore used extensively in a variety of numerical simulations. Conventional iterative solvers operate on data at a single resolution and often require too many iterations to be viewed as computationally efficient. Multigrid simulations create a hierarchy of grid levels and use corrections of the solution from iterations on the coarser levels to improve the convergence rate of the solution at the finest level. Ideally, multigrid is an O(N) algorithm; thus, performance optimization on our studied multigrid implementation can only yield constant speedups.
Figure 1 shows the three phases of the multigrid V-cycle for the solve of $Lu^h = f^h$. First, a series of smooths reduce the error while restrictions of the residual create progressively coarser grids. The smooth is a conventional relaxation such as Jacobi, successive over-relaxation (SOR), or Gauss-Seidel, Red-Black (GSRB) which we used in our study as it has superior convergence properties. The restriction of residual $(f^h - Lu^h)$ is used to define the right-hand side at the next coarser grid. At each progressively coarser level, the correction (e.g. u^{2h}) is initialized to zero. Second, once coarsening stops (the grid size reaches one or terminated for performance), the algorithm switches to a bottom solver which can be as simple as applying multiple relaxes or as complicated as an algebraic multigrid or direct sparse linear solver. Finally, the coarsest correction is interpolated back up the V-cycle to progressively finer grids where it is smoothed.

Nominally, one expects an order of magnitude reduction in the residual per V-cycle. As each level performs $O(1)$ operations per grid point and $\frac{1}{s}$ the work of the finer grid, the overall computation is $O(N)$ in the number of variables in u. The linear operator can be arbitrarily complex as dictated by the underlying physics, with a corresponding increase in run time to perform the smooth computation. Section IV-B details the problem specification used in our study.

III. RELATED WORK

Throughout this paper, we leverage the 3C’s taxonomy when referring to cache misses [14]. In the past, operations on large structured grids could easily be bound by capacity misses, leading to a variety of studies on blocking and tiling optimizations [9], [10], [16], [21], [22], [28], [29]. However, a number of factors have made such approaches progressively obsolete on modern platforms. On-chip caches have grown by orders of magnitude and are increasingly able to capture sufficient locality for the fixed box sizes associated with typical MG methods. The rapid increase in on-chip parallelism has also quickly out-stripped available DRAM bandwidth resulting in bandwidth-bound performance.

Thus, in recent years, numerous efforts have focused on increasing temporal locality by fusing multiple stencil sweeps through techniques like cache oblivious, time skewing, or wavefront [8], [11], [12], [17], [19], [24], [27], [30]–[32]. Many of these efforts examined 2D or constant-coefficient problems — features rarely seen in real-world applications.

Chan et al. explored how, using an auto-tuned approach, one could restructure the MG V-cycle to improve time-to-solution in the context of a 2D, constant-coefficient Laplacian [5]. This approach is orthogonal to our implemented optimizations and their technique could be incorporated in future work.

Studies have explored the performance of algebraic multigrid on GPUs [1], [2], while Sturmer et al. examined geometric multigrid [25]. Perhaps the most closely related work is that performed in Treibig’s, which implements a 2D GSRB on SIMD architectures by separating and reordering the red and black elements [26], additionally a 3D multigrid on an IA-64 (Itanium) is implemented via temporal blocking. Our work expands on these efforts by providing a unique set of optimization strategies for multi- and manycore architectures.

IV. EXPERIMENTAL SETUP

A. Evaluated Platforms

We use the following systems in all our experiments. Their key characteristics are summarized in Table I.

Cray XE6 “Hopper”: Hopper is a Cray XE6 MPP at NERSC built from 6384 compute nodes each consisting of two 2.1 GHz 12-core Opteron (Magny Cours) processors [15]. In reality, each Opteron socket is comprised of two 6-core chips each with two DDR3-1333 memory controllers. Effectively, the compute nodes are comprised of four (non-uniform memory access) NUMA nodes, each providing about 12 GB/s of STREAM bandwidth. Each core uses 2-way SSE3 SIMD and includes both a 64KB L1 and a 512KB L2 cache, while each socket includes a 6MB L3 cache with 1MB reserved for the probe filter. The compute nodes are connected through the Gemini network into a 3D torus.

Intel® Xeon® X5550-Infiniband Cluster “Carver”: The Carver cluster at NERSC is built from 1202 compute nodes mostly consisting of two 2.66 GHz, quad-core Intel® Xeon® X5550 processors [4]. Thus, each compute node consists of two NUMA nodes. Each quad-core Nehalem (NHM) socket includes an 8 MB L3 cache and three DDR3 memory controllers providing about 18 GB/s of STREAM bandwidth. Each core implements the 2-way SSSE3 SIMD instruction set and includes both a 32KB L1 and a 256KB L2 cache. HyperThreading is disabled on Carver. The compute nodes are connected through the 4X QDR Infiniband network arranged into local fat trees and a global 2D mesh.

Intel® Xeon® E5-2670-Infiniband Cluster “Gordon”: The Gordon cluster at the San Diego Supercomputing Center is comprised of 1024 compute nodes each with two 2.6 GHz, 8-core Intel® Xeon® E5-2670 processors [13]. Each 8-core Sandy Bridge (SNBe) processor includes a 20 MB L3 cache and four DDR3-1333 memory controllers providing about 35 GB/s of STREAM bandwidth. Each core implements the 4-way AVX SIMD instruction set and includes both a 32KB L1 and a 256KB L2 cache. This provides Gordon with four times
the peak performance and twice the sustained bandwidth as Carver. HyperThreading is disabled on Gordon. The compute nodes are connected through the 4X QDR Infiniband network with switches arranged into torus.

Intel® Xeon Phi™ coprocessor “KNC”: Knights Corner (KNC) is the first production coprocessor in the Intel® Xeon Phi™ product family. It is an x86-based, many-core processor architecture based on small, in-order cores that uniquely combines the full programmability of today’s general purpose CPU architecture with the compute throughput and memory bandwidth capabilities of modern GPU architectures. As a result, standard parallel programming approaches like Pthreads or OpenMP apply to KNC — a potential boon to portability. Each shared multiprocessor (SM) is about 120 GB/s. ECC is enabled in all our experiments.

NVIDIA M2090-accelerated Node: The M2090 Fermi GPU includes 512 scalar “CUDA cores” running at 1.30 GHz and grouped into sixteen SIMT-based streaming multiprocessors (SM). This provides a peak double-precision floating-point capability of 665 GFlop/s. Each SM includes a 128 KB register file and a 64 KB SRAM that can be partitioned between cache and “shared” memory in a 3:1 ratio. Although the GPU has a raw pin bandwidth of 177 GB/s to its on-board 6 GB of GDDR5 DRAM, the measured bandwidth with ECC enabled is about 120 GB/s. ECC is enabled in all our experiments.

B. Problem Specification

A key goal of our work is to analyze the computational challenges of multigrid in the context of multi- and manycore, optimization, and programming model. We therefore construct a compact multigrid solver benchmark that creates a global 3D domain partitioned into subdomains sized to proxy those found in real MG applications. We also explore the use of 32\(^3\) and 128\(^3\) subdomains to estimate the ultimate performance of memory bandwidth-constrained multigrid codes. The resultant list of subdomains is then partitioned among multiple MPI processes on platforms with multiple NUMA nodes. All subdomains (whether on the same node or not) must explicitly exchange ghost zones with their neighboring subdomains, ensuring an effective communication proxy of MG codes.

We use a double-precision, finite volume discretization of the variable-coefficient Helmholtz operator \(L = a\vec{\alpha}I - b\vec{\beta}\vec{\nu}\) with periodic boundary conditions as the linear operator within our test problem. Variable-coefficient is an essential (yet particularly challenging) facet as most real-world applications demand it. The right-hand side \(f(x) = \sin(2\pi x)\sin(2\pi y)\sin(2\pi z)\) on the \([0,1]\) cubical domain. The \(u, f,\) and \(\vec{\alpha}\) are cell-centered data, while the \(\vec{\beta}\)'s are face-centered.

To enable direct time-to-solution comparisons of different node architectures, we fix the problem size to a 256\(^3\) discretization on all platforms. This (relatively small) grid size in conjunction with partitioning into subdomains, the variable-coefficient nature of our computation, and buffers required for exchanging data, consumes more than 2.5 GB — sufficiently small for KNC. Our baseline for node comparison is the performance of the 4-chip Opteron-based Cray XE6 node, the 2-chip Intel Xeon nodes, and the single chip KNC coprocessor running in native mode solving one 256\(^3\) problem.

To allow for uniform benchmarking across the platforms, we structure a truncated V-cycle where restriction stops at the coarsest level of 4\(^3\). We fix the number of V-cycles at 10 and perform two relaxations at each level down the V-cycle.
relaxes at the bottom, and two relaxations at each level up the V-cycle. As this paper is focused on optimization the MG V-cycle, a simple relaxation scheme at the bottom is sufficient to attain single-node multigrid convergence.

Our relaxation scheme uses Gauss-Seidel Red-Black (GSRB) which offers superior convergence compared to other methods. It consists of two grid smooths (pardon the overloaded term) per relax each updating one color at a time, for a total of eight smooths per subdomain per level per V-cycle. The pseudocode for the resultant inner operation is shown in Figure 2. Here, neither the Laplacian nor the Helmholtz (Identity minus Laplacian) of a grid is ever actually constructed, rather all these operations are fused together into one GSRB relax. A similar calculation is used for calculating the residual. Nominally, these operators require a one element deep ghost zone constructed from neighboring subdomain data. However, in order to leverage communication aggregation and communication avoiding techniques, we also explore a 4-deep ghost zone that enables one to avoid DRAM data movement at the expense of redundant computation. Although the CPU code allows for residual correction form, it was not employed in our experiments; observations show its use incurs a negligible impact on performance of the v-cycle.

The data structure for a subdomain within a level is a list of equally-sized grids (arrays) representing the correction, right-hand side, residual, and coefficients each stored in a separate array. Our implementations ensure that the core data structures remain relatively unchanged with optimization. Although it has been shown that separation of red and black points into separate arrays can facilitate SIMDization [26], our benchmark forbids such optimization as they lack generality and challenge other phases. As data movement is the fundamental performance limiter, statically separating red and black will provide little benefit in the long run as the same volume of data transfer is still required.

C. Reference (Baseline) Implementation

The CPUs and KNC share a common reference implementation. This benchmark builds the MG solver by allocating and initializing the requisite data structures, forming and communicating restrictions of the coefficients, and performing multiple solves. Given that each NUMA node is assigned one MPI process, the single-node CPU experiments use 4 (XE6) or 2 (NHM, SNBe) MPI processes which collectively solve the one 256^3 problem (see Figure 3(left)). OpenMP parallelization is applied to the list of subdomains owned by a given process.

When using threads for concurrency, each thread operates independently on one subdomain at a time. For example, on Gordon with 64 subdomains per node, each of the 16 OpenMP threads will be responsible for 4 subdomains. The baseline KNC code uses the same approach via native mode with the caveat that only 64 threads scattered across the cores can be active. We acknowledge that this will underutilize and imbalance the 60-core, 240-thread machine. Nevertheless, this style of flat parallelism is designed to proxy today’s MG frameworks like CHOMBO or BoxLib [3], [6], and serves as a common baseline. No communication avoiding, cache blocking, hierarchical threading, SIMDization, or other explicit optimizations are employed in the baseline OpenMP version making it highly portable.

D. Distributed Memory Experiments

To quantify the impact of network architecture and communication aggregation on the performance of large-scale V-cycle simulations, we conduct a series of weak scalability experiments, assigning a full 256^3 domain to each NUMA node. Thus, a 1K^3 domain requires only 64 NUMA nodes — 16 compute nodes on Hopper and 32 nodes on Carver/Gordon. Future work will expand our study to explore distributed memory performance on GPUs and KNCs.

V. PERFORMANCE CHALLENGES AND EXPECTATIONS

In our implementation, there are five principal functions at each level: smooth, residual, restriction, interpolation, and exchange. Smooth is called eight times, Exchange nine, and the others once. In the baseline implementation, data dependencies mandate each function be called in sequence. Descending through the V-cycle, the amount of parallelism in smooth, residual, restriction, and interpolation decrease by a factor of eight, while working sets decrease by a factor of four. This creates an interesting and challenging interplay between intra- and inter-box parallelism.

Smooth: Nominally, smooth dominates the run time. This function performs the GSRB relax (stencil) on every other point (one color), and writes the updated correction back to DRAM. For a 64^3 subdomain with a 1-deep ghost zone, this corresponds to a working set of about 340KB (10 planes from 7 different arrays), the movement of 2.3M doubles (8 * 66^3), and execution of 3.3M floating-point operations (25 flops on every other point). As a subsequent call to smooth is not possible without communication, its flop:byte ratio of less than 0.18 results in performance heavily bound by DRAM bandwidth. In fact, with 50 GB/s of STREAM bandwidth, Smooth will consume at least 1.88 seconds at the finest grid. Although GSRB is particularly challenging to SIMDize, its memory-bound nature avoids any performance loss without it.
Residual is quite similar to Smooth but lacking GSRB and accesses to the coefficient $\bar{\lambda}$.

Restriction: Restriction reads in the residual and averages eight neighboring cells. This produces a grid (h^{2h}) nominally $8\times$ smaller — a 64^3 grid is restricted down to 32^3 (plus a ghost zone). Such a code has a flop:byte ratio of just under 0.09 and is thus likely to be heavily bandwidth-bound.

Interpolation: Interpolation is the mirror image of restriction: each element of u^{2h} is used to increment eight elements of u^h. It typically moves almost twice as much data as restrict and has a flop:byte ratio less than 0.053.

Exchange Boundaries: For the single-node experiments, this function contains three loop nests. First, the (non-ghost zone) surface of each 3D subdomain is extracted and packed into 26 surface buffers representing the 26 possible neighboring subdomains. Second, buffers are exchanged between subdomains into a set of 26 ghost zone buffers. Due to the shape of our stencil, in the baseline implementation, each subdomain only communicates with its six neighboring subdomains. Finally, the data in the ghost zone buffers is copied into the subdomain grids. Although there are no floating-point operations in this routine, there is a great deal of data movement often with poor sequential locality. In the MPI implementation, each subdomain determines whether its neighbor is on- or off-node, and uses either an `MPI_Isend` or a `memcpy()`.

VI. OPTIMIZATION

A. Communication Aggregation

In an MPI version, each subdomain can potentially initiate its own `Isend/Irecv` combination, thereby flooding the network. To rectify this, the baseline code aggregates and buffers off-node ghost-zone exchanges through 26 process-level send and receive buffers, thus keeping the message count constant regardless of the number of subdomains per process.

To improve communication performance, it is well known that transferring a deeper ghost zone can be used to reduce the number of communication phases at the expense of redundant computation required to produce a bit-identical result. That is, rather than four-rounds of smoothing each 64^3 grid, four smooths can be performed in one pass through a 70^3 grid; we therefore explore sending both a 1-element and a 4-element deep ghost zone. The latter necessitates communication with all 26 neighbors (faces, edges, and corners) instead of simply the 6 faces required by the 1-element ghost zone and our stencil. As we duplicate the work of neighboring subdomains, we are required to duplicate their values of the $\vec{\alpha}$ and $\vec{\beta}$ coefficients when building the solver, and the right-hand side at each level of each V-cycle. Thus, communication aggregation can significantly increase inter-subdomain communication.

B. DRAM Communication Avoiding

Given that the core routines within the V-cycle are memory-bound, we explore opportunities to improve temporal locality and avoid DRAM data movement. Although the communication aggregation approach has the potential for improved locality in smooth, it requires an extremely large working set of 20MB (seven arrays $\times 72^3$) per subdomain at the finest resolution — likely too large to be exploited by our processors.

To minimize the working set and enable a streaming model, we implement a wavefront approach [32] to the Gauss-Seidel, Red-Black relax operation. As shown in Figure 3(right), our communication-avoiding approach constructs a wavefront of computation 4-planes deep (matching the number of relaxes) that sweep through the subdomain in the k-dimension (least unit stride). With 4 planes of seven arrays (plus two leading and one trailing plane), the aggregate working set of this technique is roughly $250 \times Dim_x \times Dim_y$, or approximately 1.23 MB at the finest grid. For the CPUs, this is small enough to allow each thread to operate on independent subdomains while still attaining locality in the L3 cache (see Table I). For our other platforms, threading or blocking is necessary within a subdomain to reduce the working set sufficiently to fit into on-chip memory. However, as the computation descends through the V-cycle, the working set is naturally reduced to the point where it fits into the L2 or L1 cache. Ideally, the programmer or underlying architecture provides a mechanism to overlap DRAM-cache data transfers of the next plane (highlighted in blue Figure 3(right)) and the computation on the four trailing planes. Failure to do so will result DRAM overheads being amortized (rather than hidden) by multiple fast cache accesses.

Table II quantifies the theoretical benefits from improved locality and costs from increased grid sizes of communication avoiding on local operations at each level. The model is based on the volume of data movement (the 66^3 or 72^3 grids including ghost zones). Finite cache bandwidth, cache capacity, and in-core compute capability will limit the realized benefits attained without affecting the performance costs in residual, restriction, and interpolation. Despite the fact that grids nominally increase by at least 30% with the addition of a 4-deep ghost zone, kernels called multiple times like smooth can be restructured to move this data once (instead of four times). Thus, at the finest grid, there is a potential $3 \times$ reduction in smooth run time at the cost of at least a 30% increase in residual, restriction, and interpolation time. Subsequent descent through the V-cycle, will reduce the advantage for smooth as an increasing volume of data is transferred per point (thick ghost zones dominate the volume). This crossover point is quantified in Section VII-B.

<table>
<thead>
<tr>
<th>Operation</th>
<th>643</th>
<th>323</th>
<th>163</th>
<th>83</th>
<th>43</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smooth</td>
<td>3.08\times</td>
<td>2.46\times</td>
<td>1.69\times</td>
<td>0.98\times</td>
<td>0.50\times</td>
</tr>
<tr>
<td>Residual+restriction</td>
<td>0.77\times</td>
<td>0.61\times</td>
<td>0.41\times</td>
<td>0.24\times</td>
<td>N/A</td>
</tr>
<tr>
<td>Interpolation</td>
<td>0.75\times</td>
<td>0.58\times</td>
<td>0.38\times</td>
<td>0.21\times</td>
<td>N/A</td>
</tr>
</tbody>
</table>

TABLE II

Theoretical limits on speedups of DRAM communication-avoiding scheme compared to naive (assuming arbitrarily fast cores/caches) based on data movement of grid sizes with 1- or 4-deep ghost zones.
C. Residual-Restriction Fusion

The residual is immediately restricted to form the right-hand side for the next level in the V-cycle and then discarded. We therefore may fuse the residual and restriction into a one operation to avoid superfluous DRAM communication. Future work will investigate the potential of fusing Smooth, Residual, and Restriction, and eliminating the communication of the correction down the V-cycle via a ghost-zone depth of five.

D. Correction Communication Avoiding

The correction is globally initialized to zero for all levels of the V-cycle except the finest. Thus when using 2 GSRB relaxes and a ghost-zone depth of 4, we can guarantee that in the one exchange of the correction, each subdomain will entirely receive zeros from its neighboring subdomains. Therefore we can eliminate communication of the correction for all coarsened levels and thus obviate this extraneous communication.

E. CPU-Specific Optimizations

The baseline CPU implementation uses MPI to parallelize subdomains across NUMA nodes combined with OpenMP to parallelize computation over the list of subdomains within each process. However, this form of concurrent execution within a process demands an aggregate cache working set proportional to the number of threads. Even when wavefront is applied to realize communication avoiding, this working set can reach nearly 8MB on the Opteron — far larger than the 5MB of usable L3 cache. To rectify this, we developed a collaborative (or threaded) wavefront for Smooth on grids 64×3 and larger, which dramatically reduces the cache working set to the point where locality of 4 planes may be maintained in the L2 cache. This is realized via the parallelization scheme shown in Figure 3(right) using an OpenMP parallel region in which loop bounds are statically calculated and a spin barrier is implemented to ensure threads proceed in lockstep. Parallelization in the j-Dimension via a #pragma omp parallel for or using an OpenMP barrier incurred too much overhead.

However, the threaded wavefront implementation presents a new challenge in the form of sequential locality. Each thread will access a contiguous block of data of size approximately Dimi×Dimj/NThreads or roughly 5KB on SNBe. Unfortunately, hardware prefetchers can become ineffective on such short stanza accesses. To rectify this, we incorporated software prefetch intrinsics to prefetch the region highlighted in blue Figure 3(right) and interleave them with the computation on the four tiling planes. Essentially, one prefetch is generated per array for every 32 stencils — the product of the number of planes in the wavefront and the number of elements in a cache line. Although this is a crude approach to decoupling data movement from computation, it did provide a noticeable performance gain. Note that the collaborative threading approach has its limits, and is not used on 32×3 or smaller grids.

To maximize inner loop performance, a code generator was written in Perl to generate SSE or AVX SIMD intrinsics for all stencils within a pencil (all values of i for a given j, k coordinate). Since it is often impractical for MG developers to change data structures within full-scale applications, we preserve the interleaving of red and black within memory. Thus to SIMDize the GSRB kernel, we perform the kernel in a SIMD register as if it were Jacobi, but merge the original red or black value into the SIMD register via blendvpd before committing to memory. Although such an approach potentially wastes half the compute capability of a core, it incurs no more L1, L2, or DRAM bandwidth — the latter being a fundamental bottleneck for existing and future architectural designs.

Finally, the buffer exchange of the communication phase was optimized via with the cache bypass movnt intrinsic. This optimization remains important when descending through the V-cycle as the aggregate buffer size can remain quite large. We use OpenMP to parallelize over the list of subdomains. CPU-specific optimization of the bandwidth-bound interpolation or residual was deemed unnecessary.

F. KNC-Specific Optimizations

KNC optimization started with the common baseline code between CPU and KNC (plus a few KNC-specific compiler flags), and explored hierarchical parallelism on inter- and intra-subdomain levels, added SIMD intrinsics, and finally included memory optimizations to maximize cache locality and minimize conflict misses through array padding. Orthogonal to this optimization was the use of communication aggregation and communication avoiding via wavefront.

The application of OpenMP in the baseline code presumes there is more parallelism across subdomains (64) than there is in hardware. While true on the CPUs, the domain-level parallelism is deficient by nearly a factor of four when targeting KNC which supports 240 hardware threads. To address this we applied nested parallelism at two levels. In the first level, the aggregate L2 capacity was used to heuristically estimate the total concurrency in subdomains (N S) at the finest level (643) that can be attained without generating capacity misses. In the second level, 4⌊60/N S⌋ threads are assigned using compact affinity to smooth a given subdomain. Pencils within a plane are interleaved among threads to maximize sharing among threads within a core. A #pragma omp parallel construct was used to control the complex dissemination of subdomain- and pencil-level operations among threads.

This static approach to parallelism becomes inefficient when descending through the V-cycle — exponentially decreasing grid sizes suggests that intra-box parallelism can be traded for inter-box. Therefore, profiling was used to construct an auto-tuner that selects the optimal balance between threads per subdomain and the number of concurrent subdomains at each level of the V-cycle. Once again, this is expressed within a #pragma omp parallel region.

Initial application of the communication avoiding wavefront yielded disappointing results. This is because the compiler was unable to accurately insert software prefetches for this complex memory access pattern (unlike the relatively simple memory access pattern of the baseline implementations). Thus, for wavefront approach in GSRB kernel, we inserted prefetches...
manually. The rest of the code still uses automatic software prefetches inserted by the compiler.

To maximize performance of in-cache computations, SIMD intrinsics were applied to the GSRB kernel. Similar to the approach on CPUs, we compute as if doing Jacobi and use masked stores to selectively update red or black values in memory. Moreover, large (2MB) TLB pages were used, and the starting address of each array was padded to avoid a deluge of conflict misses when multithreaded cores perform variable-coefficient stencils within near power-of-two grids. Similarly, the i-dimension (including the ghost zones) was padded to a multiple of 64 bytes.

To minimize the number of communicating neighbors, the KNC implementation leverages the shift algorithm [20] in which communication proceeds in three phases corresponding to communication in i, j, and k, where in each phase, the subdomains only communicates with their two neighbors.

VII. Single Node Results and Analysis

All experiments in this section use one MPI process per NUMA node (i.e. 4 MPI processes on one XE6 node).

A. Performance on the Finest Grids

Figure 4 shows a breakdown of the total time spent on the finest grids before and after optimization. Note that the multigrid time is expected to be dominated by the execution at the finest resolution. Overall results show impressive speedups from our optimization suite ranging from 1.6× on the X5550 cluster to over 5.4× on KNC. Observe that the overhead of Smooth for DRAM communication-avoiding accelerated all CPUs and KNC. Conversely, we see that aggregating ghost zone exchanges showed practically no performance benefit on the CPUs, while significantly reducing communication overheads on KNC by 33%.

In order to understand these seemingly contradictory performance effects on Smooth for CPUs and KNC, we construct a simple data movement and bandwidth model for each architecture. Table III shows that the reference implementation of Smooth on all CPUs attain an extremely high percentage of STREAM bandwidth. Conversely, the reference implementation using naive threading dramatically underutilizes KNC. With optimized nested parallelism using OpenMP, KNC's Smooth performance more than doubles, attaining a sustained bandwidth of over 120 GB/s (80% of STREAM).

In practice, DRAM communication-avoiding implementations move less than one-third of the data on CPUs and KNC— the thick ghost zones inhibit attaining the ideal one-quarter. Unfortunately, the complex memory access pattern does not synergize well with a hardware prefetcher. As a result Table III shows the sustained bandwidth is less than ideal.

B. Performance of the V-Cycle

Figure 5 presents the total time spent at each V-cycle level before and after full optimization. Note, dotted lines are baseline, solid are the fully-optimized, communication-avoiding version. For clarity, only SNBe and KNC are shown. Note, there are 24 relaxes in level 4 (the bottom) and 4 relaxes elsewhere.

![Graph showing data movement and effective DRAM bandwidth for smooth() on the finest (64^3) grids summed across all V-cycles before and after communication avoiding.](image-url)
is faster than either the optimized SNBe or KNC at the coarsest grids. Not surprising given that the communication-avoiding version will perform 27× more flops and move 4× more data between subdomains on the coarsest grid. However, as the overhead at the bottom level is more than two orders of magnitude less than the time at the finest grid, the impact is minor and does not motivate heterogeneous optimization.

C. KNC Performance Analysis

Given that this is the first study describing performance of KNC, we now present a more detailed description of our optimization impact. Figure 6 shows the benefit of progressive optimization levels for both Smooth and the overall solve time normalized to the corresponding OpenMP baseline implementation on KNC. Observe that nested threading’s superior utilization of hardware threads improves the overall solve time by a factor of 2.2×. Additionally, our auto-tuned threading further improves performance another 7% by optimizing thread distribution for each level. Note that communication-aggregation/avoiding is only applied starting with wavefront, where without proper prefetching, the complex data movement patterns cannot be efficiently realized by the compiler alone, resulting in lowered performance. However, combining tuned threading, wavefront, hand-tuned prefetching, and SIMD vectorization, improves performance by 74% on Smooth and 43% overall. Finally array padding and the use of 2MB pages give an additional performance boost resulting in a significant overall speedup of 5.4× and 3.8× for Smooth and solver time respectively.

D. Overall Speedup for the MG Solver

Figure 7 presents the overall performance (higher is better) of the multigrid solver before and after optimization, normalized to baseline Opteron performance. Here we integrate the performance trends in Figure 5 and observe that the fastest machine for the baseline implementation is SNBe — no surprise given the mismatch between parallelism in the code and parallelism in KNC. However, proper exploitation of thread-level parallelism on KNC can more than double the performance of the solver.

With full tuning (communication-avoiding, SIMD, prefetch, etc.), results show see an 1.5× and 3.8× increase in solver performance on SNBe and KNC respectively. Although KNC was able to attain a speedup of about 5.4× on Smooth on the finest grids, the time spent in the other phases and in the other levels amortizes this benefit. Overall, the KNC exceeds SNBe performance by 1.75× while exceed the XE6 by almost 2.5×. Conversely, the high working sets associated with the smooth operator in a GPU implementation coupled with limited on-core memory will limit the GPUs ability to form sufficient locality on chip, thus wasting much of its bandwidth potential on redundant or superfluous data movement. Fundamentally, without sufficient on-chip memory or the ability to schedule and synchronize thread blocks, GPU’s will be unable to realize the ultimate potential of communication-avoiding.

E. Impact of Subdomain Size on Solve Time

Many realistic applications, require the use of multiple subdomains (e.g. multiple chemical species) whose size is constrained by the full-scale simulation requirements. Applications with more species or variables further constrain the size of the subdomains. To proxy this effect, we examine the impact on performance when using 32^3 or 128^3 subdomains. Table IV shows there is typically a 30% performance reduction in the solve time for the smaller subdomain configuration; this is potentially an acceptable penalty if, for example, it enables a commensurate reduction in the total number of refined elements of an AMR calculation. For these 32^3 subdomains, the benefits of Smooth are diminished (thick ghost zones increasingly dominate data movement) while the total time spent in inter-subdomain communication more than doubles (additional subdomains). Conversely, the performance gains for 128^3 subdomains can increase by up to 22% (KNC), due to Smooth speedup and communication overhead reduction.
Table IV
Solvent speedup of varying subdomains sizes for the fixed 256^3 per node problem, normalized to optimized 64^3 subdomain performance.

<table>
<thead>
<tr>
<th>Subdomain</th>
<th>Opteron</th>
<th>NHM</th>
<th>SNBe</th>
<th>KNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>32^3</td>
<td>0.70×</td>
<td>0.67×</td>
<td>0.65×</td>
<td>0.71×</td>
</tr>
<tr>
<td>128^3</td>
<td>0.98×</td>
<td>1.16×</td>
<td>1.18×</td>
<td>1.22×</td>
</tr>
</tbody>
</table>

F. Preliminary Results on GPUs

Preliminary GPU optimization work by Singh has examined the implementation and optimization of an identical communication-avoiding multigrid solver running an identical problem configuration on an NVIDIA M2090 GPU with ECC enabled using CUDA [23]. The baseline GPU implementation was a straightforward port of the CPU implementation with the caveats that memory allocation was modified to allocate data directly in device memory on the GPU, and all core OpenMP routines were replaced with optimized CUDA kernels in which data is streamed in the k-dimension and temporal locality is captured in the registers and shared memory. No PCIe transfers were included in the timings and the GPU code was compiled with –dlcm=cg to compensate for the misaligned uncoalesced nature of our stencils.

An initial examination of the non-communication-avoiding GPU implementation showed that over 30% of the time is spent in inter-subdomain communication and over 60% in Smooth. He therefore explored communication-aggregation to minimize the ghost zone bottlenecks and communication-avoiding to avoid a potential device DRAM bottleneck.

As GPUs lack cache coherency, realizing communication-avoiding on a GPU requires a somewhat different implementation. In the non-coherent communication-avoiding implementation, thread blocks duplicate each other’s work in much the same way we describe how MPI processes duplicate each others work. Thus, to advance an 8×8 patch of the correction by 4 GSRB iterations, a thread block must read a 16×2 patch and perform stencils on 14×2, 12×2, 10×3, and 8×3 patches in sequence as one streams through the k-dimension in a wavefront. As GSRB is in-place, to avoid the write-after-read data hazard, the updated correction is written to an auxiliary array. When all threads have completed their computation, the auxiliary array is copied back to the correction in bulk. Thus, his GPU implementation requires substantially more data movement than an implementation on a cache-coherent CPU.

One should note that when performing an advance by 8-steps, each thread block must keep at least 7s+3 planes in fast memory. This translates to at least 31 doubles per thread and more than 64KB per block. With such high pressure on shared memory and registers, we have yet to reach parity with the fastest multicore systems used in this paper. As the GPU implementation is a work in progress, further GPU results and analysis will not be included here.

VIII. Scalability of the V-cycle

We now explore the scalability of the V-cycle in the distributed memory environments. Note, the scalability of various bottom solvers is an important yet orthogonal issue that will be examined in future work. Figure 8 shows the weak scaling of the more desirable 256^3 problem per NUMA node (vs. 256^3 per compute node) by doubling the number of processes in each dimension, for a total of 24,576 cores on the XE6 (Hopper). As described in Section VI, all off-node messages are always aggregated through process-level buffers to avoid overheads. Additionally, to proxy the limitations of AMR applications in which the underlying grids are subject to refinement, we do not leverage a cartesian mapping of MPI processes. Rather, we are constrained by the performance of the underlying job schedulers and network architectures.

Observe that for all studied concurrencies our optimizations yield significant speedups. The Gordon SNBe cluster attains the best overall performance and comparable scalability. A detailed analysis of the performance breakdown shows that only the MPI_Waitall() overhead increases with larger scalability on all systems. Given the lack of cartesian process mapping and an underlying 3D torus interconnect, we may have effectivley random placement of processes. Thus, ignoring contention, each octupling in the number processes (for weak scaling) is expected to double the number of required message hops. For the large messages at the finest resolution, we see MPI time saturates at high concurrencies. However, for all coarser grids, the measured MPI time follows the expected exponential trend doubling with concurrency through 512 processes. At 4K processes, results show a 4-7× increase in MPI time, possibly indicating high congestion overheads; future work will investigate reducing these overheads.

Finally, we can consider the impact of these data in the context of a KNC-accelerated multi-node system. An extrapolation based on the interconnect characteristics of the Gordon cluster would result in 46% of the time spent in MPI. Clearly, enhancements to network performance are essential to reap the benefits of coprocessors or accelerators on MG calculations.

IX. Conclusions

Data movement is the primary impediment to high performance on existing and emerging systems. To address this
limitation there are fundamentally two paths forward: algorithmic and architectural. The former attempts to restructure computation to minimize the total vertical (DRAM–cache) and horizontal (MPI) data movements, while the latter leverages technological advances to maximize data transfer bandwidth.

This paper explores both of these avenues in the context of 3D geometric multigrid with a non-trivial operator — a demanding algorithm widely-used by the computational community. To reduce vertical and horizontal data movement, we use communication-aggregation and communication-avoiding techniques to create larger (but less frequent) messages between subdomains, while simultaneously increasing the potential temporal reuse within the GSRB relaxation. Additionally, we evaluate performance on the Intel® Xeon Phi™ coprocessor which relies on GDDR5 to maximize bandwidth at the expense of reduced on-node memory.

Results show that our threaded wavefront approach can dramatically improve Smooth run time on the finer grids despite the redundant work. Effectively implementing this approach poses two significant challenges: how to productively decouple DRAM loads from the in-cache computation on the wavefront, and how to efficiently express sufficient parallelism without sacrificing sequential locality. On CPUs and KNC, the hardware prefetchers designed to decouple memory access through speculative loads are hindered by the lack of sequential locality — an artifact of extreme thread-level parallelization. On highly-multithreaded architectures like the GPU, this is not an issue and parallelization in the unit-stride is feasible. However, whereas evidence suggests that the GPU’s limited on-chip memories will hamper realization of communication-avoiding benefits, we’ve shown the CPUs and KNC have sufficient on-chip memory and hardware support for efficient intra-core coalescing of memory transactions to realize the benefits of communication-avoiding.

On SNBe, our optimizations demonstrated a 50% overall increase in solver performance over the baseline version; this is an impressive speedup particularly given the memory-bound nature of our hybrid MPI+OpenMP calculation. On KNC, the performance gains are even more dramatic achieving a 3.5× improvement. These large gains are an artifact of thread under-utilization in the baseline implementation combined with a 1.6× increase in performance through communication avoiding and various low-level optimization techniques.

Our work also shows that on CPUs and KNC, neither communication aggregation nor DRAM communication avoiding provided any substantial value on coarse grids deep in V-cycle. Additionally, distributed memory experiments demonstrated that, despite achieving scalability up to 24,576 cores, the substantial time spent in MPI will be an impediment to any multi- or manycore system. Unfortunately, communication-aggregation’s use of deep ghost zones can result in a 50% increase in memory usage for 643 boxes and a 100% increase in memory usage for 323 boxes. Thus, if DRAM capacity, rather than raw bandwidth, is the ultimate constraint on the road to exascale, the impact of communication-avoiding techniques will be hindered.

The common OpenMP implementation shared by CPUs and KNC is a significant step in manycore portability and programmability. This stands in stark contrast with GPUs which often required a total rewrite in CUDA to make parallelism and locality explicit in order to maximize performance. Nevertheless, substantial restructuring for parallelism was required to deliver high-performance on KNC. Moreover, in order to maximize performance, CPUs and KNC required the time-consuming use of SIMD intrinsics in order to make parallelism explicit. Portable constructs that allow multiple, variably-sized, collaborating thread teams will be essential in the future to maximize performance and productivity on all platforms. Ultimately, one requires the best of both worlds. The fidelity afforded by CUDA when necessary, and the programmability of a more conventional OpenMP approach everywhere else.

In the context of communication-avoiding multigrid, as CUDA is not premised on the concept that programmers should be able to reason about the execution ordering of thread blocks, it is particularly challenging for CUDA thread blocks to form a shared working set in the L2. This stands in stark contrast to CPUs/KNC where programmers can manually orchestrate thread execution to form constructive locality. Compiler analysis that allows software or hardware threading runtimes to schedule for shared locality may solve this issue.

Future work will complete our studies of multigrid on GPUs by examining the benefits of expanded register sets in Kepler-class GPUs on the communication-avoiding implementation. Will will then extend the GPU and KNC implementations to hybrid MPI+OpenMP or MPI+CUDA versions so that we may conduct scalability studies. We have observed that on-node data marshaling for MPI is a substantial impediment to communication performance, particularly at the bottom of the V-cycle. Exploration of techniques to mitigate this are increasingly important for large-scale MPI concurrency. We will examine techniques to improve productivity and portability (e.g. nested OpenMP on CPUs, OpenACC on GPUs) in collaboratively threaded environments. Finally, we will explore optimization and communication-avoiding techniques in matrix-free Krylov Subspace methods like BiCGstab for fast bottom solves on supercomputers.

ACKNOWLEDGMENTS

Authors from Lawrence Berkeley National Laboratory were supported by the DOE Office of Advanced Scientific Computing Research under contract number DE-AC02-05CH11231. This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. This work was supported in part by National Science Foundation grants: OCI #0910847, Gordon: A Data Intensive Supercomputer; and OCI #1053575, Extreme Science and Engineering Discovery Environment (XSEDE). This research used resources of the Keeneland Computing Facility at the Georgia Institute of Technology, which is supported by the National Science Foundation under Contract OCI-0910755.
REFERENCES

