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List of Figures

2.1 Diagram of a single block in the Morpheus neural network archi-
tecture (Figure 2.2). Panel (c) shows a single block from the ar-
chitecture, parameterized by the number P (black) of block opera-
tions and the number Q (purple) of convolutional artificial neurons
(CANs; Section A.1.3) in all of the convolutional layers within the
block. Panel (b) shows an example zoom-in where there are P = 2
groups of Q = 4 block operations. Panel (a) shows a zoom-in on
a block operation, which consists of batch normalization, Q = 4
CANs, and a ReLU operation. In the notation of Equation 2.1,
this block operation would be written as OP4(X). . . . . . . . . . 15
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2.2 Neural network architecture of the Morpheus deep learning frame-
work, following a U-Net [224] configuration. The input to the model
Morpheus consists of astronomical FITS images in nb bands (upper
left). These images are processed through a series of computa-
tional blocks (sky blue rectangles), each of which applies P (black
numbers) block operations consisting of a batch normalization and
multiple convolutional layers producing Q (purple numbers) feature
maps. The blocks are described in more detail in Figure 2.1. Dur-
ing the contraction phase of the model, max-pooling layers (salmon
rectangles) are applied to the data to reduce the pixel size of the
images by taking local maxima of 2 × 2 regions. The contraction
phase is followed by an expansion phase where the output feature
maps from each block are expanded by a 2 × 2 factor via bicubic
interpolation (green rectangles) and concatenated with the output
from the corresponding block in the contraction phase. The out-
put from the last block is processed through a set of convolutional
layers (light blue box with Q = 5) that result in a feature map for
each classification in the model. These “classification images” are
normalized to sum to unity pixel-by-pixel. In this chapter, the clas-
sification images are spheroid, disk, irregular, point source/compact,
and background. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
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2.3 Data augmentation pipeline used during neural network training.
Each training image is processed by the data augmentation pipeline
before being presented to the neural network during training. The
pipeline can be described in 7 stages (annotated ‘(a)-(g)’ above).
First,an image from the training set is selected (Panel a). A number
of augmentation operations are then applied to the image. The
image is rotated by a random angle θ∈[0, 2π] (Panel b), flipped
horizontally with 50% probability (Panel c), and flipped vertically
with a 50% probability (Panel d). The centermost 60 × 60 subset
of the resulting image is cropped (Panel e), and then a random
40 × 40 subset is selected from the cropped image (Panel f). The
output 40×40 rotated, flipped, and cropped image is then used for
training. This procedure increases the available images for training
by a factor of∼574, 400. Using this process helps reduce overfitting,
particularly in cases of datasets with limited training sample sizes. 25

2.4 Segmentation and deblending process used by Morpheus, illustrat-
ing Algorithms 1 and 2. The background image (Panel a) output
from the Morpheus neural network is used as input to a Sobel-
filtered image (Panel b) and a discretized map marking regions of
high and low background (Panel c). These two images are input
to a watershed algorithm to identify and label distinct, connected
regions of low background that serve as the highest-level Morpheus
segmentation map (Panel e) This segmentation map represents the
output of Algorithm 1. A flux image and a list of object loca-
tions (Panel d) are combined with the high-level segmentation map
to deblend multicomponent objects using an additional watershed
algorithm by using the source locations in the flux image as gen-
erating points. The end result is a deblended segmentation map
(Panel f), corresponding to the output of Algorithm 2. . . . . . . 37
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2.5 Morpheus morphological classification results for a region of the
GOODS South field. The far left panel shows a three-color com-
posite V zH image. The scale bar indicates 1.5”. The V , z, J , and
H FITS images are supplied to the Morpheus framework, which
then returns images for the spheroid (red-black panel), disk (blue-
black panel), irregular (green-black panel), point source/compact
(yellow-black panel), and background (white-black panel) classifi-
cations. The pixel values of these images indicate the local domi-
nant Morpheus classification, normalized to sum to one across all
five classifications. The panel labeled “Segmentation Map” is also
generated by Morpheus, using the 3D-HST survey sources as gen-
erating locations for the segmentation Algorithm 1. The regions in
the segmentation map are color-coded by their flux-weighted dom-
inant class computed from the Morpheus classification values. The
far right panel shows the Morpheus “classification color” image,
where the pixel hues indicate the dominant morphological classifi-
cation, and the intensity indicates 1−background. The saturation
of the Morpheus color image indicates the difference between the
dominant classification value and the second most dominant clas-
sification, such that white regions indicate pixels where Morpheus
returns a comparable result for multiple classes. See Section 2.6.1
for more details. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.6 Morpheus background classification image for the Hubble Legacy
Fields [118] reduction of the CANDELS survey data [95, 144] in
GOODS South. Shown are the normalized model estimates that
each of the ∼ 108 pixels belongs to the background class. The
scale bar indicates 1.5 arcmin. The color bar indicates the back-
ground∈[0, 1], increasing from white to black. Correspondingly, the
bright areas indicate regions of low background where sources were
detected by Morpheus. . . . . . . . . . . . . . . . . . . . . . . . . 43
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2.7 Morpheus spheroid classification image for the Hubble Legacy Fie-
lds [118] reduction of the CANDELS survey data [95, 144] in GOODS
South. Shown are the normalized model estimates that each of the
∼ 108 pixels belongs to the spheroid class. The scale bar indicates
1.5 arcmin. The color bar indicates the spheroid∈[0, 1], increasing
from black to red. Correspondingly, the bright red areas indicate
pixels where Morpheus identified spheroid objects. . . . . . . . . . 44

2.8 Morpheus disk classification image for the Hubble Legacy Fields
[118] reduction of the CANDELS survey data [95, 144] in GOODS
South. Shown are the normalized model estimates that each of
the ∼ 108 pixels belongs to the disk class. The scale bar indicates
1.5 arcmin. The color bar indicates the disk∈[0, 1], increasing from
black to blue. Correspondingly, the bright blue areas indicate pixels
where Morpheus identified disk objects. . . . . . . . . . . . . . . . 45

2.9 Morpheus irregular classification image for the Hubble Legacy Fie-
lds [118] reduction of the CANDELS survey data [95, 144] in GOODS
South. Shown are the normalized model estimates that each of the
∼ 108 pixels belongs to the irregular class. The scale bar indicates
1.5 arcmin. The color bar indicates the irregular∈[0, 1], increas-
ing from black to green. Correspondingly, the bright green areas
indicate pixels where Morpheus identified irregular objects. . . . . 47

2.10 Morpheus point source/compact classification image for the Hub-
ble Legacy Fields [118] reduction of the CANDELS survey data
[95, 144] in GOODS South. Shown are the normalized model esti-
mates that each of the ∼ 108 pixels belongs to the point source/-
compact class. The scale bar indicates 1.5 arcmin. The color bar
indicates the point source/compact∈[0, 1], increasing from black
to yellow. Correspondingly, the bright yellow areas indicate pixels
where Morpheus identified point source/compact objects. . . . . . 48
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2.11 Morpheus morphological color image for the Hubble Legacy Fields
[118] reduction of the CANDELS survey data [95, 144] in GOODS
South. The image intensity is set proportional to 1−background
for each pixel, such that regions of high background are black and
regions with low background containing source pixels identified by
Morpheus appear bright. The hue of each source pixel indicates
its dominant classification, with spheroid shown as red, disk as
blue, irregular as green, and point source/compact as yellow. The
color saturation of each pixel is set to the difference between the
first and second most dominant class values, such that regions with
indeterminate morphologies as determined as Morpheus appear as
white and regions with strongly determined classifications appear
as deep colors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.12 Distribution of morphological classifications in the Kartaltepe et al.
[132] sample, which serve as a training sample forMorpheus. Shown
are histograms of the fraction of sources with a non-zero probability
of belonging to the spheroid (upper left), disk (upper right), irreg-
ular (lower left), or point source/compact classes, as determined
visual classification by expert astronomers. The histograms have
been normalized to show the distribution of classification probabil-
ities for each class, and consist of ≈7, 600 sources. . . . . . . . . . 52
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2.13 Histograms (purple) and cumulative distribution (blue lines) of
agreement a(p) for the Kartaltepe et al. [132, K15] visual mor-
phological classifications, for objects with spheroid (upper left),
disk (upper right), irregular (lower left), and point source/compact
(lower right) as their dominant classification. Agreement a(p) (see
Equation 2.17 for a definition) characterizes the breadth of the dis-
tribution of morphological classes assigned by the K15 classifiers for
each object, with a(p)=1 indicating perfect agreement of a single
class and a(p)=0 corresponding to perfect disagreement with equal
probability among classes. The distribution of agreement in the
K15 training classifications is roughly bimodal, with a strong peak
near-perfect agreement and a broader peak near a(p)≈0.5, close to
the agreement value for an even split between two classes. . . . . 54

2.14 Confusion matrix for the distribution of K15 morphological clas-
sifications. Shown is the distribution of morphologies assigned by
K15 visual classifiers for objects of a given dominant classification.
Objects with a dominant spheroid class show the most variation,
with frequent additional disk and point source/compact morpholo-
gies assigned. The most distinctive dominant class is point source/-
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jects. The off-diagonal components of the confusion matrix indicate
imperfect agreement among the K15 classifiers, consistent with the
distributions of the agreement statistic shown in Figure 2.13. . . . 55

2.15 Confusion matrix showing the spread in Morpheus dominant classi-
fications for objects with a given K15 dominant classifications. The
Morpheus framework is trained to reproduce the input K15 distri-
butions, and this confusion matrix should, therefore, largely match
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xii



2.16 Confusion matrix quantifying the spread in Morpheus dominant
classifications for K15 objects with a distinctive morphology. Sho-
wn are the output Morpheus classification distributions for K15 ob-
jects where all visual classifiers agreed on the input classification.
The Morpheus pixel-by-pixel classifications computed for the HLF
GOODS South images were aggregated into flux-weighted object-
by-object classifications following Equation 2.16 using the K15 seg-
mentation maps. The results demonstrate that Morpheus can re-
produce the results of the dominant K15 visual classifications for
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2.17 Morphology as a function of stellar mass and redshift for 54,000
sources in the five CANDELS fields. Sources included in the plot
are those where H < 24.5AB and the Morpheus confidence for
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2.18 False negative test for the Morpheus source detection scheme. Sim-
ulated sources with different signal-to-noise ratios (SNRs) were in-
serted into a noise image and then recovered by Morpheus, which
assigns a low background value to regions it identifies as containing
source flux (see Section 2.7.2). Shown are lines corresponding to the
number of pixels assigned to sources of different SNR, as a func-
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2.19 Morphological classifications as a function of simulated source sur-
face brightness profile Sersic index. Shown are the Morpheus classi-
fication distributions for simulated SNR = 20 objects with circular
Sersic [232] profiles, as a function of the Sersic index η∈[1, 9]. The
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profiles were assigned almost no irregular classifications by Morpheus. 66

2.20 Dominant morphological classification as a function of simulated
source surface brightness profile Sersic index η and effective radius
Re in pixels. Each element of the matrix is color-coded to indicate
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2.21 Two-dimensional histogram of Morpheus background values and
3D-HST source flux in GOODS South. Shown is the distribution of
background at the location of 3D-HST sources [239, 185] in GOODS
South of various H-band magnitudes, along with the marginal his-
tograms for both quantities (side panels). For reference, the K15
completeness (green line) and 3D-HST 90% completeness (red line)
flux limits are also shown. The 3D-HST sources most frequently
have background=0, and the majority of 3D-HST sources of any
flux H < 29 have background<0.5. The background values for ob-
jects where K15 and 3D-HST are complete is frequently zero. The
Morpheus background values increase for many objects at flux levels
H > 26AB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

2.22 Completeness of Morpheus in source detection relative to 3D-HST
[239, 185] in GOODS South. Shown is the fraction of 3D-HST
sources in GOODS South detected byMorpheus brighter than some
H-band source magnitude, for different background thresholds defin-
ing a detection (purple lines). The inset shows the Morpheus com-
pleteness for the brightest objects where 3D-HST (red line and
arrow) and K15 (green line and arrow) are both highly complete.
The completeness of Morpheus relative to 3D-HST is >90% where
3D-HST is highly complete. The completeness of Morpheus de-
clines rapidly at faint magnitudes (H & 26.5), but some objects
are detected to H ∼ 29, about 100× fainter than objects in the
training set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
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2.23 Source detection completeness as a function of color for sources
with an H-band (F160W) AB magnitude of H <24.5. Sources
that had a V band flux less than the V band error, had their flux
replaced with three times the error value to limit unrealistically
large V -H values. Morpheus does not show bias in the detection
of objects with respect to color. There is a dip in completeness at
V −H ∼ 0.2, where the completeness is ∼75%. However, this bin
only has four sources, indicating Morpheus only missed one source
at this color. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

2.24 Morphological classification as a function of object flux in GOODS
South. Shown are the fraction of 3D-HST objects (see left axis)
with Morpheus dominant, flux-weighted classifications of spheroid
(red line), disk (blue line), irregular (green line), and point source/-
compact (yellow line), each as a function of their H-band (F160W )
AB magnitude. The brightest objects in the image are stars that
are classified as point source/compact. The faintest objects in the
image are compact faint galaxies classified as point source/compact
or irregular. At intermediate fluxes, the objects are primarily clas-
sified as disk and spheroid. Also shown as a gray histogram (see
right axis) is the number of 3D-HST objects detected and classified
by Morpheus with source magnitude. . . . . . . . . . . . . . . . . 73
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2.25 Example automated morphological decomposition by Morpheus.
The left panel shows the V zH multi-color image of a galaxy in
GOODS South from the Hubble Legacy Fields. The disk galaxy,
3D-HST ID 46386, has a prominent central bulge. The right panel
shows the Morpheus classification color image, with pixels dis-
playing spheroid, disk, irregular, or point source/compact domi-
nant morphologies shown in red, blue, green, and yellow, respec-
tively. The figure demonstrates that Morpheus correctly classifies
the spheroid and disk structural components of the galaxy cor-
rectly, even though the training process for Morpheus does not
involve spatially-varying morphologies for galaxy interiors. I note
that there is a large-scale image artifact in F850LP that appears as
green in the left image, but does not strongly affect the Morpheus
pixel-level classifications. . . . . . . . . . . . . . . . . . . . . . . . 80

2.26 Example of morphological deblending by Morpheus. The leftmost
panel shows the V zH image of a star-galaxy blend in GOODS
South from the Hubble Legacy Fields. The star, 3D-HST ID 601,
overlaps with a spheroidal galaxy 3D-HST ID 543. The center
panel shows the Morpheus classification color image, with pixels
displaying spheroid, disk, irregular, or point source/compact dom-
inant morphologies shown in red, blue, green, and yellow, respec-
tively. The pixel regions dominated by the star or spheroid are cor-
rectly classified by Morpheus. The right panel shows the resulting
Morpheus segmentation map, illustrating that the dominant ob-
ject classification in each segmentation region is also correct. The
pixel-level classifications could be used to refine the segmentation
to more precisely include only pixels that contained a single domi-
nant class. The green feature in the left panel is an image artifact
in F850LP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
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3.1 End-to-end example using our method to detect and deblend sources.
Starting from the left: A flux image is input to the Model (see
Section 3.3.2). The Model outputs the deblended image in the
Partial Claim Representation (PCR; see Section 3.2).The output
from the model is then decoded using the non-learned PCR De-
coder algorithm into separate deblended source images. The de-
blended source images have their total flux within r90 annotated.
The deblended source images are then added together to generate
the reconstructed image which has an L1 total flux difference of
1.52× 10−5 with the original input image. . . . . . . . . . . . . . 93

4.1 An overview of the Map Generator in the FitsMap architecture.
The Map Generator, described in Section 4.2.1, processes the input
image and catalog files and converts them into a format that can be
rendered by the Map Viewer (Section 4.2.2). The Map Generator
can process multiple files in parallel and further leverage parallelism
when processing each file. The Map Generator builds a directory
containing the tiled image and catalog data along with the Map
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4.3 An example of the FitsMap interface. (a) The search function but-
ton searches catalogs by id (see Section 4.2.2). (b) A marker pop-
up displaying catalog data associated with the indicated source. (c)
The Leaflet layer control allows users to switch between display
images and catalog overlays. Image Credit: [75]. . . . . . . . . . . 110
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(a) The time, measured in seconds, to tile and generate a FitsMap
consisting of a single image. The image size is indicated along the
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√
npixels. The primary y-
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generate the output website directory. Every image is generated
five times with the mean plotted as a blue dashed line, and a single
standard deviation shaded as light blue around the mean line. The
secondary y-axis (purple) indicates the tot number of tiles gener-
ated in the output tiled image directory. (b) The time, measured
in seconds, to parse a tile catalog file. Each catalog was scaled to
fit an image size of 65, 536 × 65, 536, resulting in approximately
87, 381 tiles. Each catalog was parsed and tiled fives times with
the mean plotted as the blue dotted line, and a single standard
deviation shaded around the mean in light blue. . . . . . . . . . . 112
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4.6 Storage comparison of catalog data and its CBOR-encoding used
by FitsMap. The primary axis (black) shows the total storage use
of the catalog data and the CBOR-encoded version (see Section
4.2.1 for more information on CBOR encoding). The secondary
axis (purple) shows the ratio of the storage requirements of the
CBOR encoded version of the catalog data to the original catalog
data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

4.7 The ratio of the total storage requirements of the tiled catalog data
to the original catalog size. The x-axis indicates the image size,
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4.8 FitsMap page speed metrics for mobile browsers. Page Load indi-
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sending the request to the server. FCP (First Contentful Paint) in-
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rendered on the page. DOM Processing indicates the amount of
time after the browser starts processing the page until the content
is loaded. Each test was performed three times with the mean and
a standard deviation plotted. . . . . . . . . . . . . . . . . . . . . . 114
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cates the amount of time it takes for the page to load fully. FCP
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4.10 Map Viewer Session Memory Consumption during a typical inter-
action on a test FitsMap. The website was generated according to
the procedure described in Section 4.3.2. The steps taken during
the test are indicated in order along the x-axis. The memory con-
sumption is indicated on the y-axis in megabytes. The tests were
run using the Selenium browser automation tool and run on the
BrowserStack test framework. Each test was run three times with
the mean and the standard deviation reported above. Memory con-
sumption reporting is reported for Chrome browsers which support
reporting memory consumption via JavaScript. . . . . . . . . . . . 115

5.1 Top seven features with the highest average contribution in the
EBM γ(SFR|θ) targeting the star formation rate SFR. In order
of decreasing importance, these features include peak circular ve-
locity vpeak, virial mass Mvir, environmental density ρ1, redshift z,
environmental temperature T1, the mass ratio of nearby halos Υ0.1,
and the interaction between virial mass Mvir and Υ0.1. Average
contribution is calculated using the average of the absolute value
of the feature functions weighted by the number of samples in each
bin (see Equation 5.5). . . . . . . . . . . . . . . . . . . . . . . . . 147

5.2 Learned univariate feature functions f iy for the EBM γ(SFR|θ)
trained to predict the star formation rate SFR. Shown (left to right)
are the feature functions for peak circular velocity vpeak, virial mass
Mvir, environmental density ρ1, redshift z, environmental tempera-
ture T1, and nearby halo mass ratio Υ0.1. Light blue areas indicate
regions where f iy > 0 and dark blue areas indicate regions where
f iy < 0. The shaded areas show the variation in f iy between the
k-fold iterations. . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
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5.3 Most important learned interaction functions f ijy for the EBMmodel
γ(SFR|θ) targeting the star formation rate SFR, as a function of
their parameter pairs. Each panel shows the contribution of the
bivariate interaction terms, normalized such that the color map
ranges between plus or minus the maximum of the norm of each
function ||f ||max. Light blue areas indicate regions of joint param-
eter space where the feature interactions contribute positively to
the star formation rate, while dark blue areas indicate regions with
negative contributions. The table lists ||f ||max for the interaction
functions, each with units log10M� yr−1. In absolute terms, the
largest interaction occurs for halos with large peak circular velocity
vpeak and no large neighboring halos (Υ0.1 ≈ 0). The other in-
teraction functions are relatively weak, and contribute changes to
logSFR . 0.05. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

5.4 Summary of the EBM model γ(SFR|θ) targeting star formation
rate (SFR) as a function of virial mass. The upper left panel shows
the two-dimensional distribution of SFR with Mvir for galaxies in
the CROC simulations, with the color scale showing the number
of simulated galaxies at each [SFR,Mvir] location. The lower left
panel shows the EBM model results for the distribution of SFR
with Mvir, where the SFR is computed from the EBM using the
parameters θ = [Mvir, vpeak, z, ρ1, T1,Υ0.1]. The upper right panel
shows the residuals between the simulated CROC galaxy SFRs and
the EBM model results. The lower right panel shows the simulated
CROC galaxy SFRs that lie outside the EBM model predictions.
These outliers represent . 3% of simulated CROC galaxies. . . . . 150
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5.5 Summary of the EBMmodel γ(M?|θ) targeting stellar massM? as a
function of virial mass. The upper left panel shows the distribution
of M? with virial mass Mvir in the CROC simulated galaxy cata-
logs, with the coloration indicating the number of galaxies at each
[M?,Mvir] location. The lower left panel shows the EBM model
prediction of the stellar mass distribution with virial mass given
in the input parameters θ = [Mvir, z, vpeak, ρ1, T1,Υ0.1]. The upper
right panel shows the residuals between the simulated and predicted
M? vs. Mvir distribution, and the lower right panel shows the out-
liers in the simulated distribution not captured by the EBM model
γ(M?|θ). The fraction of outliers is . 1%. . . . . . . . . . . . . . 151

5.6 Learned univariate feature functions, f iy in Equation 5.1, for the
EBM γ(M?|θ) trained to predict M?. Areas highlighted in or-
ange indicate portions of the function that contribute positively
to the predicted M? and areas in red contribute negatively. Stellar
mass increases with peak circular velocity and virial mass, increases
with decreasing redshift, and increases with environmental density.
Temperature correlates positively with stellar mass, with a strong
feature near T1 ≈ 104 K where hydrogen ionizes. Stellar mass also
increases with the mass ratio of neighboring halos. . . . . . . . . . 152

5.7 Features with the highest average contribution for the EBM γ(M?|θ)
trained to predict M?. Average contribution is calculated using the
average of the absolute value of the learned functions weighted by
the number of samples in each bin (see Equation 5.5). The fea-
tures with the largest contributon are vpeak and Mvir, followed by
redshift z, environmental density ρ1, environmental temperature
T1, and mass ratio of nearby halos Υ0.1. The interaction with the
largest average contribution involves [z,vpeak]. . . . . . . . . . . . 153
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5.8 Learned bivariate interaction functions f ijy for the EBM γ(M?|θ)
trained to predictM?. Areas highlighted in orange indicate portions
of the functions that contribute positively to the predictedM? while
areas in red contribute negatively. Halos with large environmental
temperatures T1 at high redshift z show enhanced stellar mass.
The stellar masses of halos with low environmental temperature
T1 < 104K correlate with environmental density, increasing with
increasing ρ1. Massive halos with no comparable large neighboring
halos (Υ0.1 ≈ 0) also show enhanced stellar mass. . . . . . . . . . 154

5.9 Details for the base EBMmodel γ(SFR|θ′) component of the CEBM
Γ(SFR|θ′) trained to predict SFR. Panel a) displays the average
contribution of features. Panel b) shows the feature functions con-
tributing to the base EBM model. Panel c) presents the interaction
functions for the base EBM γ(SFR|θ′). Each panel shows the con-
tribution of the bivariate interaction terms, normalized such that
the color map ranges between plus or minus the maximum of the
norm of each function ||f ||max. Purple indicates negative contri-
butions and blue indicates positive contributions. The table lists
||f ||max for the interaction functions, each with units log10M� yr−1. 155

5.10 Details for the outlier EBM model δ(SFR|θ′) component of the
CEBM Γ(SFR|θ′) trained to predict SFR. Panel a) displays the
average contribution of features. Panel b) shows the feature func-
tions for the outlier EBM δ(SFR|θ′). Panel c) presents the inter-
action functions for the outlier EBM δ(SFR|θ′). Each panel shows
the contribution of the bivariate interaction terms, normalized such
that the color map ranges between plus or minus the maximum of
the norm of each function ||f ||max. Purple indicates negative con-
tributions and blue indicates positive contributions. The table lists
||f ||max for the interaction functions, each with units log10M� yr−1. 156
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5.11 Details for the classification EBM model φSFR(θ′) that interpolates
between the base EBM γ(SFR|θ′) and the outlier EBM δ(SFR|θ′)
for creating the CEBM Γ(SFR|θ′). Panel a) displays the average
contribution of features to the classification EBM model φSFR(θ′).
Panel b) shows the feature functions contributing to the classifier
EBM φSFR(θ′). Panel c) presents the interaction functions for the
classifier EBM φSFR(θ′). Each panel shows the contributions of the
interaction terms, normalized such that the color map ranges be-
tween plus or minus the maximum of the norm of each function
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5.12 Details for the CEBM model Γ(SFR|θ′) trained to predict SFR.
Panel a) displays the average contribution of features to the CEBM.
Virial mass Mvir provides the largest average contribution to the
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ing to the CEBM Γ(SFR|θ′). Panel c) presents the interaction func-
tions for the CEBM Γ(SFR|θ′). Each panel shows the contribution
of the interaction terms, normalized such that the color map ranges
between plus or minus the maximum of the norm of each function
||f ||max. Purple indicates negative contributions and blue indicates
positive contributions. The table lists ||f ||max for the interaction
functions, each with units log10M� yr−1. . . . . . . . . . . . . . . 158
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5.13 Summary of the CEBM model Γ(SFR|θ′) targeting star formation
rate (SFR) as a function of virial mass. The upper left panel shows
the two-dimensional distribution of SFR with Mvir for galaxies in
the CROC simulations, with the color scale showing the number
of simulated galaxies at each [SFR,Mvir] location. The lower left
panel shows the CEBM model results for the distribution of SFR
with Mvir, where the SFR is computed from the CEBM using the
parameters θ′ = [Mvir, z, ρ1, T1,Υ0.1]. The upper right panel shows
the residuals between the simulated CROC galaxy SFRs and the
CEBM model results. The lower right panel shows the simulated
CROC galaxy SFRs that lie outside the CEBM model predictions.
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5.14 Summary of the CEBM model Γ(M?|θ′) targeting stellar mass M?

as a function of virial mass. The upper left panel shows the distri-
bution of M? with virial mass Mvir in the CROC simulated galaxy
catalogs, with the coloration indicating the number of galaxies at
each [M?,Mvir] location. The lower left panel shows the CEBM
model prediction of the stellar mass distribution with virial mass
given in the input parameters θ′ = [Mvir, z, ρ1, T1,Υ0.1]. The upper
right panel shows the residuals between the simulated and predicted
M? vs. Mvir distribution, and the lower right panel shows the out-
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5.15 Details for the base EBM model γ(M?|θ′) component of the CEBM
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bivariate interaction terms, normalized such that the color map
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5.17 Details for the classification EBM model φM?(θ′) that interpolates
between the base EBM γ(M?|θ′) and the outlier EBM δ(M?|θ′)
for creating the CEBM Γ(M?|θ′). Panel a) displays the average
contribution of features to the classification EBM model φM?(θ′).
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EBM φM?(θ′). These feature functions represent the change in log
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that the color map ranges between plus or minus the maximum
of the norm of each function ||f ||max. Teal indicates negative log
odds and green indicates positive log odds that a given galaxy is an
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A.1 Schematic of a simple neural network. Given an input vector x, the
neural network applies a series of reductions and nonlinear trans-
formations through a collection of layers L to produce an output
o. Each layer L consists of a set of artificial neurons AN that per-
form a linear rescaling of their input data, followed by a nonlinear
transformation via the application of an activation function (see
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A.3 Comparison of max and average pooling layers. Pooling layers per-
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erage or maximum of data elements in a window (2 × 2 in this
schematic). Shown are cells of an input feature map (left), color-
coded within a window to match the corresponding regions of the
output feature map (right). The pooling layers perform a simple
reduction with these windows, taking either a maximum (upper
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the COSMOS CANDELS field. The data release files for each field
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informed segmap) or segmap (indicating a segmap based only on
background class/flux values). Finally, the 3D-HST value-added
catalog files are named according to the following scheme morpheus_-

COSMOS_3dhst-catalog.v1.0.[file_type], where [file_type]

can be csv for a comma-separated-value version of the value-added
catalog and txt for the machine-readable table version described in
Table 2.5. Additionally, a link to an archive containing all of the
files associated with the COSMOS field is available in an additional
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A.2 Data release files generated by Morpheus and associated URLs for
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EGS_3dhst-catalog.v1.0.[file_type], where [file_type] can
be csv for a comma-separated-value version of the value-added cat-
alog and txt for the machine-readable table version described in
Table 2.5. Additionally, a link to an archive containing all of the
files associated with the EGS field is available in an additional sec-
tion called All Files. See Appendix A.4 for details. . . . . . . . . . 182

xxxiv
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the following scheme morpheus_GOODS-N_3dhst-catalog.v1.0.[file_-

type], where [file_type] can be csv for a comma-separated-value
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A.4 Data release files generated by Morpheus and associated URLs
for the GOODS South CANDELS field. The data release files
for each field are organized into three groups: pixel-level mor-
phological classifications, segmentation maps, and 3D-HST value-
added catalogs. The pixel-level morphological classification files
are named according to the following scheme morpheus_GOODS-S_-

[morphology].v1.0.fits, where [morphology] can be one of the
morphological classes (spheroid, disk, irregular, ps_compact, back-
ground) or mask, a binary image mask indicating which pixels in
the image were classified by HR2020. The segmentation map files
are named according to the following scheme morpheus_GOODS-S_-

[segmap_type].v1.0.fits , where [segmap_type] can be 3dhst-
segmap (indicating the 3D-HST informed segmap) or segmap (indi-
cating a segmap based only on background class/flux values). Fi-
nally, the 3D-HST value-added catalog files are named according to
the following scheme morpheus_GOODS-S_3dhst-catalog.v1.0.[file_-

type], where [file_type] can be csv for a comma-separated-value
version of the value-added catalog and txt for the machine-readable
table version described in Table 2.5. Additionally, a link to an
archive containing all of the files associated with the GOODS South
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A.5 Data release files generated by Morpheus and associated URLs for
the UDS CANDELS field. The data release files for each field are or-
ganized into three groups: pixel-level morphological classifications,
segmentation maps, and 3D-HST value-added catalogs. The pixel-
level morphological classification files are named according to the
following scheme morpheus_UDS_[morphology].v1.0.fits, where
[morphology] can be one of the morphological classes (spheroid,
disk, irregular, ps_compact, background) or mask, a binary im-
age mask indicating which pixels in the image were classified by
HR2020. The segmentation map files are named according to the
following scheme morpheus_UDS_[segmap_type].v1.0.fits , where
[segmap_type] can be 3dhst-segmap (indicating the 3D-HST in-
formed segmap) or segmap (indicating a segmap based only on
background class/flux values). Finally, the 3D-HST value-added
catalog files are named according to the following scheme morpheus_-

UDS_3dhst-catalog.v1.0.[file_type], where [file_type] can
be csv for a comma-separated-value version of the value-added cat-
alog and txt for the machine-readable table version described in
Table 2.5. Additionally, a link to an archive containing all of the
files associated with the UDS field is available in an additional sec-
tion called All Files. See Appendix A.4 for details. . . . . . . . . . 185
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Abstract

Large Scale Analysis of Astronomical Data Using Machine Learning and

Visualization Techniques

by

Ryan David Hausen

The nature and volume of astronomical data present significant challenges in

applying off-the-shelf machine learning and visualization methods. In this work,

I present new machine learning and visualization techniques motivated by the

needs of astronomical research. Specifically, this work presents novel approaches

to source detection, deblending, and morphological classification that leverage

recent advances in computer vision. Further, this work introduces FitsMap, a

new tool for displaying image and catalog data that scales to large volumes of

data and is performant on mobile devices. Finally, the relationships between the

physical properties of simulated galaxies and their stellar mass and star formation

rate are modeled using Explainable Boosting Machines, an interpretable machine

learning model.
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Chapter 1

Introduction

Astronomical data is richly complex, with galaxies and stars of various sizes,

luminosities, opacities, and degrees of interaction and overlap. Compounding the

complexity of the data is the fact that astronomy is in the midst of a big data

revolution. The Vera Rubin Observatory (VRO) [122, 123], currently scheduled to

come online in August 2023, will produce 20 terabytes of imaging data each night.

The data volume produced by the VRO nightly is equivalent to the space required

to store ≈ 66 copies of the ImageNet [68] dataset. The recently launched James

Webb Space Telescope [JWST; for a review, see Robertson [221]] and the Nancy

Grace Roman Space Telescope [RST; [245, 9]], currently scheduled for launch in

May 2027, will capture the deepest images of space ever recorded. These images

will see further back in time and increase the number and variety of galaxies

to be analyzed. Beyond observations made with telescopes, astronomers study

the universe using cosmological simulations [275, 274, 131, 209, 230, 276] that

emulate how the modern universe formed. Large-scale cosmological simulations

can use thousands of CPUs and GPUs with tens of terabytes of data products per

simulation. Techniques to analyze and augment these cosmological simulations

are an open area of research.
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The vast volume of upcoming observational and simulation data is impossible

to analyze using human means alone. However, machine learning and artificial

intelligence are in an excellent position to meet the challenge. Inspired by the

challenges and beauty of astronomical data, this work presents novel techniques

for analyzing astronomical image and simulation data, representing an advance

in state-of-the-art astronomical data analysis. Further, this work demonstrates

that developing techniques for applications within astronomy can advance the

state-of-the-art in computer science by revealing assumptions and corner cases

that may not be apparent in working exclusively with the standard benchmark

datasets. Ideally, the work shown here will motivate further interdisciplinary work

mutually advancing the state-of-the-art in both computer science and astronomy.

Chapter 2 introduces the Morpheus deep learning framework. Deep learning

has had profound success in source detection and the morphological classification

of galaxies and stars. In particular, deep learning has been applied to detect

faint x-ray sources [156], point sources [263, 253, 31, 45], radio sources [54, 87,

169, 255], galaxies [40, 34], point sources and galaxies [216, 295], point sources in

gamma-rays [202], fast-moving near-earth objects [79], transient objects [89, 42,

231, 124, 186, 110, 171, 298], quasars [203], and low surface brightness galaxies

[48]. Deep learning has also been applied with great success to the morphological

classification of galaxies [70, 73, 113, 51, 246, 130, 88, 50, 277, 116, 206, 133, 301,

44, 150, 93, 5, 261, 97, 294, 30, 43, 218, 157, 215, 46, 47, 86] and radio galaxies [289,

11, 175, 18, 228, 250, 182, 36, 193, 84]. Further, classifiers have been trained to

distinguish between stars and galaxies [139, 41, 40] and early and late-type galaxies

[272, 252]. Morpheus makes two key contributions to detection and morphological

classification. First, Morpheus introduces morphological classification at the pixel

level. Second, Morpheus presents a scalable approach for applying pixel-level

2



machine learning techniques to native astronomical data.

Deblending, the process of separating the signal of two or more overlapping

sources, is a well-known and studied problem but remains an open area of re-

search. The most popular methods are SExtractor [22] and SCARLET [179].

More recently, deep learning approaches have been proposed for limited use cases

[214, 34, 40], but a general method has yet to be developed. Chapter 3 introduces

one such way, a novel computer vision problem setting with a direct application to

astronomical source deblending called Partial-Attribution Instance Segmentation.

Additionally, a neural network architecture is released as a proof of concept for

the method.

Visualizing large-scale astronomical image and catalog data will become in-

creasingly crucial as imaging data grows. Chapter 4 introduces FitsMap, a new

tool for generating interactive visualizations of astronomical image and catalog

data. FitsMap is a lightweight server/client architecture that can scale to arbi-

trarily large image and catalog data by leveraging a novel approach to storing

catalog data.

In Chapter 5, Explainable Boosting Machines (EBM) are used to examine

how stellar mass and star formation rate are related to the physical properties of

simulated galaxies. Additionally, I propose the Composite Explainable Boosting

Machine as an ensemble EBM method for using multiple EBMs to capture outlier

trends in the data while maintaining the interpretability of the EBM. This work

will help simulations that do not resolve some physical features of the data to more

accurately predict the stellar mass and star formation rate of simulated galaxies.

The large volume of imaging, catalog, and simulation data present a unique

opportunity for innovation. More accurate and faster models will accelerate our

understanding of the greater universe and generalize machine learning methods.
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Chapter 2

Morpheus: A Deep Learning

Framework For Pixel-Level

Analysis of Astronomical Image

Data

2.1 Introduction

Morphology represents the structural end state of the galaxy formation pro-

cess. Since at least Hubble [112], astronomers have connected the morphological

character of galaxies to the physics governing their formation. Morphology can

reflect the initial conditions of galaxy formation, dissipation, cosmic environment

and large-scale tidal fields, merger and accretion history, internal dynamics, star

formation, the influence of supermassive black holes, and a range of other physics

[e.g., 26, 76, 27, 72, 77, 21, 257]. The development of morphological measures for

galaxies, therefore, comprises an important task in observational astronomy. To
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help realize the potential of current and future surveys for understanding galaxy

formation through morphology, this chapter presents Morpheus, a deep learning-

based model for the simultaneous detection and morphological classification of

objects through the pixel-level semantic segmentation of large astronomical image

datasets.

The established connections between morphology and the physics of galaxy

formation run deep, and the way these connections manifest themselves observa-

tionally depends on the measures of morphology used. Galaxy size and surface

brightness profile shape have served as common proxies for morphology, as quan-

titatively measured from the light distribution of objects [271, 232, 205]. Size,

radial profile, and isophotal shape or ellipticity vary with stellar mass and lumi-

nosity [e.g., 145, 219, 233, 235, 38, 267, 268, 189, 113, 10, 125, 180, 297]. When

controlled for other variables, these measures of galaxy morphology may show

variations with cosmic environment [78, 240, 60, 114, 135], redshift [4, 258, 58,

80, 259, 164, 269, 204, 236], color [82, 293], star formation rate or quiescence

[254, 303, 290, 20, 154, 283], internal dynamics [25], the presence of active galac-

tic nuclei [143, 39, 211], and stellar age [287]. The presence and size of bulge,

disk, and bar components also vary with mass and redshift [234, 237, 173, 71],

and provide information about the merger rate [e.g., 162, 281]. Galaxy morphol-

ogy encodes a rich spectrum of physical processes and can augment what we learn

from other galaxy properties.

While complex galaxy morphologies may be easily summarized with qualita-

tive descriptions (e.g., “disky”, “spheroidal”, “irregular”), providing quantitative

descriptions of this complexity represents a long-standing goal for the field of

galaxy formation and has motivated ingenuitive analysis methods including mea-

sures of galaxy asymmetry, concentration, flux distribution [e.g., 2, 3, 57, 56, 163],
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shapelet decompositions [136, 137], morphological principal component analyses

[208], and unsupervised morphological hierarchical classifications [109]. These

measures provide well-defined characterizations of the surface brightness distribu-

tion of galaxies and can be connected to their underlying physical state by, e.g.,

calibration through numerical simulation [115]. The complementarity between

these quantitative measures and qualitative morphological descriptions of galax-

ies means that developing both classes of characterizations further can continue

to improve our knowledge of galaxy formation physics.

Characterizing large numbers of galaxies with descriptive classifications si-

multaneously requires domain knowledge of galaxy morphology (“expertise”), the

capability to evaluate quickly each galaxy (“efficiency”), a capacity to work on sig-

nificant galaxy populations (“scalability”), some analysis of the data to identify

galaxy candidates for classification (“pre-processing”), a presentation of galaxy

images in a format that enables the characteristic structures to be recognized

(“data model”), and an output production of reliable classifications (“accuracy”).

Methods for the descriptive classification of galaxy morphology have addressed

these challenges in complementary ways.

Perhaps the most important and influential framework for galaxy morpholog-

ical classification to date has been the Galaxy Zoo project [161, 285, 286], which

enrolls the public in the analysis of astronomical data including morphological

classification. This project has addressed the expertise challenge by training users

in the classification of galaxies and statistically accounting for the distribution of

users’ accuracies. The efficiency of users varies, but by leveraging the power of the

public interest and enthusiasm, and now machine learning [17, 277], the project

can use scalability to offset variability in the performance of individual users. The

pre-processing and delivery of suitable images to the users has required significant
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investment and programming, but has led to a robust data model for both the

astronomical data and the data provided by user input. Science applications of

Galaxy Zoo include quantitative morphological descriptions of ∼50,000 galaxies

[238] in the CANDELS survey [95, 144], probes of the connection between star for-

mation rate and morphology in spiral galaxies [284], and measuring galaxy merger

rates [281].

Other efforts have emphasized different dimensions of the morphological classi-

fication task. Kartaltepe et al. [132] organized the visual classification of ∼10,000

galaxies in CANDELS by a team of dozens of professional astronomers. This

important effort performed object detection and source extraction on the CAN-

DELS science data, assessed their completeness, and provided detailed segmen-

tation maps of the regions corresponding to classified objects. The use of high

expertise human classifiers leads to high accuracy, but poses a challenge for scal-

ability to larger samples. The work of Kartaltepe et al. [132] also leveraged a

significant investment in the pre-processing and presentation of the data to their

users with a custom interface with a high-quality data model for the results.

Leveraging human classifiers, be they highly expert teams or well-calibrated

legions, to provide descriptive morphologies for forthcoming datasets will prove

challenging. These challenges motivate a consideration of other approaches, and

I present two salient examples in James Webb Space Telescope [JWST ; 85] and

the Large Synoptic Survey Telescope [LSST ; 123, 168].

JWST enables both sensitive infrared imaging with NIRCam and multi-object

spectroscopy with NIRSpec free of atmospheric attenuation. The galaxy popula-

tion discovered by JWST will show a rich range of morphologies, star formation

histories, stellar masses, and angular sizes [288], which makes identifying NIR-

Cam-selected samples for spectroscopic follow-up with NIRSpec challenging. The
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efficiency gain of parallel observations with NIRCam and NIRSpec will lead to

programs where the timescale for constructing NIRCam-selected samples will be

very short (∼2 months) to enable well-designed parallel survey geometries. For

this application, the ability to generate quick morphological classifications for

thousands of candidate sources will enhance the spectroscopic target selection in

valuable space-based observations.

LSST presents a challenge of scale, with an estimated 30 billion astronomical

sources, including billions of galaxies over ∼17,000 deg2 [168]. The morphological

classification of these galaxies will require the development of significant analysis

methods that can both scale to the enormity of the LSST dataset and perform

well enough to allow imaging data to be reprocessed in pace with the LSST data

releases. Indeed, morphological classification methods have been identified as

keystone preparatory science tasks by in the LSST Galaxies Science Roadmap

[220, see also Robertson et al. 222.].

Recently, advances in the field of machine learning called deep learning have

enjoyed success in morphological classification. Dieleman et al. [70] (D15) and

Dai and Tong [63] used deep learning to classify the Galaxy Zoo Survey. Huertas-

Company et al. [113] used a deep learning model derived from D15 and the clas-

sifications from K15 to classify the CANDELS survey. González et al. [94] used

deep learning to perform galaxy detection and morphological classification, an

approach that has also been used to characterize Dark Energy Survey galaxy

morphologies [251]. Deep learning models have been further applied to infer the

surface brightness profiles of galaxies [262] and measure their fluxes [34], and now

to simulate entire surveys [241].

Here, I extend previous efforts by applying a semantic segmentation algorithm

to both classify pixels and identify objects in astronomical images using our deep
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learning framework called Morpheus. The software architecture of the Morpheus

framework is described in Section 2.2, with the essential convolutional neural

network and deep learning components reviewed in Appendix A.1. The Morpheus

framework has been engineered by using TensorFlow [1] implementations of these

components to perform convolutions and tensorial operations, and is not a port of

existing deep learning frameworks or generated via “transfer learning” [e.g., 212]

of existing frameworks pre-trained on non-astronomical data such as ImageNet

[68].

I train Morpheus using multi-band Flexible Image Transport System [FITS;

282] images of CANDELS galaxies visually classified by Kartaltepe et al. [132]

and their segmentation maps derived from standard sextractor analyses [22]. The

training procedure is described in Section 2.3, including the loss function used to

optimize the Morpheus framework. Since Morpheus provides local estimates of

whether image pixels contain source flux, the Morpheus output can be used to

perform source segmentation and deblending. I present fiducial segmentation and

deblending algorithms for Morpheus in Section 2.4.

I then apply Morpheus to the Hubble Legacy Fields [118] reduction of the

CANDELS and GOODS data in the GOODS South region, the v1.0 data release

[95, 144] for the other four CANDELS regions, and generate FITS data files of

the same pixel format as the input FITS images, each containing the pixel-by-

pixel model classifications of the image data into spheroid, disk, irregular, point

source/compact, and background classes, as described in Section 2.6. I release

publicly these Morpheus pixel-level classification data products and detailed them

in Appendix A.4. I evaluate the performance ofMorpheus in Section 2.7, including

tests that use the catalog of 3D-HST photometric sources [239, 185] to measure the

completeness of Morpheus in recovering sources as a function of source magnitude.
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I find that Morpheus is highly complete (>90%) for sources up to one magnitude

fainter than objects used to train the model. Using theMorpheus results, I provide

estimates of the morphological classification of 3D-HST sources as a public value-

added catalog, described in Section 2.8. In Section 2.9, I discuss applications of

Morpheus and semantic segmentation, which extend well beyond morphological

classification, and connect the capabilities of Morpheus to other research areas in

astronomical data analysis. I publicly release the Morpheus code, provide online

tutorials for using the framework via Jupyter notebooks, and present an interactive

website to visualize the Morpheus classifications and segmentation maps in the

context of the HLF images and 3D-HST catalog. These software and data releases

are described in Appendices A.2, A.3, and A.4. A summary of the contributions

for this chatper are presented with some conclusions in Section 2.10. Throughout

the chapter, I have used the AB magnitude system [200] and assumed a flat ΛCDM

universe (Ωm = 0.3, ΩΛ = 0.7) with a Hubble parameterH0 = 70 km/s/Mpc when

necessary.

2.2 Morpheus Deep Learning Framework

Morpheus provides a deep learning framework for analyzing astronomical im-

ages at the pixel level. Using a semantic segmentation algorithm, Morpheus iden-

tifies which pixels in an image are likely to contain source flux and separates them

from “background” or sky pixels. Morpheus, therefore, allows for the definition of

corresponding segmentation regions or “segmentation maps” by finding contigu-

ous regions of source pixels distinct from the sky. Within the same framework,

Morpheus enables for further classification of the source pixels into additional

“classes”. In this chapter, I have trained Morpheus to classify the source pix-

els into morphological categories (spheroid, disk, irregular, point source/compact,

10



and background) approximating the visual classifications performed by the CAN-

DELS collaboration in K15. These source pixel classes identified by Morpheus

could, in principle, be trained to reproduce other properties of the galaxies, such

as, e.g., photometric redshift, provided a sufficient training dataset is available.

In the sections below, I describe the architecture of the Morpheus deep learning

framework. Readers unfamiliar with the primary computational elements of deep

learning architectures may refer to Appendix A.1 where more details are provided.

2.2.1 Input Data

I engineered the Morpheus deep learning framework to accept astronomi-

cal image data as direct input for pixel-level analysis. Morpheus operates on

science-quality FITS images, with sufficient pipeline processing (e.g., flat fielding,

background subtraction, etc.) to enable photometric analysis. Morpheus accepts

multi-band imaging data, with a FITS file for each of the nb bands used to train

the model (see Section 2.3). The pixel format of the input FITS images (or image

region) matches the format of FITS images used to perform training, reflecting

the size of the convolutional layers of the neural network determined before train-

ing. Morpheus allows for arbitrarily large images to be analyzed by subdividing

them into regions that the model processes in parallel, as described in Section

2.2.3 below.

For the example application of morphological classification presented in this

chapter, I use the F606W (V ), F850LP (z), F125W (J), and F160W (H) band

images from Hubble Space Telescope for training, testing, and our final analysis.

Our training and testing images were FITS thumbnails and segmentation maps

provided by Kartaltepe et al. [132]. Once trained, Morpheus can be applied to

arbitrarily large images via a parallelization scheme described below in Section
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2.2.3. I have used the CANDELS public release data [95, 144] in additional per-

formance tests and the Hubble Legacy Fields v2.0 data [118] for our Morpheus

data release.

I note that the approach taken by Morpheus differs from deep learning models

that use traditional image formats, e.g., three-color Portable Network Graphics

(PNG) or Joint Photographic Experts Group (JPEG) images as input. Using

PNG or JPEG files as input is convenient because deep learning models trained

on existing PNG or JPEG datasets, such as ImageNet [68, 227], can be retrained

via transfer learning to classify galaxies. However, the use of these inputs re-

quires additional pre-processing beyond the science pipeline, including arbitrary

decisions about how to weight the FITS images to represent the channels of the

multi-color PNG or JPEG. With the goal of including Morpheus framework anal-

yses as part of astronomical pipelines, I have instead used FITS images directly

as input to the neural network.

2.2.2 Neural Network

Morpheus uses a neural network inspired by the U-Net architecture [224, See

Section A.1.5] and is implemented using Python 3 [270] and the TensorFlow li-

brary [1]. I construct Morpheus from a series of “blocks” that combine multiple

operations used repeatedly by the model. Each block performs a sequence of

“block operations”. Figure 2.1 provides an illustration of a Morpheus block and

its block operations. Block operations are parameterized by the number Q of con-

volved output images, or feature maps, they produce, one for each convolutional

artificial neuron in the layer. I describe this process in more detail below.

Consider input data X, consisting of K layers of images with N ×M pixels. I

define a block operation on X as
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OPQ(X) = ReLU(CONVQ(BN(X)), (2.1)

where ReLU is the Rectified Linear Unit activation function [ReLU; 98, 152, See

also Appendix A.1.1], CONVQ is a convolutional layer (see Appendix A.1.3) with

a number Q convolutional artificial neurons (see Appendix A.1.3), and BN is

the batch normalization procedure [121, and Appendix A.1.4]. Note that the

values of Q appearing in OPQ and CONVQ are equal. For example, OP4 would

indicate that the convolutional layer within the OP4 function has 4 convolutional

artificial neurons. Unless stated otherwise, all inputs into a convolutional layer are

zero-padded to preserve the width and height of the input, and all convolutional

artificial neurons have kernel dimensions 3× 3. Given Equation 2.1, for an input

X with dimensions N ×M ×K the output of the function OP4(X) would have

dimensions N ×M × 4.

Equation 2.1 allows for a recursive definition of a function describing a series

of block operations, where the input data to one block operation consist of the

output from a previous block operation. This recursion can be written as

OPPQ(X) =


X, if P = 0

ReLU(CONVQ(BN(OPP−1
Q (X))) if P > 0

. (2.2)

Equation 2.2 introduces a new parameter P , shown with a superscript in OPPQ.

The parameter P establishes the conditions of a base case for the recursion. Note

that in Equation 2.2 the input X is processed directly when P = 1, and when

P > 1 the input to the OPPQ function is the output from OPP−1
Q . It can be seen

from the formulation of Equations 2.1 and 2.2 that OPQ(X) = OP 1
Q(X).

Since a block performs a number P block operations, a block can be defined
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mathematically as

BLOCK(Q,P,X) = OPPQ(X). (2.3)

An example block and its block operations can be seen diagrammatically in Figure

2.1. With these definitions, I can present the neural network architecture used in

Morpheus.

Like the U-Net architecture, the Morpheus architecture consists of a contrac-

tion phase and an expansion phase. The contraction phase consists of three blocks

with parameters (P = 4, Q = 8), (P = 4, Q = 16), and (P = 4, Q = 32). Each

block is followed by a max-pooling operation with size=(2×2) (see Section A.1.4),

halving the width and height of its input. After the contraction phase there is

a single intermediary block preceding the expansion phase with the parameters

(P = 1, Q = 16). The expansion phase consists of three blocks with the parame-

ters (P = 2, Q = 8), (P = 2, Q = 16), (P = 2, Q = 32). Each block is preceded

by a bicubic interpolation operation that doubles the width and the height of

its input. Importantly, the output from each block in the contraction phase is

concatenated (see Section A.1.4) with the output from the bicubic interpolation

operation in the expansion phase whose output matches its width and height (see

Figure 2.2). The output from the final block in the expansion phase is passed

through a single convolutional layer with 5 convolutional artificial neurons. A

softmax operation (see Equation 2.4) is performed on the values in each pixel, en-

suring the values sum to unity. The final output is a matrix with the same width

and height as the input into the network, but where the last dimension, 5, now

represents a classification distribution describing the confidence the corresponding

pixel from the input belongs to one of the 5 specified morphological classes.

The blocks in Morpheus are organized into the U-Net structure, shown in

Figure 2.2. The model proceeds clockwise, starting from “Input” on the upper
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Figure 2.1: Diagram of a single block in the Morpheus neural network architec-
ture (Figure 2.2). Panel (c) shows a single block from the architecture, parame-
terized by the number P (black) of block operations and the number Q (purple)
of convolutional artificial neurons (CANs; Section A.1.3) in all of the convolu-
tional layers within the block. Panel (b) shows an example zoom-in where there
are P = 2 groups of Q = 4 block operations. Panel (a) shows a zoom-in on a
block operation, which consists of batch normalization, Q = 4 CANs, and a ReLU
operation. In the notation of Equation 2.1, this block operation would be written
as OP4(X).
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left through to “Output” on the lower left. The very first step involves the insertion

of the input FITS images into the model. Each FITS image is normalized to have

a mean of 0 and unit variance before processing by Morpheus. I will refer to

the number of input bands as nb, and in the application presented here, I take

nb = 4 (i.e., V zJH). The input images each have pixel dimensions N × M ,

and I can, therefore, consider the astronomical input data to have dimensions

N ×M × nb. Only the first block operation takes the FITS images as input, and

every subsequent block operation in the model takes the output from previous

blocks as input.

The first convolution in the first block operation convolves the normalized N×

M ×nb astronomical data with three-dimensional kernels of size n2
k×nb, and each

element of the kernel is a variable parameter of the model to be optimized. The

convolutions operate only in the two pixel dimensions, such that nb convolutions

are performed, one for each N ×M pixel image, using a different nk × nk kernel

for each convolution. The nb convolved images are then summed pixel by pixel

to create an output feature map of size N ×M . The convolutional layer repeats

this process Q times with different kernels, generating Q output feature maps

and an output dataset of size N ×M ×Q. For the first block in Morpheus I use

Q = 8 (see Figure 2.2). After the first convolution on the astronomical data, every

subsequent convolution in the first block has both input and output data of size

N ×M ×Q.

Each block performs a number P block operations, resulting in output data

with dimensions of N ×M ×Q emerging from the block. The number of feature

maps Q changes with each block. For a block producing Q filters, if the data

incoming into the block has size N ×M ×Q′ with Q′ 6= Q, then the first convo-

lutional layer in the first block operation will have Q kernels of size n2
k ×Q′. All
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subsequent convolutional layers in the block will then ingest and produce data of

size N ×M ×Q by using kernels of size n2
k ×Q.

I can apply further operations on the data in between the blocks, and the

character of these operations can affect the dimensions of the data. The first half

of the model is a contraction phase, where each block is followed by a max-pooling

operation [53, and Appendix A.1.4]. The max-pooling is applied to each feature

map output by the block, taking the local maximum over small areas within each

feature map (in the version of Morpheus presented here, a 2× 2 pixel region) and

reducing the size of the data input to the next block by the same factor. For

this chapter, the contraction phase in the Morpheus framework uses three pairs

of blocks plus max-pooling layers.

After the contraction phase, the model uses a series of blocks, bicubic in-

terpolation layers, and data concatenations in an expansion phase to grow the

data back to the original format. Following each block in the expansion phase,

a bicubic interpolation layer expands the feature maps by the same areal factor

as the max-pooling layers applied in the contraction phase (2 × 2 in the version

of Morpheus presented here). The output feature maps from the interpolation

layers are concatenated with the output feature maps from the contraction phase

blocks where the data have the same format. Finally, the output from the last

block in the expansion phase is input into a convolutional layer that produces the

final output images that I call “Morpheus classification images”, one image for

each class. The pixel values in these images contain the model estimates for their

classification, normalized such that the element-wise sum of the classification im-

ages equals unity. For this chapter, where I am performing galaxy morphological

classification, there are five classification images (spheroid, disk, irregular, point

source /compact, and background).
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As the data progresses through the model, the number of feature maps and

their shapes change owing to the max-pooling and interpolation layers. For ref-

erence, in Table 2.1, I list the dimensions of the data at each stage in the model,

assuming input images in nb bands, each with N ×M pixels, and a total of nc

classification images produced by the model.

2.2.3 Parallelization for Large Images

While the Morpheus neural network performs semantic segmentation on pixels

in FITS images with a size determined by the training images, the model can

process and classify pixels in arbitrarily large images. To process large images,

Morpheus uses a sliding window strategy by breaking the input FITS files into

thumbnails of size N ×M (the size of the training images) and classifying them

individually. Morpheus proceeds through the large format image, first column by

column, and then row by row, shifting the active N ×M window by a unit pixel

stride and then recomputing the classification for each pixel.

As the classification process continues with unit pixel shifts, each pixel is

deliberately classified many times. I noticed heuristically that the output Morp-

heus classification of pixels depended on their location within the image, and that

the pixel classifications were more accurate relative to our training data when

they resided in the inner np = (N−B)× (M−B) region of the classification area,

where the lesser accuracy region consisted of a border about B ∼ 5 pixels wide

on each side. Outside of the very outer B pixels in the large format image, Morp-

heus classifies each pixel np times. For the large FITS data images used in this

chapter, this repetition corresponds to np = 900 separate classifications per pixel

per output class, where each classification occurs when the pixel lies at a different

location within the active window. This substantial additional information can be
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Figure 2.2: Neural network architecture of the Morpheus deep learning frame-
work, following a U-Net [224] configuration. The input to the model Morpheus
consists of astronomical FITS images in nb bands (upper left). These images are
processed through a series of computational blocks (sky blue rectangles), each of
which applies P (black numbers) block operations consisting of a batch normal-
ization and multiple convolutional layers producing Q (purple numbers) feature
maps. The blocks are described in more detail in Figure 2.1. During the contrac-
tion phase of the model, max-pooling layers (salmon rectangles) are applied to the
data to reduce the pixel size of the images by taking local maxima of 2×2 regions.
The contraction phase is followed by an expansion phase where the output feature
maps from each block are expanded by a 2 × 2 factor via bicubic interpolation
(green rectangles) and concatenated with the output from the corresponding block
in the contraction phase. The output from the last block is processed through a
set of convolutional layers (light blue box with Q = 5) that result in a feature
map for each classification in the model. These “classification images” are nor-
malized to sum to unity pixel-by-pixel. In this chapter, the classification images
are spheroid, disk, irregular, point source/compact, and background.
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Layer Input Output Dimensions
Input Images nb Bands, N ×M Pixels [N , M , nb]
Block 1a Input Images [N , M , 8]
Block 1b Block 1a [N , M , 8]
Block 1c Block 1b [N , M , 8]
Block 1d Block 1c [N , M , 8]

Max Pooling 1 Block 1d [N/2, M/2, 8]
Block 2a Max Pooling 1 [N/2, M/2, 16]
Block 2b Block 2a [N/2, M/2, 16]
Block 2c Block 2b [N/2, M/2, 16]
Block 2d Block 2c [N/2, M/2, 16]

Max Pooling 2 Block 2d [N/4, M/4, 16]
Block 3a Max Pooling 2 [N/4, M/4, 32]
Block 3b Block 3a [N/4, M/4, 32]
Block 3c Block 3b [N/4, M/4, 32]
Block 3d Block 3c [N/4, M/4, 32]

Max Pooling 3 Block 3d [N/8, M/8, 32]
Block 4a Max Pooling 3 [N/8, M/8, 16]

Interpolation 1 Block 4a [N/4, M/4, 16]
Block 5a Interp. 1 + Block 3d [N/4, M/4, 8]
Block 5b Block 5a [N/4, M/4, 8]

Interpolation 2 Block 5b [N/2, M/2, 8]
Block 6a Interp. 2 + Block 2d [N/2, M/2, 16]
Block 6b Block 6a [N/2, M/2, 16]

Interpolation 3 Block 6b [N , M , 16]
Block 7a Interp. 3 + Block 1d [N , M , 32]
Block 7b Block 7a [N , M , 32]

Convolution Block 7b [N , M , nc]

Table 2.1: Computational steps in the Morpheus deep learning framework. For
each Layer (left column), I list its Input (center column), and the Output Shape
of its data (right column). The model takes as its starting input a set of images
in nb bands, each with N ×M pixels. The final output of the model is a set of
nc classification images, each with N ×M pixels. The Morpheus block structures
are illustrated in Figure 2.1. The “+” symbol denotes a concatenation between
two layer outputs, as shown in Figure 2.2.
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leveraged to improve the model, but storing the full distribution of classifications

produced by this method would increase our data volume by roughly three orders

of magnitude.

While Morpheus would enable full use of these distributions, for practical

considerations, I instead record some statistical information as the computation

proceeds and do not store the entire set of np samples. To avoid storing the full

distribution, I track running estimates of the mean and variance of the distribu-

tion1. Once the mean for each class for each pixel is computed, I normalize the

means across classes to sum to unity. I further record a statistic I call rank voting,

which is a tally of the number of times each output class was computed by the

model to be the top class for each pixel. The sum of rank votes across classes for

a single pixel equals the number of times Morpheus processed the pixels (i.e., np

for most pixels). After the computation, the rank votes are normalized to sum to

unity across the classes for each pixel.

The strips of classified regions produce fifteen output images, containing the

mean and variance estimators for the classification distribution and normalized

rank votes for each class. This striped processing of the image can be performed

in parallel across multiple Morpheus instances and then stitched back together.

The weak scaling of this processing is, in principle, trivial and is limited only by

the number of available GPUs and the total memory of the computer used to

perform the calculation.
1See, e.g., http://people.ds.cam.ac.uk/fanf2/hermes/doc/antiforgery/stats.pdf for an example
of running mean and variance estimators.
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2.3 Model Training

The training of deep learning frameworks involves important decisions about

the training data, the metrics used to optimize the network, numerical parameters

of the model, and the length of training. I provide some rationale for these choices

below.

2.3.1 Training Data

To train a model to perform semantic segmentation, I require a dataset that

provides both information on the segmentation of regions of interest and classifi-

cations associated with those regions. For galaxy morphological classification, I

use 7,629 galaxies sampled from the K15 dataset. Their 2-epoch CANDELS data

provide an excellent combination of multi-band FITS thumbnails, segmentation

maps in FITS format, and visually-classified morphologies in tabulated form. The

K15 classifications consisted of votes by expert astronomers, between 3 − 60 per

object, who inspected images of galaxies and then selected from several morpho-

logical categories to assign to the object. The number of votes for each category

for each object are provided, allowing Morpheus to use the distribution of votes

across classifications for each object when training. I downloaded and used the

publicly available K15 thumbnail FITS files for the F606W , F850LP , F125W ,

and F160W bands as input into the model for training and testing. In training

Morpheus to reproduce the K15 classifications, multi-band data approximates the

information provided to the astronomers who performed the K15 classifications.

Morpheus is trained using the same V , z, J , and H-band image thumbnails used

in the K15 classification process. Other bands or different numbers of bands could

be used for training as necessary, and Morpheus allows for reconfiguration and re-

training depending on the available training images. Of the K15 dataset, I used
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80% of the objects to form our training sample and 20% to form our test sam-

ple. Various statistical properties of the test and training samples are described

throughout the rest of the chapter.

The primary K15 classifications spheroid, disk, irregular, and point source/-

compact were used in the example Morpheus application presented here. I added

one additional class, background, to represent sky pixels absent significant source

flux. I classify pixels as belonging to the background category if those pixels fell

outside the K15 segmentation maps. Pixels inside the segmentation maps were

assigned the distribution of classifications provided by the K15 experts.

The K15 classification scheme also included an unknown class for objects.

Since Morpheus works at the pixel level and could provide individual pixel classi-

fications that were locally accurate within a source but that collectively could sum

to an object whose morphology expert astronomers might classify as unknown, I

were posed with the challenge of how to treat the K15 unknown class. Given our

addition of the background class constructed from large image regions dominated

by sky, one might expect overlap in the features of regions that are mostly noise

and amorphous regions classified as unknown. Since one might also expect overlap

between unknown and irregular classifications, I wanted to preserve some distinc-

tion in the object classes. I, therefore, removed the unknown class by removing

any sources that had unknown as their primary classification from the training

sample (213 sources). For any sources where the non-dominant K15 classifications

included unknown, I redistributed the unknown votes proportionally to the other

classes.
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2.3.2 Data Augmentation

To increase the effective size of the training dataset, Morpheus uses a data

augmentation method. Augmentation supplements the input training dataset by

performing transformations on the training images to alter them with the intent of

adding similar but not identical images with known classifications. Augmentation

has been used successfully in the context of galaxy morphological classification

[e.g., 70], and Morpheus adopts a comparable approach to previous implementa-

tions.

During training, Morpheus produces a series of 40 × 40 pixel augmented ver-

sions of the training images. The augmentation approach is illustrated in Figure

2.3. For each band in the original training image, the image is collectively rotated

by a random angle φ ∈ [0, 2π], flipped horizontally with a random 50% proba-

bility, and then flipped vertically with a random 50% probability. A crop of the

inner 60×60 pixels of the resulting image is produced, and then a random 40×40

pixel subset of the image is selected and passed to the model for training. This

method allows us to increase the effective number of images available for training

by a factor of ∼574, 400 and helps ameliorate over-training on the original training

image set.

2.3.3 Loss Function

A standard method for training deep learning frameworks is to define a loss

function that provides a statistic based on the output classifications to optimize

via stochastic gradient descent with gradients computed using back-propagation

[226]. Here, I describe how the Morpheus loss function is constructed.

The first task is to assign a distribution of input classifications on a per-pixel

basis, choosing between the nc classes available to the Morpheus model. For this
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Figure 2.3: Data augmentation pipeline used during neural network training.
Each training image is processed by the data augmentation pipeline before being
presented to the neural network during training. The pipeline can be described
in 7 stages (annotated ‘(a)-(g)’ above). First,an image from the training set is
selected (Panel a). A number of augmentation operations are then applied to
the image. The image is rotated by a random angle θ∈[0, 2π] (Panel b), flipped
horizontally with 50% probability (Panel c), and flipped vertically with a 50%
probability (Panel d). The centermost 60 × 60 subset of the resulting image is
cropped (Panel e), and then a random 40×40 subset is selected from the cropped
image (Panel f). The output 40× 40 rotated, flipped, and cropped image is then
used for training. This procedure increases the available images for training by
a factor of ∼574, 400. Using this process helps reduce overfitting, particularly in
cases of datasets with limited training sample sizes.
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chapter, I choose nc = 5 (background, disk, spheroid, irregular, and point source/-

compact), but Morpheus can adopt an arbitrary number of classes. I use the

index k to indicate a given class, with k ∈ [1, nc]. Consider an N ×M image of

an astronomical object that has been visually classified by a collection of experts,

and a segmentation map defining the extent of the object in the image. Outside

the segmentation map of the object, the pixels are assumed to belong to the sky

and are assigned the background class. Inside the segmentation map, pixels are

assigned the distribution of disk, spheroid, irregular, and point source/compact

classifications determined by the experts for the entire object. For each pixel ij,

with i ∈ [1, N ] rows and j ∈ [1,M ] columns, I then have the vector qij whose

elements qijk contain the input distribution of classifications. Here, the index k

runs over the number of classes nc and
∑
k qijk = 1 for each pixel with indices ij.

The goal of the model is to reproduce this normalized distribution qij of discrete

classes for each pixel of the training images. I wish to define a total loss function

Ltot that provides a single per-image statistic for the model to optimize when

attempting to reproduce qij. Morpheus combines a weighted cross entropy loss

function with a Dice loss [197, 181] for its optimization statistic, which I describe

below.

At the end of theMorpheus data flow, as outlined in Figure 2.2, the raw output

of the model consists of N ×M vectors xij with nc elements per-pixel estimates

that represent unnormalized approximations to the input per-pixel distributions

qij. The model outputs xij for each pixel are then normalized to form a probability

distribution pij using the softmax function

pij = exp(xij)∑nc
k=1 exp(xijk)

, for k ∈ [1, nc]. (2.4)

The distribution pij then represents the pixel-by-pixel classifications computed by
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Morpheus for each of the k ∈ [1, nc] classes. For a pixel with indices ij, I can

define the per-pixel cross entropy loss function as

Lij(pij, qij) = −
nc∑
k=1

pijk log(qijk) (2.5)

where pij and qij are again the two per-pixel probability distributions, with qij

representing the true distribution of the input classifications for the pixel ij and

pij representing the model output.

Equation 2.5 provides the per-pixel contribution to the entropy loss function.

However, for many images, the majority of pixels lie outside the segmentation

maps of sources identified in the training data and are therefore labeled as back-

ground. To overcome this imbalance and disincentivize the model from erroneously

learning to classify pixels containing source flux as background, I apply a weight-

ing to the per-pixel loss. I define an index kmax,qij that indicates which class is the

maximum of the input classification distribution for each pixel, written as

kmax,qij = argmax qij (2.6)

with 1 ≤ kmax,qij ≤ nc. For each class k, I then define a weight wk that is inversely

proportional to the number of pixels with kmax,qij = k. I can write

wk =
 N∑
i=1

M∑
j=1

max(qij)δk,kmax,q
ij

−1

. (2.7)

Here, δi,j is the Kronecker delta function. The vector w has size nc and each of its

elements wk contain the inverse of the sum of max(qij) for pixels with kmax,qij = k.

In a given image, I ignore any classes that do not appear in the input classification

distribution (i.e., any class k for which ∑
i

∑
j qijk = 0).
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Using w, I define a weighted cross entropy loss for each pixel as

Lwij = wkmax
ij

Lij(pij, qij). (2.8)

A mean weighted loss function is then computed by averaging Equation 2.8 over

all pixels as

L̄w = 1
N ×M

N∑
i=1

M∑
j=1

Lwij. (2.9)

This mean weighted loss function serves as a summary statistic of the cross entropy

between the output of Morpheus and the input classification distribution.

When segmenting images primarily comprised of background pixels, the clas-

sification distributions of the output pixels should be highly unbalanced, with the

majority having background≈ 1. In this case, the mean loss function statistic

defined by Equation 2.9 will be strongly influenced by a single class. A common

approach to handle unbalanced segmentations is to employ a Dice loss function

to supplement the entropy loss function [e.g., 181, 248]. The Dice loss function

used by Morpheus is written as

LD(b,m) = 1− 2
∑
i

∑
j(S(b) ◦m)ij∑

i

∑
j(S(b) +m)ij

. (2.10)

Here, S(b) = (1 + exp(−b))−1 is the sigmoid function (see Equation A.3) applied

pixel-wise to the background classification image output by the model. The im-

age m is the input mask with values m=1 denoting background pixels and m=0

indicating source pixels, defined, e.g., by a segmentation map generated using

sextractor. The ◦ symbol indicates a Hadamard or element-wise product of the

matrices S(b) andm. Note that the output background matrix b has not yet been

normalized using a softmax function, and so bij∈[−∞,∞] and S(bij)∈[0, 1]. The

Dice loss then ranges from LD = 0 if S(b)≈m and LD ∼ 1 when S(b) and m
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differ substantially. The addition of this loss function helps to maximize the spa-

tial coincidence of the output background pixels assigned bij≈1 with the non-zero

elements of the input segmentation mask m.

To define the total loss function optimized during the training ofMorpheus, the

cross entropy and Dice losses are combined as a sum weighted by two parameters

λw and λD. The total loss function is written as

Ltot = λwL
w + λDL

D (2.11)

For the implementation of Morpheus used in this chapter, the entropy and Dice

loss functions are weighted equally by setting λw=1 and λD=1.

2.3.4 Optimization Method

To optimize the model parameters, the Adam stochastic gradient descent

method [140] was used. The Adam algorithm uses the first and second moments

of first-order gradients computed via backpropagation to find the minimum of a

stochastic function (in this case, our loss function, see Section 2.3.3, which de-

pends on the many parameters of the neural network). The Adam optimizer, in

turn, depends on hyper-parameters that determine how the algorithm iteratively

finds a minimum. Since the loss function is stochastic, the gradients change each

iteration, and Adam uses an exponential moving average of the gradients (m̂)

and squared gradients (v̂) when searching for a minimum. Two dimensionless

hyper-parameters (β1 and β2) set the decay rates of these exponential averages

[see Algorithm 1 of 140]. As the parameters θ of the function being optimized

are iterated between steps t− 1 and t, they are updated according to

θt ← θt−1 − α · m̂t/(
√
v̂t + ε). (2.12)
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Adam Optimizer Hyper-parameters
Hyper-parameter Value

β1 0.9
β2 0.999
ε 10−8

α 9.929× 10−5

Table 2.2: Adam optimizer [140] hyper-parameter values used during the training
of the neural network used in Morpheus. See the text for definitions of the hyper-
parameters.

Here, ε is a small, dimensionless safety hyper-parameter that prevents division

by zero, and α is a small, dimensionless hyper-parameter that determines the

magnitude of the iteration step. Table 2.2 lists the numerical values of the Adam

optimizer hyper-parameters used by Morpheus. I use the default suggested values

for β1, β2, and ε. After some experimentation, I adopted a more conservative step

size for α than used by Kingma and Ba [140].

2.3.5 Model Evaluation

As training proceeds, the performance of the model can be quantified using

various metrics and monitored to determine when training has effectively com-

pleted. The actual performance of Morpheus will vary depending on the clas-

sification scheme used, and here I report the performance of the model relative

to the CANDELS images morphologically classified in K15. Performance metrics

reported in this Section refer to pixel-level quantities, and I discuss object-level

comparisons of morphological classifications relative to K15 in Section 2.5.

While the model training proceeds by optimizing the loss function defined

in Section 2.3.3, I want to quantify the accuracy of the model in recovering the

per-pixel classification and the overlap of contiguous regions with the same clas-

sification. First, I will need to define the index kmaxij with maximum probability
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Morpheus Training and Test Results
Metric Training Test

Accuracy A
Background 91.5% 91.4%

Disk 74.9% 75.1%
Irregular 80.6% 68.6%

Point source/compact 91.0% 83.8%
Spheroid 72.3% 71.4%
All Classes 86.8% 85.7%

Intersection-Over-Union IU
B>0.5 0.899 0.888
B>0.6 0.900 0.891
B>0.7 0.902 0.893
B>0.8 0.902 0.895
B>0.9 0.900 0.896

Table 2.3: Morpheus training and test results for accuracy A, and intersection-
over-union IU as a function of background threshold B.

to reflect either the input classification qij or the output classification pij. I define

an equivalent of Equation 2.6 for pij as

kmax,pij = argmax pij. (2.13)

I can then define a percentage accuracy

A = 100
N ×M

N∑
i=1

M∑
j=1

δkmax,p
ij ,kmax,q

ij
. (2.14)

The accuracy A then provides the percentage of pixels for which the maximum

probability classes of the input and output distributions match.

In addition to accuracy, the intersection-over-union IU of pixels with back-

ground probabilities above some threshold is computed between the input qij and

output pij distributions. If I define the index b to represent the background class, I

can express the input background probabilities as qb=qijb for i∈[1, N ] and j∈[1,M ],
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and the equivalent for the output background probabilities pb. I can refer to qb

and pb as the input and output background images, and the regions of these im-

ages with values above some threshold B as qb(>B) and pb(>B), respectively.

Note that the input qb only contains values of zero or one, whereas the output pb

has continuous values between zero and one. I can then define the IU metric for

threshold B as

IU(B) = pb(>B) ∩ qb(>B)
pb(>B) ∪ qb(>B) . (2.15)

Intuitively, this IU metric describes how well the pixels assigned by Morpheus as

belonging to a source match up with the input source segmentation maps. A value

of IU = 1 indicates a perfect match between source pixels identified by Morpheus

and the input segmentation maps, while a value of IU = 0 would indicate no pixels

in common between the two sets.

As training proceeds, the accuracy A and intersection-over-union IU are mon-

itored until they plateau with small variations. For the K15 training data, the

model plateaued after about 400 epochs. The training then continues for another

100 epochs to find a local maximum in A and IU , and the model parameters

at this local maximum adopted for testing. Table 2.3 summarizes the per-pixel

performance of Morpheus in terms of A for each class separately, A for all classes,

and IU(B) for B=[0.5, 0.6, 0.7, 0.8, 0.9]. I also report the performance of the train-

ing and testing samples separately. The pixel-level classifications are 70 − 90%

accurate depending on the class, and the intersection-over-union is IU∼0.9 for all

thresholds B≥0.5. The model shows some evidence for overfitting as accuracy

declines slightly from the training to test sets for most classes.
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2.4 Segmentation and Deblending

To evaluate the completeness of Morpheus in object detection and to compute

an object-level classification, segmentation maps must be constructed and then

deblended from the Morpheus pixel-level output. Morpheus uses the background

class from the output of the neural network described in Section 2.2.2 to create

a segmentation map. The segmentation algorithm uses a watershed transform to

separate background pixels from source pixels and then assigns contiguous source

pixels a unique label. The deblending algorithm uses the flux from the input

science images and the output of the segmentation algorithm to deblend under-

segmented regions containing multiple sources. I summarize these procedures

as Algorithms 1 and 2. Figure 2.4 illustrates the process for generating and

deblending segmentation maps.

2.4.1 Segmentation

The segmentation algorithm operates on the output background classification

image and identifies contiguous regions of low background as sources. The al-

gorithm begins with the background image b≡pb defined in Section 2.3.5 and an

initially empty mask m=0 of the same size. For every pixel in the image, if bij=1

I set mij = 1 and if bij = 0 I set mij = 2. The background mask m then in-

dicates extreme regions of b. The [242] algorithm is applied to the background

image b to produce a Sobel edge image s. Morpheus then applies the watershed

algorithm of Couprie and Bertrand [61], using the Sobel image s as the “input

image” and the background mask m as the “marker set”. I refer the reader to

Couprie and Bertrand [61] for more details on the watershed algorithm, but in

summary, the watershed algorithm collects together regions with the same marker

set value within basins in the input image. The Sobel image s provide these basins
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Algorithm 1: Segmentation
Input: Background probability map b, Specified marker set p (optional,

same size as b)
Output: Labelled segmentation map sm
m← zero matrix same size as b
for mij in m do

if bij = 1 then
mij ← 1

end
else if bij = 0 or pij > 0 then

mij ← 2
end

end
s← Sobel(b)
sm← Watershed(s, m)
id← 1
for each contiguous set of pixels y > 0 in sm do

for pixel yij in y do
yij ← id

end
id← id+ 1

end
return sm

Where Sobel is the Sobel algorithm [242] and Watershed is the watershed algorithm [61].
Optional parameter p allows for pixel locations to be specified, such as the locations of known
sources, and used as generating points for the watersheding operation.

by identifying edges in the background, and the background mask m provides the

marker locations for generating the individual sheds. The output of the watershed

algorithm is then an image sm containing distinct regions generated from areas

of low background that are bounded by edges where the background is changing

quickly. The algorithm then visits each of the distinct regions in sm and assigns

them a unique id, creating the segmentation map sm before deblending.

2.4.2 Deblending

The algorithm described in Section 2.4.1 provides a collection of segmented

regions of contiguous areas, each with a unique index. Since this algorithm iden-
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tifies contiguous regions of low background, neighboring sources with overlapping

flux in the science images will be blended by the segmentation algorithm. The

deblending algorithm used in Morpheus is ad hoc and is primarily designed to

separate the segmented regions into distinct subregions containing a single pre-

defined object. The locations of these objects may be externally specified, such

as catalog entries from a source catalog (e.g., 3D-HST sources), or they may be

internally derived from the science images themselves (e.g., local flux maxima).

The deblending algorithm I use applies another round of the watershed opera-

tion on each of the distinct regions identified by the segmentation algorithm, using

the local flux distributions from the negative of a science image (e.g., F160W )

as the basins to fill and object locations as the marker set. I assign the resulting

subdivided segmentations a distinct subid in addition to their shared id, allowing

us to keep track of adjacent deblended regions that share the same parent seg-

mentation region. The subid of deblended sources is indicated by decimal values

and the parent id is indicated by the whole number of the id. For example, if a

source with id = 8 was actually two sources, after deblending the two deblended

sources would have id values 8.1 and 8.2.

In testing Morpheus, I find that the deblending algorithm may shred extended

sources like large disks or point source diffraction spikes. However, the Morpheus

algorithm successfully deblends some small or faint sources proximate to bright

sources that are missing from the 3D-HST catalog.

2.5 Object-Level Classification

While Morpheus uses a semantic segmentation model to enable pixel-level

classification of astronomical images using a deep learning framework, some ap-

plications, like the morphological classification of galaxies, additionally require
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Algorithm 2: Deblending
Input: Segmentation map sm, flux image h, minimum radius between

flux peaks r, maximum number of deblended subregions ndmax,
Specified marker set p (optional, same size as sm)

Output: Deblended segmentation map db
if p is not specified then

idc← 10dlog10 ndmaxe (de indicate ceiling operation)
sm← idc× sm

end
for each contiguous set of source pixels s > 0 in sm do

hlocal ← subset of h corresponding to s
if p is specified then

plocal ← subset of p corresponding to s
if plocal contains more than one id then

s← Watershed(−hlocal, plocal)
end
else

s← Max(plocal)
end

end
else

idx← PeakLocalMaxima(hlocal, r, c)
if Count(idx) > 1 then

subid← 1
m← a zero matrix same size as s
for indices i, j in idx do

mij ← subid
subid← subid+ 1

end
s← Watershed(−hlocal, m)

end
end

end
if p is not specified then

db← idc−1 × sm
end
else

db← sm
end
return db

Where Watershed is the watershed algorithm [61]. PeakLocalMaxima(x, y, z) returns a
list of tuples marking the pixel locations of at most z local maxima in x that lie at least 2y pixels
apart, as implemented by van der Walt et al. [266]. Count returns the number of elements in
a collection. Max returns the maximum element from a matrix. Optional parameter p allows
for pixel locations of known sources to used for generating points in the watershed algorithm.
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Figure 2.4: Segmentation and deblending process used by Morpheus, illustrating
Algorithms 1 and 2. The background image (Panel a) output from the Morpheus
neural network is used as input to a Sobel-filtered image (Panel b) and a discretized
map marking regions of high and low background (Panel c). These two images are
input to a watershed algorithm to identify and label distinct, connected regions of
low background that serve as the highest-level Morpheus segmentation map (Panel
e) This segmentation map represents the output of Algorithm 1. A flux image and
a list of object locations (Panel d) are combined with the high-level segmentation
map to deblend multicomponent objects using an additional watershed algorithm
by using the source locations in the flux image as generating points. The end
result is a deblended segmentation map (Panel f), corresponding to the output of
Algorithm 2.
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object-level classification. Morpheus aggregates pixel-level classifications into an

object-level classification by using a flux-weighted average.

Figure 2.5 shows the results of the Morpheus pixel-level classification for an

example area of the CANDELS region of GOODS South. The leftmost panel

shows a three-color V zH composite of the example area for reference, though

Morpheus operates directly on the science-quality V zJH FITS images. The cen-

tral panels show the output pixel classifications (i.e., q from Section 2.3.3) for

the background, spheroid, disk, irregular, and point source/compact classes, with

the intensity of each pixel indicating the normalized probability qijk∈[0, 1]. The

segmentation map resulting from the algorithms described in Section 2.4 is also

shown in as a central panel. The rightmost panel shows a color composite of the

Morpheus pixel-level classification, with the color of each pixel indicating its the

dominant class and the saturation of the pixel being proportional to the difference

∆q between the dominant and second most dominant class. White pixels then

indicate regions where the model did not strongly distinguish between two classes,

such as in transition regions in the image between two objects with different mor-

phological classes. The pixel intensities in the pixel-level classification image are

set to 1-background and are not flux-weighted. The dominant classification for

each object, as determined by Morpheus, is often clear visually. The brightest ob-

jects are well-classified and agree with the intuitive morphological classifications

an astronomer might assign based on the V zH color composite image. Faint ob-

jects in the image have less morphological information available and are typically

classified as point source/compact, in rough agreement with their classifications

in the K15 training set. However, these visual comparisons are qualitative, and I

now turn to quantifying the object-level classification from the pixel values.

Consider a deblended object y containing a total of no contiguous pixels of
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Figure 2.5: Morpheus morphological classification results for a region of the
GOODS South field. The far left panel shows a three-color composite V zH im-
age. The scale bar indicates 1.5”. The V , z, J , and H FITS images are supplied
to the Morpheus framework, which then returns images for the spheroid (red-
black panel), disk (blue-black panel), irregular (green-black panel), point source/-
compact (yellow-black panel), and background (white-black panel) classifications.
The pixel values of these images indicate the local dominant Morpheus classifica-
tion, normalized to sum to one across all five classifications. The panel labeled
“Segmentation Map” is also generated by Morpheus, using the 3D-HST survey
sources as generating locations for the segmentation Algorithm 1. The regions
in the segmentation map are color-coded by their flux-weighted dominant class
computed from the Morpheus classification values. The far right panel shows the
Morpheus “classification color” image, where the pixel hues indicate the dominant
morphological classification, and the intensity indicates 1−background. The satu-
ration of the Morpheus color image indicates the difference between the dominant
classification value and the second most dominant classification, such that white
regions indicate pixels where Morpheus returns a comparable result for multiple
classes. See Section 2.6.1 for more details.

39



arbitrary shape within a flux image, and a single index i=[1, no] scanning through

the pixels in y. Each class k∈[1, nc] in the distribution of classification probabilities

Q for the object is computed as

Qk =
∑no
i=1 yiqik∑no
i=1 yi

. (2.16)

Here, y represents the pixel region in a science image assigned to the object, and

yi is the flux in the ith pixel of the object. The quantity qik is the kth classification

probability of the ith pixel in y. Equation 2.16 represents object-level classifica-

tion computed as the flux-weighted average of the pixel-level classifications in the

object.

2.6 Morpheus Data Products

Before turning the quantifications of the object-level performance, I provide

a brief overview of the derived data products produced by Morpheus. A more

detailed description of the data products is presented in Appendix A.4, where

I describe a release of pixel-level morphologies for the 5 CANDELS fields and

3D-HST value-added catalog, including object-level morphologies. The Hubble

Legacy Fields [118] GOODS South v2.0 release and 3D-HST survey [185] are the

primary focus of the analysis of the Morpheus’ performance owing to their depth

and completeness.

As described in Section 2.5, Morpheus produces a set of nc “classification im-

ages” that correspond to the pixel-by-pixel model estimates qij for each class,

normalized across classes such that ∑
k qijk = 1. The value of each pixel is, there-

fore, bounded (qijk∈[0, 1]). The classification images are stored in FITS format,

and inherit the same (N ×M) pixel dimensions as the input FITS science im-
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ages provided to Morpheus. When presenting classification images used in this

chapter, I represent background images in negative grayscale, spheroid images in

black-red, disk images in black-blue, irregular images in black-green, and point

source/compact images in black-yellow color scales. Figure 2.5 shows spheroid,

disk, irregular, point source/compact, and background images (central panels) for

a region of CANDELS GOODS South.

Given the separate classification images, I can construct what I deem a “Morp-

heus morphological color image" that indicates the local dominant class for each

pixel. To produce a Red-Blue-Green false color image to represent the morpholog-

ical classes visually, I use the Hue-Saturation-Value (HSV) color space and convert

from HSV to RGB via standard conversions. In the HSV color space, the Hue

image indicates a hue on the color wheel, Saturation provides the richness of the

color (from white or black to a deep color), and Value sets the brightness of a pixel

(from dark to bright). On a color wheel of hues, H∈[0, 360] ranges from red (H=0)

to red (H=360) through yellow (H=120), green (H=180), and blue (H=240), I

can assign Hue pixel values corresponding to the dominant morphological class

(spheroid as red, disk as blue, irregular as green, and point source/compact as

yellow). I set the Saturation of the image to be the ∆qijk between the domi-

nant class and the second most dominant class, such that cleanly classified pixels

(qijkmax
ij
≈1, ∆qijk≈1) appear as deep red, blue, green, or yellow, and pixels where

Morpheus produces an indeterminate classification (∆qijk≈0) appear as white or

desaturated. The Value channel is set equal to 1−background, such that regions of

low background containing sources are bright, and regions with high background

are dark. Figure 2.5 also shows the Morpheus morphological color image (far right

panel) for a region of CANDELS GOODS South.
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2.6.1 Morphological Images for GOODS South

As part of our data products, I have produced Morpheus morphological images

of the Hubble Legacy Fields [HLF v2.0; 118] reduction of GOODS South. These

data products are used in Section 2.7 to quantify the performance of Morpheus

relative to standard astronomical analyses, and I, therefore, introduce them here.

The Morpheus morphological classification images for the HLF were computed as

described in Section 2.2.3, feeding Morpheus subregions of the HLF V zJH images

for processing and then tracking the distribution of output pixel classifications to

select the best classification for each. The ∼ 108 pixels in each classification image

are then stitched back together to produce contiguous background, spheroid, disk,

irregular, and point source/compact images for the entire HLF GOODS South.

Background Image

Figure 2.6 shows the background image for the Morpheus analysis of the HLF

reduction of GOODS South. The background classification for each pixel is shown

in negative gray scale, with black corresponding to background=1 and white re-

gions corresponding to background=0. The background image is used throughout

Section 2.7 to quantify the performance of Morpheus in object detection.

spheroid Image

Figure 2.7 shows the spheroid image for the Morpheus analysis of the HLF

reduction of GOODS South. The spheroid classification for each pixel is shown on

a black-to-red colormap, with black corresponding to spheroid=0 and red regions

corresponding to spheroid=1.
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Figure 2.6: Morpheus background classification image for the Hubble Legacy
Fields [118] reduction of the CANDELS survey data [95, 144] in GOODS South.
Shown are the normalized model estimates that each of the ∼ 108 pixels belongs to
the background class. The scale bar indicates 1.5 arcmin. The color bar indicates
the background∈[0, 1], increasing from white to black. Correspondingly, the bright
areas indicate regions of low background where sources were detected by Morp-
heus.
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Figure 2.7: Morpheus spheroid classification image for the Hubble Legacy Fie-
lds [118] reduction of the CANDELS survey data [95, 144] in GOODS South.
Shown are the normalized model estimates that each of the ∼ 108 pixels belongs
to the spheroid class. The scale bar indicates 1.5 arcmin. The color bar indicates
the spheroid∈[0, 1], increasing from black to red. Correspondingly, the bright red
areas indicate pixels where Morpheus identified spheroid objects.

44



Disk Image

Figure 2.8 shows the disk image for theMorpheus analysis of the HLF reduction

of GOODS South. The disk classification for each pixel is shown on a black-to-blue

colormap, with black corresponding to disk=0 and blue regions corresponding to

disk=1.

Irregular Image

Figure 2.9 shows the disk image for theMorpheus analysis of the HLF reduction

of GOODS South. The irregular classification for each pixel is shown on a black-

to-green colormap, with black corresponding to irregular=0 and green regions

corresponding to irregular=1.

Point source/compact Image

Figure 2.10 shows the point source/compact image for the Morpheus analysis

of the HLF reduction of GOODS South. The point source/compact classification

for each pixel is shown on a black-to-yellow colormap, with black corresponding

to point source/compact=0 and yellow regions corresponding to point source/-

compact=1.

Morphological Color Image

Figure 2.10 shows the morphological color image for the Morpheus analysis

of the HLF reduction of GOODS South. The false color image is constructed

following Section 2.6, with the pixel intensities scaling with 1−background, the

pixel hues set according to the dominant class, and the saturation indicating

the indeterminacy of the pixel classification. Pixels with a single dominant class

appear as bright red, blue, green, or yellow for spheroid, disk, irregular, or point
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Figure 2.8: Morpheus disk classification image for the Hubble Legacy Fields [118]
reduction of the CANDELS survey data [95, 144] in GOODS South. Shown are
the normalized model estimates that each of the ∼ 108 pixels belongs to the disk
class. The scale bar indicates 1.5 arcmin. The color bar indicates the disk∈[0, 1],
increasing from black to blue. Correspondingly, the bright blue areas indicate
pixels where Morpheus identified disk objects.
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Figure 2.9: Morpheus irregular classification image for the Hubble Legacy Fields
[118] reduction of the CANDELS survey data [95, 144] in GOODS South. Shown
are the normalized model estimates that each of the ∼ 108 pixels belongs to the
irregular class. The scale bar indicates 1.5 arcmin. The color bar indicates the
irregular∈[0, 1], increasing from black to green. Correspondingly, the bright green
areas indicate pixels where Morpheus identified irregular objects.
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Figure 2.10: Morpheus point source/compact classification image for the Hubble
Legacy Fields [118] reduction of the CANDELS survey data [95, 144] in GOODS
South. Shown are the normalized model estimates that each of the ∼ 108 pixels
belongs to the point source/compact class. The scale bar indicates 1.5 arcmin.
The color bar indicates the point source/compact∈[0, 1], increasing from black to
yellow. Correspondingly, the bright yellow areas indicate pixels where Morpheus
identified point source/compact objects.
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source/compact classifications, respectively. Bright white pixels indicate regions

of the image where the model results were indeterminate in selecting a dominant

class. Dark regions represent pixels the model classified as background. I note

that the pixel intensities are not scaled with the flux in the image, and the per-

object classifications require a local flux weighting following Equation 2.16 and the

process described in Section 2.5. This flux weighting usually results in a distinctive

class for each object, since the bright regions of objects often have a dominant

shared pixel classification. The outer regions of objects with low flux show more

substantial variation in the per-pixel classifications, but these regions often do not

contribute strongly to the flux-weighted per-object classifications computed from

this morphological color image.

2.7 Morpheus Performance

Given the data products generated by Morpheus, I can perform a variety of

tests to quantify the performance of the model. There are basic performance

metrics relevant to how the model is optimized, reflecting the relative agreement

between the output of the model and the training data classifications. How-

ever, given the semantic segmentation approach of Morpheus and the pixel-level

classification it provides, there are additional performance metrics that can be

constructed to mirror widely-used performance metrics in more standard astro-

nomical analyses including the completeness of sources detected by Morpheus as

regions of low background. In what follows, I attempt to address both kinds of

metrics and provide some ancillary quantifications to enable translations between

the performance of Morpheus as a deep learning framework and as an astronom-

ical analysis tool. In particular, I focus our analysis on the 3D-HST catalog and

HLF reduction of the GOODS South region in the CANDELS Survey.
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Figure 2.11: Morpheus morphological color image for the Hubble Legacy Fields
[118] reduction of the CANDELS survey data [95, 144] in GOODS South. The
image intensity is set proportional to 1−background for each pixel, such that
regions of high background are black and regions with low background containing
source pixels identified by Morpheus appear bright. The hue of each source pixel
indicates its dominant classification, with spheroid shown as red, disk as blue,
irregular as green, and point source/compact as yellow. The color saturation of
each pixel is set to the difference between the first and second most dominant
class values, such that regions with indeterminate morphologies as determined as
Morpheus appear as white and regions with strongly determined classifications
appear as deep colors.
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2.7.1 Object-Level Morphological Classifications

The semantic segmentation approach of Morpheus provides classifications for

each pixel in an astronomical image. These pixel-level classifications can then

be combined into object-level classifications p using the flux-weighted average

described by Equation 2.16. The Morpheus object-level classifications can then

be compared directly with a test set of visually-classified object morphologies

provided by Kartaltepe et al. [132].

To understand the performance of Morpheus relative to the K15 visual clas-

sifications, I present some summary statistics of the training and test sets pulled

from the K15 samples. During training, the loss function used by Morpheus is

computed relative to the distribution of input K15 classifications for each object

and not only their dominant classification. The goal is to retain a measure of the

uncertainty in visual classifications for cases where the morphology of an object

is not distinct.

Distribution of Training Sample Classifications

Galaxies in the K15 training set have been visually classified by multiple ex-

perts, providing a distribution of possible classifications for each object in the

sample. Figure 2.12 presents histograms of the fraction of K15 classifiers record-

ing votes for spheroid, disk, irregular, and point source/compact classes for each

object. Only classes with more than one vote are plotted.

Classification Agreement in Training Sample

To aid these comparisons, I introduce the agreement statistic

a(p) = 1− H(p)
log(nc)

(2.17)
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Figure 2.12: Distribution of morphological classifications in the Kartaltepe et al.
[132] sample, which serve as a training sample for Morpheus. Shown are his-
tograms of the fraction of sources with a non-zero probability of belonging to the
spheroid (upper left), disk (upper right), irregular (lower left), or point source/-
compact classes, as determined visual classification by expert astronomers. The
histograms have been normalized to show the distribution of classification proba-
bilities for each class, and consist of ≈7, 600 sources.
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where p is the distribution of classifications and nc is the number of classes. The

quantity

H(p) ≡ −
nc∑
k=1

pk log pk (2.18)

is the self entropy. According to these definitions,H(p)∈ [0, log nc] and a(p)∈[0, 1].

The agreement a(p)→ 1 when the distribution of classifications p is concentrated

in a single class, and a(p) → 0 when the classifications are equally distributed.

For reference, a(p) ≈ 0.57 for two equal classes and a(p) ≈ 0.8 for a 90% / 10%

split between two classes for nc = 5 possible classes.

Training and Test Set Statistics

The K15 classifications have substantial variation in their agreement a(p).

Figure 2.13 shows histograms and the cumulative distribution of a(p) for ob-

jects with spheroid, disk, irregular, and point source/compact dominant classes.

These distributions of a(p) are roughly bimodal, consisting of a single peak near

a(p)=1 and a broader peak near a(p)≈0.5 with a tail to larger a(p). As the

cumulative distributions indicate, roughly 20%-60% of objects in the K15 sample

had perfect agreement in their morphological classification, with disk and point

source/compact being the most distinctive classes.

The breadth in the agreement statistic for the input K15 data indicates sub-

stantial variation in how expert astronomers would visually classify individual

objects. As these data are used to train Morpheus, understanding exactly what

Morpheus should reproduce requires further analysis of the K15 data. An im-

portant characterization of the input K15 data is the confusion matrix of object

classifications. This matrix describes the typical classification distribution for ob-

jects of a given dominant class. Figure 2.14 presents the confusion matrix for

the K15 classifications, showing the typical spread in classifications for objects
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Figure 2.13: Histograms (purple) and cumulative distribution (blue lines) of
agreement a(p) for the Kartaltepe et al. [132, K15] visual morphological clas-
sifications, for objects with spheroid (upper left), disk (upper right), irregular
(lower left), and point source/compact (lower right) as their dominant classifica-
tion. Agreement a(p) (see Equation 2.17 for a definition) characterizes the breadth
of the distribution of morphological classes assigned by the K15 classifiers for each
object, with a(p)=1 indicating perfect agreement of a single class and a(p)=0
corresponding to perfect disagreement with equal probability among classes. The
distribution of agreement in the K15 training classifications is roughly bimodal,
with a strong peak near-perfect agreement and a broader peak near a(p)≈0.5,
close to the agreement value for an even split between two classes.
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Figure 2.14: Confusion matrix for the distribution of K15 morphological clas-
sifications. Shown is the distribution of morphologies assigned by K15 visual
classifiers for objects of a given dominant classification. Objects with a domi-
nant spheroid class show the most variation, with frequent additional disk and
point source/compact morphologies assigned. The most distinctive dominant class
is point source/compact, which also receives a spheroid classification in 14% of
objects. The off-diagonal components of the confusion matrix indicate imper-
fect agreement among the K15 classifiers, consistent with the distributions of the
agreement statistic shown in Figure 2.13.
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Spheroid Disk Irregular PS/Compact
Morpheus Dominant Classification
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Figure 2.15: Confusion matrix showing the spread in Morpheus dominant clas-
sifications for objects with a given K15 dominant classifications. The Morpheus
framework is trained to reproduce the input K15 distributions, and this confu-
sion matrix should, therefore, largely match Figure 2.14. The relative agreement
between the two confusion matrices demonstrates that the Morpheus output can
approximate the input K15 classification distributions.

assigned spheroid, disk, irregular, or point source/compact dominant morpholo-

gies. For reference, a confusion matrix for a distribution with perfect agreement

is the identity matrix. Figure 2.14 provides some insight into the natural de-

generacies present in visually-classified morphologies. Objects with a dominant

disk classification are partially classified as spheroid (10%) and irregular (11%).

The irregular objects frequently receive an alternative disk classification (19%).

The point source/compact objects also are assigned spheroid classifications (14%).

Objects with a dominant spheroid class have the highest variation and receive sub-

stantial disk (18%) and point source/compact (11%) classifications. This result

is consistent with Figure 2.13, which shows a relatively large disagreement for

objects with a dominant spheroid classification.

Since Morpheus is trained to reproduce the distribution of K15 classifications,
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Figure 2.16: Confusion matrix quantifying the spread in Morpheus dominant
classifications for K15 objects with a distinctive morphology. Shown are the out-
put Morpheus classification distributions for K15 objects where all visual classi-
fiers agreed on the input classification. TheMorpheus pixel-by-pixel classifications
computed for the HLF GOODS South images were aggregated into flux-weighted
object-by-object classifications following Equation 2.16 using the K15 segmenta-
tion maps. The results demonstrate that Morpheus can reproduce the results
of the dominant K15 visual classifications for objects with distinct morphologies,
even as the Morpheus classifications were computed from per-pixel classifications
using different FITS images of the same region of the sky.
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the confusion matrix between the dominant Morpheus classifications and the K15

classification distributions should be similar to Figure 2.14. Indeed, Figure 2.15

shows the distribution of K15 classifications for objects with a given dominant

Morpheus classification agrees well with the input K15 distributions shown in

Figure 2.14. This result demonstrates Morpheus reproduces well the intrinsic

uncertainty in the K15 classifications, as measured by the distribution of mor-

phologies, recovered for a given K15 dominant classification.

The ability of Morpheus to reproduce the distribution of K15 classifications

is not the only metric of interest, as it does not indicate whether the object-by-

object Morpheus classifications agree with the K15 classifications for objects with

distinctive morphologies. Figure 2.13 shows that 20-60% of objects in the K15

classifications have an agreement a(p)=1, meaning that all K15 visual classifiers

agreed on the object morphology. The confusion matrix for these distinctive ob-

jects constructed from the K15 data is diagonal, and the confusion matrix for these

objects constructed from theMorpheus output should also be diagonal ifMorpheus

perfectly reproduced the object-by-object K15 classifications. Further, to ensure

that Morpheus captures the distribution of the K15 morphologies, the cumulative

distribution of dominant K15 morphologies and dominant Morpheus morpholo-

gies as a function of color were compared using a two-sample Kolmogorov–Smirnov

test. For each morphology, the p-values (p = 0.3− 0.99) indicate consistency be-

tween the Morpheus and K15 distributions as a function of color. These results

suggest that Morpheus accurately captures the K15 representation of morphology

without significant color bias.

To characterize the performance of Morpheus for the a(p)=1 K15 subsample, I

used the Morpheus output classification images computed from the HLF GOODS

South images. The flux-weighted Morpheus morphological classifications were
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computed following Equation 2.16 and using the K15 segmentation maps to ensure

the same pixels were being evaluated. Figure 2.16 presents the resulting confusion

matrix showing the Morpheus dominant classification for each object’s dominant

classification determined by K15. As Figure 2.16 demonstrates,Morpheus achieves

extremely high agreement (≥ 90%) with K15 for spheroid and point source/-

compact objects, and good agreement (≥ 80%) for disk and irregular objects

with some mixing ∼15% between them. This performance is comparable to other

object-by-object morphological classifications in the literature [e.g., 113], but is

constructed directly from a flux-weighted average of pixel-by-pixel classifications

by Morpheus using real FITS image data of differing formats and depth.

Redshift Evolution of Morphology in CANDELS Galaxies

To illustrate the scientific applications of Morpheus, I examine the morpho-

logical distribution of ∼54,000 3D-HST sources in the five CANDELS fields as

a function of redshift and stellar mass (Figure 2.17). I combine together the

flux-weighted Morpheus classifications of galaxies identified in CANDELS with

the 3D-HST stellar masses and redshift, dividing the sample into coarse redshift

bins. The fraction of objects N/Ntot with a flux-weighted classification of spheroid

(red), disk (blue), or irregular (green) are shown as a function of stellar mass for

each redshift bin, along with Poisson uncertainties on the binned values. The

well-established trends of increasing fractions of irregular objects at small masses

and high redshifts are correctly reproduced by Morpheus, as well as the growth

of the disk population at low redshifts. These results can be compared with

the results reported in Figure 3 of Huertas-Company et al. [114, HC16]. To en-

sure comparable samples between HC16 and this chapter, the Morpheus-classified

samples in Figure 2.17 are limited to objects with H <24.5AB. Since HC16 and
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Figure 2.17: Morphology as a function of stellar mass and redshift for 54,000
sources in the five CANDELS fields. Sources included in the plot are those where
H < 24.5AB and theMorpheus confidence for spheroid, disk, or irregular is greater
than 0.7. See Section 2.7.1.

Morpheus use similar but not identical morphological classifications, I adapt the

sample definitions used by HC16 to the Morpheus classification scheme. To be

counted as a part of a morphological class, each galaxy’s flux-weighted confidence

value assigned by Morpheus must be greater than 0.7. This threshold ensures

each classification is mutually exclusive, but low enough to ensure a comparable

sample size to HC16.

The trends in Figure 2.17 agree with those found by HC16 in two important

aspects. First, at lower redshifts, disks tend to dominate spheroids, and as redshift

increases, spheroids tend to dominate disks. Second, irregular sources are a larger

portion of the population than spheroids and disks at lower stellar masses and

more become less abundant than spheroids and disks as stellar mass increases.

The agreement between Morpheus and the results of HC16, which were based on

object-level classifications, confirms the ability ofMorpheus to capture source-level

morphologies by aggregating pixel-level classifications.
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2.7.2 Simulated Detection Tests

The Morpheus framework enables the detection of astronomical objects by

producing a background classification image, with source locations correspond-

ing to regions where background<1. If generating points in the form of a source

catalog are not supplied, the segmentation algorithm of Morpheus uses an even

more restrictive condition that regions near sources must contain pixels with back-

ground=0. Given that the semantic segmentation algorithm of Morpheus was

trained on the K15 sample that has a completeness limit, whether the regions

identified by Morpheus to have background=0 correspond to an approximate flux

limit should be tested. Similarly, whether noise fluctuations lead to regions as-

signed background≈0 in error should also be evaluated.

Below, I summarize detection tests for Morpheus using simulated images. For

these tests, a simulated sky background was generated using Gaussian random

noise with RMS scatter measured in 0.5′′ apertures after convolving with a model

HST PSF and scaled to that measured from the K15 training images. The Tiny

Tim software [149] was used to produce the PSF models appropriate for each

band.

Simulated False Positive Test

Provided a large enough image of the sky, random sampling of the noise could

produce regions with local fluctuation some factor f above the RMS background

σ and lead to a false positive detection. A classical extraction technique using

aperture flux thresholds would typically identify such regions as a SNR = f

source. Here, I evaluate whether Morpheus behaves similarly.

Using the Gaussian random noise field, single-pixel fluctuations were added

to the H-band only such that the local flux measured in a 0.5′′ aperture after
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convolving with Tiny Tim corresponded to SNR=[0.5, 1, 2, 3, 4, 5, 6, 7, 10]. The

false signals were inserted at well-separated locations such that Morpheus evalu-

ated them independently. The V , z, and J images were left as blank noise, and

then all four images were supplied to Morpheus. I find that Morpheus assigns

none of these fake signals pixels with background=0. However, the SNR=7 and

SNR=10 regions have some background<1 pixels, and while in the default al-

gorithm, Morpheus would not assign these regions segmentation maps, a more

permissive version of the algorithm could. An alternative test was performed by

replacing the SNR = 10 noise fluctuation in the H-band image with a Tiny Tim

H-band PSF, added after the convolution step with an amplitude corresponding to

SNR = 10 measured in a 0.5′′ aperture. This test evaluates whether the shape of

flux distribution influences the detection of single-band noise fluctuations. In this

case, the minimum pixel values decreased to background≈0.05 for a single band

SNR=10 fluctuation shaped like an H-band PSF, but did not lead to a detection.

I conclude that Morpheus is robust to false positives arising from relatively large

(SNR . 7) noise fluctuations.

False Negative Test

Given that Morpheus seems insensitive to false positives from noise fluctua-

tions, it may also miss real but low SNR sources. By performing a similar test to

that presented in Section 2.7.2 but with sources inserted in all bands rather than

noise fluctuations inserted in a single band, the typical SNR where Morpheus

becomes incomplete for real objects can be estimated.

Noise images were generated to have the same RMS noise as the K15 images

by convolving Gaussian random variates with the Tiny Tim [149] model for the

HST PSF. An array of well-separated point sources modeled by the PSF were then
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inserted with a range of SNR∈[1, 25] into all four input band images. The Morp-

heus model was then applied to the images, and the output background image

analyzed to find regions with background below some threshold value. Figure 2.18

shows the number of pixels below various background threshold values assigned

to objects with different SNR. Below about SNR ∼ 15, the number of pixels

identified as low background begins to decline rapidly. I therefore expectMorpheus

to show incompleteness in real data for SNR . 15 sources. However, I emphasize

that this limitation likely depends on the training sample used. Indeed, the K15

training dataset is complete to H = 24.5AB in images with 5σ source sensitivities

of H ≈ 27AB. If trained on deeper samples, Morpheus may prove more complete

to fainter magnitudes. I revisit this issue in Section 2.7.4 below, but will explore

training Morpheus on deeper training sets in future work.

2.7.3 Morphological Classification vs. Surface Brightness

Profile

In this chapter, the Morpheus framework is trained on the K15 visual classi-

fications to provide pixel-level morphologies for galaxies. The K15 galaxies are

real astronomical objects with a range of surface brightness profiles for a given

dominant morphology. Correspondingly, the typical classification that Morpheus

would assign to idealized objects with a specified surface brightness profile is dif-

ficult to anticipate without computing it directly. Understanding how Morpheus

would classify idealized galaxy models can provide some intuition about how the

deep learning framework operates and what image features are related to output

Morpheus classifications.

Figure 2.19 shows the output Morpheus classification distribution for simu-

lated objects with circular Sersic [232] surface brightness profiles, for objects with
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Figure 2.18: False negative test for the Morpheus source detection scheme.
Simulated sources with different signal-to-noise ratios (SNRs) were inserted into
a noise image and then recovered by Morpheus, which assigns a low background
value to regions it identifies as containing source flux (see Section 2.7.2). Shown
are lines corresponding to the number of pixels assigned to sources of different
SNR, as a function of the background threshold. As trained on the K15 sample,
Morpheus becomes incomplete for objects with SNR . 15, and is more complete
if the threshold for identifying sources is made more permissive (i.e., at a higher
background value).
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SNR = 20, Sersic indices η∈[1, 9], and effective radii ranging from three to nine

pixels. Synthetic FITS images for each object in each band were constructed by

assuming zero color gradients and a flat fν spectrum, populating the image with

a Sersic profile object and noise consistent with the K15 images, and then con-

volving the images with a Tiny Tim point spread function model appropriate for

each input HST filter.

The results from Morpheus reflect common expectations for the typical Sersic

profile of morphological classes. Objects with η = 1 were typically classified as disk

or spheroid, while intermediate Sersic index objects (e.g., η≈2− 3) were classified

as spheroid. More compact objects, with Sersic indices η≥4, were dominantly

classified as point source/compact. Also, as expected for azimuthally-symmetric

surface brightness profiles, Morpheus did not significantly classify any objects

as irregular. Figure 2.20 provides a complementary summary of the Morpheus

classification of Sersic profile objects, showing a matrix indicating the dominant

classification assigned for each pair of [η,Re] values. TheMorpheus model classifies

large objects with low η as disk, large objects with high η as spheroid, and small

objects with high η as point source/compact.

Overall, this test indicates that for objects with circular Sersic profiles, Morp-

heus reproduces the expected morphological classifications and that asymmetries

in the surface brightness are needed for Morpheus to return an irregular morpho-

logical classification.

2.7.4 Source Detection and Completeness

The semantic segmentation capability of Morpheus allows for the detection of

astronomical objects directly from the pixel classifications. In its simplest form,

this object detection corresponds to regions of the output Morpheus classification
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Figure 2.19: Morphological classifications as a function of simulated source
surface brightness profile Sersic index. Shown are the Morpheus classification dis-
tributions for simulated SNR = 20 objects with circular Sersic [232] profiles, as a
function of the Sersic index η∈[1, 9]. The experiment was repeated on objects with
effective radii of three (upper left panel), five (upper right panel), seven (lower left
panel), and nine (lower right panel) pixels. Objects with η = 1 were dominantly
classified as disk or spheroid. Intermediate Sersic profiles (η ∼ 2− 3) were mostly
classified as spheroid. Objects with high Sersic index (η≥4) were classified as point
source/compact. These simulated objects with azimuthally symmetrical surface
brightness profiles were assigned almost no irregular classifications by Morpheus.
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Figure 2.20: Dominant morphological classification as a function of simulated
source surface brightness profile Sersic index η and effective radius Re in pixels.
Each element of the matrix is color-coded to indicate the dominant Morpheus
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the symmetrical objects in the test were classified as irregular (green).
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Figure 2.21: Two-dimensional histogram of Morpheus background values and
3D-HST source flux in GOODS South. Shown is the distribution of background
at the location of 3D-HST sources [239, 185] in GOODS South of various H-band
magnitudes, along with the marginal histograms for both quantities (side panels).
For reference, the K15 completeness (green line) and 3D-HST 90% completeness
(red line) flux limits are also shown. The 3D-HST sources most frequently have
background=0, and the majority of 3D-HST sources of any flux H < 29 have
background<0.5. The background values for objects where K15 and 3D-HST are
complete is frequently zero. The Morpheus background values increase for many
objects at flux levels H > 26AB.
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images with low background class values. However, the Morpheus object detection

capability raises several questions. The model was trained on the K15 sample,

which has a reported completeness of H = 24.5AB, and given the pixel-by-pixel

background classifications computed byMorpheus, it is unclear whether the object-

level detection of sources in images would match the K15 completeness. In regions

of low background, the transition to regions of high background likely depends on

the individual pixel fluxes, but this transition should be characterized.

In what follows below, I provide some quantification of the Morpheus per-

formance for identifying objects with different fluxes. To do this, I use results

from the 3D-HST catalog of sources for the GOODS South [239, 185]. Given

the output Morpheus background classification images computed from the HLF

GOODS South FITS images in F606W , F850LP , F125W , and F160W , I can

report the pixel-by-pixel background values and typical background values aggre-

gated for objects. These measurements can be compared directly with sources in

the Momcheva et al. [185] catalog to characterize how Morpheus detects objects

and the corresponding completeness relative to 3D-HST.

In a first test, I can locate the Momcheva et al. [185] catalog objects based on

their reported coordinates in theMorpheus background image, and then record the

background pixel values at those locations. Figure 2.21 shows the two-dimensional

histogram of Morpheus background value and 3D-HST source H-band AB mag-

nitude, along with the marginal distributions of both quantities. The figure also

indicates the reported K15 sample and 3D-HST 90% completeness flux levels. The

results demonstrate that for the majority of 3D-HST sources and for the vast ma-

jority of bright 3D-HST sources with H < 25, the local Morpheus background=0.

The low background values computed by Morpheus extend to extremely faint mag-

nitudes (e.g., H ≈ 29), indicating that for some faint sources, Morpheus reports
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Figure 2.22: Completeness of Morpheus in source detection relative to 3D-HST
[239, 185] in GOODS South. Shown is the fraction of 3D-HST sources in GOODS
South detected by Morpheus brighter than some H-band source magnitude, for
different background thresholds defining a detection (purple lines). The inset shows
the Morpheus completeness for the brightest objects where 3D-HST (red line and
arrow) and K15 (green line and arrow) are both highly complete. The complete-
ness of Morpheus relative to 3D-HST is >90% where 3D-HST is highly complete.
The completeness of Morpheus declines rapidly at faint magnitudes (H & 26.5),
but some objects are detected to H ∼ 29, about 100× fainter than objects in the
training set.

background=0 and that background is not a simple function of the local SNR

of an object. For many objects with fluxes below the 3D-HST completeness, the

Morpheus background value does increase with decreasing flux, and there is a rapid

transition between detected sources at H≈26.5 to undetected sources at H≤27.5.

Owing to this transition in background with decreasing flux, the completeness

of Morpheus relative to 3D-HST will depend on a threshold in background used to

define a detection. Figure 2.22 shows the completeness of Morpheus in recovering

3D-HST objects as a function of H-band source flux for different background levels

defining a Morpheus detection. The completeness flux limits for K15 and 3D-HST

are indicated for reference. For magnitudes H < 25AB, where 3D-HST and K15

are complete, Morpheus is highly complete and recovers more than 99% of all 3D-

HST sources. The Morpheus completeness declines rapidly at fluxes H > 26.5AB,
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Figure 2.23: Source detection completeness as a function of color for sources
with an H-band (F160W) AB magnitude of H <24.5. Sources that had a V band
flux less than the V band error, had their flux replaced with three times the error
value to limit unrealistically large V -H values. Morpheus does not show bias in
the detection of objects with respect to color. There is a dip in completeness at
V −H ∼ 0.2, where the completeness is ∼75%. However, this bin only has four
sources, indicating Morpheus only missed one source at this color.

where Morpheus is 90% relative to 3D-HST for background thresholds of P≤0.5.

Perhaps remarkably, for all background thresholds P≤0.01−0.5 Morpheus detects

some objects as faint as H≈29, about 100× fainter in flux than the training set

objects.

I further examined the detection of 3D-HST sources as a function of color (V -

H) to evaluate bias that may have been inherited as result of the training dataset.

In our tests, I found that Morpheus is not biased with respect to color for those

sources which are brighter than the K15 magnitude limit (Figure 2.23). When

considering all sources within the 3D-HST catalog, Morpheus detects sources well,

with a slight bias for bluer sources, but performs less well for very red ((V −H) ≥

9) and ((V − H) < 0) sources. However, it should be noted that there are very

few such sources in the training set, and with a more extensive training sample,

Morpheus could be more complete.
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2.7.5 Morphological Classification vs. Source Magnitude

The tests of Morpheus on simulated Sersic objects of different effective radii

and the completeness study suggest that the ability of Morpheus to provide in-

formative morphological information about astronomical sources will depend on

the size and signal-to-noise of the object. While these are intuitive limitations on

any morphological classification method, the distribution of morphological classi-

fications with source flux determined by Morpheus should be quantified.

Figure 2.24 shows the fraction of 3D-HST objects detected and classified by

Morpheus as spheroid, disk, irregular, and point source/compact as a function of

their H-band magnitude. Most of the brightest objects in the image are nearby

stars, classified as point source/compact. At intermediate magnitudes, Morpheus

classifies the objects as primarily a mix of disk (∼50%) and spheroid (∼30%), with

contributions from irregular (∼10− 30%) and point source/compact (∼5− 15%).

For fainter objects, below the completeness limit of the K15 training sample,

Morpheus increasingly classifies objects as irregular and point source/compact.

This behavior is in part physical, in that many low mass galaxies are irregular

and distant galaxies are physically compact. In part, it reflects a natural bias in

how the morphologies are defined during training. In K15, the class point/source

compact can describe bright stars and compact unresolved sources (see Section

3.1 of K15). However, the trend also reflects how Morpheus becomes less effective

at distinguishing morphologies in small, faint objects and returns either point

source/compact and irregular for low SNR and compact sources. While training

Morpheus on fainter objects with well-defined morphologies could enhance the

ability of Morpheus to distinguish the features of faint sources, the results of this

test make sense in the context of the completeness limit of the K15 training sample

used.
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Figure 2.24: Morphological classification as a function of object flux in GOODS
South. Shown are the fraction of 3D-HST objects (see left axis) with Morpheus
dominant, flux-weighted classifications of spheroid (red line), disk (blue line),
irregular (green line), and point source/compact (yellow line), each as a function
of their H-band (F160W ) AB magnitude. The brightest objects in the image
are stars that are classified as point source/compact. The faintest objects in the
image are compact faint galaxies classified as point source/compact or irregular.
At intermediate fluxes, the objects are primarily classified as disk and spheroid.
Also shown as a gray histogram (see right axis) is the number of 3D-HST objects
detected and classified by Morpheus with source magnitude.
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2.7.6 False Positives in GOODS South

The segmentation and deblending of real astronomical datasets are challeng-

ing tasks. An important test of the efficacy of the Morpheus segmentation and

deblending algorithms is to examine false positives generated when Morpheus is

applied to a real image. To quantify the propensity for Morpheus to generate

false positives, the segmentation and deblending algorithms were run on the HLF

GOODS South image without the specified marker set parameter p (See Algo-

rithms 1 and 2). For the purposes of this test, a false positive is then defined as a

set of pixels classified by the Morpheus segmentation and deblending algorithms

as a source but that does not contain a source from the 3DHST and CANDELS

[96] catalogs. Additionally, since the edges of the GOODS South classified image

are a frayed mix of pixels, to minimize the effects of data artifacts sources less

than 20 pixels from the edge of the classified area were excluded from the analy-

sis. Further, I conservatively use the “default” Morpheus algorithms that identify

sources with background = 0, i.e., when Morpheus indicates a source detection

with high confidence. With these choices, the sample used for the false positive

analysis was a total of 19,481 sources.

Among the objects classified by the segmentation and deblending algorithms,

123 sources were not present in the CANDELS or 3D-HST catalogs. Upon visual

inspection of these sources, each can be categorized as an image artifact, a poor

deblend, a missed source, or an actual false positive. I list the number of sources

in each category in Table 2.4.

Sources in the image artifiact category are false positives caused by image

artifacts. The poor deblend category represents false positives caused by theMorp-

heus deblending algorithm, where single sources in the CANDELS or 3D-HST

catalogs were shredded into multiple Morpheus sources. The missed sources are

74



False Positives in GOODS South
Category Count % of False Positives % of All Sources

Image Artifact 27 21.95% 0.139%
Poor Deblend 31 25.20% 0.159%
Missed Source 47 38.21% 0.241%

Actual False Positive 18 14.64% 0.092%
Total 123 100% 0.631%

Table 2.4: Summary of sources identified by Morpheus in GOODS-S that were
absent in the CANDELS or 3D-HST catalogs. Of the 19, 481 sources identified by
Morpheus in a subregion of GOODS-S, 123 sources did not have CANDELS or
3D-HST counterparts. Upon visual inspection, these objects could be categorized
as either image artifacts, poor deblends where Morpheus had shredded sources,
missed sources corresponding to real objects missed by CANDELS and 3D-HST, or
actual false positives incorrectly identified as Morpheus as real sources. The false
positive rate for the Morpheus algorithm is only roughly 0.09%, defined relative
to the CANDELS and 3D-HST catalogs. See Section 2.7.6 for more discussion.

Morpheus sources that upon visual inspection correspond to real objects missed by

the 3D-HST or CANDELS catalogs. Sources in the actual false positive category

are false positives not associated with any image artifact or real source after visual

inspection.

As Table 2.4 shows, Morpheus can identify real sources that other methods

used to generate catalogs can miss, although the algorithms used by Morpheus

can very rarely cause actual false positives (at roughly the 0.1% rate). Given the

delicate nature of deblending, this analysis suggests that the Morpheus deblend-

ing algorithm could be integrated with other methods to generate more robust

segmentation maps.
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2.8 Value Added Catalog for 3D-HST Sources

with Morpheus Morphologies

The Morpheus framework provides a system for performing the pixel-level

analysis of astronomical images and has been engineered to allow for the processing

of large-format scientific FITS data. As described in Section 2.6.1, Morpheus

was applied to the Hubble Legacy Fields [HLF; 118] reduction of HST imaging

in GOODS South2 and a suite of morphological classification images produced.

Using the Morpheus background in GOODS South, the detection efficiency of

Morpheus relative to the Momcheva et al. [185] 3D-HST catalog was computed

(see Section 2.7.4) and a high level of completeness demonstrated for objects

comparably bright to the Kartaltepe et al. [132] galaxy sample used to train

the model. By segmenting and deblending the HLF images, Morpheus can then

compute flux-weighted morphologies for all the 3D-HST sources.

Table 2.5 provides theMorpheus morphological classifications for 50, 506 sources

from the 3D-HST catalog of Momcheva et al. [185]. This value-added catalog lists

the 3D-HST ID, the source right ascension and declination, the F160W -band AB

magnitude (or −1 for negative flux objects), and properties for the sources com-

puted by Morpheus. The value-added properties include a flag denoting whether

and how Morpheus detected the object, the area in pixels assigned to each source,

and the spheroid, disk, irregular, point source/compact, and background flux-

weighted classifications determined by Morpheus. The size of the segmentation

regions assigned to each 3D-HST object following Algorithms 1 and 2 is reported

for all objects. If the segmentation region assigned to an object was smaller than a

circle with a 0.36” radius, or the object was undetected, instead, use a 0.36” radius
2Some bright pixels in the released HLF images are censored with zeros. For the purpose of
computing the segmentation maps only, I replaced these censored pixels with nearby flux values.
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aperture (about 109 pixels) to measure flux-weighted quantities. Only objects with

joint coverage in the HLF V , z, J , and H FITS images are classified and receive

an assigned pixel area. The full results for the Morpheus morphological classifica-

tions of 3D-HST objects are released as a machine-readable table accompanying

this chapter. Appendix A.4 describes the Morpheus Data Release associated with

this chapter, including FITS images of the classification images, the value-added

catalog, and segmentation maps generated by Morpheus for the 3D-HST sources

used to compute flux-weighted morphologies. Additionally, I release an interactive

online map at https://morpheus-project.github.io/morpheus/, which provides an

interface to examine the data and overlay the 3D-HST catalog on the Morpheus

classification images, morphological color images, and segmentation maps.

2.9 Discussion

The analysis of astronomical imagery necessarily involves pixel-level informa-

tion to be used to characterize sources. The semantic segmentation approach of

Morpheus delivers pixel-level separation between sources and the background sky,

and provides an automated classification of the source pixels. In this chapter, I

trained Morpheus with the visual morphological classifications from Kartaltepe

et al. [132]. I then characterized the performance of Morpheus in reproducing the

object-level classifications of K15 after aggregating the pixel information through

flux-weighted averages of pixels in Morpheus-derived segmentation maps, and in

detecting objects via completeness measured relative to the 3D-HST catalog [185].

The potential applications of Morpheus extend well beyond object-level morpho-

logical classification. Below, I discuss some applications of the pixel-level in-

formation to understanding the complexities of galaxy morphology and future

applications of the semantic segmentation approach of Morpheus in areas besides
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Table 2.5: Morpheus + 3D-HST Value Added Catalog for GOODS South

ID RA Dec H160 Detection Area sph dsk irr psc bkg min(bkg)
[deg] [deg] [AB mag] Flag [pixels]

1 53.093012 -27.954546 19.54 1 4408 0.092 0.797 0.106 0.003 0.003 0.000
2 53.089613 -27.959742 25.49 0 – – – – – – –
3 53.102913 -27.959642 25.37 1 121 0.013 0.033 0.894 0.025 0.034 0.000
4 53.101709 -27.958481 21.41 1 725 0.001 0.874 0.120 0.004 0.001 0.000
5 53.102277 -27.958683 24.62 1 144 0.098 0.003 0.020 0.746 0.133 0.000
6 53.090577 -27.958515 25.07 2 109 0.000 0.831 0.034 0.000 0.134 0.001
7 53.099964 -27.958278 23.73 1 266 0.000 0.712 0.284 0.000 0.003 0.000
8 53.096144 -27.957583 21.41 1 1322 0.001 0.752 0.238 0.003 0.006 0.000
9 53.091572 -27.958367 25.90 2 109 0.000 0.044 0.083 0.081 0.792 0.431
10 53.091852 -27.958181 25.88 2 109 0.000 0.000 0.038 0.186 0.776 0.570

Column 1 provides the 3D-HST source ID. Columns 2 and 3 list the right ascension and
declination in degrees. Column 4 shows the F160W AB magnitude of the 3D-HST source,
with −1 indicating a negative flux reported by 3D-HST. Column 5 lists the detection flag, with
0 indicating the object was not within the region of GOODS South classified by Morpheus, 1
indicating a detection with background=0 at the source location, 2 indicating a possible
detection with 0<background<1 at the source location, and 3 indicating a non-detection with
background=1 at the source location. Column 6 reports the area in pixels for the object
determined by the Morpheus segmentation algorithm. For non-detections and objects with
very small segmentation regions, I instead use a 0.36” radius circle (about 109 pixels) for their
segmentation region. Columns 7-11 list the flux-weighted Morpheus morphological
classifications of the objects within their assigned area. These columns are normalized such
that the classifications sum to one for objects where the detection flag ! = 2, and sph indicates
spheroid, dsk indicates disk, irr indicates irregular, psc indicates point source/compact and bkg
indicates background. Column 12 reports the minimum background value within the
segmentation region. Table 2.5 is published in its entirety in the machine-readable format
along with comparable tables for the other CANDELS fields. A portion is shown here for
guidance regarding its form and content.
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morphological classification. I also comment on some features ofMorpheus specific

to its application on astronomical images.

2.9.1 Pixel-Level Morphology

The complex morphologies of astronomical objects have been described by both

visual classification schemes and quantitative morphological measures for many

years. Both Hubble [112] and Vaucouleurs [271] sought to subdivide broad mor-

phological classifications into more descriptive categories. Quantitative morpho-

logical decompositions of galaxies [e.g., 205] also characterize the relative strength

of bulge and disk components in galaxies, and quantitative morphological classi-

fications often measure the degree of object asymmetry [e.g., 2, 57, 163].

The object-level classifications computed by Morpheus provide a mixture of

the pixel-level morphologies from the Morpheus classification images. The clas-

sification distributions reported in the Morpheus value-added catalog in GOODS

South provide many examples of flux-weighted measures of morphological type.

However, more information is available in the pixel-level classifications than flux-

weighted summaries provide.

Figure 2.25 shows an example object for which the Morpheus pixel-level clas-

sifications provide direct information about its complex morphology. The figure

shows a disk galaxy with a prominent central bulge. The pixel-level classifications

capture both the central bulge and the extended disk, with the pixels in each

structural component receiving dominant bulge or disk classifications from Morp-

heus. Note that Morpheus was not trained to perform this automated bulge–disk

decomposition, as in the training process, all pixels in a given object are assigned

the same distribution of classifications as determined by the K15 visual classi-

fiers. As the use of pixel-level morphological classifications becomes wide-spread,
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VzH Morpheus Color Morpheus Color 

Figure 2.25: Example automated morphological decomposition by Morpheus.
The left panel shows the V zH multi-color image of a galaxy in GOODS South
from the Hubble Legacy Fields. The disk galaxy, 3D-HST ID 46386, has a promi-
nent central bulge. The right panel shows the Morpheus classification color image,
with pixels displaying spheroid, disk, irregular, or point source/compact domi-
nant morphologies shown in red, blue, green, and yellow, respectively. The figure
demonstrates that Morpheus correctly classifies the spheroid and disk structural
components of the galaxy correctly, even though the training process for Morp-
heus does not involve spatially-varying morphologies for galaxy interiors. I note
that there is a large-scale image artifact in F850LP that appears as green in the
left image, but does not strongly affect the Morpheus pixel-level classifications.

the development of standard datasets that include labels at the pixel-level will

be needed to evaluate the efficacy of classifiers. Simulations of galaxy formation

may be useful for generating such training datasets [e.g., 116]. I leave a more

thorough analysis of automated morphological decompositions with Morpheus to

future work.

2.9.2 Morphological Deblending

The ability of Morpheus to provide pixel-level morphological classifications has

applications beyond the bulk categorization of objects. One potential additional

application is the morphological deblending of overlapping objects, where the

pixel-level classifications are used to augment the deblending process. Figure 2.26
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Figure 2.26: Example of morphological deblending by Morpheus. The leftmost
panel shows the V zH image of a star-galaxy blend in GOODS South from the
Hubble Legacy Fields. The star, 3D-HST ID 601, overlaps with a spheroidal
galaxy 3D-HST ID 543. The center panel shows the Morpheus classification color
image, with pixels displaying spheroid, disk, irregular, or point source/compact
dominant morphologies shown in red, blue, green, and yellow, respectively. The
pixel regions dominated by the star or spheroid are correctly classified by Morp-
heus. The right panel shows the resulting Morpheus segmentation map, illustrat-
ing that the dominant object classification in each segmentation region is also
correct. The pixel-level classifications could be used to refine the segmentation
to more precisely include only pixels that contained a single dominant class. The
green feature in the left panel is an image artifact in F850LP .
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shows an example of two blended objects, 3D-HST IDs 543 and 601, where the

Morpheus pixel-level classifications could be used to perform or augment star-

galaxy separation. As the figure makes clear, when Morpheus correctly assigns

dominant classifications to pixels, there exists an interface region between regions

with distinctive morphologies (in this case, spheroid and point source/compact)

that could serve as an interface between segmented regions in the image. The

deblending algorithm used in this chapter could include other forms of machine

learning [e.g., 176, 107] information in the deblending process. If Morpheus was

trained on information other than morphology, such as photometric redshift, those

pixel-level classifications could be used in the deblending process as well. I plan

to explore this idea in future applications of Morpheus.

2.9.3 Classifications Beyond Morphology

The semantic segmentation approach of Morpheus allows for complex features

of astronomical objects to be learned from the data, as long as those features can

be spatially localized by other means. In this chapter, I used the segmentation

maps of K15 to separate source pixels from the sky, and then assigned pixels within

the segmentation maps the morphological classification determined by K15 on an

object-by-object basis. In principle, this approach can be extended to identify

regions of pixels that contain a wide variety of features. For instance, Morp-

heus could be trained to identify image artifacts, spurious cosmic rays, or other

instrumental or data effects that lead to distinctive pixel-level features in images.

Of course, real features in images could also be identified, such as the pixels

containing arcs in gravitational lenses, or perhaps low-surface brightness features

in interacting systems and stellar halos. These pixel-level applications ofMorpheus

complement machine learning-based methods already deployed, such as those that
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discover and model gravitational lenses [6, 108, 190, 191]. Pixel-level photometric

redshift estimates could also be adopted by Morpheus and compared with existing

methods based on SED fitting or other forms of machine learning [e.g., 176, 107].

2.9.4 Deep Learning and Astronomical Imagery

An important difference in the approach of Morpheus, where a purpose-built

framework was constructed from TensorFlow primitives, compared with the adap-

tation and retraining of existing frameworks like Inception [e.g., 249] is the use

of astronomical FITS images as training, test, and input data rather than pre-

processed PNG or JPG files. The incorporation of deep learning into astronomical

pipelines will benefit from the consistency of the data format. The output data of

Morpheus are also FITS classification images, allowing pixel-by-pixel information

to be easily referenced between the astronomical science images and the Morp-

heus model images. As indicated in Section 2.2.2, the Morpheus framework is

extensible and allows for any number of astronomical filter images to be used, as

opposed to a fixed red-blue-green set of layers in PNG or JPG files. The Morpheus

framework has been engineered to allow for the classification of arbitrarily-sized

astronomical images. The same approach also providesMorpheus a measure of the

dispersion of the classifications of individual pixels, allowing the user to choose

a metric for the “best” pixel-by-pixel classification. The combination of these

features allows for immense flexibility in adapting the Morpheus framework to

problems in astronomical image classification.
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2.10 Summary and Conclusions

In this chapter, I presented Morpheus, a deep learning framework for the pixel-

level analysis of astronomical images. The architecture of Morpheus consists of

our original implementation of a U-Net [224] convolutional neural network. Morp-

heus applies the semantic segmentation technique adopted from computer vision to

enable pixel-by-pixel classifications, and by separately identifying background and

source pixels Morpheus combines object detection and classification into a single

analysis. Morpheus represents a new approach to astronomical data analysis,

with wide applicability in enabling per-pixel classification of images where suitable

training datasets exist. Important results from this chapter include:

• Morpheus provides pixel-level classifications of astronomical FITS images.

By using user-supplied segmentation maps during training, the model learns

to distinguish background pixels from pixels containing source flux. The

pixels associated with astronomical objects are then classified according to

the classification scheme of the training dataset. The entireMorpheus source

code has been publicly released, and a Python package installer for Morp-

heus provided. Further, I have a citable “frozen” version of code available

through Zenodo [104].

• As a salient application, I trained Morpheus to provide pixel-level classi-

fications of galaxy morphology by using the Kartaltepe et al. [132] visual

morphological classifications of galaxies in the CANDELS dataset [95, 144]

as our training sample.

• Applying Morpheus to the Hubble Legacy Fields [118] v2.0 reduction of the

CANDELS data in GOODS South and the v1.0 data [95, 144] for COSMOS,

EGS, GOODS North and UDS, I generated morphological classifications for
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every pixel in the HLF mosaics. The resulting Morpheus morphological

classification images have been publicly released.

• The pixel-level morphological classifications in GOODS South were then

used to compute and publicly release a “value-added” catalog of morpholo-

gies for all objects in the public 3D-HST source catalog [239, 185].

• The CANDELS HLF and 3D-HST data were used to quantify the perfor-

mance of Morpheus, both for morphological classification and its complete-

ness in object detection. As trained, the Morpheus code shows high com-

pleteness at magnitudes H . 26.5AB. I demonstrate that Morpheus can

detect objects in astronomical images at flux levels up to 100× fainter than

the completeness limit of its training sample (H ∼ 29AB).

• Tutorials for using the Morpheus deep learning framework have been created

and publicly released as Jupyter notebooks.

• An interactive visualization of the Morpheus model results for GOODS

South, including the Morpheus segmentation maps and pixel-level morpho-

logical classifications of 3D-HST sources, has been publicly released.

I expect that semantic segmentation will be increasingly used in astronomi-

cal applications of deep learning, and Morpheus serves as an example framework

that leverages this technique to identify and classify objects in astronomical im-

ages. I caution that Morpheus may be most effective at wavelengths similar to

the data on which the model was trained (i.e., the F606W , F850LP , F125W ,

and F160W bands). However, Domínguez Sánchez et al. [74] have shown recent

success in applying transfer learning on astronomical datasets with morphological

labels. With the advent of large imaging datasets such those provided by Dark

Energy Survey [64] and Hyper Suprime-Cam [7, 8], and next-generation surveys
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to be conducted by Large Synoptic Survey Telescope [123, 222], Euclid [151, 217],

and the Wide Field Infrared Survey Telescope [9], pixel-level analysis of massive

imaging datasets with deep learning will find many applications. While the details

of the Morpheus neural network architecture will likely change and possibly im-

prove, I expect the approach of using semantic segmentation to provide pixel-level

analyses of astronomical images with deep learning models will be broadly useful.

The public release of the Morpheus code, tutorials, and example data products

should provide a basis for future applications of deep learning for astronomical

datasets.
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Chapter 3

Partial-Attribution Instance

Segmentation for Astronomical

Source Detection and Deblending

3.1 Introduction

Astronomical images can contain tens of thousands of stars and galaxies (sources).

Forthcoming telescopes including the Vera Rubin Observatory [122, 123], James

Webb Space Telescope [288], and Nancy Grace Roman Space Telescope [244, 245]

will push the current limits of observational astronomy and dramatically increase

the number of sources to analyze. To measure accurate properties for these

sources, we must detect sources by identifying statistically significant local max-

ima in an image and deblend sources by isolating the potentially overlapping flux

distributions of each object. Consider a background-subtracted astronomical im-

age I ∈ Rh×w×b in which n sources are observed, where h is the height, w is the

width, and b indicates the number of astronomical passbands. The image I can
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be decomposed into a sum of individual object contributions as

I =
N∑
i=1

Si + ε (3.1)

where Si ∈ Rh×w×b represents the flux contributed to I by source i, and ε ∈

N (0, σ) is the approximate noise distribution in the image. The process of de-

composing an image into the form of Equation 3.1 represents the core challenge

of source deblending. In this chapter, I present a deep learning-based method to

perform detection and deblending on astronomical images.

3.1.1 Related Work

Source detection and deblending are well-studied problems in astronomy, and

many approaches have been developed. Below, I highlight some popular and recent

methods for source detection and deblending and point the interested reader to

the review by Masias et al. [174].

Detection and deblending methods can be characterized by their detection

capacity and deblend type. The detection capacity represents the number of sources

a method can detect within a single image. For Equation 3.1, a detection capacity

of N would indicate that a method could detect all sources appearing in an image.

The deblend type indicates how the flux in a single pixel may be split between

overlapping (blended) sources. A disjoint deblender assigns all flux in a pixel

to a single source exclusively. An intersecting/discrete deblender can assign the

flux to more than one source with uniform weighting across pixels. Finally, an

intersecting/continuous deblender can assign the flux to more than one source

with variable weighting across pixels.

Astronomical analysis methods vary in their detection and deblending meth-

ods. Bertin and Arnouts [22] introduced SExtractor that uses a convolution and
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Table 3.1: Detection and deblending method categorization

Name Detection Deblend
Capacity Type

SExtractor[22] N Disjoint
Morpheus[104] N Disjoint
Mask R-CNN[40] N Intersecting/Discrete
blend2mask2flux[34] 2 Intersecting/Discrete
Modified SRGAN[214] 0 Intersecting/Continuous
SCARLET[179] 0 Intersecting/Continuous
This Chapter N Intersecting/Continuous

thresholding approach for detection, and an isophotal analysis using binned pixel

intensity for deblending. Hausen and Robertson [104] introduced Morpheus, a

U-Net [224] style convolutional neural network (CNN) model that filters out back-

ground pixels, uses a thresholding approach for detection, and combines water-

shed and peak finding algorithms for deblending. Another U-Net based model

called blend2mask [34] performs detection and deblending using the U-Net alone.

Reiman and Göhre [214] use a modified Super-Resolution GAN (SRGAN) [153]

to deblend overlapping sources. Burke et al. [40] trained a Mask R-CNN [105]

model to detect and deblend sources. SCARLET [179] deblends sources using

constrained matrix factorization.

Table 3.1 summarizes the features of these previous methods, none of which

have a detection capacity of N and an intersecting/continuous deblend type. I

now present a deep learning-based intersecting/continuous deblending algorithm

with a detection capacity of N .

3.2 Partial-Attribution Instance Segmentation

Partial-Attribution Instance Segmentation (PAIS) is a new extension of the

instance segmentation paradigm that allows for weighted, overlapping segmenta-
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tion maps. PAIS differs from other segmentation schemes like cell segmentation

[299], interacting surface segmentation [291], and amodal instance segmentation

[159]. PAIS aims to isolate objects appearing in an image while preserving their

measurable quantities within areas of overlap. For PAIS, we can approximate

Equation 3.1 as

Ĩ =
N∑
i=1

Mi � I (3.2)

where Ĩ ∈ Rh×w×b estimates the background-subtracted flux image I in Equation

3.1, Mi ∈ [0, 1]h×w×bst.∑N
i Mi,jkl = 1 constitutes the pixel-level fractional contri-

bution of source i to I, and � symbolizes the Hadamard or element-wise product.

Equation 3.2 is tractable for deep learning models, allowing the model to learn

the bounded quantities Mi rather than the unbounded source images Si. The N

number of sources setting the upper limit of the sum in Equation 3.2 can differ

for each image.

To construct a PAIS format that can be represented by a CNN, I have to

construct an encoding for the Mi in Equation 3.2. Inspired by Cheng et al. [49]

and Kendall et al. [138], I propose an encoding for the Mi components called

Partial Claim Representation (PCR). The goal of PCR is to encode, for any

single pixel (j, k, l), the fractional contribution to its intensity from the closest n

sources. Using PCR, a variable number N of sources can be encoded per image.

PCR consists of three tensors: the Center-of-mass Cc ∈ {0, 1}h×w, Contribution-

vectors Cv ∈ Rh×w×n×2 and Contribution-maps Cm ∈ [0, 1]h×w×b×n. The center-

of-mass encodes the locations of all the sources in an image. For any pixel, I set

Cc
jk = 1 if that location indicates the center of a source and Cc

jk = 0 otherwise.

The contribution-vector Cv
jk encodes the Cartesian offset to the closest n sources.

The contribution-map Cm
jkl connects the fractional contribution of the n sources
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with the associated contribution-vectors Cv
jk. The fixed dimensionality of Cc, Cv,

and Cm make PCR tractable for deep learning algorithms.

3.3 Our Approach

Our approach consists of making a PAIS dataset leveraging PCR and is im-

plemented using a novel neural network architecture. I summarize our dataset,

model, and training method below.

3.3.1 Dataset

To generate the PAIS input samples, I used the Hubble Legacy Fields (HLF)

GOODS-South F160W (1.6µm) flux images [118], along with the 3D-HST source

catalog [185]. The HLF images were split into training and test sets of 256 ×

256 pixel subregions, with 2,000 training samples and 500 test samples. The

input labels, as described in Section 3.2, consist of the center-of-mass images Cc,

the contribution-vectors Cv, and the contribution-maps Cm. The center-of-mass

training images are generated in a manner similar to Cheng et al. [49], by placing

pixelated 2D Gaussians with standard deviation σ = 8(pixels) at the locations

of sources in the 3D-HST catalog. The contribution-vectors, an extension to

the method by Cheng et al. [49], are generated from the Cartesian offset to the

nearest n = 3 sources to each pixel. The value n=3 is used because it is the

smallest value and produces the most compact representation that can generally

reproduce the true image values. The contribution-maps require the Mi values

from Equation 3.2. To determine Mi, I use SCARLET [179] with the F125W,

F160W, F606W, and F850LP flux and weight images from the HLF GOODS-

South data and the TinyTim point-spread functions [148] to deblend the sources
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Table 3.2: Partial Claim Representation encoding efficacy

Test Value
Total Source Flux [e/s] (MAE) 1.97± 15.43
Two-Sample KS Test p-value 0.93± 0.22

from the 3D-HST catalog. I then use PCR to encode the Mi from SCARLET.

The complete dataset generation routine can be found in our project repository

(https://github.com/ryanhausen/morpheus-deblend/).

To evaluate the efficacy of PCR to encode Mi, I define two metrics. I use

the mean difference between the total flux determined by the SCARLET encoded

Mi for each input source and that recovered by our encoding. I also use a two-

sample Kolmogorov–Smirnov (KS) test to compare the normalized cumulative

surface brightness profile within the radius encompassing 90% of the total flux of

each source to evaluate the encoding of the spatial flux distribution. Table 3.2

reports the results and demonstrates that PCR encoding approximately preserves

both the total flux and the spatial flux distribution for each source. With this

verification, I can train a network to recover the PCR encoding for each input

HST F160W image.

3.3.2 Model

To recover the PCR for training images, I developed a novel neural network

architecture inspired by Cheng et al. [49], based on the Fast Attention Network

[111] and implemented in TensorFlow [1]. The model features two decoders that

share a single encoder. The first decoder, called the spatial decoder, predicts

values for Cc and Cv. The second decoder, called the attribution decoder, predicts

values for Cm. The complete model code can be found in the repository for

this project (https://github.com/ryanhausen/morpheus-deblend/). An end-
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Figure 3.1: End-to-end example using our method to detect and deblend sources.
Starting from the left: A flux image is input to the Model (see Section 3.3.2). The
Model outputs the deblended image in the Partial Claim Representation (PCR;
see Section 3.2).The output from the model is then decoded using the non-learned
PCR Decoder algorithm into separate deblended source images. The deblended
source images have their total flux within r90 annotated. The deblended source
images are then added together to generate the reconstructed image which has an
L1 total flux difference of 1.52× 10−5 with the original input image.

to-end example of the model can be seen in Figure 3.1.

3.3.3 Training

To train the model to recover the PCR of the input images, I use the Adam

Optimizer [140] with a learning rate of 5×10−5, β1 = 0.9, β2 = 0.9999, ε = 1×10−7,

and a batch size of 100. The model was trained for 1000 epochs using an NVIDIA

V100 32GB GPU, taking 31 hours. The loss function for the model is composed of

three functions. The spatial decoder outputs for Cc and Cv are penalized according

to mean squared error (MSE) and the mean absolute error (MAE), respectively.

The attribution decoder output Cm is penalized using cross-entropy loss with an

additional entropy regularization term. In practice, I found that the additional

entropy regularization helped incentivize the network to learn information about

multiple sources in Cm. Each loss term is weighted and combined into a single

loss function described by
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Table 3.3: Training metric results

Metric Training Test
MAE 27.0183± 1.0658 28.5090± 0.3386
MSE 0.0114± 0.0001 0.0124± 0.0006
cross-entropy 0.9485± 0.0069 1.0806± 0.0098

Ltotal = λCcLCc + λCvLCv + λCmLCm + λSLS, (3.3)

where LCc is the MSE loss calculated between the model output and input label

with λCc = 15, LCv is the MAE loss calculated between the model output and

input label with λCv = 0.06, LCm is a cross-entropy loss calculated between the

model output and input label with λCm = 4, and LS is the entropy regularization

on the model Cm output with λS = 2. See Table 3.3 for a summary of the training

results, demonstrating a good balance between test and training error. A complete

log of training experiments is available at (https://www.comet.ml/ryanhausen/

morpheus-deblend/).

3.4 Discussion and Future Work

In this chapter, I introduced the Partial Attribution Instance Segmentation

(PAIS) scheme for astronomical source debelending. I presented Partial Claim

Representation (PCR) as a method for implementing PAIS within deep learning-

based models. I demonstrated the efficacy of PCR for encoding the results of

existing astronomical deblenders, and developed a novel neural network architec-

ture to recover the PCR from input flux images. While I demonstrated deblending

for single band (F160W) images, PCR can be extended to multi-band images. As

with many supervised methods, our model requires labeled training data. To ap-
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ply this method on other survey datasets may require the use of transfer learning

[74, 212] or retraining.
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Chapter 4

FitsMap: A Simple, Lightweight

Tool For Displaying Interactive

Astronomical Image and Catalog

Data

4.1 Introduction

Astronomical image data is inherently visual, and visual inspection and in-

terpretation remain vital tools in the scientific process within astronomy. Up-

coming telescopes like the James Webb Space Telescope [JWST; for a review, see

Robertson [221]], Nancy Grace Roman Space Telescope [245, 9], and Vera Rubin

Observatory [122, 123] will produce larger and deeper images of space than ever

before. Specialized tools for visualizing and interacting with large-scale astronom-

ical images will enable a more rapid transition from observation to analysis for

these facilities.
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Visualizing large astronomical images is not a new problem, and several tools

have been developed to meet this need. There are desktop tools like DS9 [127],

AstroVis [207], Fips [146], FITS3D/2D [183], and Aladin [32], which are thick

clients that render local images or fetch images from a remote server. The term

thick client refers to programs with little to no reliance on a remote server to

perform the computational tasks associated with the software. Advances in web

technologies have also enabled the development of thin clients for astronomical

image data visualization. Thin clients are dependent on a separate server to per-

form their computational tasks. An advantage to using thin clients is that by

offloading heavier computational tasks to a remote server, the client hardware re-

quirements are far less powerful than the server requirements and can even include

mobile devices. Some examples of thin clients developed for astronomical image,

and catalog visualization include VisiOmatic [23, 24], Aladin Lite [29], RCSED

[52, 141], the GAIA archive visualization service [184], Toyz [187], WorldWide

Telescope [225], ASTRODEEP [69, 279], ESASky [90], Virtual Desktops [178], and

Hassan et al. [100]. More recently, the popularity of the Python [270] program-

ming language has inspired a series of new thick and thin clients that leverage

Python and the Jupyter Lab/Notebook [iPython; 142] ecosystem. Some exam-

ples include Vizic [296], LSSGalPy [13], Astro Data Lab [128], Jovial [12], and

Jdaviz [201].

This chapter introduces a new tool called FitsMap[103]. FitsMap is designed

to work for a simple use case where the user has images including FITS [282], PNG

[120], or JPEG [119] and catalogs associated with the image data, and would like

to view and possibly share that data interactively. A user can generate a website

that displays image and catalog information using a single FitsMap function or

command-line interface call. FitsMap improves on previous methods with two
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innovations:

1. Catalog data are preclustered and tiled, similar to how image data are

treated.

2. All image and catalog pre-processing is handled internally by FitsMap, in-

cluding the website directory structure and supporting files.

Preclustering and tiling the catalog data offer the same performance advan-

tages as tiling the image data, as only the portion of the catalog data currently

in view needs to be loaded. Tiling the catalog also removes the need for an addi-

tional process or database to serve the marker and cluster data and can scale to

arbitrarily sized catalogs (see Section 4.2). The ability of FitsMap to process the

image and catalog files and generate the website directory structure is novel. Some

visualization tools such as VisiOmatic, Aladin Lite, and WorldWide Telescope

expect the image data to be pre-tiled and direct users to separate, affiliated soft-

ware to perform image tiling. Some existing visualization methods also typically

require catalog data to be pre-processed by another tool. For example, Alaldin

lite requires that users convert their catalog data using HiPS-cat before it can

be visualized.

Popular non-Jupyter web-based tools, including VisiOmatic, Aladin Lite,

and WorldWide Telescope, require familiarity with JavaScript and HTML to

write the webpage that requests the data to display. In contrast, FitsMap does

not require the user to write any HTML/JavaScript or, if the user employs the

command-line interface, perform any programming at all. FitsMap has already

been deployed to visualize large simulated JWST [288] and Roman [75] datasets

and machine-learning galaxy morphological analyses of large Hubble Space Tele-

scope surveys [104].
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The remainder of this chapter is structured as follows. Section 4.2 describes

the details of the design and methods of FitsMap. Section 4.3 describes the

performance of FitsMap, and Section 4.4 reviews the contributions and future

directions of FitsMap.

4.2 Methods

The design philosophy behind FitsMap is to render visualizing image and cat-

alog data simple by minimizing the number of steps and technical knowledge

required to go from image and catalog files to an interactive display. The only

requirements to generate and view the output from FitsMap are FitsMap itself

and a web server. If viewing the output locally, FitsMap can also run the web

server. If FitsMap is used to view image data alone, a web server is not required,

as the user can simply open the output index.html file using a browser, and the

processed images will render.

Catalog data present a unique challenge in the effort to minimize server re-

quirements. Small catalogs with low storage requirements can be transferred from

the server to be clustered and rendered on the client, but large catalogs practi-

cally cannot. Large catalogs, those with high storage requirements, may either

take too long to transfer to the client from a user experience perspective or exceed

the memory capabilities of the client. Managing the catalog data on the server-

side requires a more sophisticated web server that clusters and serves catalog data.

Leveraging the continuing decline in the cost of storage [177], FitsMap separates

the catalog data into a set of tiles at different zoom levels. FitsMap then pre-

computes clusters of the catalog data at every zoom level for every tile (Section

4.2.1). Precomputing the clustering and tiling the data significantly reduces the

computational requirements of both the server and client by never requiring the
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entire catalog to be loaded into memory.

The FitsMap architecture consists of two main components: the Map Gener-

ator and the Map Viewer. The Map Generator, implemented in Python, builds

the website, including the Map Viewer files. The Map Viewer, implemented in

Javascript, renders the webpage and fetches the image and catalog data.

4.2.1 Map Generator

The Map Generator parses a list of the input image and catalog file locations

and converts them into a format that the Map Viewer can render. The out-

put of the Map Generator is a directory that contains the processed input image

and catalog data and the HyperText Markup Language (HTML), Cascading Style

Sheets (CSS), JavaScript, and images. The Map Generator can process multiple

files in parallel and further parallelize each file’s processing. For example, image

and catalog tiles can be generated in parallel. See Figure 4.1 for a graphical rep-

resentation of the Map Generator. The Map Generator performs two significant

tasks when generating an interactive web website: parsing image files and pars-

ing catalog files. FitsMap dynamically generates the Map Viewer files using the

image and catalog data information. FitsMap sites can be updated when image

or catalog data has been changed by deleting the directory in the output website

associated with the image or catalog and rerunning FitsMap. FitsMap will then

only generate the missing catalog or image data.

Parsing Image Data

The first step in parsing the image data is to convert the image data into a

numpy [99] array. The Map Generator converts FITS files using astropy [14, 15]
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and converts traditional image files (PNG, JPG, etc.) using pillow 1. The Map

Generator builds tiled representations, in parallel if desired, of the array data at

each zoom level in a structured set of directories compatible with the Map Viewer.

The tiled representations of each processed image can be viewed as separate layers

in the Map Viewer.

Parsing Catalog Data

The Map Generator can parse plain text files that are delimited (CSV, TSV,

etc.) and where the first line contains the column names. Catalog source lo-

cations can be stored in either [x, y] (image pixel coordinates) or [α, δ] (right

ascension and declination). If the coordinates are given in [α, δ], then a FITS file

containing a reference World Coordinate System (WCS) to translate the sky coor-

dinates to image coordinates must be provided. After reading the catalog data,

the Map Generator clusters the data at every zoom level using a python port2

of the supercluster3 JavaScript library. Then the Map Generator builds a tiled

representation of the catalog source and cluster locations at every zoom level. The

tiled catalog source locations are encoded and stored using the MapBox Vector

Tile Format4, a compact binary representation of structured data representing ge-

ometric objects in map tiles. Other source attributes (effective radius, magnitude,

etc.) are stored in a separate Concise Binary Object Representation [CBOR; 33]

file for each source in a dedicated directory for each catalog.
1https://python-pillow.org/
2https://github.com/ryanhausen/supercluster-py
3https://github.com/mapbox/supercluster
4https://github.com/mapbox/vector-tile-spec
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4.2.2 Map Viewer

The Map Viewer consists of the HTML, CSS, JavaScript, and image files that

render the image and catalog data. The Map Viewer is built using Leaflet5,

an open-source and flexible framework for displaying large amounts of visual in-

formation. A custom Leaflet layer L.GridLayer.TiledMarkers, packaged with

FitsMap, enables Leaflet to render catalog markers and clusters generated by the

Map Generator. The Map Viewer fetches and renders markers (sources and clus-

ters) using the data stored in each of the encoded tile files; see Figures 4.2 and

4.4 for an illustration and an example of image and catalog tiling.

The Map Viewer supports displaying both circular and elliptical markers. The

Map Viewer will render the catalog marker as an ellipse if the catalog data contains

columns for semi-major axis a, semi-minor b, and position angle theta. Otherwise,

the marker will be rendered as a circle. Fitsmap requires a and b to be in pixel

units and theta in radians.

When a source marker is selected, the Map Viewer fetches additional infor-

mation about the source from its corresponding CBOR file (see Section 4.2.1 and

Figure 4.1) and renders it in a pop-up above the marker (see Figure 4.3). The

marker pop-ups support HTML to enable the inclusion of images and other valid

HTML.

The Map Viewer includes a search function that searches catalog entries by

the id column. The search functionality is implemented using a custom search

backend to the popular Leaflet Control Search plugin6 packaged with FitsMap.

To search by id, the Map Viewer sends a GET request for a CBOR file named

{id}.cbor in each catalog’s extra CBOR source file directory in catalog_assets

(see Figure 4.2). If the request returns 404 (file not found), the id does not exist.
5https://leafletjs.com/
6https://opengeo.tech/maps/leaflet-search
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If the request returns 200 (OK), the desired object exists, and the Map Viewer

will extract location information stored in the file and pan to and highlight the

source.

FitsMap does not support changing marker colors or catalog popup appearance

from the Python or CLI interfaces. However, the Map Viewer, being a website, is

highly customizable to users familiar with HTML, CSS, or JavaScript.

4.3 Performance

As described in Section 4.2, to reduce the computational requirements of both

the server and the client, FitsMap tiles the marker data such that the client only

renders the markers that are currently in view and unclustered at the current

zoom level. In this section, the performance of FitsMap is evaluated in two ways.

First, the Map Generator is evaluated with respect to computational and storage

requirements. Second, the performance of the Map Viewer is evaluated with

respect to speed and memory on both desktop and mobile environments.

4.3.1 Map Generator Performance

The Map Generator performance is empirically evaluated with respect to the

time needed to tile various sized FITS images and the time and storage require-

ments for parsing and tiling catalog data. Synthetic image and catalog data were

used to perform the evaluations. The images consisted of n × n arrays of Nor-

mally distributed values (µ = 1, σ2 = 1) with 32-bit floating-point precision, where

n ∈ {210, 211, 212, 213, 214, 215, 216}. The synthetic catalog consisted of m rows of

data, where m ∈ {1×103, 5×103, 1×104, 5×104, 1×105, 5×105, 1×106}, with 43

columns of data. Here the first column is a unique integer column (id), the next
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two columns are randomly sampled floating-point values between [0, 1) represent-

ing the x and y coordinates, the following twenty columns are randomly generated

integer values between [0, 100), and the final twenty columns are randomly gener-

ated floating-point values between [0, 1000). When parsing the catalog, the [x, y]

coordinates are rescaled by the pixel size of the corresponding image to fill the

entire scene. The performance tests are evaluated using an Intel Xeon E5-2698

system with 232 GB of RAM and six workers for parallel processing.

The time required for FitsMap to process the synthetic image and catalog data

is reported in Figure 4.5. The results indicate that image parsing and tiling times

scale linearly with the total number of tiles generated. Note that the numbers

of tiles generated scale geometrically with image size. Catalog parsing and tiling

times also scale linearly with the total number of sources. Note that the image

size is kept fixed for the catalog parsing and tiling to prevent the number of tiles

generated from influencing the run time. The storage cost for catalog data is

composed of the cost to store the catalog source data in the CBOR format and

the cost to store the catalog source location information as clustered tiles (See

Section 4.2.1). The storage cost for encoding the data into the CBOR format

as a function of the catalog size is shown in Figure 4.6, which indicates that

the total data volume of the CBOR-encoded version of the catalog converges

to approximately 115% of the original catalog size. Figure 4.7 shows the tiled

catalog data storage requirements as a function of catalog size and image size.

The storage cost for the tiled catalog location information is generally less than

the input catalog size.
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4.3.2 Map Viewer Performance

TheMap Viewer is written entirely in JavaScript and only requires a web server

to render the output from the Map Generator. The Map Viewer performance was

measured for a FitsMap generated using the catalog and image data described

in Section 4.3.1. Specifically, the 65, 5362-pixel image (17.2 GB) is paired with

the 1, 000, 000 sample catalog (467.4 MB). The FitsMap was hosted on a server

at the University of California, Santa Cruz at the time of testing and can be

accessed publicly 7. Two types of tests were run against the example FitsMap

described above: page loading speeds and session memory usage. Both sets of tests

were executed using BrowserStack8, a service that performs speed and automated

browser interaction tests free of charge to open source projects.

The speed of the FitsMap Map Viewer was evaluated using seven different

mobile devices and three different desktop web browsers. Table 4.1 contains the

details of the testing environments. Each test is run three times, with the mean

and standard deviation for each benchmark reported in Figures 4.8 and 4.9. The

speed tests are comprised of opening the URL for the FitsMap to be tested in each

testing environment and recording the following performance metrics: Page Load,

First Contentful Paint (FCP), and Document Object Model Processing (DOM

Processing).

Page Load indicates the amount of time it takes for the page to load fully.

Figures 4.8 and 4.9 indicate that FitsMap is performant with respect to speed,

with page load times of around 2 seconds. FCP tests the time elapsed from the

initial page request to perceived page rendering and corresponds to when the

user witnesses the first part of the site being rendered on the screen. Walton

[278] indicates that websites should aim for an FCP of less than 1.8 seconds. Our
7https://purl.org/fitsmap/performance-testing
8https://browserstack.com
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testing finds that FitsMap, excluding a single run on Desktop Google Chrome, has

FCP times well below 1.8 seconds, as seen in Figures 4.8 and 4.9. DOM Processing

indicates the amount of time to parse the retrieved HTML document and build

the DOM. DOM Processing times can indicate website performance issues in at

least two ways. First, if DOM Processing times are long, a website may have

too many thread-blocking resources preventing the page from loading. Second, if

there is a large disparity between the DOM Processing and Page Load times, it

can indicate poor optimization in static assets, like JavaScript, that delay page

rendering. Figures 4.8 and 4.9 show that Page Load and DOM Processing times

are nearly identical, indicating that the page is ready to be rendered as soon as

the DOM is built.

Another benchmark used to evaluate theMap Viewer performance was Session

Memory Consumption. Session memory consumption consists of opening the test

FitsMap page and performing navigation and interaction tasks while monitoring

memory usage and includes the following tasks in order:

1. Open web browser

2. Navigate to the test page

3. Add the catalog markers to the map

4. Zoom in (7x) to display unclustered catalog markers

5. Select a marker that displays a catalog popup

6. Close the catalog popup

7. Zoom out (7x)
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Device Browser
Google Pixel 3 Google Chrome
Samsung Note 10 Google Chrome
Samsung Galaxy S10 Google Chrome
Samsung Galaxy A10 Google Chrome
Apple iPhone XS Safari
Apple iPhone 12 Safari
Apple iPad Air 4 Safari
Desktop OSX Microsoft Edge
Desktop OSX Google Chrome
Desktop OSX Mozilla Firefox

Table 4.1: Map Viewer testing environments. Test environments were provided
by and executed using BrowserStack. All mobile environments have a network
speed throttled to model 4G speeds (9Mbps), and all desktop environments were
throttled to have a network speed throttled to model broadband speeds (40Mbps).

The tests were scripted using the Selenium9 browser automation framework

and executed using the BrowserStack testing framework. Memory consumption

was monitored using Google Chrome’s proprietary JavaScript Application Pro-

gramming Interface (API), and so the results are limited to testing environments

using Chrome. Each test was executed three times, and the mean and standard

deviation of the tests are reported in Figure 4.10. The results in Figure 4.10 show

that memory usage remains low for both mobile and desktop environments.

4.4 Conclusion and Future Work

This chapter introduced FitsMap, a simple, lightweight tool for generating in-

teractive web-based visualizations of astronomical images and catalogs. FitsMap

uses a novel approach to serve catalog data that precomputes cluster infor-

mation for the entire image at all zoom levels and displays the cluster and

source information based on visible image tiles. Advantages of precomputing
9https://www.selenium.dev
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and tiling the catalog data include 1) the visualization only requires a simple

web server and 2) the produced website loads quickly and proves responsive for

large catalogs, even on mobile devices. The techniques developed in this work

have already been used on public-facing websites. Both Hausen and Robertson

[104] and Drakos et al. [75] leverage FitsMap to generate interactive visualiza-

tions displaying their data products (See https://purl.org/fitsmap/morpheus

and https://purl.org/fitsmap/dream, respectively). Potential drawbacks to

FitsMap include the increased storage requirements above the input image and

catalog data sizes that owe to the tiling method and CBOR encoding. The

FitsMap clustering and tiling require pre-processing of the catalog data, but the

pre-processing only needs to be performed once per website. The development of

FitsMap is active and ongoing. Future work includes allowing for more complex

shapes in catalog data such as polygons, allowing users to change FITS image

scaling on the fly in the Map Viewer, minimizing storage usage, and supporting

other catalog formats.
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Figure 4.1: An overview of the Map Generator in the FitsMap architecture.
The Map Generator, described in Section 4.2.1, processes the input image and
catalog files and converts them into a format that can be rendered by the Map
Viewer (Section 4.2.2). The Map Generator can process multiple files in parallel
and further leverage parallelism when processing each file. The Map Generator
builds a directory containing the tiled image and catalog data along with the Map
Viewer data and code (gray). The output website can be viewed using a simple
web server.
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Figure 4.2: An illustration of tiling image and catalog data at three zoom levels
(0, 1, 2). (left) Illustration of tiling image data only. (right) Illustration of tiling
image and catalog data. For simplicity, not all sources in the image are labeled
with a marker. FitsMap computes the cluster assignments at every zoom level and
stores them as markers in their respective tile. When the Map Viewer requests
the catalog data associated with a particular tile, it will retrieve source markers
and/or cluster markers and renders them appropriately. Source image credit:
NASA.
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(a)

(b)

(c)

Figure 4.3: An example of the FitsMap interface. (a) The search function button
searches catalogs by id (see Section 4.2.2). (b) A marker pop-up displaying catalog
data associated with the indicated source. (c) The Leaflet layer control allows
users to switch between display images and catalog overlays. Image Credit: [75].
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Figure 4.4: Viewing the catalog clustering levels as a function of zoom level.
Starting from the upper-left panel and following the arrows until the upper right
panel are progressively increasing zoomed-in views of the data released by Hausen
and Robertson [104]. Two catalogs are displayed simultaneously, indicated in blue
and orange. The final bottom right panel shows the same image as the upper right
panel, but with the popup for one of the catalogs.
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Figure 4.5: FitsMap performance parsing and tiling image and catalog data.
(a) The time, measured in seconds, to tile and generate a FitsMap consisting of
a single image. The image size is indicated along the x-axis, where the image
size is √npixels ×

√
npixels. The primary y-axis (blue) indicates the total amount

of time to tile the image and generate the output website directory. Every image
is generated five times with the mean plotted as a blue dashed line, and a single
standard deviation shaded as light blue around the mean line. The secondary
y-axis (purple) indicates the tot number of tiles generated in the output tiled
image directory. (b) The time, measured in seconds, to parse a tile catalog file.
Each catalog was scaled to fit an image size of 65, 536 × 65, 536, resulting in
approximately 87, 381 tiles. Each catalog was parsed and tiled fives times with
the mean plotted as the blue dotted line, and a single standard deviation shaded
around the mean in light blue.
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Figure 4.7: The ratio of the total storage requirements of the tiled catalog data
to the original catalog size. The x-axis indicates the image size, and the y-axis
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Figure 4.8: FitsMap page speed metrics for mobile browsers. Page Load in-
dicates the amount of time required for the page to load fully after sending the
request to the server. FCP (First Contentful Paint) indicates the amount of time
from page loading to seeing something rendered on the page. DOM Processing
indicates the amount of time after the browser starts processing the page until
the content is loaded. Each test was performed three times with the mean and a
standard deviation plotted.
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Figure 4.9: FitsMap page speed metrics for desktop browsers. Page Load indi-
cates the amount of time it takes for the page to load fully. FCP (First Contentful
Paint) indicates the amount of time from page loading to seeing something ren-
dered on the page. DOM Processing indicates the amount of time after the browser
starts processing the page until the content is loaded. Each test was performed
three times with the mean and a standard deviation plotted.

Figure 4.10: Map Viewer Session Memory Consumption during a typical inter-
action on a test FitsMap. The website was generated according to the procedure
described in Section 4.3.2. The steps taken during the test are indicated in or-
der along the x-axis. The memory consumption is indicated on the y-axis in
megabytes. The tests were run using the Selenium browser automation tool and
run on the BrowserStack test framework. Each test was run three times with the
mean and the standard deviation reported above. Memory consumption reporting
is reported for Chrome browsers which support reporting memory consumption
via JavaScript.
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Chapter 5

Revealing the Galaxy-Halo

Connection Through Machine

Learning

5.1 Introduction

Numerical simulation enables theoretical models of galaxy formation to in-

clude detailed physical models for baryonic processes. Simulations can capture

the physics of cooling, supernova feedback, radiative feedback and ionization, and

the role of dynamics simultaneously while tracking the growth of cosmological

structure formation [e.g., 229, 209, 65]. The simulated galaxy populations that

result from these models reproduce observed stellar mass sequences such as the

main sequence of star-forming galaxies [37, 195] or the red sequence of quiescent

galaxies [81]. The quest for realism in modeling these observed trends has also

added substantial complexity, such that understanding which physical properties

of a galaxy most influence its stellar mass and star formation rate can prove chal-
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lenging. Many theoretical frameworks to describe these relations have been devel-

oped [e.g., 280], including halo occupation distribution models [e.g., 126], subhalo

abundance matching [264, 55], and semi-analytic models [for a review, see 243].

The complex physics encoded by these models and simulations can be difficult

to interpret, and the relative contribution of baryonic feedback, dark matter halo

formation, and environment in setting galaxy properties remains challenging to

disentangle.

This complexity extends to cosmological models of galaxy formation in the

reionization epoch. To capture the distribution of sizes of ionized regions with

converged simulations [117] and the largest observed features, such as dark gaps

[302], the volume of reionization simulations should extend to a least several hun-

dred megaparsecs. Modeling such large volumes in a single simulation while main-

taining the spatial resolution needed to include the complex physics of the current

state-of-the-art projects, such as Cosmic Reionization on Computers [CROC 92],

THESAN [131], or Cosmic Dawn [CoDa, 198, 199], remains computationally in-

feasible. Instead, we desire an intermediate approach where large volumes are

simulated and the physics of galaxy formation are implemented with a approxi-

mate model that recovers the mean trends for galaxy baryonic properties predicted

by more detailed calculations. With this goal in mind, a model for reionization

sources that encapsulates the results of projects like CROC in a simple module

is the first necessary step for deploying lower resolution simulations with much

larger (L ∼ 500cMpc) simulation volumes. If the stellar mass and star formation

rates of ionizing sources can be predicted from their dark matter halo properties

and environment, then we can account for the ionizing photons produced by these

sources in large-box simulations of the reionization process without resolving the

baryonic physics in detail.
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This chapter employs a machine learning method called Explainable Boosting

Machines [EBMs 166] to infer how stellar mass M? and star formation rate SFR

depend on the physical parameters θ of a host galaxy. In this chapter, we use the

galaxy populations from the CROC simulations to provide our training and test

data that populate samples in the multidimensional parameter space of M?-SFR-

θ. For the additional parameters θ, we use a wide range of physical characteristics

measured for galaxies in CROC including the virial massMvir, redshift z, environ-

mental properties averaged on a length scale R, and the maximum peak circular

velocity vpeak. We can then use this approximate machine learning-based EBM

model for galaxy formation as a basis for future development to incorporate the

CROC galaxy population as sources in lower resolution, large-volume reionization

simulations.

EBMs represent a form of Generalized Additive Models [101, GAMs] where the

dependencies of a target quantity, such as M? or SFR, on each physical parameter

θi are encapsulated by feature functions of one parameter (e.g., f i(θi)) or interac-

tion functions of two parameters (e.g., f ij(θi, θj)). An EBM model is trained to

fit these functions from a provided multidimensional dataset. The predicted value

of the target quantity given the parameters (e.g., γ(M?|θ)) is then a sum of the

functions f i and f ij. EBM models are often described as interpretable because the

magnitudes of the functions f i and f ij directly indicate the relative importance

of θ in determining the target quantity. If a given parameter θi is unimportant

for determining the target quantity, the EBM will find f i→0. A formal defintion

of the EBM is provided in Section 5.2.1.

Previous works have applied machine learning models to infer connections be-

tween simulated galaxy properties. Lovell et al. [167] use a tree-based learning

method called Extremely Randomized Trees to map baryon information to dark
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matter halos in the EAGLE simulations. Xu et al. [292] train a Random Forest

to predict the number of central and satellite galaxies in dark matter halos in the

Millennium simulation. Machado Poletti Valle et al. [170] used an XGBoost model

to predict gas shapes in dark matter halos in the IllustrisTNG simulations. Bluck

et al. [28] used Random Forest classifiers to study quenching mechanisms in obser-

vations, semianalytical models, and cosmological simulations. Piotrowska et al.

[210] also used Random Forest classifiers to examine how supermassive black hole

feedback quenches central galaxies in the EAGLE, Illustris, and IllustrisTNG sim-

ulations. Our approach complements these prior works by studying the detailed

connection between halo and environmental properties, star formation rate, and

stellar mass in a model that can be directly implemented in future large-volume

cosmological simulations with limited spatial resolution.

The chapter is organized as follows. In Section 5.2 we review the EBMmethod-

ology, define our training dataset and procedure, and introduce the evaluation

metrics used to assess the performance of the model. In Section 5.3 we present

the average contribution of each parameter to the target quantities, the best-fit

feature and interaction functions, and the performance of the model in determin-

ing the distributions of stellar mass and star formation rate as a function of halo

virial mass. We then explore in Section 5.4 methods for constructing composite

EBM models to recover the stellar mass (Section 5.6) and star formation rate

(Section 5.5) of simulated galaxies that only use instantaneous halo virial proper-

ties and environmental measures (i.e., excluding vpeak). We discuss our results in

Section 5.7, and summarize them and conclude in Section 5.8.
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5.2 Methods

To infer the connection between M?, SFR, and other physical properties of

simulated galaxies, we apply EBMmodels to the CROC simulated galaxy catalogs.

In Section 5.2.1, we define the EBM model. We select our model parameters and

describe the simulated galaxy catalog used to train the model in Section 5.2.2.

The training procedure is outlined in Section 5.2.3.

5.2.1 Explainable Boosting Machines

Explainable Boosting Machine [166, EBM] models provide a fitted represen-

tation of the relationship between the target quantities y and the parameters θ.

EBMs are an extension of Generalized Additive Models [101, GAMs], which rep-

resent target quantities y as the sum of learned univariate functions f i(θi) that

depend on only one parameter θi. EBMs extend GAMs by including both univari-

ate functions f i(θi) and bivariate functions f ij(θi, θj) that represent dependencies

on pairs of features (θi, θj) beyond the dependence of the target quantity on either

feature independently. Both EBMs and GAMs are forms of regression where the

feature functions f i and f ij can be quite general.

The EBM aims to encode the average dependence of a target quantity y on

the parameters θ. Mathematically, an EBM can therefore be represented as

γ(y|θ) = βy +
np−1∑
i=0

f iy(θi) +
np−1∑
i=0,i 6=j

np−1∑
j=0

f ijy (θi, θj) (5.1)

where γ(y|θ) is the predicted value of the target quantity y given np parameters

θ ∈ Rn from the dataset. We will refer to learned parameter βy as the baseline

value of the target quanity y. Though f iy and f ijy can be any interpretable function

(e.g., linear regression, splines, etc.), Lou et al. [165] found that gradient boosted
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trees [83] work best in practice. Using gradient boosted trees, the functions f iy
and f ijy will be piece-wise one- and two-dimensional functions, respectively. By

expressing the dependence of y on θ directly through the functions f iy and f ijy ,

EBMs are interpretable and decomposeable. Further, after training is complete

the learned tree-based functions f iy and f ijy can be formulated as look-up tables

for performant inference.

5.2.2 Simulated Galaxy Catalog Training Set

To engineer an EBM that describes the connection between simulated galaxy

properties, their host dark matter halos, and features of the extrinsic environment,

we turn to established observations and theoretical modeling to inform our choices

for constructing a training dataset.

The stellar–mass—halo–mass (SHMR) has been directly constrained out to

redshifts z . 0.05 and galaxy masses Mvir > 1012M� using galaxy kinematics

[e.g. 188, 158], X-ray observations [e.g 160, 147] and gravitational lensing [e.g.

172, 273]. These constraints can be extended to higher redshifts (z < 10) and

lower masses (Mvir < 1010) by including halo–galaxy connection modeling [e.g.

194, 62, 223, 19, 91]. Such models consistently infer that the average stellar mass

of galaxies increases with halo mass.

At fixed redshift and halo mass, average galaxy masses of central galaxies

differ from satellite galaxies. Halos grow through hierarchical merging, in which

small halos merge to form larger halos. As subhalos merge into larger halos, tidal

heating and stripping reduce the mass of the more extended dark matter halo,

while the satellite galaxy mass remains largely unaffected. For this reason, galaxy

mass often correlates better with halo properties at the time of accretion than

the current halo mass [e.g. 55, 265, 192, 213]. In particular, SHAM models find
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that using the halo peak circular velocity, vpeak, to assign galaxy masss and/or

luminosity best reproduces observed galaxy clustering [e.g. 213, 106, 155].

Star formation rates correlate tightly with galaxy masses, and increase with

redshift at fixed stellar mass [e.g. 195, 247, 35]. While these trends hold on

average, there is a distinct bimodal distribution in the star formation rates of

galaxies, corresponding to star-forming and quiescent populations [e.g. 16]. The

observed fraction of quiescent galaxies increases as the Universe evolves [e.g. 256],

with the interpretation that some mechanism turns off star formation in galax-

ies. Many quenching mechanisms have been proposed, including secular/mass

quenching [e.g. 134, 59] and environmental quenching [e.g. 66, 260]. Which of

these processes dominate may vary with redshift [129].

Overdense environments may cause environmental quenching, by providing

close pairs that can suppress gas accretion (“strangulation"), removing gas through

ram-pressure stripping, or disrupting by interactions with other galaxies (“ha-

rassment"). Environment thereby influences star formation rates, and low-mass

satellite galaxies are typically the most prone to environmental quenching [e.g.

67].

Given these established trends, galaxy mass and star formation rate may de-

pend on redshift, halo mass, peak circular velocity, and environmental proper-

ties. We will therefore select corresponding parameters from the CROC simulated

galaxy catalogs to provide our dataset for training the EBM models. Details of

the CROC simulations can be found in [92]. At a range of redshifts z during the

simulation, the computational grid and particle properties are written to disk.

These simulation snapshots are post-processed to identify virialized galaxies, as

described in Zhu et al. [300], and the properties of the simulated galaxies are

recorded in catalogs. Merger trees are used to identify the properties of simulated
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galaxies across redshift.

For our target quantities y, in this chapter we will model stellar mass M?

[h−1M�] and star formation rate SFR [M� yr−1]. The parameters θ selected from

the simulated catalog include both intrinsic properties of galaxies and extrinsic

properties set by the large scale environment. For intrinsic properties we include

the galaxy virial mass Mvir [h−1M�], the redshift z at which the simulated galaxy

properties were measured, and the maximum peak circular velocity vpeak [km s−1]

measured over the formation history of each galaxy. The extrinsic properties

used are defined by a length scale R measured relative to each simulated galaxy.

We follow convention and substitute R with a numerical value that indicates a

number of comoving Mpc (e.g., σ8 is the rms density fluctuations measured in

spheres of radius of R = 8Mpc). We compute an environmental density ρ1 ≡

1 + ∆1, where ∆1 is the dimensionless matter overdensity measured within 1

Mpc. We include an environmental gas temperature T1 [K] averaged on 1 Mpc

scales. From each simulated galaxy we also find the virial mass Mmax,0.1 of the

most massive neighboring halo within 100 kpc. We then define the mass ratio

Υ0.1 ≡ 1 +Mmax,0.1/Mvir

The simulated galaxy catalogs include roughly 8,426,327 objects covering a

wide range of halo masses, stellar masses, star formation rates, redshifts, and

other extrinsic properties. From the catalog of simulated galaxies, objects with

a SFR < 0.001 M� yr−1 were excluded owing to resolution effects artificially

limiting their star formation rates. After this culling, the catalog contained

5,950,357 objects that formed our dataset. At this stage, we constructed the

training and test datasets from our catalog using the parameter vector θ =

[Mvir, z, vpeak, ρ1, T1,Υ0.1] to model the target quantities y = [M?, SFR]. We use k-

fold cross-validation [102] with k = 5, such that the test/training split is 20%/80%
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for each k-folding.

5.2.3 Training Procedure

The calculations presented in this chapter leverage the InterpretML [196] im-

plementation of EBMs, using the hyperparameters in Table 5.1. These Inter-

pretML hyperparameters control the number of bins in the piece-wise f iy and f ijy
functions (Qmax, Qmax,2D), the distribution of bins across the fitted domain (B),

and the learning rate of the optimization scheme (Rl). The Nori et al. [196] im-

plementation trains an EBM in two phases. First, the univariate functions are

optimized using a gradient boosting approach applied round-robin on each param-

eter, as detailed in Lou et al. [165]. After the univariate functions have converged,

the interaction terms are computed and the bivariate functions are optimized ac-

cording the GA2M/FAST algorithms detailed in Lou et al. [166]. During training

we use k-fold cross-validation, and merge the training and test datasets for the

final performance evaluation of the model.

We evaluate the EBM performance using the mean absolute error (MAE),

a variance metric r2, and the total outlier fraction ζk. These statistics provide

measures of how well the EBM reproduces the mean trends in the target quantities

y as a function of the features θ, the width of the distribution about the mean

trends in the training data, and the tails of that distribution.

We calculate the MAE of the model applied to the simulated galaxy sample

as

MAE = 1
N

N−1∑
i=0
|yi − ŷi|, (5.2)

where N is the number of objects, yi is the true value of the target quantity for

object i, and ŷi is the predicted value from the model for object i.
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We compute the r2 ∈ [0, 1] variance metric as

r2 = 1−
∑N−1
i=0 (yi − ŷi)2∑N−1
i=0 (yi − y)2 , (5.3)

which provides a measure of how well the model captures the variance in the data

relative to the mean y, with r2 = 1 reflecting a perfect reproduction of the distri-

bution of y in the training dataset. Note that the feature and interaction functions

f iy and f ijy have a finite range, and thus not all values yi can be represented by

Equation 5.1 even when the input parameters θ vary about the mean trends with

halo mass or environment. Hence, even for high quality EBM models r2 < 1 and

we expect outliers. The ζk metric represents the fraction of the total dataset that

lies outside the range of predicted values, {ŷ}, as a function of one of the features

θk. We define

ζk = 1
N

N−1∑
i=0

gk,i(yi, θk,i) (5.4)

where the index i runs over the total number of samples N and gk,i(yi, θk,i) is

a function that returns 1 if the true target quantity for object i lies outside the

predicted range, i.e., yi 6∈ {ŷ}. In practice, we compute the outlier fraction for

feature k = log10Mvir, and use 2D histograms of (yi, θk,i) and (ŷi, θk,i) to calculate

gk,i.

In Table 5.2 we present the evaluation metrics for our EBM model fully trained

on the simulated galaxy catalog. For the EBM model for star formation rate

(y = SFR), we find a MAE ∼ 0.14 log10M� yr−1, a variance metric r2 ∼ 0.9,

and an outlier fraction of < 3%. For the EBM model for stellar mass (y = M?),

we report a MAE ∼ 0.19 log10M� yr−1, a variance metric r2 ∼ 0.88, and an

outlier fraction of < 1%. The good performance of the EBM models in these

metrics reflects the abililty of the EBMs to capture both the mean trends and full
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EBM Training Hyperparameters
Hyperparameter Value

Binning B “uniform"
Maximum Bins, Univariate Qmax 256
Maximum Bins, Bivariate Qmax,2D 32× 32

Learning Rate Rl 0.01

Table 5.1: Hyperparameters used to train the InterpretML [196] implementation
of the EBM. All other model hyperparameters were set to the default values for
InterpretML version 0.2.7.

EBM Training Results
Metrics γ(SFR|θ) γ(M?|θ)

r2 0.898± 0.0003 0.882± 0.0001
ζ 0.029± 0.004 0.008± 0.0010

log10 SFR [M�yr−1] log10M? [M�]

MAE 0.144± 0.0001 0.189± 0.0001

Table 5.2: Training results for the EBM using k-fold cross validation. See Section
5.2.3 for more information on the training process. Reported are values for the
variance metric r2, the outlier fraction ζ, and the mean absolute error (MAE).
Uncertainties are computed from the variation among the k-fold trials.

distributions of the target quantities y = [M?, SFR] in the training set given the

parameters θ = [Mvir, z, vpeak, ρ1, T1,Υ0.1]. We describe the detailed model results

in Section 5.3.

5.3 Results

After training the EBM model to reproduce the dependence of the target

quantities M? and SFR on the parameters θ, the relationships between the target

quantities and the parameters can be analyzed. Below, we provide several analyses

that quantify how the target quantities relate to the parameters and illustrate the

performance of the EBM for our astrophysical applications.
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5.3.1 Average Contribution

A key advantage of using EBM models over “black box” models (e.g., neural

networks) is their clear interpretability (see Section 5.2.1). The contribution of

each parameter θi to the model of the target quantity y is provided by the output

functions f iy and f ijy .

Since these functions are vectors or two-dimensional matrices with a number of

elements equal to the number of bins nb in the piece-wise function (see Table 5.1),

a summary scalar quantity for each feature function is helpful for comparing their

relative importance. We can define the average contribution f̄ iy that provides the

average absolute value of f iy or f ijy , with the average computed over the number

of bins nb and weighted by the number of samples in each bin. Mathematically,

we can write

f̄ iy =
∑nb−1
j=0 |f(θi,j)|Nj∑nb−1

j=0 Nj

(5.5)

where f is the feature function being averaged (f iy or f ijy from Equation 5.1), θi,j

is value of the parameter θi in the jth bin, and Nj is the number of samples in

bin j. Intuitively, the average contribution f̄ iy summarizes the importance of each

parameter θi for determining the target quantities when averaged over the samples

in the final, merged dataset.

The average contributions of each feature (f iy) or combination of features (f ijy )

are computed from the EBM. In each case, we rank order the features by decreas-

ing average contribution and focus on the seven features or feature combinations

with the largest average contribution. In each case the most important feature

has an average contribution more than an order of magnitude larger than the

seventh-ranked feature.
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EBM Model Targeting Star Formation Rate SFR

Figure 5.1 shows the average contribution of the top seven features for the

EBM model targeting star formation rate log10 SFR. In decreasing order, the

seven most important features in determining SFR are maximum peak circular

velocity vpeak, virial massMvir, environmental density ρ1, redshift z, environmental

temperature T1, mass ratio of nearby halos Υ0.1, and the interaction betweenMvir

and Υ0.1. The numerical values for the average contributions are provided in Table

5.3. The baseline value of SFR is βlog10 SFR = −2.1151 [log10M� yr−1], typical of

halos with log10Mvir ∼ 9. The average contribution of vpeak and Mvir are quite

similar, providing ∆ log10 SFR > 0.2 on average, but their interaction term is small

with f̄(log10 vpeak, log10Mvir) � 0.01. Therefore peak circular velocity and virial

mass provide important contributions to determining the star formation rate,

and the univariate dependence of the SFR on these properties accounts for most

of their contribution. At the few-percent level, environmental density, redshift,

environmental gas temperature, and the presence of nearby massive halos also

contribute.

The feature functions f iy for each feature are plotted in Figure 5.2. The func-

tions indicate that there are positive correlations between the star formation rate

log10 SFR and either the peak circular velocity vpeak, virial mass Mvir, or envi-

ronmental density ρ1. The star formation rate increases with increasing environ-

mental temperature log10 T1, but near T1 ≈ 104K the univariate function shows

an enhancement just as hydrogen becomes mostly neutral and a deficit near the

temperature at which it becomes ionized. Star formation rate increases with

decreasing redshift over the range z ∼ 5− 15, becoming more efficient after reion-

ization.

The interaction functions f ijy learned by the EBM γ(SFR|θ) targeting the star
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Average Contributions for the γ(M?|θ) EBM
Feature Value [log10M� yr−1]
βlog10 M? −2.1151
f̄(log10 vpeak) 0.2380
f̄(log10Mvir) 0.2224
f̄(log10 ρ1) 0.0475
f̄(z) 0.0343
f̄(log10 T1) 0.0252
f̄(log10 Υ0.1) 0.0202
f̄(log10Mvir, log10 Υ0.1) 0.0052

Table 5.3: Summary of the EBM model trained to predict SFR. The first entry,
βlog10 SFR, is the baseline value learned model (see Section 5.2.1). The next seven
entries are the average contributions of the most important feature functions listed
in descending order (see Equation 5.5).

formation rate SFR are plotted as “heat maps” in Figure 5.3. Most interaction

functions do not contribute significantly to the star formation rate, and change

the star formation rate by ∆ log10 SFR . 0.05. However, halos with low neigh-

boring halo mass ratios Υ0.1 and large peak circular velocity vpeak have their star

formation rate enhanced by ∆ log10 SFR ≈ 0.15. Rephrased, locally dominant

halos with large peak circular velocity show enhanced star formation. Such en-

hancements likely owe to recent merger activity.

While Equation 5.1 represents a complex, multidimensional manifold that pro-

vides the SFR as a function of the parameters θ, the distributions of simulated and

predicted SFR as a function of a single parameter provide a graphical summary

of the EBM model performance. Figure 5.4 shows the simulated and predicted

SFR as a function of virial mass log10Mvir, and we will refer to this figure as the

model summary. Shown in this model summary are the distributions of SFR in

the CROC simulated galaxy catalogs with virial mass and the SFR predicted by

the EBM model γ(SFR|θ) using the parameters θ measured for each simulated

galaxy. The EBM model captures roughly 97% of the simulated distribution of
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SFR with virial mass. The EBM model is highly predictive of the simulated

connection between SFR and the intrinsic and extrinsic properties θ.

EBM Model Targeting Stellar Mass M?

An EBM model γ(M?|θ) targeting stellar mass M? using the properties θ can

be constructed through simple retraining. Using the simulated galaxy catalogs

from CROC, we retrain the EBM to model M? against θ. For reference, the

baseline value of M? is βlog10 M? = 5.9629 [log10M� yr−1] (see Table 5.4), typical

of halos with log10Mvir/M� ∼ 9.

Figure 5.5 shows the model summary for the EBM model γ(M?|θ). The EBM

model provides an excellent representation of the distribution of stellar masses

for the CROC simulated galaxy catalog. As the lower right panel of Figure 5.5

indicates, the γ(M?|θ) model results in few outliers for the CROC simulated

galaxies and has an outlier fraction of . 1%. Given the galaxy properties θ =

[Mvir, z, vpeak, ρ1, T1,Υ0.1], the distribution of stellar masses for CROC simulated

galaxies can be recovered to 99% accuracy.

Figure 5.7 shows the average contribution of the seven most important features

and interactions in the EBM model γ(M?|θ). In order of decreasing importance,

these features include peak circular velocity, virial mass, redshift, environmental

density, environmental temperature, the mass ratio of nearby halos, and the in-

teraction between redshift and peak circular velocity. Peak circular velocity is

about 50% more important than virial mass, which in turn is roughly a factor of

two more important than redshift. The other features and interactions contribute

to stellar mass at the . 0.1 dex level. For reference the numerical values for the

average contributions are provided in Table 5.4.

The univariate functions determined by the EBM targeting stellar massM? are
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Average Contributions for the γ(M?|θ) EBM
Feature Value [log10M�]
βlog10 M? 5.9629
f̄(log10 vpeak) 0.3284
f̄(log10Mvir) 0.2123
f̄(z) 0.1238
f̄(log10 ρ1) 0.0722
f̄(log10 T1) 0.0545
f̄(log10 Υ0.1) 0.0359
f̄(z, log10 vpeak) 0.0135

Table 5.4: Summary of the EBM model γ(M?|θ) trained to predict M? as a
function of the full parameter set θ. The first entry, βlog10 M? , is the learned baseline
value of the model (see Section 5.2.1). The next seven entries are the feature
functions with the highest average contribution in descending order. Average
contribution is calculated using the average of the absolute value of the feature
functions weighted by the number of samples in each bin (see Equation 5.5).

shown in Figure 5.6. Stellar mass increases with increasing peak circular velocity,

virial mass, environmental density, and neighboring halo mass ratio. Stellar mass

increases with decreasing redshift. As with star formation rate, the stellar mass

increases with increasing environmental temperature T1, with a sharp enhance-

ment near the temperature where hydrogen becomes neutral and a sharp deficit

near where hydrogen ionizes.

The bivariate interaction functions f ijy (see Equation 5.1) learned by the EBM

when targeting stellar mass M? are plotted as heat maps in Figure 5.8. On

average most interaction functions do not contribute significantly to galaxy stellar

mass, but there are regions of parameter space where the interaction functions

are important. For instance, halos with low environmental temperatures and high

environmental densities have suppressed stellar mass. Large virial mass halos

with small neighboring halo mass ratios log10 Υ0.1, indicating halos that dominate

their local environment, have stellar mass enhanced by ≈ 0.3 dex. This effect
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exceeds the maximum univariate contribution of log10 Υ0.1 alone. The deficit of

stellar mass at environmental temperatures where hydrogen is becoming ionized

is increased at high redshifts.

5.4 Composite EBMs for Restricted Parameter

Sets

The EBM models γ(SFR|θ) and γ(M?|θ) presented in Section 5.3.1 are con-

structed using the parameter set θ = [Mvir, z, vpeak, ρ1, T1,Υ0.1]. Our results show

that the full distribution of SFR and stellar mass in the simulated CROC galaxy

catalogs can be recovered accurately with only ≈ 1 − 3% outliers. These EBM

models can therefore be applied to cosmological simulations using the parameters

θ measured from simulated galaxy catalogs to recover the distribution of SFR and

stellar mass computed by CROC.

The parameters θ include the peak circular velocity vpeak, which requires both

time-dependent tracking of formation histories for individual galaxies and high

spatial resolution to capture the peak of the rotation curve for each object. As a

result, as expressed above the models γ(SFR|θ) and γ(M?|θ) cannot be applied

directly to cosmological simulations with low spatial resolution or without merger

trees to capture formation histories.

Instead of fitting EBM models using the full parameter set θ, consider the con-

struction of an EBMmodel using the restricted parameter set θ′ = [Mvir, z, ρ1, T1,Υ0.1]

that does not include vpeak. The parameters θ′ can all be measured directly in

cosmological simulations with sufficient resolution to capture individual galaxy-

mass halos without the need to track merger trees. The EBM models γ(SFR|θ′)

and γ(M?|θ′) using the restricted parameter set θ′ perform substantially less well
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than the models γ(SFR|θ) and γ(M?|θ) trained on the full parameter set θ that

includes vpeak. With the restricted parameter set θ′, the EBM model shows 7.6%

outliers when targeting SFR and 2.8% when targeting M?. Comparing with the

outlier fractions reported in Table 5.2 for the full parameter set including vpeak,

the EBM model trained on the restricted dataset has degraded its performance

by a factor of ∼ 2− 3.

To ameliorate the poorer performance of the EBM models trained on restricted

parameter sets, we use a Composite EBM (CEBM) model. Given a target quantity

y and a parameter set θ′, we fit a base EBM γ(y|θ′) in the same manner as fitting

the EBMs γ(SFR|θ) or γ(M?|θ). We construct a dataset from the galaxies whose

y values lie outside the predictions from γ(y|θ′), and then fit an outlier EBM

δ(y|θ′) to these discrepant samples. We then weight the base and outlier EBMs

to construct the CEBM model Γ(M?|θ′) using a classifier EBM φy(θ′). Instead

of fitting the change in star formation rate or stellar mass at a given sample in

θ′, the classifier EBM fits the log odds that a given sample in θ′ is an outlier. We

then define φy(θ′) to be the sigmoid of these log odds, such that φy(θ′) ∈ [0, 1].

The CEBM can then be written as

Γ(M?|θ′) = [1− φy(θ′)]γ(y|θ′) + φy(θ′)δ(y|θ′). (5.6)

5.4.1 CEBM Feature and Interaction Functions

The feature functions of a single EBM are univariate and indicate directly how

the expectation value of the targeted quantity depends on each parameter θi ∈ θ.

With a CEBM comprised of a weighted sum of two base EBMs, we define the

analog of the feature function to be the weighted sum of the base EBM feature
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functions. We can write that

f̃ iy = 1
N

N∑
j=0
‖φ(θj)� f iy(θj)‖1, (5.7)

where � is the Hadamard or element-wise product operation and the sum is

over the number of samples N . The quantity f iy is the vector of the individual

EBM feature functions f iy. While the base EBM feature functions are individually

univariate, by weighting the sum of these feature functions with the classifier EBM

the resulting feature function analog in Equation 5.7 is not univariate.

The interaction functions f̃ ijy are defined as in Equation 5.7 but with the

vector of the individual EBM interaction functions f ijy subsituted for f iy. While

the interaction functions for a single EBM are bivariate, the CEBM interaction

functions are not bivariate.

5.4.2 CEBM Average Contribution

The average contribution of each feature in a CEBM can be defined in a manner

analogous to the average contribution computed for a single EBM (Equation 5.5).

The CEBM average contribution can be written as

f̄ iy =
∑nb−1
j=0 f̃(θi,j)Nj∑nb−1

j=0 Nj

(5.8)

where f̃ is either the CEBM feature function f̃ iy or the CEBM interaction function

f̃ ijy . Equation 5.8 characterizes how important the parameter θi is for modeling

the target quantity y.
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5.4.3 Visualizing CEBM Feature and Interaction Func-

tions

The feature and interaction functions f̃ iy and f̃ ijy are not univariate or bivariate

by design, which allows them to model the outlier distribution about the base

EBM model γ(y|θ′). To visualize the feature and interaction functions for CEBM

models in a manner similar to the univariate feature and bivariate interaction

functions for single EBM, we can average the values of f iy and f ijy . For the feature

function averaged over N samples, consider nb bins along the θi direction, with

central values θi,b and bin widths ∆θi,b. The bin-averaged CEBM feature and

interaction functions are then

f i,by = 1
N

N−1∑
j=0

α(θi,b,∆θi,b, θj,i)φ(θj)� f(θj) (5.9)

where θj,i is the ith parameter of the jth sample θj and the function α(θi,b,∆θi,b, θj,i) =

1 if θi,b −∆θi,b/2 ≤ θj,i ≤ θi,b + ∆θi,b/2 and α = 0 otherwise. The quantity f is

either the vector of EBM feature functions f iy or the EBM interaction functions

f ijy . Equation 5.9 calculates the mean of the f values in each of the nb bins, and

can be modified to calculate its standard deviation.

5.5 Composite EBM Model for Star Formation

Rate

The CEBM model Γ(SFR|θ′) for the star formation rate consists of a base

EBM γ(SFR|θ′), a residual EBM δ(SFR|θ′) that attempts to capture the outlying

values of SFR not recovered by γ(SFR|θ′), and the classifier EBM φSFR(θ′). For

each of these individual EBMs that form the CEBM model, we plot the average
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contribution, feature functions, and interaction functions.

Figure 5.9 shows the average contribution, feature functions, and interaction

functions for the EBM model γ(SFR|θ′) that forms the base of the CEBM model.

The differences between γ(SFR|θ) and γ(SFR|θ′) reflect the additional informa-

tion provided by the maximum peak circular velocity vpeak. Without access to

vpeak, the base EBM γ(SFR|θ′) upweights f̄(Mvir) such that its importance roughly

equals the combined importance of Mvir and vpeak in determining γ(SFR|θ). The

average contribution of ρ1, T1, z, Υ0.1, and (Mvir,Υ0.1) are similar between the

models. The additional interaction term in the top seven average contributions

is (z, ρ1), with a percent-level contribution to SFR relative to Mvir. The feature

functions for γ(SFR|θ′) have shapes similar to the feature functions for γ(SFR|θ),

but their minimum and maximum contributions to SFR are adjusted to account

for the missing vpeak contribution. The feature function f̄(z) is noisier overall. For

the interaction functions, the largest contributors now involve Mvir rather than

the missing parameter vpeak, and the set of available functions is substantially

different than with γ(SFR|θ).

Figure 5.10 shows the average contribution, feature functions, and interaction

functions for the outlier EBM δ(SFR|θ′) fit to the deviant samples not captured

by the base EBM γ(SFR|θ′). The outlier EBM receives the highest contribution

from virial mass, with an average contribution more than an order of magnitude

larger than the next most important feature ρ1. The redshift z and environmen-

tal temperature T1 have comparable importance to ρ1. The remaining features

provide only percent-level contributions relative to Mvir.

Figure 5.11 shows the average contribution, feature functions, and interaction

functions for the classifier EBM δ(SFR|θ′) that interpolates between the base

and outlier EBMs when calculating the CEBM model. For the classifier EBM,
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the most important features are ρ1, Mvir, and Υ0.1. Redshift z has middling

importance, following by T1, [ρ1,Υ0.1], and [Mvir, ρ1]. The feature functions show

strong dependencies on ρ1, Mvir, Υ0.1, z, and T1. The largest interaction functions

involve the environmental temperature T1, redshift z, and virial mass Mvir.

By weighting the base and outlier EBM models with the classifier EBM, we

construct the CEBM for star formation rate as Γ(SFR|θ′) ≡ [1−φSFR(θ′)]γ(SFR|θ′)+

φSFR(θ′)δ(SFR|θ′). Figures 5.12 show the average contribution, feature functions,

and interaction functions for the SFR CEBM. The most important feature isMvir,

which dominates by a factor of ∼ 4− 10 over environmental density ρ1, environ-

mental temperature T1, Υ0.1, and redshift z. The interaction terms are roughly

percent-level effects relative to Mvir. The feature functions show a strongly in-

creasing SFR with Mvir, and enhanced SFR with environmental density ρ1. The

temperature dependence shows the feature at log10 T1 ≈ 4 seen with the EBM

model γ(SFR|θ). The interaction functions provide only important contributions

over very limited areas of parameter space, with the most important adjustments

occuring at low redshift and large virial mass, or for large temperatures and virial

masses. For reference, the model summary Figure 5.13 illustrates the overall per-

formance of the model.

Table 5.5 lists the evaluation metrics for the training of CEBM models target-

ing SFR and stellar mass without using vpeak. The outlier fraction has improved

to ≈ 5% for CEBM model Γ(SFR|θ′) and to . 2% for Γ(M?|θ′). The average

parameter contributions and baseline value βlog10 SFR from Γ(SFR|θ′) are provided

in Table 5.6 and for the CEBM targeting stellar mass in Table 5.7.

Figure 5.13 shows the model summary for the CEBM targeting SFR, and

Figure 5.14 shows the model summary for the CEBM targeting stellar mass. As

both models demonstrate, the CEBM model accurately recovers the distribution
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Composite EBM Training Results
Metrics γ(SFR|θ) γ(M?|θ)

r2 0.868± 0.0002 0.830± 0.0003
ζ 0.052± 0.0053 0.018± 0.0031

log10 SFR [M�yr−1] log10M? [M�]

MAE 0.165± 0.0001 0.233± 0.0002

Table 5.5: Training results for CEBM models for SFR and M? using k-fold
cross validation. See Section 5.2.3 for more information on the training process.
Reported are values for the variance metric r2, the outlier fraction ζ, and the mean
absolute error (MAE). Uncertainties are computed from the variation among the
k-fold trials.

of star formation rate and stellar mass in the CROC simulated galaxy sample.

Between the models, the outlier fraction is only ≈ 2 − 5% despite using the

restricted set of parameters θ′ that does not include vpeak or any time-dependent

tracking of individual systems.

5.6 Composite EBM Model for Stellar Mass

The CEBM model Γ(M?|θ′) for stellar mass is comprised of a base EBM

γ(M?|θ′), an outlier EBM that attempts to model theM? of samples not recovered

by γ(M?|θ′), and the classifier EBM function φM?(θ′) that interpolates between

them. The average contribution, feature functions, and interaction functions from

these component EBM models are presented below.

Figures 5.15 shows the average contribution, feature functions, and interaction

functions for the base EBM model γ(M?|θ′). By removing vpeak from the dataset

used to train the EBM, the base EBM model for the M? CEBM replaces the de-

pendence on vpeak with an additional dependence on Mvir. The relative ordering

and importance of redshift z, environmental density ρ1, environmental tempera-
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Overview of CEBM Γ(SFR|θ′)
Feature Value [log10M� yr−1]
βlog10 SFR −1.7466
f̃(log10Mvir) 0.4327
f̃(log10 ρ1) 0.0625
f̃(log10 T1) 0.0327
f̃(log10 Υ0.1) 0.0215
f̃(z) 0.0190
f̃(z, log10 ρ1) 0.0077
f̃(log10Mvir, log10 Υ0.1) 0.0056

Table 5.6: Average contribution to the CEBM model Γ(SFR|θ′) trained to pre-
dict SFR from the parameter set θ′. The first entry, βlog10 SFR, is the learned
baseline of the model. The next seven entries are the feature functions with the
highest average contribution listed in descending order. The average contribution
is calculated using the average of the absolute value of the base EBM function
values weighted by the number of samples in each bin and the output of the
classification EBM for each sample (see Section 5.4.2 for more details).

ture T1, and Υ0.1 are approximately maintained. For the feature functions, the

results shown for γ(M?|θ′) in Panel b) of Figure 5.15 can be compared with the

results for γ(M?|θ) shown in Figure 5.7. As reflected by average contributions,

the amplitude of the feature function f̄(Mvir) increases to account for the removal

of vpeak. The feature functions for z, ρ1, T1, and Υ0.1 are modified and remain

similar in shape to those computed for the EBM γ(M?|θ). The interaction func-

tions shared between γ(M?|θ′) and γ(M?|θ) are similar. There is an increase in

M? contribution for large [Mvir, T1] and a decrease in the amplitude of [Mvir,Υ0.1].

Figure 5.16 shows the average contribution, feature functions, and interaction

functions for the outlier EBM model δ(M?|θ′). The average contribution is dom-

inated by Mvir, with the contributions from all other single parameters lower by

a factor of ≈ 10 with the order of importance maintained relative to γ(M?|θ′).

For the feature functions, the redshift dependence changes dramatically and now

increases with increasing redshift. The feature function for environmental density
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f̃(ρ1) becomes much weaker over a wide range of ρ1, but increases dramatically at

high ρ1. Relative to the γ(M?|θ′) feature functions, the feature function f̃(Υ0.1)

for δ(M?|θ′) is weak and noisy. The interaction functions show increased contri-

butions at large [z, ρ1], and for low T1 and large ρ1.

Figure 5.17 shows the average contribution, feature functions, and interaction

functions for the classifier EBM φM?(θ′). For each of these properties, we note

that in determining φM?(θ′) a sigmoid function σ is applied to the sum of β, f iy and

f ijy that model the log odds that a galaxy is an outlier in stellar mass. In deter-

mining M?, the features with the largest average contribution are environmental

density ρ1, redshift z, Υ0.1, and virial mass Mvir. The interaction terms with the

largest contribution are (z, ρ1) and (ρ1, T1). Clearly, environmental density plays

an important role in determining whether a given simulated galaxy is an outlier

relative to the base EBM γ(M?|θ′). The feature functions show that galaxies

with large environmental densities ρ1, at low redshift z, or with a large neigh-

boring galaxy (expressed by Υ0.1) have an enhanced probability of being outliers

relative to γ(M?|θ′). Galaxies at both high and low Mvir or large environmental

temperature T1 are also more likely to be outliers.

We construct the stellar mass CEBMwith the sum Γ(M?|θ′) ≡ [1−φM?(θ′)]γ(M?|θ′)+

φM?(θ′)δ(M?|θ′). Figure 5.18 shows the average contribution, feature functions,

and interaction functions for Γ(M?|θ′). The feature with largest average contribu-

tion isMvir, with redshift z, environmental density ρ1, environmental temperature

T1, and the mass ratio of nearby galaxies Υ0.1 having an lower average contribu-

tion by a factor of ∼ 5−10. Relative to Mvir, the interactions [z, ρ1] and [Mvir, ρ1]

contribute at level of a few percent. The M? CEBM feature function f̃(Mvir) has

increased in amplitude relative to the M? EBM feature function f(Mvir), subsum-

ing some of the dependence on the missing vpeak feature. The remaining feature
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Average Contributions for the CEBM Γ(M?|θ′)
Feature Value [log10M�]
βlog10 M? 6.6995
f̃(log10Mvir) 0.5008
f̃(z) 0.0961
f̃(log10 ρ1) 0.0902
f̃(log10 T1) 0.0576
f̃(log10 Υ0.1) 0.0336
f̃(z, log10 ρ1) 0.0172
f̃(log10Mvir, log10 ρ1) 0.0108

Table 5.7: Summary of the CEBM model Γ(M?|θ′) trained to predict M? using
the restricted parameter set θ′. The first entry, βlog10 M? , is the learned baseline
of the model. The next seven entries are the learned functions with the highest
average contribution in descending order. The average contribution is computed
via Equation 5.8 (see Section 5.4.2 for more details).

functions for Γ(M?|θ′) are similar in shape and amplitude to those for γ(M?|θ),

although the contribution at large T1 and ρ1 are increased and the dependence on

redshift z is decreased. The interaction functions are similar between Γ(M?|θ′)

and γ(M?|θ′), although there is a larger enhancement of M? for large [Mvir, T1]

and a smaller enhancement for large Mvir and small Υ0.1 for the CEBM Γ(M?|θ′).

For reference, the model summary Figure 5.14 illustrates the overall performance

of the model.

5.7 Discussion

Explainable Boosting Machine (EBM) models provide a method to statistically

infer relationships present in high-dimensional data. Given their statistical nature,

EBM models remain ignorant of the physics that generate the connection between

star formation rate, stellar mass, and the properties of dark matter halos that host

galaxies. Nonetheless, given the results of detailed physical modeling in the form
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of simulated galaxy catalogs from cosmological simulations, the EBM correctly

identifies halo mass and maximum peak circular velocity as the most important

halo properties for determining SFR andM? (e.g., Figure 5.1). The EBM correctly

infers that SFR and M? increase with increasing halo mass or vpeak, and the

EBM univariate feature functions correctly identify the gas temperature at which

star formation efficiency changes. To the extent that the physical connection

between galaxy and halo properties are recorded in statistical relationships, the

EBM models effectively recover some fraction of those relations.

EBM models also provide a means to implement a “sub-grid” prescription

for galaxy formation based on the properties of halos and their environments.

The EBM models γ(SFR|θ) and γ(M?|θ) capture better than 97% of the SFR

and M? distributions measured for simulated galaxies in the CROC simulations.

The stellar masses and star formation rates of galaxies in CROC could be ac-

curately recovered by using only the halo and environmental parameters in θ =

[Mvir, z, vpeak, ρ1, T1,Υ0.1].

Using the CEBMmodel trained on the restricted parameter set θ′ = [Mvir, z, ρ1, T1,Υ0.1],

≈ 95−98% of the distribution of SFR and M? of the CROC galaxies is recovered.

One advantage of this parameter set is that the spatial resolution in the simula-

tions required to compute them is less demanding than for vpeak. A simulation

with coarser resolution than CROC, such that the details of the star formation

and feedback processes cannot be resolved, may still leverage the CEBM models

Γ(SFR|θ′) and Γ(M?|θ′) to model the star formation rate and stellar masses in

dark matter halos. Further, the quantities θ′ used to train the CEBM models are

measured at distinct redshifts such that no merger trees are required to recover

accurately the CROC SFR and M? distributions from halo and environmental

properties. We note that for both the EBM and CEBM models the outlier frac-
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tions not well captured by the model are roughtly percent-level or less in the SFR

or M? distributions, and we expect that corresponding inaccuracies induced in,

e.g., the ionizing photon budget or topology of reionization will be minimal.

By editing the dataset and retraining, the impact of environment on the perfor-

mance of the EBM models can be estimated. Relative to γ(SFR|θ) and γ(M?|θ)

that use the full dataset θ including all environmental parameters, EBM models

trained only on maximum peak circular velocity vpeak, halo virial mass Mvir, and

redshift z have an outlier fraction increased by only ∼ 1% when modeling M? and

∼ 10% when modeling SFR. Further, removing vpeak and training only on [Mvir, z]

substantially degrades the model performance, and the outlier fractions increase

to ∼ 20% when modeling M? and ∼ 40% when modeling SFR. The importance

of including vpeak in the training dataset is much larger than the importance of

accounting for the environmental measures selected in this analysis.

The EBM models enable an approximate translation of the galaxy formation

model from one simulation to another. Provided the parameter sets θ or θ′ can

be measured in both simulations, an EBM can recover the connection between

SFR, stellar masses, halo properties, and environment from the training simula-

tion and then be used to instill those relations in a different simulation. Since

the θ′ parameter set does not require very high spatial resolution to capture, the

net results for SFR and stellar mass from a high resolution simulation accurately

tracking detailed baryonic physics can be translated into a simulation with res-

olution insufficient to capture those physics directly. In future work, we plan

to transfer the CROC baryonic galaxy formation model into Cholla cosmological

simulations [e.g., 274, 275] via the EBM models presented here. Such a trans-

ferred model could be used to build models of feedback from galaxy formation on

resolved scales that incorporate the regulatory effects of feedback on small-scale
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star formation.

Lastly, the ability of the EBM models to recover the SFR andM? distributions

using only halo and environmental properties allows for the rapid replacement of

galaxy formation models based on EBMs. Models can be trained on the simulated

galaxy catalogs from a variety of expensive, high-resolution training simulations

including a wide range of physics. These EBM models can then be used inter-

changeably as effective galaxy formation models in the target simulations, and

can also be modified posteriori to allow a broad parameter search or correct the

inaccuracies of the training simulation. Such an approach could reduce the sensi-

tivity of conclusions about, e.g., the reionization process on the detailed SFR and

M? distributions as multiple EBM models for these properties could be trained

and implemented in the target simulations.

5.8 Summary

A complex interplay of physical processes gives rise to the distribution of star

formation rates (SFRs) and stellar masses M? of galaxies over cosmic time. Cos-

mological simulations provide powerful methods for modeling these physical pro-

cesses, but the connection between SFR, M?, and other galaxy properties can be

obfuscated by complexity. Leveraging machine learning techniques, we use a varia-

tion of the Generalized Additive Model [101] called Explainable Boosting Machines

[EBM 196] to infer the dependence of SFR and M? in the Cosmic Reionization

on Computers (CROC) simulations [92] on dark matter halo properties including

virial mass Mvir, peak maximum circular velocity vpeak, redshift, environmental

density, environmental gas temperature, and the mass of neighboring halos. Our

findings include:
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• SFR and M? primarily depend on Mvir and vpeak, followed by redshift, envi-

ronmental density, and environmental gas temperature.

• When including Mvir and vpeak in the parameter set used to train the EBM,

the model recovers better than 97% of the distribution of M? or SFR with

virial mass Mvir in the CROC simulations.

• If the model fit excludes vpeak, the fraction of outliers in the CROC data

relative to the predicted model distribution increases to 7.6% for SFR and

2.8% for M?.

• To ameliorate the degradation of the model performance when excluding

vpeak, we define a composite EBM model comprised of a weighted sum of the

base EBM model fit to main trend of SFR and M? with the halo properties

and a second EBMmodel to fit the outliers not represented in the base EBM.

The weighting coefficients are themselves determined by an EBM model fit.

• The composite EBM model improves the performance to ≈ 95− 98% accu-

racy in the distribution of SFR or M? with virial mass, even when excluding

vpeak measurements from the training dataset.

The EBM models quantify the relative importance of halo properties like virial

mass and maximum peak circular velocity for determining the stellar mass and

star formation rate of the galaxy it hosts. Through these models, the physics of

baryonic galaxy formation can be connected to the properties of dark matter halos

and enable galaxy formation to be implemented as a “sub-grid” prescription in

dark matter-only simulations or hydrodynamical simulations that do not resolve

the small scale details of star formation and feedback.
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Figure 5.1: Top seven features with the highest average contribution in the
EBM γ(SFR|θ) targeting the star formation rate SFR. In order of decreasing
importance, these features include peak circular velocity vpeak, virial mass Mvir,
environmental density ρ1, redshift z, environmental temperature T1, the mass
ratio of nearby halos Υ0.1, and the interaction between virial mass Mvir and Υ0.1.
Average contribution is calculated using the average of the absolute value of the
feature functions weighted by the number of samples in each bin (see Equation
5.5).
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Figure 5.2: Learned univariate feature functions f iy for the EBM γ(SFR|θ)
trained to predict the star formation rate SFR. Shown (left to right) are the
feature functions for peak circular velocity vpeak, virial mass Mvir, environmental
density ρ1, redshift z, environmental temperature T1, and nearby halo mass ratio
Υ0.1. Light blue areas indicate regions where f iy > 0 and dark blue areas indicate
regions where f iy < 0. The shaded areas show the variation in f iy between the
k-fold iterations.

148



7.5 10.0 12.5
Redshift z

10.0

12.0

lo
g
10
M

v
ir
[M

⊙]

1.5 2.0 2.5
log10vpeak[kms−1]

0.0 2.0
log10Υ0.1

2.5 5.0
log10T1[K]

0.0 2.0
log10Υ0.1

2.0

4.0

6.0

lo
g
1
0
T
1
[K

]

0.0 2.0
log10ρ1

1.5 2.0 2.5
log10vpeak[kms−1]

0.0 2.0
log10Υ0.1

1.5

2.0

2.5

lo
g
10
v p

ea
k
[k
m
s−

1
]

0.0 2.0
log10ρ1

7.5

10.0

12.5

Re
ds

hif
t z

1.5 2.0 2.5
log10vpeak[kms−1]

−‖f‖max 0 ‖f‖max

f ‖f‖max

log10Mvir,
Redshift z 0.01
log10Mvir,
log10vpeak

0.06
log10Mvir,
log10Υ0.1

0.01

f ‖f‖max

log10Mvir,
log10T1

0.02
log10T1,
log10Υ0.1

0.05
log10T1,
log10ρ1

0.06
log10T1,
log10vpeak

0.04

f ‖f‖max

log10vpeak,
log10Υ0.1

0.15
Redshift z,
log10ρ1

0.02
Redshift z,
log10vpeak

0.02

Figure 5.3: Most important learned interaction functions f ijy for the EBM model
γ(SFR|θ) targeting the star formation rate SFR, as a function of their parame-
ter pairs. Each panel shows the contribution of the bivariate interaction terms,
normalized such that the color map ranges between plus or minus the maximum
of the norm of each function ||f ||max. Light blue areas indicate regions of joint
parameter space where the feature interactions contribute positively to the star
formation rate, while dark blue areas indicate regions with negative contributions.
The table lists ||f ||max for the interaction functions, each with units log10M� yr−1.
In absolute terms, the largest interaction occurs for halos with large peak circular
velocity vpeak and no large neighboring halos (Υ0.1 ≈ 0). The other interaction
functions are relatively weak, and contribute changes to logSFR . 0.05.
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Figure 5.4: Summary of the EBM model γ(SFR|θ) targeting star formation
rate (SFR) as a function of virial mass. The upper left panel shows the two-
dimensional distribution of SFR with Mvir for galaxies in the CROC simulations,
with the color scale showing the number of simulated galaxies at each [SFR,Mvir]
location. The lower left panel shows the EBM model results for the distribution of
SFR with Mvir, where the SFR is computed from the EBM using the parameters
θ = [Mvir, vpeak, z, ρ1, T1,Υ0.1]. The upper right panel shows the residuals between
the simulated CROC galaxy SFRs and the EBM model results. The lower right
panel shows the simulated CROC galaxy SFRs that lie outside the EBM model
predictions. These outliers represent . 3% of simulated CROC galaxies.
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Figure 5.5: Summary of the EBM model γ(M?|θ) targeting stellar mass M?

as a function of virial mass. The upper left panel shows the distribution of M?

with virial mass Mvir in the CROC simulated galaxy catalogs, with the coloration
indicating the number of galaxies at each [M?,Mvir] location. The lower left panel
shows the EBM model prediction of the stellar mass distribution with virial mass
given in the input parameters θ = [Mvir, z, vpeak, ρ1, T1,Υ0.1]. The upper right
panel shows the residuals between the simulated and predicted M? vs. Mvir dis-
tribution, and the lower right panel shows the outliers in the simulated distribution
not captured by the EBM model γ(M?|θ). The fraction of outliers is . 1%.
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Figure 5.6: Learned univariate feature functions, f iy in Equation 5.1, for the
EBM γ(M?|θ) trained to predictM?. Areas highlighted in orange indicate portions
of the function that contribute positively to the predicted M? and areas in red
contribute negatively. Stellar mass increases with peak circular velocity and virial
mass, increases with decreasing redshift, and increases with environmental density.
Temperature correlates positively with stellar mass, with a strong feature near
T1 ≈ 104 K where hydrogen ionizes. Stellar mass also increases with the mass
ratio of neighboring halos.
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Figure 5.7: Features with the highest average contribution for the EBM γ(M?|θ)
trained to predict M?. Average contribution is calculated using the average of the
absolute value of the learned functions weighted by the number of samples in each
bin (see Equation 5.5). The features with the largest contributon are vpeak and
Mvir, followed by redshift z, environmental density ρ1, environmental temperature
T1, and mass ratio of nearby halos Υ0.1. The interaction with the largest average
contribution involves [z,vpeak].
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Figure 5.9: Details for the base EBM model γ(SFR|θ′) component of the CEBM
Γ(SFR|θ′) trained to predict SFR. Panel a) displays the average contribution of
features. Panel b) shows the feature functions contributing to the base EBM
model. Panel c) presents the interaction functions for the base EBM γ(SFR|θ′).
Each panel shows the contribution of the bivariate interaction terms, normalized
such that the color map ranges between plus or minus the maximum of the norm of
each function ||f ||max. Purple indicates negative contributions and blue indicates
positive contributions. The table lists ||f ||max for the interaction functions, each
with units log10M� yr−1.
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Figure 5.10: Details for the outlier EBM model δ(SFR|θ′) component of the
CEBM Γ(SFR|θ′) trained to predict SFR. Panel a) displays the average contri-
bution of features. Panel b) shows the feature functions for the outlier EBM
δ(SFR|θ′). Panel c) presents the interaction functions for the outlier EBM
δ(SFR|θ′). Each panel shows the contribution of the bivariate interaction terms,
normalized such that the color map ranges between plus or minus the maximum
of the norm of each function ||f ||max. Purple indicates negative contributions and
blue indicates positive contributions. The table lists ||f ||max for the interaction
functions, each with units log10M� yr−1.
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Figure 5.11: Details for the classification EBM model φSFR(θ′) that interpolates
between the base EBM γ(SFR|θ′) and the outlier EBM δ(SFR|θ′) for creating
the CEBM Γ(SFR|θ′). Panel a) displays the average contribution of features
to the classification EBM model φSFR(θ′). Panel b) shows the feature functions
contributing to the classifier EBM φSFR(θ′). Panel c) presents the interaction
functions for the classifier EBM φSFR(θ′). Each panel shows the contributions of
the interaction terms, normalized such that the color map ranges between plus
or minus the maximum of the norm of each function ||f ||max. Purple indicates
negative log odds and blue indicates positive log odds that a given galaxy is an
outlier in SFR. The table lists ||f ||max for the interaction functions, listed as the
corresponding change in log odds.
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Figure 5.12: Details for the CEBM model Γ(SFR|θ′) trained to predict SFR.
Panel a) displays the average contribution of features to the CEBM. Virial mass
Mvir provides the largest average contribution to the star formation rate. Panel
b) shows the feature functions contributing to the CEBM Γ(SFR|θ′). Panel c)
presents the interaction functions for the CEBM Γ(SFR|θ′). Each panel shows the
contribution of the interaction terms, normalized such that the color map ranges
between plus or minus the maximum of the norm of each function ||f ||max. Purple
indicates negative contributions and blue indicates positive contributions. The
table lists ||f ||max for the interaction functions, each with units log10M� yr−1.
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Figure 5.13: Summary of the CEBM model Γ(SFR|θ′) targeting star formation
rate (SFR) as a function of virial mass. The upper left panel shows the two-
dimensional distribution of SFR with Mvir for galaxies in the CROC simulations,
with the color scale showing the number of simulated galaxies at each [SFR,Mvir]
location. The lower left panel shows the CEBM model results for the distribution
of SFR with Mvir, where the SFR is computed from the CEBM using the parame-
ters θ′ = [Mvir, z, ρ1, T1,Υ0.1]. The upper right panel shows the residuals between
the simulated CROC galaxy SFRs and the CEBM model results. The lower right
panel shows the simulated CROC galaxy SFRs that lie outside the CEBM model
predictions. These outliers represent ≈ 5% of simulated CROC galaxies.
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Figure 5.14: Summary of the CEBM model Γ(M?|θ′) targeting stellar mass M?

as a function of virial mass. The upper left panel shows the distribution of M?

with virial mass Mvir in the CROC simulated galaxy catalogs, with the coloration
indicating the number of galaxies at each [M?,Mvir] location. The lower left panel
shows the CEBM model prediction of the stellar mass distribution with virial mass
given in the input parameters θ′ = [Mvir, z, ρ1, T1,Υ0.1]. The upper right panel
shows the residuals between the simulated and predictedM? vs. Mvir distribution,
and the lower right panel shows the outliers in the simulated distribution not
captured by the CEBM model Γ(M?|θ′). The fraction of outliers is . 2%.
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Figure 5.15: Details for the base EBM model γ(M?|θ′) component of the CEBM
Γ(M?|θ′) trained to predict stellar mass M?. Panel a) displays the average contri-
bution of features to the base EBM model γ(M?|θ′). Panel b) shows the feature
functions contributing to the base EBM model γ(M?|θ′). Panel c) presents the
interaction functions for the base EBM γ(M?|θ′). Each panel shows the contribu-
tion of the bivariate interaction terms, normalized such that the color map ranges
between plus or minus the maximum of the norm of each function ||f ||max. Teal
indicates negative contributions and green indicates positive contributions. The
table lists ||f ||max for the interaction functions, each with units log10M�.
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Figure 5.16: Details for the outlier EBM model δ(M?|θ′) component of the
CEBM Γ(M?|θ′) trained to predict M?. Panel a) displays the average contribu-
tion of features to the outlier EBM model δ(M?|θ′). Panel b) shows the feature
functions for the outlier EBM δ(M?|θ′). qPanel c) presents the interaction func-
tions for the outlier EBM δ(M?|θ′). Each panel shows the contribution of the
interaction terms, normalized such that the color map ranges between plus or
minus the maximum of the norm of each function ||f ||max. Teal indicates negative
contributions and green indicates positive contributions. The table lists ||f ||max
for the interaction functions, each with units log10M�.

162



(a)

lo
g 1
0
ρ 1

R
ed

sh
ift
z

lo
g 1
0
Υ 0.

1

lo
g 1
0
M
vi
r

lo
g 1
0
T1

R
ed

sh
ift
z,
lo
g 1
0
ρ 1

lo
g 1
0
ρ 1,
lo
g 1
0
T1

10-1

A
v
e

ra
g

e
 C

o
n

tr
ib

u
ti
o

n
lo
gi
t(
p
(X
=
ou
tl
ie
r)
)

0 2
log10ρ1

-1.14

0.00

2.50

lo
gi
t(
p
(X
=
ou
tl
ie
r)
)

5 10
Redshift z

-0.67

0.00

0.85

lo
gi
t(
p
(X
=
ou
tl
ie
r)
)

0 2
log10Υ0.1

-0.46

0.00

4.36

lo
gi
t(
p
(X
=
ou
tl
ie
r)
)

10.0 12.5

log10Mvir[M¯]

-0.76

0.00

1.19

lo
gi
t(
p
(X
=
ou
tl
ie
r)
)

2.5 5.0

log10T1[K]

-0.22

0.00

2.20

lo
gi
t(
p
(X
=
ou
tl
ie
r)
)

(b)

7.5 10.0 12.5

Redshift z

10.0

12.0

lo
g
10
M
v
ir
[M

¯
]

0.0 2.0
log10ρ1

0.0 2.0
log10Υ0.1

2.5 5.0

log10T1[K]

0.0 2.0
log10Υ0.1

2.0

4.0

6.0

lo
g
10
T
1
[K
]

0.0 2.0
log10ρ1

7.5 10.0 12.5

Redshift z
0.0 2.0

log10Υ0.1

0.0

1.0

2.0

lo
g
10
ρ 1

0.0 2.0
log10ρ1

7.5

10.0

12.5

R
e

d
s
h

if
t
z

0.0 2.0
log10Υ0.1

−kf kmax 0 kf kmax

f kf kmax
log10Mvir,

Redshift z
0.63

log10Mvir,

log10ρ1 0.17

log10Mvir,

log10Υ0.1 0.67

f kf kmax
log10Mvir,

log10T1
0.80

log10T1,

log10Υ0.1 0.38

log10T1,

log10ρ1 0.40

log10T1,

Redshift z
2.45

f kf kmax
log10ρ1,
log10Υ0.1 0.78

Redshift z,
log10ρ1 0.20

Redshift z,
log10Υ0.1 0.35

(c)

Figure 5.17: Details for the classification EBM model φM?(θ′) that interpolates
between the base EBM γ(M?|θ′) and the outlier EBM δ(M?|θ′) for creating the
CEBM Γ(M?|θ′). Panel a) displays the average contribution of features to the clas-
sification EBM model φM?(θ′). Panel b) shows the feature functions contributing
to the classifier EBM φM?(θ′). These feature functions represent the change in log
odds that a given galaxy will be an outlier inM?. Panel c) presents the interaction
functions for the classifier EBM φM?(θ′). Each panel shows the contributions of
the interaction terms, normalized such that the color map ranges between plus or
minus the maximum of the norm of each function ||f ||max. Teal indicates negative
log odds and green indicates positive log odds that a given galaxy is an outlier
in stellar mass. The table lists ||f ||max for the interaction functions, listed as the
corresponding change in log odds.
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Figure 5.18: Details for the CEBM model Γ(M?|θ′) trained to predict stellar
mass M?. Panel a) displays the average contribution of features to the CEBM
model Γ(M?|θ′). Panel b) shows the feature functions contributing to the CEBM
Γ(M?|θ′). Panel c) presents the interaction functions for the CEBM Γ(M?|θ′).
Each panel shows the contribution of the interaction terms, normalized such that
the color map ranges between plus or minus the maximum of the norm of each
function ||f ||max. Teal indicates negative contributions and green indicates posi-
tive contributions. The table lists ||f ||max for the interaction functions, each with
units log10M�.
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Chapter 6

Conclusion

The large volume of richly complex data in astronomy is beyond the means

of human labor alone. The development of tools and techniques to address the

challenge of analyzing this data will be essential to furthering our understanding

of the universe. As demonstrated in this work, the field of computer science is

advanced in working on these challenges as well.

Chapter 2 introduced the Morpheus deep learning framework, a new approach

to morphological classification that detects and classifies sources at the pixel level.

Pixel-level morphological classifications will become increasingly crucial as the

number of sources observed increases and their proximity decreases. Morpheus

has been applied to the entire CANDELS survey encompassing an area of over

two billion pixels. Further, the framework can quickly scale any pixel-level classi-

fication or regression scheme to large astronomical images.

Deblending more than two sources in an image was previously unapproached

using deep learning owing to the varying dimensions of the deblended represen-

tation of sources. Chapter 3 proposed a new computer vision problem setting

called Partial-Attribution Instance Segmentation and implemented a deep learning

method to deblend a variable number of sources in an image. Further, the method
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presented naturally integrates with the Morpheus framework to scale to large im-

age data. Detecting and deblending sources at large scales will be paramount as

one of the first steps in analyzing image data.

Chapter 4 presented FitsMap, an end-to-end tool for displaying astronomical

image and catalog data using a web browser. FitsMap preclusters and tiles catalog

data to reduce the computational burden on the server and the client at runtime.

Preclustering and tiling the catalog data allows large-scale image and catalog data

to be rendered on limited hardware like mobile devices. FitsMap is thoroughly

benchmarked and is currently the only tool that can process image and catalog

data and generate the HTML, CSS, and JavaScript files for the website. Visualiz-

ing and easily sharing image and catalog data will make collaboration and public

outreach in astronomy much easier.

In Chapter 5, the relationship between stellar mass, star formation rate, and

the physical properties of simulated galaxies are modeled using an Explainable

Boosting Machine (EBM). The interpretable nature of EBMs allows scientists to

more rigorously interrogate the model than other more opaque models like neural

networks. Further, an ensemble method called a Composite Explainable Boosting

Machine is proposed that can model outlier trends in data while maintaining a

comparable level of interpretability. The trained EBMs will model stellar mass and

star formation rate in simulated galaxies where that information is not available.

Astronomical data analysis is in an ideal position for computer scientists to

work on. Large volumes of heterogeneous numerical data are being generated with

vast amounts on the horizon. Working with astronomers, computer scientists not

only stand to advance computer science but also perhaps learn how we all got

here in the first place.
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Appendix A

Deep Learning & Morpheus

Code/Data Products

A.1 Deep Learning

The Morpheus(HR2020) deep learning framework incorporates a variety of

technologies developed for machine learning applications. The following descrip-

tions of deep learning techniques complement the overview of HR2020 provided in

Section 2.2, and are useful for understanding optional configurations of the model.

A.1.1 Artificial Neuron

The basic unit of the HR2020 neural network is the artificial neuron (AN),

which transforms an input vector x to a single output AN(x). The AN is designed

to mimic the activation of a neuron, producing a nonlinear response to an input

stimulus value when it exceeds a rough threshold.
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The first stage of an AN consists of a function

z(x) =
n∑
i=1

wixi + b (A.1)

that adds the dot product of the n-element vector x with a vector of weights w to

a bias b. The values of the w elements and b are parameters of the model that are

set during optimization. The function z(x) is equivalent to a linear transformation

on input data x.

In the second stage, a nonlinear function a is applied to the output of z(x). It

is written as

AN(x) ≡ a(z(x)), (A.2)

where a(z) is called the activation function. The HR2020 framework allows the

user to specify the activation function, including the sigmoid

sigmoid(z) = 1
1 + e−z

, (A.3)

the hyperbolic tangent

tanh(z) = ez − e−z

ez + e−z
, (A.4)

and the rectified linear unit

relu(z) = max(0, z). (A.5)

These functions share a thresholding behavior, such that the function activates a

nonlinear behavior at a characteristic value of z, but the domain of these functions

differ. For the morphological classification problem presented in this chapter, the

rectified linear unit (Equation A.5) was used as the activation function.
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Figure A.1: Schematic of a simple neural network. Given an input vector x,
the neural network applies a series of reductions and nonlinear transformations
through a collection of layers L to produce an output o. Each layer L consists
of a set of artificial neurons AN that perform a linear rescaling of their input
data, followed by a nonlinear transformation via the application of an activation
function (see Equation A.2). The activation function may vary across layers.

A.1.2 Neural Networks

Increasingly complex computational structures can be constructed from ANs.

Single ANs are combined into layers, which are collections of distinct ANs that

process the same input vector x. A collection of layers forms a neural network

(NN), with the layers ordered such that the outputs from one layer provide the

inputs to the neurons in the subsequent layer. Figure A.1 shows a schematic of a

NN and how the initial input vector x is processed by multiple layers. As shown,

these layers are commonly called fully-connected since each neuron in a given layer

receives the outputs z from all neurons in the previous layer.
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A.1.3 Convolutional Neural Networks

The HR2020 framework operates on image data with a convolutional neural

network (CNN). A CNN includes at least one layer of ANs whose z function uses

a discrete cross-correlation (convolution) in place of the dot product in Equation

A.1. For a convolutional artificial neuron (CAN), it is written as

z(X) = (X ∗W) + bJ, (A.6)

where X ∗W represents the convolution of an input image X and a kernel W.

The elements of the kernel W are parameters of the model, and W may differ

in dimensions from X. In HR2020, the dimensions of W are set to be 3 × 3

throughout. The bias b is a scalar as before, and J represents a matrix of 1s with

the same dimensions as the result of the convolution. In HR2020, the convolution

is zero-padded to maintain the dimensions of the input data.

The activation function of the neuron is computed element-wise after the con-

volution and bias have been applied to the input. It is written as

CAN(X) ≡ a(z(X)). (A.7)

The output from a CAN is referred to as a feature map.

As with fully-connected layers, convolutional layers consist of a group of CANs

that process the same input data X. Convolutional layers can also be arranged

sequentially such that the output from one convolutional layer serves as input to

the next. HR2020’ neural network architecture, being U-Net based, is comprised

of CANs (see Figure A.2 for a schematic). In typical convolutional neural network

topologies, CANs are used to extract features from input images. The resulting

feature maps are eventually flattened into a single vector and processed by a fully
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Figure A.2: Schematic of a convolutional neural network (CNN). Shown is a
simplified CNN consisting of a convolutional layer feeding a fully connected layer.
Each artificial neuron (AN) in the convolutional layer outputs a feature map as de-
scribed by Equation A.7. Each output feature map is flattened and concatenated
into a single vector. This vector is processed by each AN in the fully connected
layer (see Equation A.2). The curly brace represents connections from all elements
of the vector input.

connected layer to produce the output classification values.

A.1.4 Other Functions in Neural Networks

The primary computational elements of HR2020 are a convolutional neural

network (Section A.1.3) and a fully connected layer (Section A.1.2). In detail,

other layers are used to reformat or summarize the data, renormalize it, or combine

data from different stages in the network.

Pooling

Pooling layers (Figure A.3) are composed of functions that summarize their

input data to reduce its size while preserving some information. These layers

perform a moving average (average pooling) or maximum (max pooling) over a

window of data elements, repeating these reductions as the window scans through
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Figure A.3: Comparison of max and average pooling layers. Pooling layers per-
form reductions on subsets of feature maps, providing a local average or maximum
of data elements in a window (2× 2 in this schematic). Shown are cells of an in-
put feature map (left), color-coded within a window to match the corresponding
regions of the output feature map (right). The pooling layers perform a simple re-
duction with these windows, taking either a maximum (upper branch) or average
(lower branch).

the input image with a stride equal to the window size. In the morphological

classification tasks described in Chapter 2, HR2020 uses 2× 2 windows and max

pooling.

Up-sampling

Up-sampling layers expand the size of feature maps by a specified factor

through an interpolation between input data elements. The up-sampling layers

operate in the image dimensions of the feature map and typically employ bicubic

and bilinear interpolation. In the morphological classification application explored

in Chapter 2, HR2020 used 2× 2 up-sampling and bicubic interpolation.
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Concatenation

Concatenation layers combine multiple feature maps by appending them with-

out changing their contents. For instance, the concatenation of red, green, and

blue (RGB) channels into a three-color image would append three N ×M images

into an RGB image with dimensions N×M×3. This operation is used in HR2020

to combine together data from the contraction phase with the output from bicubic

interpolations in the expansion phase (see Figure 2.2).

Batch Normalization

A common pre-processing step for neural network architectures is to normalize

the input data x using, e.g., the operation

x̂ = (x− µ)/
√
σ2 (A.8)

where x̂ is the normalized data, and µ and σ are parameters of the model. Ioffe

and Szegedy [121] extended this normalization step to apply to the inputs of

layers within the network, such that activations (AN) and feature maps (CAN)

are normalized over each batch. A batch consists of a subset of the training

examples used during the training process. Simple normalization operations like

Equation A.8 can reduce the range of values represented in the data provided to

a layer, which can inhibit learning. Ioffe and Szegedy [121] addressed this issue

by providing an alternative normalization operation that introduces additional

parameters to be learned during training. The input data elements xi are first

rescaled as

x̂i = xi − µx√
σ2

x + ε
. (A.9)
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Here, xi is a single element from the data output by a single AN or CAN over

a batch, µx is their mean, and σ2
x is their variance. The parameter ε is learned

during optimization. The new normalization BNx̂i
is then taken to be a linear

transformation

BNx̂i
= γxx̂i + βx. (A.10)

The parameters γx and βx are also learned during optimization. Ioffe and Szegedy

[121] demonstrated that batch normalization, in the form of Equation A.10, can in-

crease overall accuracy and decrease training time, and this approach is addopted

in the HR2020 framework.

A.1.5 U-Net Architecture

The HR2020 framework uses a U-Net architecture, first introduced by Ron-

neberger et al. [224]. The U-Net architecture was originally designed for segmen-

tation of medical imagery, but has enjoyed success in other fields. The U-Net

takes as input a set of images and outputs a classification image of pixel-level

probability distributions. The architecture begins with a contraction phase com-

posed of a series of convolutional and pooling layers, followed by an expansion

phase composed of a series of convolutional and up-sampling layers. Each of the

outputs from the down-sampling layers is concatenated with the output of an up-

sampling layer when the height and width dimensions of the feature maps match.

These concatenations help preserve the locality of learned features in the output

of the NN.
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A.2 code release

The code for HR2020 has been release via GitHub (https://github.com/morpheus-

project/morpheus). HR2020 is also available as a python package installable via

pip (https://pypi.org/project/morpheus-astro/) and as Docker images available

via Docker Hub (https://hub.docker.com/r/morpheusastro/morpheus). HR2020

includes both a Python API and a command-line interface, the documentation of

which can be found online at https://morpheus-astro.readthedocs.io/en/latest/.

A.3 code tutorial

An online tutorial demonstrating the HR2020 Python API in the form of a

Jupyter notebook can be found at

https://github.com/morpheus-project/morpheus/blob/master/examples/example_

array.ipynb. The tutorial walks through the classification of an example image.

Additionally, the tutorial explores other features of HR2020, including generating

segmentation maps and morphological catalogs.

A.4 Data Release

The data release associated with this chapter consists of multiple data prod-

ucts. For each field in the CANDELS survey, I provide the following data products:

pixel-level morphological classifications, segmentation maps, and value-added cat-

alogs(see also Section 2.8) for the 3D-HST catalogs. Tables A.1-A.5 provide the

URLs for each of the data products. Each of the fields has two types of seg-

mentation maps, a segmentation map informed by the 3D-HST survey and a

segmentation map informed only by the background values provided by HR2020

175

https://github.com/morpheus-project/morpheus
https://github.com/morpheus-project/morpheus
https://pypi.org/project/morpheus-astro/
https://hub.docker.com/r/morpheusastro/morpheus
https://morpheus-astro.readthedocs.io/en/latest/
https://github.com/morpheus-project/morpheus/blob/master/examples/example_array.ipynb
https://github.com/morpheus-project/morpheus/blob/master/examples/example_array.ipynb


(see Algorithm 1). The classifications for the EGS and UDS fields may vary as a

result of using the F814W band in place of the F850LP due to availability.

An interactive online visualization of the HST images, HR2020 classification

images, and 3D-HST sources is available at https://morpheus-project.github.io/

morpheus/.
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Figure A.4: Color composite of the HR2020 morphological classifications for the
COSMOS field from the CANDELS survey [95, 144].
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Figure A.5: Color composite of the HR2020 morphological classifications for the
EGS field from the CANDELS survey [95, 144].
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Figure A.6: Color composite of the HR2020 morphological classifications for the
GOODS North field from the CANDELS survey [95, 144].
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Figure A.7: Color composite of the HR2020 morphological classifications for the
UDS field from the CANDELS survey [95, 144].
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HR2020 Data Products for the COSMOS Field
File Name URL
Pixel-level Morphological Classifications
morpheus_COSMOS_spheroid.v1.0.fits u/spheroid.html
morpheus_COSMOS_disk.v1.0.fits u/disk.html
morpheus_COSMOS_irregular.v1.0.fits u/irregular.html
morpheus_COSMOS_ps_compact.v1.0.fits u/ps_compact.html
morpheus_COSMOS_background.v1.0.fits u/background.html
morpheus_COSMOS_mask.v1.0.fits u/mask.html
Segmentation Maps
morpheus_COSMOS_segmap.v1.0.fits u/segmap.html
morpheus_COSMOS_3dhst-segmap.v1.0.fits u/3dhst-segmap.html
3D-HST Value Added Catalog
morpheus_COSOMS_3dhst_catalog.v1.0.csv u/value-added-catalog.html
morpheus_COSOMS_3dhst_catalog.v1.0.txt u/value-added-catalog-mrt.html
All Files
morpheus_COSMOS_all.v1.0.tar.gz u/all.html
u = morpheus-project.github.io/morpheus/data-release/cosmos

Table A.1: Data release files generated by Morpheus and associated URLs for
the COSMOS CANDELS field. The data release files for each field are orga-
nized into three groups: pixel-level morphological classifications, segmentation
maps, and 3D-HST value-added catalogs. The pixel-level morphological classi-
fication files are named according to the following scheme morpheus_COSMOS_-
[morphology].v1.0.fits, where [morphology] can be one of the morphological
classes (spheroid, disk, irregular, ps_compact, background) or mask, a binary im-
age mask indicating which pixels in the image were classified by HR2020. The
segmentation map files are named according to the following scheme morpheus_-
COSMOS_[segmap_type].v1.0.fits , where [segmap_type] can be 3dhst-segmap
(indicating the 3D-HST informed segmap) or segmap (indicating a segmap based
only on background class/flux values). Finally, the 3D-HST value-added cat-
alog files are named according to the following scheme morpheus_COSMOS_-
3dhst-catalog.v1.0.[file_type], where [file_type] can be csv for a comma-
separated-value version of the value-added catalog and txt for the machine-
readable table version described in Table 2.5. Additionally, a link to an archive
containing all of the files associated with the COSMOS field is available in an
additional section called All Files. See Appendix A.4 for details.
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HR2020 Data Products for the EGS Field
File Name URL
Pixel-level Morphological Classifications
morpheus_EGS_spheroid.v1.0.fits u/spheroid.html
morpheus_EGS_disk.v1.0.fits u/disk.html
morpheus_EGS_irregular.v1.0.fits u/irregular.html
morpheus_EGS_ps_compact.v1.0.fits u/ps_compact.html
morpheus_EGS_background.v1.0.fits u/background.html
morpheus_EGS_mask.v1.0.fits u/mask.html
Segmentation Maps
morpheus_EGS_segmap.v1.0.fits u/segmap.html
morpheus_EGS_3dhst-segmap.v1.0.fits u/3dhst-segmap.html
3D-HST Value Added Catalogs
morpheus_EGS_3dhst_catalog.v1.0.csv u/value-added-catalog.html
morpheus_EGS_3dhst_catalog.v1.0.txt u/value-added-catalog-mrt.html
All Files
morpheus_EGS_all.v1.0.tar.gz u/all.html
u = morpheus-project.github.io/morpheus/data-release/egs

Table A.2: Data release files generated by Morpheus and associated URLs
for the EGS CANDELS field. The data release files for each field are orga-
nized into three groups: pixel-level morphological classifications, segmentation
maps, and 3D-HST value-added catalogs. The pixel-level morphological clas-
sification files are named according to the following scheme morpheus_EGS_-
[morphology].v1.0.fits, where [morphology] can be one of the morphological
classes (spheroid, disk, irregular, ps_compact, background) or mask, a binary im-
age mask indicating which pixels in the image were classified by HR2020. The
segmentation map files are named according to the following scheme morpheus_-
EGS_[segmap_type].v1.0.fits , where [segmap_type] can be 3dhst-segmap (in-
dicating the 3D-HST informed segmap) or segmap (indicating a segmap based
only on background class/flux values). Finally, the 3D-HST value-added catalog
files are named according to the following scheme morpheus_EGS_3dhst-catalog-
.v1.0.[file_type], where [file_type] can be csv for a comma-separated-value
version of the value-added catalog and txt for the machine-readable table version
described in Table 2.5. Additionally, a link to an archive containing all of the files
associated with the EGS field is available in an additional section called All Files.
See Appendix A.4 for details.
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http://morpheus-project.github.io/morpheus/data-release/egs/spheroid.html
http://morpheus-project.github.io/morpheus/data-release/egs/disk.html
http://morpheus-project.github.io/morpheus/data-release/egs/irregular.html
http://morpheus-project.github.io/morpheus/data-release/egs/ps-compact.html
http://morpheus-project.github.io/morpheus/data-release/egs/background.html
http://morpheus-project.github.io/morpheus/data-release/egs/mask.html
http://morpheus-project.github.io/morpheus/data-release/egs/segmap.html
http://morpheus-project.github.io/morpheus/data-release/uds/3dhst-segmap.html
http://morpheus-project.github.io/morpheus/data-release/egs/value-added-catalog.html
http://morpheus-project.github.io/morpheus/data-release/egs/value-added-catalog.html
http://morpheus-project.github.io/morpheus/data-release/egs/all.html


HR2020 Data Products for the GOODS North Field
File Name URL
Pixel-level Morphological Classifications
morpheus_GOODS-N_spheroid.v1.0.fits u/spheroid.html
morpheus_GOODS-N_disk.v1.0.fits u/disk.html
morpheus_GOODS-N_irregular.v1.0.fits u/irregular.html
morpheus_GOODS-N_ps_compact.v1.0.fits u/ps_compact.html
morpheus_GOODS-N_background.v1.0.fits u/background.html
morpheus_GOODS-N_mask.v1.0.fits u/mask.html
Segmentation Maps
morpheus_GOODS-N_segmap.v1.0.fits u/segmap.html
morpheus_GOODS-N_3dhst-segmap.v1.0.fits u/3dhst-segmap.html
3D-HST Value Added Catalogs
morpheus_GOODS-N_3dhst_catalog.v1.0.csv u/value-added-catalog.html
morpheus_GOODS-N_3dhst_catalog.v1.0.txt u/value-added-catalog-mrt.html
All Files
morpheus_GOODS-N_all.v1.0.tar.gz u/all.html
u = morpheus-project.github.io/morpheus/data-release/goods-n

Table A.3: Data release files generated by Morpheus and associated URLs
for the GOODS North CANDELS field. The data release files for each field
are organized into three groups: pixel-level morphological classifications, seg-
mentation maps, and 3D-HST value-added catalogs. The pixel-level morpholog-
ical classification files are named according to the following scheme morpheus_-
GOODS-N_[morphology].v1.0.fits, where [morphology] can be one of the mor-
phological classes (spheroid, disk, irregular, ps_compact, background) or mask,
a binary image mask indicating which pixels in the image were classified by
HR2020. The segmentation map files are named according to the following scheme
morpheus_GOODS-N_[segmap_type].v1.0.fits , where [segmap_type] can be
3dhst-segmap (indicating the 3D-HST informed segmap) or segmap (indicating
a segmap based only on background class/flux values). Finally, the 3D-HST
value-added catalog files are named according to the following scheme morpheus_-
GOODS-N_3dhst-catalog.v1.0.[file_type], where [file_type] can be csv for
a comma-separated-value version of the value-added catalog and txt for the
machine-readable table version described in Table 2.5. Additionally, a link to
an archive containing all of the files associated with the GOODS North field is
available in an additional section called All Files. See Appendix A.4 for details.
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http://morpheus-project.github.io/morpheus/data-release/goods-n/spheroid.html
http://morpheus-project.github.io/morpheus/data-release/goods-n/disk.html
http://morpheus-project.github.io/morpheus/data-release/goods-n/irregular.html
http://morpheus-project.github.io/morpheus/data-release/goods-n/ps-compact.html
http://morpheus-project.github.io/morpheus/data-release/goods-n/background.html
http://morpheus-project.github.io/morpheus/data-release/goods-n/mask.html
http://morpheus-project.github.io/morpheus/data-release/goods-n/segmap.html
http://morpheus-project.github.io/morpheus/data-release/goods-n/3dhst-segmap.html
http://morpheus-project.github.io/morpheus/data-release/goods-n/value-added-catalog.html
http://morpheus-project.github.io/morpheus/data-release/goods-n/value-added-catalog.html
http://morpheus-project.github.io/morpheus/data-release/goods-n/all.html


HR2020 Data Products for the GOODS South Field
File Name URL
Pixel-level Morphological Classifications
morpheus_GOODS-S_spheroid.v1.0.fits u/spheroid.html
morpheus_GOODS-S_disk.v1.0.fits u/disk.html
morpheus_GOODS-S_irregular.v1.0.fits u/irregular.html
morpheus_GOODS-S_ps_compact.v1.0.fits u/ps_compact.html
morpheus_GOODS-S_background.v1.0.fits u/background.html
morpheus_GOODS-S_mask.v1.0.fits u/mask.html
morpheus_GOODS-S_spheroid.v1.0.fits u/spheroid.html
Segmentation Maps
morpheus_GOODS-S_segmap.v1.0.fits u/segmap.html
morpheus_GOODS-S_3dhst_segmap.v1.0.fits u/3dhst-segmap.html
3D-HST Value Added Catalogs
morpheus_GOODS-S_3dhst_catalog.v1.0.csv u/value-added-catalog.html
morpheus_GOODS-S_3dhst_catalog.v1.0.txt u/value-added-catalog-mrt.html
All Files
morpheus_GOODS-S_all.v1.0.tar.gz u/all.html
u = morpheus-project.github.io/morpheus/data-release/goods-s

Table A.4: Data release files generated by Morpheus and associated URLs
for the GOODS South CANDELS field. The data release files for each field
are organized into three groups: pixel-level morphological classifications, seg-
mentation maps, and 3D-HST value-added catalogs. The pixel-level morpholog-
ical classification files are named according to the following scheme morpheus_-
GOODS-S_[morphology].v1.0.fits, where [morphology] can be one of the mor-
phological classes (spheroid, disk, irregular, ps_compact, background) or mask,
a binary image mask indicating which pixels in the image were classified by
HR2020. The segmentation map files are named according to the following scheme
morpheus_GOODS-S_[segmap_type].v1.0.fits , where [segmap_type] can be
3dhst-segmap (indicating the 3D-HST informed segmap) or segmap (indicating
a segmap based only on background class/flux values). Finally, the 3D-HST
value-added catalog files are named according to the following scheme morpheus_-
GOODS-S_3dhst-catalog.v1.0.[file_type], where [file_type] can be csv for
a comma-separated-value version of the value-added catalog and txt for the
machine-readable table version described in Table 2.5. Additionally, a link to
an archive containing all of the files associated with the GOODS South field is
available in an additional section called All Files. See Appendix A.4 for details.
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http://morpheus-project.github.io/morpheus/data-release/goods-s/spheroid.html
http://morpheus-project.github.io/morpheus/data-release/goods-s/disk.html
http://morpheus-project.github.io/morpheus/data-release/goods-s/irregular.html
http://morpheus-project.github.io/morpheus/data-release/goods-s/ps-compact.html
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http://morpheus-project.github.io/morpheus/data-release/goods-s/mask.html
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http://morpheus-project.github.io/morpheus/data-release/goods-s/all.html


HR2020 Data Products for the UDS Field
File Name URL
Pixel-level Morphological Classifications
morpheus_UDS_spheroid.v1.0.fits u/spheroid.html
morpheus_UDS_disk.v1.0.fits u/disk.html
morpheus_UDS_irregular.v1.0.fits u/irregular.html
morpheus_UDS_ps_compact.v1.0.fits u/ps_compact.html
morpheus_UDS_background.v1.0.fits u/background.html
morpheus_UDS_mask.v1.0.fits u/mask.html
Segmentation Maps
morpheus_UDS_segmap.v1.0.fits u/segmap.html
morpheus_UDS_3dhst-segmap.v1.0.fits u/3dhst-segmap.html
3D-HST Value Added Catalogs
morpheus_UDS_3dhst_catalog.v1.0.csv u/value-added-catalog.html
morpheus_UDS_3dhst_catalog.v1.0.txt u/value-added-catalog-mrt.html
All Files
morpheus_UDS_all.v1.0.tar.gz u/all.html
u = morpheus-project.github.io/morpheus/data-release/uds

Table A.5: Data release files generated by Morpheus and associated URLs
for the UDS CANDELS field. The data release files for each field are or-
ganized into three groups: pixel-level morphological classifications, segmenta-
tion maps, and 3D-HST value-added catalogs. The pixel-level morphological
classification files are named according to the following scheme morpheus_-
UDS_[morphology].v1.0.fits, where [morphology] can be one of the mor-
phological classes (spheroid, disk, irregular, ps_compact, background) or mask,
a binary image mask indicating which pixels in the image were classified by
HR2020. The segmentation map files are named according to the following
scheme morpheus_UDS_[segmap_type].v1.0.fits , where [segmap_type] can
be 3dhst-segmap (indicating the 3D-HST informed segmap) or segmap (indicat-
ing a segmap based only on background class/flux values). Finally, the 3D-HST
value-added catalog files are named according to the following scheme morpheus_-
UDS_3dhst-catalog.v1.0.[file_type], where [file_type] can be csv for a
comma-separated-value version of the value-added catalog and txt for the machine-
readable table version described in Table 2.5. Additionally, a link to an archive
containing all of the files associated with the UDS field is available in an additional
section called All Files. See Appendix A.4 for details.
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http://morpheus-project.github.io/morpheus/data-release/uds/spheroid.html
http://morpheus-project.github.io/morpheus/data-release/uds/disk.html
http://morpheus-project.github.io/morpheus/data-release/uds/irregular.html
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http://morpheus-project.github.io/morpheus/data-release/uds/3dhst-segmap.html
http://morpheus-project.github.io/morpheus/data-release/uds/value-added-catalog.html
http://morpheus-project.github.io/morpheus/data-release/uds/value-added-catalog.html
http://morpheus-project.github.io/morpheus/data-release/uds/all.html
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